Ultrahigh-pressure form of SiO$_2$ glass with dense pyrite-type crystalline homology

1Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
2Department of Earth and Planetary Materials Science, Tohoku University, Sendai 980-8578, Japan
3Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Hyogo 679-5148, Japan
4Center for Materials research by Information Integration (CMII), Research and Services Division of Materials Data and Integrated System (MaDIS) NIMS, Ibaraki 305-0047, Japan
5Research and Utilization Division, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
6School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1211, Japan
7PRESTO, Japan Science and Technology Agency, Tokyo 102-0076, Japan
8Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
9Department of Physics, Tampere University of Technology, FI-33101 Tampere, Finland
10Department of Physics, Norwegian University of Science and Technology, NO-7481 Trondheim, Norway
11Graduate School of Fundamental Science and Engineering, Waseda University, Tokyo 169-8555, Japan
12Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo 169-0051, Japan
13Mathematics for Advanced Materials-OIL, AIST, Sendai 980-8577, Japan
14WPI Advanced Institute of Materials Research, Tohoku University, Sendai 980-8577, Japan
15Kyoto University Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan
16Center for Advanced Intelligence Project, RIKEN, Tokyo 103-0027, Japan
17Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
18Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
19Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan

(Received 18 September 2018; revised manuscript received 4 January 2019; published 29 January 2019)

High-pressure synthesis of denser glass has been a longstanding interest in condensed-matter physics and materials science because of its potentially broad industrial application. Nevertheless, understanding its nature under extreme pressures has yet to be clarified due to experimental and theoretical challenges. Here we reveal the formation of OSi$_4$ tetraclusters associated with that of SiO$_7$ polyhedra in SiO$_2$ glass under ultrahigh pressures to 200 gigapascal confirmed both experimentally and theoretically. Persistent homology analyses with molecular dynamics simulations found increased packing fraction of atoms whose topological diagram at ultrahigh pressures is similar to a pyrite-type crystalline phase, although the formation of tetraclusters is prohibited in the crystalline phase. This critical difference would be caused by the potential structural tolerance in the glass for distortion of oxygen clusters. Furthermore, an expanded electronic band gap demonstrates that chemical bonds survive at ultrahigh pressure. This opens up the synthesis of topologically disordered dense oxide glasses.

DOI: 10.1103/PhysRevB.99.045153

I. INTRODUCTION

Silica (SiO$_2$) has been known as one of the most fundamental and abundant oxides in the Earth, which can usually be yielded as quartz, silica sand, or silica stone in a high-purity condition. Due to this ubiquitous availability and abundant resource around the world, SiO$_2$ has been extensively utilized as an industrially useful material. SiO$_2$ glass, with high corrosion resistance, high thermostability, and high optical transparency, is a prototype network-forming glass which can be easily synthesized by various methods and is therefore widely used and a technologically important material. Polymorphism in SiO$_2$ glass under pressure is one of the most fascinating and puzzling topics in condensed-matter physics and glass science. Several experimental and theoretical studies have been conducted to clarify the details of polymorphism [1] in SiO$_2$ glass under high pressure. However, due to the technical hurdles, the experimental studies have been limited to very low-pressure conditions, which prevents a precise understanding of the pressure effect.

Previous experimental studies on SiO$_2$ glass have shown anomalous behavior under lower pressures up to ~10 GPa, exhibiting elastic softening [2] and permanent densification [3]. Those densification-related properties are closely related
to a topological transformation of the tetrahedral network [4] and compaction of a significant amount of interstitial cavities in the SiO$_2$ glass [5], rather than a change in the coordination number of silicon. At higher pressure, transitions to a much denser state are attributed to changes in short- and intermediate-range ordering associated with the change in oxygen coordination around silicon. Although the details of the coordination state and the pressure conditions under which the coordination changes occur are still a matter of debate [6], it appears that the sixfold-coordinated structure is predominant at 40–45 GPa [7,8] subsequent to a gradual change in the Si-O coordination number from four to six, which begins around 10–20 GPa [8], as inferred by a number of experimental measurements including Raman scattering [9], infrared absorption [10], x-ray diffraction/absorption [7,8,11,12], Brillouin scattering [13,14], x-ray Raman scattering [15], and neutron diffraction measurements [16]. Sato and Funamori [17] have reported that the coordination number of SiO$_2$ glass remains six at least up to 100 GPa based on the energy-dispersive x-ray diffraction measurements, indicating that SiO$_2$ glass behaves as the corresponding crystalline phase with sixfold-coordinated structure between 40 and 100 GPa.

Ultrahigh-pressure acoustic wave velocity measurements on SiO$_2$ glass up to 207 GPa by Brillouin scattering spectroscopic experiment [18] have revealed an anomalous increase in the effect of pressure on acoustic velocity at ~140 GPa, which was interpreted as a structural transition from a sixfold to higher coordination state of silicon above 140 GPa. A series of computational simulations on SiO$_2$ glass [19,20] has been conducted subsequently, and they have shown the possible formation of a Si-O coordination state higher than six under ultrahigh-pressure conditions above 100 GPa, which strongly supports the experimental findings [18]. These results suggest that the SiO$_2$ glass becomes far denser under ultrahigh-pressure conditions than previously envisioned [7,8,17], which significantly reshapes our understanding of the nature of the densification mechanism of SiO$_2$ glass [1]. However, the change in acoustic wave velocity profile as a function of pressure only indicates a structural anomaly, while it does not provide us with any quantitative structural information. Therefore, it still remains experimentally unresolved whether or not such an anomalous increase in the acoustic velocity at ~140 GPa corresponds to a structural change associated with the coordination number increase. In addition, it has been believed that the sixfold-coordination state in crystalline SiO$_2$ retains at least above ~700 GPa. Clarifying this issue is thus also important to understand the analogy between polymorphism and polyamorphism in silica systems under ultrahigh pressures. Very recently, Prescher et al. performed high-pressure x-ray diffraction measurements up to 174 GPa and confirmed that the average coordination number is greater than six at ultrahigh pressures [21], but the atomic structure beyond the first coordination distance and the electronic structure are still unknown.

Here, we report the results of state-of-the-art topological analysis on the basis of atomic configuration obtained by classical molecular dynamics (MD) simulations and density functional theory (DFT) calculations up to 200 GPa. In situ synchrotron high-pressure x-ray diffraction measurements support the reliability of simulation. Our supporting analytical methods include the concept of persistent homology [22] and we have placed a special focus on the nature of atomic structure, topology, and electronic structures as a function of pressure. Furthermore, we have put emphasis on a general understanding of pressure-induced modification in the glass structure at the atomistic and electronic level to illustrate a motif for densification in comparison with crystalline phases.

II. EXPERIMENT

A. X-ray diffraction measurements

We performed high-pressure in situ x-ray diffraction measurements on the beam line BL10XU at the Japanese synchrotron facility of SPring-8 [23]. Angle-dispersive high-pressure x-ray diffraction spectra were collected on the compressed SiO$_2$ glass at room temperature in a symmetric diamond anvil cell (DAC) at nine separate runs from 0 to 200 GPa. In each run, a prepressed plate of SiO$_2$ glass powder was loaded into a 50–100 μm hole, depending on the target pressure condition, drilled in the rhenium gasket without a pressure-transmitting medium. The sample was compressed with 300 μm flat culet and 150 μm beveled culet diamond anvils at the lower five pressures and higher four pressures, respectively. The DAC with a large conical angular aperture used in the present experiments allowed the reliable diffraction patterns to be taken in a large angle up to a maximum 2θ of 42°. Pressure was determined using the Raman T$_{2g}$ mode of the diamond anvil [24] or ruby fluorescence pressure scale [25]. An incident x-ray beam was monochromatized, using a diamond double-crystal monochromator, to a beam energy of 49.6 and 49.9 keV. The x-ray beam was collimated to ~40 μm in diameter and x-ray diffraction spectra of the sample were obtained by an image plate (Rigaku-RAXIS IV++), which has 3000 × 3000 (pixel) dimensions with a pixel size of 100 × 100 μm [23]. Integration of the full-circle scattered x-ray images was performed to give conventional one-dimensional scattered profiles. To subtract the background signals derived mainly from the Compton scattering of the diamond anvils, the background x-ray diffraction pattern was collected for each experimental run after decompression from an empty rhenium gasket hole in a diamond anvil cell after removal of the compressed sample. The Q scale was calibrated using the diffraction pattern from the crystalline CeO$_2$. The density value of SiO$_2$ glass under high pressure, which is a key parameter in interpreting measured x-ray diffraction data, was estimated based on the recent results by an x-ray absorption method [7]. The collected data were corrected and normalized to give a Faber-Ziman structure factor using a standard program [26].

B. MD simulation

Molecular dynamics (MD) calculations were performed with a Born-Mayer type of pairwise potentials. The potentials of the term of the Coulomb interactions with the effective charges of Si and O atoms and the repulsive term described by the exponential functions are calculated by the formula

$$
\Phi_{ij} = \frac{e^2}{4\pi\varepsilon_0} \frac{Z_i Z_j}{r_{ij}} + B \exp\left(-\frac{r_{ij}}{\rho}\right).
$$
where \(r_{ij} \) is the interatomic distance between atoms, \(Z \) is the effective charge, \(B \) is the repulsive parameter, \(e \) is the elementary charge, \(\epsilon_0 \) is the permittivity of vacuum, and \(\rho \) is the softness parameter. Table 4 in the Supplemental Material [27] gives the parameters for \(Z, B, \) and \(\rho \).

The present calculations were carried out for a system of 3000 (1000 Si + 2000 O) atoms in the unit cell. The volume of the unit cell was determined from the number densities of the \(\text{SiO}_2 \) glasses under pressures of 10, 31, 46, 83, 109, 140, 170, and 200 GPa. Periodic boundary conditions were used and the long-range Coulomb interaction was treated with Ewald’s summation. A time step of 1 fs was used in the Verlet algorithm. The authors of this paper created the program code for the MD simulation.

In the MD simulation, the structural models at different pressures were obtained from random starting atomic configurations. The temperature of the system was kept first at 4000 K for 200 000 time steps, after which the system was cooled down to 293 K during 200 000 time steps. The structural model was finally annealed at 293 K for 20 000 time steps. Five structural models were prepared by repeating the above procedure for the different initial configurations for each condition.

We also tested other classical force fields with the LAMMPS program. The different parameterizations included the ReaxFF [28], COMB [29], CHIK [30] and BKS potentials [31]. None of these worked properly in terms of density and atomic structure under high pressure of 109 GPa. This analysis highlights the intrinsic limitations present in the current interatomic potentials.

C. Topological analysis

1. Cavity analysis

The cavity analysis has been performed as described in the previous literature [32]. The system is divided into a cubic mesh with a grid spacing of 0.1 Å, and the points farther from any atom at a given cutoff (here, 2.1 Å and 2.5 Å) are selected and defined as “cavity domains.” Each domain is characterized by a center point where the distance to all neighboring atoms is maximal. The distance cutoff can be varied case by case, and the obtained results (volumes) depend closely on this value.

2. Persistent homology and persistence diagram

Given a set of points in the space, the persistent homology captures its topological multiscale structures, and those identified structures are compactly expressed in the format called persistence diagram. The construction of the persistence diagram follows the process described in Fig. 1(a). We first replace each point with a sphere and increase its radius from zero to sufficiently large value. This process corresponds to the changing resolution of our input data. Then, we record the pair of radii \((b, d)\) at which a void (interstitial, vacancy, cavity) in a specific location appears (birth) and disappears (death), respectively. The persistence diagram is a histogram of the birth-death plane counting of voids at the coordinate \((b, d)\). From this construction, the persistence diagram enables one not only to count the number of voids, but also to characterize those shapes and multiscale properties. To provide the readers with a better understanding of persistence diagrams, we show some examples of birth-death pairs for typical regular structures in Figs. 1(b)–1(e).

For regular hexagonal points whose distance between points is \(a\), the void appears at radius \(a/2\) and disappears at radius \(a\), as shown in Fig. 1(b). For a regular triangular configuration, the void appears at \(a/2\) and disappears at \(\sqrt{3}a/2\), as shown in Fig. 1(c), and the one-dimensional persistence diagram for regular hexagonal/triangular points is shown in Fig. 1(d). For a two-dimensional persistence diagram, we can similarly evaluate the cavities for a regular tetrahedron and octahedron. The birth and death radii are \(\sqrt{2}a/2\approx 0.777a\) and \(\sqrt{3}a/2\approx 0.612a\) for a tetrahedron, and \(\sqrt{2}a/2\approx 0.777a\) and \(\sqrt{7}2a/2\approx 0.707a\) for an octahedron, and they are shown in Fig. 1(e). Therefore, the two-dimensional persistence diagram of an fcc crystal with a bond length \(a\) displays two sharp peaks at \((0.577a, 0.612a)\) and \((0.577a, 0.707a)\), corresponding to two types of voids: interstitial tetrahedral and octahedral sites. For further details, we refer the reader to the article on persistent homology [22]. In our work, persistence diagrams are being used for investigating rings and polyhedral formations in atomic configurations. We also note that the detected rings and cavities are recorded during the computation of persistence diagrams, and hence we can explicitly identify their geometric shapes for further analysis.

D. DFT simulations

The CP2K program [33,34] was used to perform the DFT simulations of selected snapshot systems. CP2K employs two representations of the electron density: localized Gaussian and plane-wave (GPW) basis sets. For the Gaussian-based (localized) expansion of the Kohn-Sham orbitals, we use a library of contracted molecularly optimized valence double- zeta plus polarization (m-DZVP) basis sets [35], and the
complementary plane-wave basis set has a cutoff of 550 Rydberg for electron density. The valence electron-ion interaction is based on the norm-conserving and separable Goedecker-Teter-Hutter (GTH) pseudopotentials [36]. The exchange-correlation energy functional employs the generalized gradient corrected approximation of Perdew, Burke, and Ernzerhof (PBE) [37]. The DFT simulations were performed using a simulation box with 3000 atoms where the starting geometry was constructed by the MD simulation mentioned above. The electronic density of states (DOS) and those with projections onto different elements (P-DOS) were calculated after atomic structure relaxation in a fixed volume (pressure). For each element, the effective volumes and charges were estimated from the atomic configuration and the electron density distribution based on the Voronoi method.

III. RESULTS and DISCUSSIONS

A. Structure factors and real-space function

Figure 2(a) shows the x-ray total structure factors $S(Q)$ measured up to 200 GPa, together with the $S(Q)$ derived from the MD simulations. The experimental $S(Q)$ are remarkably well reproduced by the MD simulation, although the height of the first sharp diffraction peak (FSDP) observed at $1.5 < Q < 2.7 \, \text{Å}^{-1}$ is slightly overestimated in the simulations (especially for 10 GPa). The observed FSDP position (see Table S1 in the Supplemental Material [27]) shows a drastic and almost linear increase up to 31 GPa, and the FSDP profile becomes much more subtle beyond this point, which is in excellent agreement with the previous studies at least up to 100 GPa [7,8,12,17]. The second principal peak (PP) observed around $Q \sim 3 \, \text{Å}^{-1}$, which has previously been considered as a manifestation of the presence of octahedrally (sixfold)-coordinated Si [12], becomes prominent above 31 GPa, and the peak position gradually shifts to a higher-Q region with increasing pressure up to 170 GPa. As shown in Fig. 2(b), this behavior is well understood in terms of partial structure factors, $S_{\alpha\beta}(Q)$, in which the evolution of the silicon-silicon principal peak increases with increasing pressure.

To understand the short-range structure in detail, the average Si-O bond length as a function of pressure was determined based on the first $T(r)$ peak position as well as the MD simulations. The experimental $S(Q)$ are remarkably well reproduced by the MD simulation, although the height of the first sharp diffraction peak (FSDP) observed at $1.5 < Q < 2.7 \, \text{Å}^{-1}$ is slightly overestimated in the simulations (especially for 10 GPa). The observed FSDP position (see Table S1 in the Supplemental Material [27]) shows a drastic and almost linear increase up to 31 GPa, and the FSDP profile becomes much more subtle beyond this point, which is in excellent agreement with the previous studies at least up to 100 GPa [7,8,12,17]. The second principal peak (PP) observed around $Q \sim 3 \, \text{Å}^{-1}$, which has previously been considered as a manifestation of the presence of octahedrally (sixfold)-coordinated Si [12], becomes prominent above 31 GPa, and the peak position gradually shifts to a higher-Q region with increasing pressure up to 170 GPa. As shown in Fig. 2(b), this behavior is well understood in terms of partial structure factors, $S_{\alpha\beta}(Q)$, in which the evolution of the silicon-silicon principal peak increases with increasing pressure.

To understand the short-range structure in detail, the average Si-O bond length as a function of pressure was determined based on the first $T(r)$ peak position as well as the MD simulations. The experimental $S(Q)$ are remarkably well reproduced by the MD simulation, although the height of the first sharp diffraction peak (FSDP) observed at $1.5 < Q < 2.7 \, \text{Å}^{-1}$ is slightly overestimated in the simulations (especially for 10 GPa). The observed FSDP position (see Table S1 in the Supplemental Material [27]) shows a drastic and almost linear increase up to 31 GPa, and the FSDP profile becomes much more subtle beyond this point, which is in excellent agreement with the previous studies at least up to 100 GPa [7,8,12,17]. The second principal peak (PP) observed around $Q \sim 3 \, \text{Å}^{-1}$, which has previously been considered as a manifestation of the presence of octahedrally (sixfold)-coordinated Si [12], becomes prominent above 31 GPa, and the peak position gradually shifts to a higher-Q region with increasing pressure up to 170 GPa. As shown in Fig. 2(b), this behavior is well understood in terms of partial structure factors, $S_{\alpha\beta}(Q)$, in which the evolution of the silicon-silicon principal peak increases with increasing pressure.

To understand the short-range structure in detail, the average Si-O bond length as a function of pressure was determined based on the first $T(r)$ peak position as well as the MD simulations. The experimental $S(Q)$ are remarkably well reproduced by the MD simulation, although the height of the first sharp diffraction peak (FSDP) observed at $1.5 < Q < 2.7 \, \text{Å}^{-1}$ is slightly overestimated in the simulations (especially for 10 GPa). The observed FSDP position (see Table S1 in the Supplemental Material [27]) shows a drastic and almost linear increase up to 31 GPa, and the FSDP profile becomes much more subtle beyond this point, which is in excellent agreement with the previous studies at least up to 100 GPa [7,8,12,17]. The second principal peak (PP) observed around $Q \sim 3 \, \text{Å}^{-1}$, which has previously been considered as a manifestation of the presence of octahedrally (sixfold)-coordinated Si [12], becomes prominent above 31 GPa, and the peak position gradually shifts to a higher-Q region with increasing pressure up to 170 GPa. As shown in Fig. 2(b), this behavior is well understood in terms of partial structure factors, $S_{\alpha\beta}(Q)$, in which the evolution of the silicon-silicon principal peak increases with increasing pressure.

To understand the short-range structure in detail, the average Si-O bond length as a function of pressure was determined based on the first $T(r)$ peak position as well as the MD simulations. The experimental $S(Q)$ are remarkably well reproduced by the MD simulation, although the height of the first sharp diffraction peak (FSDP) observed at $1.5 < Q < 2.7 \, \text{Å}^{-1}$ is slightly overestimated in the simulations (especially for 10 GPa). The observed FSDP position (see Table S1 in the Supplemental Material [27]) shows a drastic and almost linear increase up to 31 GPa, and the FSDP profile becomes much more subtle beyond this point, which is in excellent agreement with the previous studies at least up to 100 GPa [7,8,12,17]. The second principal peak (PP) observed around $Q \sim 3 \, \text{Å}^{-1}$, which has previously been considered as a manifestation of the presence of octahedrally (sixfold)-coordinated Si [12], becomes prominent above 31 GPa, and the peak position gradually shifts to a higher-Q region with increasing pressure up to 170 GPa. As shown in Fig. 2(b), this behavior is well understood in terms of partial structure factors, $S_{\alpha\beta}(Q)$, in which the evolution of the silicon-silicon principal peak increases with increasing pressure.
MD simulations in real space (Fig. S1 in the Supplemental Material [27]), and the numerical values are shown in Fig. 3 together with the previous results [8,12,17,21]. Although there are some differences due to pressure conditions and insufficient real-space resolution in the experimental data (especially above 83 GPa), the same trend of the Si-O bond lengths is observed among the experimental and MD simulations results. The results indicate that the average Si-O distance increases monotonically with pressure at least up to 46 GPa and turns to decline to 140 GPa, and eventually becomes constant up to 200 GPa. The overall trend of our results is consistent with those of Sato and Funamori [17] up to ∼100 GPa and Prescher et al. up to 174 GPa [21]. According to the estimated bond lengths of the sixfold-coordinated crystalline silica SiO2 phase [38], shown as the shaded area in Fig. 3, we suggest that the sixfold-coordinated silicon in SiO2 glass becomes predominant at pressure approaching 40 GPa. Intermediate-range ordering in AX2 glasses is of particular interest because the typical examples of SiO2 and GeO2 are very well known as glass-forming materials according to Zachariasen’s theory [39]. Therefore, it is indispensable to investigate the relationship between the intermediate-range/chemical ordering and the behavior of the FSDP/second PP in the structure factor. Although the MD simulations overestimate the FSDP heights, those observed for S_{SiSi}(Q) and S_{OO}(Q) appear to disappear at 31 GPa [Fig. 2(b)]. Another remarkable feature is the very sharp PP observed at Q ∼ 2.75 Å in S_{SiSi}(Q), which is also observed in x-ray diffraction data [see Fig. 2(a)]. The PP is usually observed at Q ∼ 3 Å⁻¹ in neutron diffraction data at ambient to low pressures because it reflects the packing of oxygen atoms [40,41]. However, our analyzed data suggest that the very intense PP in the x-ray diffraction data is a signature of increased packing fraction of silicon associated with the formation of triclus- ter and tetracluster configurations, while the PP in S_{OO}(Q) do not change significantly [Fig. 2(b)]. These observations show a clear tendency for the pressure-induced deformation of intermediate-range topological ordering associated with chemical ordering manifested by the evolution of PP. Such a significant diminution of FSDPs with pressure is likely associated with the possible disturbance of the evolution of intermediate-range ordering caused by the pressure-induced diversification of coordination states and polyhedral linkages including an edge-shared connection observed in liquid ZrO2 [42].

B. Si-O coordination numbers

The distributions of Si-O coordination numbers were derived from the MD models and are shown in Fig. 2(c) where the gradual changes from fourfold to higher coordination can be clearly observed. The fourfold-coordinated structure retains up to 10 GPa almost as a single coordination species. The fivefold-coordinated structure becomes predominant at 31 GPa. The dominant coordination state subsequently shifts to sixfold at the pressure regime between 46 and 109 GPa. Here, a significant rise in the proportion of sevenfold coordi- nation is visible, whereas the fraction of fivefold-coordinated configuration decreases as a compensation. Such a coordination number change with pressure is in a good agreement with the previous results up to 109 GPa [8,12,17] and up to 174 GPa [21]. However, it is found that the fraction of the sevenfold-coordination state increases up to 40% at 140 GPa and becomes eventually greater than that of sixfold above 170 GPa, reaching a fraction of 53% at 200 GPa. The remarkable feature shown here is that the SiO2 glass does not comprise a single coordination state under pressure but exhibits a broader distribution above 31 GPa, such as SiO6 and SiO7 polyhedra. Furthermore, the average coordination number is found to change gradually as the coordination distributions evolve. While the observed declining trend in the Si-O bond length at pressures approaching 140 GPa indicates a stable sixfold-coordination state which behaves as the crystalline form of silica, the trend above 170 GPa showing the constant value can be interpreted as the onset of the average coordination number higher than 6. The corresponding snapshot of the local environment around oxygen atoms at 200 GPa constructed based on the MD simulation [Fig. 4(a)] highlights the formation of tricluster (OSi3) and/or tetracluster (OSi4) configurations. Furthermore, Voronoi polyhedral analysis [43] also implies the formation of the SiO6 and SiO7 polyhedra. With a careful inspection of such polyhedral atomic configurations, we find that the Si-O polyhedra exhibit a large variety of distorted features which deviate from the ideal regular polyhedral structures, as shown in Fig. S2 in the Supplemental Material [27].
The structure of SiO$_2$ glass under ultrahigh pressure is very different from that at ambient pressure. Taken into account our results for the short-range structure, the appearance of such peak/shoulders correlates with the formation of sevenfold or higher coordinated structures in a highly distorted polyhedral geometry, which is in line with the results of Voronoi analysis.

To elucidate the structural information that cannot be sufficiently analyzed by the conventional methods from atomic configurations, we applied a topological/mathematical method using persistent homology for characterizing the geometrical features in amorphous materials [22]. This method is primarily based on the persistence diagram (PD) which can visualize the persistent homology two dimensionally, and thus various topological features such as ring structures and polyhedral connections/distortions can be monitored.

Figures 5(a)–5(g) show Si-centric PDs $D(Si_1)$, which describe the geometrical features of silicon atoms for the topological dimensionality of 1. We compare 0, 31, 83, and 200 GPa data together with stishovite ($d = 4.28$ g/cm3) [45], α-PbO$_2$ type ($d = 4.30$ g/cm3) [46], and pyrite type ($d = 6.58$ g/cm3) [47]. With those PDs, we can extract the geometrical information of the atoms primarily associated with the one-dimensional linkages such as rings. The profiles along with the death line highlighted by colors are shown in Fig. 5(h). In the case of the crystalline phase, we can observe a systematic peak shift to small death value with increasing density. It is found that a vertical and broad profile along with

The Si-O-Si bond angle distribution shows a peak towards 180° up to 10 GPa, which is a signature of a tetrahedral network. On the other hand, the position of the peak shifts to a small-angle region from 31 GPa and shows two peaks around 103° (OSi$_4$ tetracluster) and 124° (OSi$_3$ tricluster) at 140 GPa. The latter peak is not obvious at 200 GPa, suggesting that OSi$_4$ tetracluster becomes more dominant.

In order to shed further light on the nature of the atomic arrangement, the total volume of cavities (“voids”) and polyhedral connections for SiO$_2$ polyhedra were calculated and are summarized in Table S2 in the Supplemental Material [27]. The fraction of cavity volumes exhibits a drastic decrease with pressure and there are essentially no cavities above 31 GPa, while the SiO$_2$ glass initially has a cavity volume of 36.8% at ambient pressure. Previously, it has been considered that the presence of interstitial cavities in the SiO$_2$ glasses/melts indicates a potential ability to store noble gases, such as helium and argon, within the disordered structures [44]. The rapid decrease in the cavity volume with pressure approaching 30 GPa offers a feasible explanation for the observation in the previous high-pressure experiments where the solubility of noble gases in SiO$_2$ melts/glasses drastically decreased at pressures around 10–20 GPa [44].

Table S2 and Fig. S3 in the Supplemental Material [27] also show the pressure-induced change in the polyhedral connections for SiO$_2$. The connections initially display 100% of corner-shared configurations at ambient pressure, and they show a gradual transition from corner-shared to edge-shared structures together with a minor fraction of face-shared structures.

C. Bond angle distribution and polyhedral connection

To uncover the atomic structure in SiO$_2$ glass at high pressures, we have calculated bond angle distributions with pressure, and they are shown as O-Si-O and Si-O-Si configurations in Fig. 4(b). The O-Si-O bond angle distribution at 0 GPa shows a fairly sharp maximum close to 109.4° as expected for a regular SiO$_4$ tetrahedron. The maximum peak position gradually gets smaller down to \sim90° up to 83 GPa, and the peak distribution becomes distorted with a broad shoulder at larger angles above \sim110°. Although the sixfold-coordinated structure is presumed to be the major component at 83 GPa, the corresponding angle distributions largely deviate from the ideal O-Si-O angle of 90° for a regular octahedron. The broad feature is consistent with the broad Si-O coordination number distribution at high pressure [Fig. 2(c)], suggesting that the changes in bond angle distributions are due to the wide variety of O coordination around Si at high pressures.

The features of O-Si-O bond angles at 200 GPa distinctively differ from those observed at lower pressures. The peaks around 75° and 145° are highly analogous to those observed in the random packing structure of hard spheres, indicating that
FIG. 5. Analysis using Si-centric persistent homology for the topological dimensionality of 1. (a)–(g) Si-centric persistence diagrams $D(Si)_1$ at 0, 31, 83, and 200 GPa. (h) The probability profiles along with the death line highlighted by colors. Black line: 0 GPa; blue line: 31 GPa; green line: 83 GPa; and brown line: 200 GPa. Light green: stishovite; pink: α-PbO$_2$-type SiO$_2$; gray: pyrite-type SiO$_2$.

the death line observed at birth $= 2.6 \text{Å}^2$ at ambient pressure in glass almost disappears at 31 GPa and an intense profile in both vertical and horizontal appears near the diagonal line at birth $\sim 3 \text{Å}^2$. This behavior is a good descriptor for FSDP and is consistent with the observation of tricluster and tetraccluster configurations under high pressures. Furthermore, the peak of glass at 200 GPa is very close to pyrite-type data, although the density of the glass is much smaller than the crystalline phase. Similar behavior is observed in O-centric PDs $D(O)_1$ shown in Fig. S4 in the Supplemental Material [27].

Figures S5(a)–S5(g) in the Supplemental Material [27] shows Si-centric PDs $D(Si)_2$ of glasses and three crystalline phases, which describe the geometrical features of the silicon atoms for the topological dimensionality of 2. With those PDs, we can extract the geometrical information of the atoms primarily associated with the two-dimensional connections such as polyhedral formation with the reduction of cavity volume. The geometrical configurations having all those characteristics observed above 31 GPa no longer represent a network structure, but rather a dense-packed structure [22]. The profiles along with the diagonal line highlighted by colors are shown in Fig. S5(h) in the Supplemental Material [27]. The birth value of the broad profile along with the diagonal line rapidly decreases and multiplicity is increased with increasing pressure, which is in line with the behavior of $D(Si)_1$ (Fig. 5). In addition, the profile of glass at 200 GPa is similar to that of the pyrite-type crystalline phase. On the other hand, O-centric PDs $D(O)_2$ [Figs. 6(a)–6(g)] show that some data initially distributed along the diagonal line at lower pressure get gradually deviated in a direction toward the upper left from the diagonal line with pressure and, eventually, appear to form the isolated clusterlike “island” at 200 GPa apart from the original distribution. The profiles along with the death line highlighted by colors are shown in Fig. 6(h), which shows similar behavior with silicon atoms. With the analyses of persistent homology, the emergence of such “islandlike” deviation is found to correspond to the formation of the octahedrally coordinated oxygen atoms (that is SiO$_6$), whereas the distribution along the diagonal indicates the presence of the oxygen tetrahedra (SiO$_4$). This interpretation is remarkably compatible with our earlier findings. In addition, recent topological analyses for the metallic glass with highly dense-packed structure [21] also showed the very similar topological nature in PDs to that obtained under the higher-pressure condition in this study, again indicating that the densification is achieved by the gradual transition from network structure to dense-packed structure in conjunction with a change in the coordination state.

As can be seen in Fig. 2(b), $S_{\text{SiSi}}(Q)$ is very sensitive to pressures above 31 GPa, while that of the PP in $S_{\text{OOO}}(Q)$ is highly insensitive, which is highly correlated with the pressure-induced changes in PDs D_1 and D_2, respectively. These behaviors are also very far away from those in densification at lower pressure reported by Zeidler et al. [40]. Pressure-induced structural change in our study could therefore be categorized into the pressure-induced “topological disorder” in the intermediate length scale associated with chemical ordering under ultrahigh pressure [48]. This implies that only high pressure can produce such an unusual glass structure at room temperature. Furthermore, our finding paves the way for the synthesis of different families of highly disordered, dense glasses from various oxides (including
cases with low glass-forming ability) by applying ultrahigh pressure.

Recently, Zeidler et al. [40] proposed a groundbreaking concept on the relationship between coordination numbers and oxygen packing fractions (OPF) in oxide glasses, which gives a universal picture of the coordination number evolution under pressure. This concept is highly supported by the recent high-pressure experimental results on GeO2 glass up to 100 GPa [49], strengthening the predictability of this concept towards configurations under extreme pressures. According to the extrapolated calculations with some assumptions for OPF in SiO2 glass from previous calculations [8,16,17], the onset pressure where the Si-O coordination number becomes higher than 6 is expected around 108 GPa [49]. This is consistent with the present results for OPFs up to 200 GPa shown in Fig. S6 of the Supplemental Material [27], and supports our previous results for sound velocity as well [18].

E. DFT simulations

We have shown above that the SiO2 glass undergoes a transition from network- to dense-packed structure in conjunction with the coordination number change under high pressure. It is expected that most substances that are dense packed ultimately become metallic under extreme pressures, and the question arises whether the SiO2 glass expresses metallic features under ultrahigh-pressure conditions approaching 200 GPa. To address this issue and to reveal the effects of the changes in Si-O coordination number on electronic states, we computed the electronic structures of the SiO2 glass by DFT calculations based on the structural models discussed above (samples of 3000 atoms, fixed volume). The DFT results for the effective charges (Q_{eff}) and atomic volumes (V_{at}) of Si and O atoms are listed in Table S3 in the Supplemental Material [27]. The effective charges are remarkably insensitive to pressure exhibiting values close to $+2$ for Si and -1 for O. On the other hand, the atomic volume of Si appears to decrease monotonically with pressure, whereas the same for O shows a drastic reduction of as much as 50% within the pressure range 0–31 GPa. Since the atomic volume is mainly assigned to O within the Voronoi script, this significant reduction of atomic volumes of O with no changes in the electronic structure and effective charges corresponds to the disappearance of cavity volumes between O and Si atoms (Table S2 in the Supplemental Material [27]) as described above. The reduced volume of O together with the disappearing cavities stimulates the formation of SiO6 from SiO4, which is also observed to have its onset around 30 GPa. Owing to such rapid changes in V_{at}, the O and Si volumes approach each other at higher pressures, supporting, again, the conclusion that SiO2 glass undergoes structural changes in line with the hard-sphere-like dense packing without any metallic signature.

The electronic structure of SiO2 glass under pressure was analyzed based on the electronic density of states (DOS). Figure 7 shows the DOS of SiO2 glass with projections onto different elements, P-DOS. The distribution of the P-DOS bands is found to become broader with increasing pressure, which reflects the wider distribution of the oxygen coordination number around silicon under high pressures. Despite these changes, the band gaps at the Fermi energy become wider with pressure, as shown in Fig. 7, implying that the system remains insulating under pressure. The structural diversity...
FIG. 7. Electronic structure of silica glass under high pressure. The electronic density of states (DOS) of the SiO$_2$ glass with projections onto O and Si up to 200 GPa.

has normally been considered to make the band gap narrower [42], which seems contradictory to the fact that our results show apparent structural varieties with pressure. One possible reason may be the increase in bond angle symmetry for Si-O-Si, whereas the symmetry of O-Si-O decreases with pressure, as can be seen in Fig. 4(b). If this is the case, the formation of overcoordinated oxygen with relatively symmetric bond angles may secure the insulation property of the SiO$_2$ glass under high pressure.

To manifest the topology in silica glass under ultrahigh pressures, we extract the atomic configurations which give an intense multiplicity for D(Si)$_1$ and D(Si)$_2$ of pyrite-type crystal and glass at 200 GPa and shown in Figs. 8(a) and 8(b), respectively. Intriguingly, PD analyses can provide us with information about triclusters and tetrACLusters from D(Si)$_1$ and D(Si)$_2$, respectively. Pyrite-type crystal is comprised of only SiO$_6$ octahedra (OSi$_3$ tricluster). On the other hand, the formation of a SiO$_2$ polyhedron is observed in glass as well as SiO$_6$ octahedra, but its topology is very similar to pyrite-type crystal [see Fig. 8(a)]. As can be seen in Fig. 8(b), tricluster in pyrite-type crystal can be extracted from PD analysis (see left panel), while the formation of OSi$_3$ tetrACLuster is observed in glass at 200 GPa (right panel). However, it is found that the tetrACLuster is highly distorted (oxygen atom is off center)

FIG. 8. Local structures of pyrite-type crystalline SiO$_2$ and SiO$_2$ glass (at 200 GPa) extracted from persistence diagram. (a) SiO$_x$ polyhedra extracted from Si-centric persistent homology for the topological dimensionality of 1. (b) OSi$_3$, clusters extracted from Si-centric persistent homology for the topological dimensionality of 2.

and the topology is very similar to OSi$_3$ + Si, in pyrite-type crystal. We suggest that the topological similarity between glass at 200 GPa and pyrite-type crystal would be caused by the distortion of oxygen clusters and the variety of Si-O coordination in terms of disorder in glass.

IV. CONCLUSIONS

In this paper, we have investigated the topology of SiO$_2$ glass MD simulations supported by using the high-energy synchrotron x-ray diffraction technique and topological analyses in a pressure range up to 200 GPa. Our results reveal that the SiO$_2$ glass undergoes a coordination number change from six to seven at pressure approaching 200 GPa. The atomistic modeling demonstrates the formation of unusual densely arranged local structures around O atoms, such as tricluster (OSi$_3$) or tetrACLuster (OSi$_4$) configurations. The topological analyses succeed in visually discriminating the Si-O coordination changes between fourfold and sixfold using PDs, and reveal that the high-pressure form of the SiO$_2$ glass exhibits highly distorted structural features, which have so far been unable to be seen by the use of incoherent x-rays and conventional analysis tools with defining coordination distances (pair-correlation function, bond angle distribution, and so on). Furthermore, we observed the topological similarity between glass and crystal with higher density under ultrahigh pressure. This also strongly offers a direction in future experiments to determine hidden local symmetries in pair correlation by cross-correlation analysis employing coherent x-rays [50]. The results also demonstrate that the coordination number change of SiO$_2$ glass no longer follows that of the crystalline SiO$_2$ phase under ultrahigh pressures since the sixfold-coordinated structure is believed to persist, at least, up to \sim700 GPa for the latter case [51]. The evolution
of Si-O coordination number appears to remarkably follow the universal path for OPF with pressure, as proposed by Zeidler et al. [40]. This pronounced difference between the glass and crystalline phase in pressure-induced structural change is most likely caused by the potential structural tolerance in the glass for accepting the distortion to a certain extent, which might allow the glasses to have unusually higher coordination numbers that cannot be achieved in the crystalline phase at an equivalent condition.

ACKNOWLEDGMENTS

The synchrotron radiation experiments were performed under the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposals No. 2009A1064, No. 2010A1048, No. 2010B1092, No. 2011A1239, No. 2011B1159, No. 2011B1153, No. 2013B1217). This research was supported by JSPS KAKENHI GrantNos. JP22684028, JP24654170, JP25247087, JP15KK0148, a Grant for Program Research from Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, and the Start-up funds from the Tokyo Institute of Science Ltd., Finland, and Cray XC30 in Japan Advanced Institute of Science and Technology, Japan. J.A., J.K., T.M., and A.S.F. acknowledge financial support from the Academy of Finland through its Centres of Excellence Program (Project No. 284621).

M.M. and S.K. designed the research conception. M.M. and N.H. conducted in situ high-pressure synchrotron x-ray diffraction experiments. S.K. performed the atomic structural analyses. H.I. constructed the structural model using MD simulations. N.K. and J.A. contributed to the electronic structural analyses. A.H., Y.H., and I.O. were involved in the topological analyses. T.M., A.S.F., and J.A. tested various parameterizations of the interatomic potentials for MD simulation. N.H. and Y.O. contributed to the optimization of in situ synchrotron x-ray diffraction measurements. Y.O. calculated the OPFs. J.K. and J.A. contributed to the cavity analyses. O.S. and Y.I. were involved in the data analyses for atomic and electronic structures, respectively.

The authors declare no conflict of interest.

A. C. Van Duin, S. Dasgupta, F. Lorant, and W. A. Goddard,
Y. Ohishi, N. Hirao, N. Sata, K. Hirose, and M. Takata. Highly intense monochromatic X-ray diffraction facility for
high-pressure research at SPring-8, High Press. Res. 28, 163 (2008).
Y. Akahama and H. Kawamura. High-pressure Raman spectroscopy of diamond anvils to 250 GPa: Method for pressure