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Materials structure genealogy and high-throughput topological
classification of surfaces and 2D materials
Lauri Himanen1, Patrick Rinke 1 and Adam Stuart Foster 1,2,3

Automated and verifiable structural classification for atomistic structures is becoming necessary to cope with the vast amount of
information stored in various computational materials databases. Here we present a general recursive scheme for the structural
classification of atomistic systems and introduce a structural materials map that can be used to organize the materials structure
genealogy. We also introduce our implementation for the automatic classification of two-dimensional structures, especially
focusing on surfaces and 2D materials. This classification procedure can automatically determine the dimensionality of a structure,
further categorize the structure as a surface or a 2D material, return the underlying unit cell and also identify the outlier atoms, such
as adsorbates. The classification scheme does not require explicit search patterns and works even in the presence of defects and
dislocations. The classification is tested on a wide variety of atomistic structures and provides a high-accuracy determination for all
of the returned structural properties. A software implementation of the classification algorithm is freely available with an open-
source license.
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INTRODUCTION
Materials science is entering the data age. This transition is spear-
headed by projects such as the Materials Genome Initiative,1 the
Novel Materials Discovery Laboratory2 and Marvel3 that combine
high-throughput screening with data storage, systematic data
curation and machine learning. Such projects produce computa-
tional materials databases that contain information extracted from
atomistic simulations, e.g., system geometries, details of the
applied theory, electronic structures, methodology and imple-
mentation and their number is increasing rapidly.4–14

A common problem in these databases is materials classifica-
tion. Often database users would like to search for specific
material types, specific functions or structural classes, such as
crystals, molecules, surfaces or 2D materials. To facilitate such
searches, the database entries should be tagged according to a
classification system. Unfortunately, classifications are not always
provided when the data are uploaded to the database, and when
they are, they are often based on custom or unspecified
definitions. To cope with large heterogeneous datasets from
atomistic calculations, automated and verifiable methods for
analyzing and categorizing atomistic structures have become a
necessity.
Previous work on automated classification of atomistic struc-

tures has focused on very specific areas and often required an
explicit structural search pattern. For example, defect identifica-
tion and detection schemes have been developed for crystals that
are based on neighbourhood analysis.15–20 In another example, a
more automated workflow was applied to identify lower dimen-
sional stable structures in crystals, such as layered solids.21

Conversely, many tools are available for the inverse problem that
generates an atomistic representation from a given structure
definition. Tool sets such as the atomic structure environment

(ase)22 and pymatgen23 include routines for automating tasks
like creating a surface given a lattice, orientation and number of
layers, generating crystal structures with desired symmetry
properties or generating a system representing surface adsorp-
tion, given an adsorbate and an adsorbant.
In this work, we focus on structural classification and present a

generic structure classification scheme that encompasses all
possible structure types. We then introduce a materials structure
genealogy presented as an intuitive and human-readable
materials structure 'tree of life’. After this general introduction,
we present an automatic and accurate classification scheme for
two-dimensional structures, including surfaces and 2D materials,
that requires no explicit search patterns. This classification process
also returns the underlying unit cell and works even in the
presence of defects, dislocations and additional atoms. By being
able to identify the unit cell, these structures can be meaningfully
characterized and often linked to their bulk counterpart. We also
present methods that can be used to accurately identify the
outlier atoms that are not part of the underlying structure. The
classification does not make assumptions about the used cell or
the positioning of the structure within the cell.
The NOMAD Archive2 is used as a benchmark for testing the

classification accuracy and the applicability of our method in a
realistic database environment containing heterogeneous data.
The classification tools are implemented as a python library
licensed under the open-source Apache 224 license, and the
source code together with installation instructions can be found
from https://github.com/SINGROUP/matid. This library is directly
compatible with the popular atomic structure manipulation library
ase.
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RESULTS
Topological classification
Often materials are classified based on a set of functional and/or
chemical properties. This kind of classification can be based on a
single property, such as the bandgap in the case of conductors,
semiconductors and insulators, or it can be based on a collection
of multiple functional and chemical properties like in the case of
material types, such as ceramics, metals, polymers and
composites.
In an analogous way, materials can be classified based on their

structural properties. This is here referred to as topological
classification. By topological classification we mean a classification
that is based on structural features and properties that can be
deduced from static atomistic geometries. This thus excludes
structural phenomena that are dynamic in nature or depend on
some external perturbation. Unlike functional or chemical proper-
ties, structural properties are often not so easily quantifiable. Some
combinations of specific structural or electronic quantities have
been shown to separate different structural types to provide
'structure maps'.25,26 Such maps are, however, too crude to
distinguish the full variety of the structural space. The task of
structural classification is for these reasons often left to humans.
As the systematic exploration of different materials is increasing,
human labelling becomes inefficient and error-prone. For this
reason, it is important to develop systematic concepts and tools
for this task.
The general rules surrounding structural classification have not

been discussed systematically before in the literature, and to fill
this gap we introduce a recursive scheme based on primary
building blocks and their higher level combinations. Primary
building blocks are the lowest-level structural building units. One
can recursively combine these building blocks to create higher
order combinations. An example of common primary building
blocks and higher order combinations is given in Fig. 1. For
example, a polymer can be combined with water molecules to
form a polymer–water solution, which can again be combined
with a surface to form the final system of a polymer–water
solution on a surface. This systematically extendable classification
scheme can be used to describe arbitrarily complex structures.
Structures can be further grouped by the presence of certain

building blocks and additional structural properties, such as

dimensionality and long-range order. For example, a heterostruc-
ture, that consists of multiple stacked two-dimensional building
blocks, can be categorized as a 2D or 3D heterostructure
depending on whether there is a vacuum separating the periodic
copies or not. This grouping forms structural families that can be
better visualized in a tree structure. This materials genealogy is
presented in Fig. 2.
Given an arbitrary atomic structure, an ideal classifier would

detect the different building blocks, their interrelation and other
structural features and be able to place the structure on the
correct branch in the materials genealogy. The classifier should
have the following generic properties:
Accuracy—The classifier should be able to perform accurate

classification on a wide range of samples that have not been
explicitly tested.
Invariance—The classifier should be able to correctly classify

structures independent of the chosen unit cell, the basis vector
directions and the relative position of the structure with respect to
the unit cell.
Robustness—Small displacements of atoms from their expected

positions should not disrupt the classification.
Efficiency—The time taken for the classification should be small

enough that processing of a large data set is possible in a
reasonable time.
It is worth noting that some of the features are not

independent. For example, in order to reach good accuracy for
a wide range of structures, the computational efficiency may
suffer.

Classification for surfaces and 2D materials
Here we demonstrate the application of a topological classifier for
identifying structures in the two-dimensional branch of the
materials genealogy. Figure 3 shows a high-level overview of this
classification procedure, and the reader is referred to the methods
section for an in-depth discussion of the steps shown in the figure.
We apply the classification routine to atomic structures from the

NOMAD Archive.2 We chose the NOMAD Archive because it
contains atomic structures and calculation results from a variety of
electronic structure codes. The structures we used in this work
originate from density functional theory simulations and were

Fig. 1 Illustration of commonly used primary building blocks and their higher order combinations. The structures are here organized by
dimensionality in the vertical direction and the cardinality of the used building blocks horizontally. The higher order combinations are
specified by the involved building blocks and their relation to each other
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specifically calculated either with the electronic structure program
Exciting27 or FHI-aims.28–30 Both these codes have a significant
number of calculations present in the database for two-
dimensional systems, but the classification is generally applicable.
To cover a wide range of different structures, a cross-validation

of the parameters was performed for each structure individually as
described in section Parameters and generalizability. For each
atomic element a representative atom, which is nearest to the
centre of mass, was tested as a seed atom. The values 0.25dmin

and 0.75dmin were tested for the position tolerance Δr. Here dmin is
the minimum distance between two atoms in the structure. The
value 12 Å was used for the maximum cell size rmax.
From an original data set of 394,332 structures, 35 were

recognized as zero-dimensional, 13 as one-dimensional, 14,959 as
two-dimensional, 376,756 as three-dimensional and 2569 could
not be classified due to multiple disconnected components as
described in section Dimensionality detection. For each two-
dimensional structure, we run the full-classification procedure
including the cell and outlier detection. The classified structures
were then grouped by the chemical formula of the possible
outliers and the chemical formula of the rest of the system. For
each unique pair of these two chemical formulas, a representative
sample was chosen resulting in 192 unique structures. These
structures were visually inspected to assess the correctness of the
classification, the material type, the found cells and the detected
outliers were checked. A breakdown of the classification results is
shown in Fig. 4.
In the visual inspection, we follow the same material definitions

as used in the algorithm, surfaces should have at least two
repetitions of the unit cell in three linearly independent directions
and 2D materials should have at least two repetitions in two
linearly independent directions restricted by a maximum thickness
h2Dmax. Seven structures were found to be unclassifiable into
surfaces or 2D materials both by the algorithm and by visual
inspection. From the remaining set, 183/185 ≈ 99% were correctly
classified into a surface or 2D material and had a correct cell and

Fig. 3 Overview of the classification procedure for two-dimensional
structures. a The classification starts with detecting the dimension-
ality of the system. b If a two-dimensional structure is detected, the
classification proceeds to find a unit cell that best describes the
structure. c This unit cell is then used to track all atoms that belong
to the material. d In the final step, the outlier atoms are identified

Fig. 2 Illustration of our topological materials genealogy. The first-classification level is based on the dimensionality of the structures, and
further branches distinguish structural building blocks and other structural properties, like the presence of long-range order. The branches
have been labelled with more common expressions for certain structure types. This map is not exhaustive, but illustrates the concept and
includes many of the most commonly encountered structural categories
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correct outliers. Two structures were misclassified as false positives
by the algorithm. In one, an incorrect cell and thus a wrong outlier
was detected, and in the other, all the correct outliers were not
identified. Examples of the correctly classified, incorrectly classi-
fied and unknown structures are given in Figs. 5 and 6.

DISCUSSION
When a cross-validation of the parameters is performed for each
structure individually, a very good accuracy for both the cell
identification and outlier identification is achieved. The found
structures cover many different cell geometries and types of
structures, include optimized structures with deviations from

perfect lattice symmetry, and we were able to analyze large
quantities of structures efficiently.
The structure in Fig. 6a was misclassified because a wrong unit

cell was selected and thus also a wrong outlier was detected.
Further analysis reveals that the unit cell is missing one carbon
atom because it is rejected from the unit cell due to its too low
average degree 〈deg(v)〉 in the corresponding connected compo-
nent. One can decrease the threshold value nemin to get this atom
included in the cell, but this will lead to problems in distinguishing
real outliers. This issue could be avoided by requiring more
repetitions of the cell to gain better statistics about the cell
contents, but that will prevent the classification of many small
structures.
Our chemical similarity measure proved to be highly accurate in

detecting outliers. The data set contained multiple systems, one
example shown in Fig. 5e, where adsorbates would not have been
correctly detected if the chemical environment would not have
been checked. Only in the system shown in Fig. 6b, the carbon
atom of the carbon dioxide adsorbate was not fully detected. The
carbon in question is directly on top of an expected location for a
carbon in the lattice and is highly connected to the surface itself.
Tweaking the similarity threshold ΔC or using a more sophisti-
cated chemical environment measure, such as SOAP34 or ACSF,35

might resolve the problem partially. It is, however, likely that
perfect outlier detection cannot be reached without explicit
information of the expected outlier structures.
The structures in Fig. 6c, d represent surface-like structures that

do not meet our classification criteria. Both are thicker than the
height threshold h2Dmax set for 2D materials and do not have two full
repetitions of a unit cell in three linearly independent directions.

Fig. 4 Distribution of the classification results for 192 visually
inspected two-dimensional systems from the NOMAD Archive

Fig. 5 Examples of correctly classified structures. The top right corner in each image shows a primitive cell corresponding to the unit cell
identified by the algorithm. All detected outlier atoms are highlighted in blue. a Pristine 2D material. b 2D material with substitution. c 2D
material with adsorbate. d Pristine surface. e Surface with multiple adsorbates. f Stepped surface with a substitution and adsorbate. g Surface
with two different terminations. h Chemisorption. i Surface with a reconstruction
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Figure 6e–g shows two-dimensional structures that are
comprising multiple networked molecules. These molecular net-
works fail the cell validity checks, as mentioned in section Cell
validation, because they have a sparse unit cell. The classification
of such sparse structures depends on the threshold rbond, and
depending on its value they can be regarded as 2D materials if
other criteria are fulfilled. For now these molecular networks are
given a generic two-dimensional classification both by the
algorithm and by visual inspection. Figure 6h, i shows two
additional structures that could not be classified by the algorithm
or by visual inspection due to having a too sparse unit cell.
The centre of mass proves to be a good starting point for

selecting the seed atoms, and by default the algorithm
automatically tries multiple seed atoms with different atomic
elements near the centre of mass. It is important to bear in mind
that the choice of the seed atom is critical to the success of the
algorithm, and generally multiple seed atoms should be tested.
For example, if the seed atom is chosen to be a substitutional
atom in a lattice, the algorithm will stop almost immediately
without finding the correct unit cell. Also, if the seed atom is
chosen to be located within a region with multiple substitutions or
dislocations, the correct unit cell cannot be obtained.
To robustly detect the most common material classes, the

classification procedure considers displacements that are below

the user-specified threshold as noise. Some material character-
istics may, however, arise from systematic displacements that are
smaller than this displacement threshold. The implementation can
be extended in the future to keep track of the displacement
vectors for individual atoms, or to track distortions in the shapes of
individual unit cells. This would allow building vector maps where
different displacement patterns could be used to classify
structures in more detail.
To reduce the need for manual parameter tuning, a wide range

of parameter combinations are tested by default, and the best
parameters are chosen by minimizing the number of found outlier
atoms with some additional restrictions. So far the use of a
systematic grid-search has been enough to find a good parameter
combination, but in cases where a large parameter space is
required, this optimization problem could be more efficiently
solved with probabilistic optimization methods, such as Bayesian
optimization.
Providing automatic and tractable topological classification for

large quantities of atomic structures has become a challenge, as
the number of new materials databases and their data volume is
steadily increasing. We have introduced a general and systematic
approach for the topological classification of atomistic structures
and have developed an automatic, robust and accurate way for
identifying two-dimensional structures, detecting the underlying

Fig. 6 Structures that were misclassified or labelled unknown. a Wrong cell and a wrong outlier detected. b All outliers not detected. c–i
Unknown classification

Materials structure genealogy and high-throughput topological. . .
L Himanen et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2018)  52 



unit cell and outlier atoms in them. The method has been
validated on realistic data taken from a database of DFT
calculations performed with different programs and computa-
tional methods and containing a wide variety of structures. Our
implementation can be easily integrated into any existing
database that provides atomistic geometries.
One important remaining task in the two-dimensional branch is

the further categorization of outlier atoms into more specific
groups, such as adsorbates, substitutions or interstitials. This
would provide one more level of detail when classifying structures
according to the structural genealogy. Also, extending the
automatic classification for other branches in the materials
genealogy is a major remaining challenge. One possibility is to
apply the concepts introduced for the identification of unit cells in
classifying multi-component systems such as heterostructures or
crystals with defects.
An interesting alternative for structural classification is using

machine learning with pre-labelled data as training material. The
level of detail our method is able to achieve, including the
identification of the unit cell and outlier atoms, might be hard to
match by a machine learning approach. However, a supervised
learning technique could be envisioned for the classification of
different structural families of the materials genealogy, which does
not require the detailed knowledge of the unit cell or the exact
identification of outliers. The introduced methods also offer a
more automated approach for linking material properties to
structural features by correlating structural building blocks and
structural features with materials phenomena. By using auto-
mated tools, the user does not require extensive knowledge of the
original simulation setup to investigate how different physical
properties, such as adsorption energies or electronic features,

relate to different structural properties, such as the location and
type of adsorbate, the unit cell or different defects.

METHODS
Here we introduce methods for the automatic classification of two-
dimensional structures especially focusing on surfaces and 2D materials,
with or without outlier atoms, such as adsorbates.

Dimensionality detection
Dimensionality detection is in principle easy, as a zero-dimensional system
has no periodicity, one-dimensional system is periodic in only one
direction and so forth. The dimensionality is thus given by the number of
lattice vectors with periodic boundary conditions. However, in many
electronic structure theory codes, it is common to represent even non-
periodic structures such as molecules, clusters, nanowires or surfaces with
periodic boundary conditions, in particular if plane waves are used as a
basis set. For this reason, we can no longer use the number of periodic
directions as a criterion. Instead we must analyze the extent of vacuum
that is added to the simulation cell to decouple the original structure
from its periodic images in directions that are not meant to be periodic
(see Fig. 7 for examples).
To determine the dimensionality of a system, we use a modified version

of the topological scaling algorithm (TSA).21 The basic idea behind the
algorithm is illustrated in Fig. 7, and it is based on analyzing the size scaling
of atomic clusters when going from the original system to a bigger
supercell of the same system. With TSA, the dimensionality D is given by

D ¼ npbc � logn Nnð Þ;whennpbc ≠0
0;when npbc ¼ 0

�
; (1)

where Nn is the number of clusters in a supercell that is repeated n times in
each periodic direction and npbc is the number of periodic dimensions.
For the clustering, we use the density-based spatial clustering of

applications with noise (DBSCAN)31 data clustering algorithm. The

Fig. 7 Illustration of dimensionality detection. The images show a 2 × 2 × 2 supercell for a system with three periodic directions (npbc= 3)
where atoms in the original simulation cell are highlighted in blue. The analysis of how the number of spatially separated clusters changes
when going from the original cell to the supercell, reveals that zero-dimensional structures will have eight separate clusters, one-dimensional
have four, two-dimensional have two and three-dimensional structures will have only one cluster. The dimensionality depends on this scaling
and is given by D ¼ npbc � logn Nnð Þ, where n is the number of repetitions for the system, Nn is the number of clusters in the supercell and npbc
is the number of periodic directions
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advantage of this algorithm is that it does not require an initial guess for
the number of clusters, and it can find arbitrarily shaped clusters. The
clustering requires that we define a metric for the distance between the
atoms. We use the following metric:

dij ¼ ri � rj
�� ��MIC�rcovi � rcovj ; (2)

where ri and rj are the cartesian positions of atom i and j, respectively, and
rcovi and rcovj are their covalent radii.32 It is important to notice that in this
metric the distances always follow the minimum image convention (MIC),
i.e., the distance is calculated between the two closest periodic neighbours.
By using the distance to the closest periodic neighbour, we obtain the
correct clusters regardless of what shape of cell is used in the original
simulation.

The clustering uses two parameters: the minimum cluster size nmin and
the neighbourhood radius ϵ. We set nmin to 1 to allow clusters consisting of
even single atoms and ϵ to 3.5 Å. At present, a system, in which there is
more than one cluster in the original non-repeated system (N1 > 1), is
classified as unknown. Such a case corresponds to systems with multiple
components that are spatially separated, such as a molecule far above a
surface, low density gases, widely spaced clusters in vacuum, etc.

Determining the unit cell basis vectors
After we have detected a structure as being two-dimensional, we will try to
find an underlying unit cell. The shape of this unit cell, its chemical
elements and atomic positions identify a specific material and can be used
to identify the bulk material that the structure originates from. By our
definition, both surfaces and 2D materials should consist of multiple
repetitions of this unit cell. In our classification scheme, surfaces have an
unit cell that is repeated at least twice in three linearly independent
directions. There are no limitations to the thickness of a surface. Similarly,
2D materials consists of a unit cell that is repeated at least twice in two
linearly independent directions, but they have a controllable maximum
thickness h2Dmax. According to this definition, there is no such thing as a
single-layer surface, but even very thin structures with two-layers will be
labelled as surfaces.
Traditional, symmetry-based unit cell reduction algorithms like the

Niggli reduction33 cannot be used to find a repeating primitive cell when
the system contains symmetry breaking vacuum, vacancies or atoms from
another structural component, such as an adsorbate. Here we introduce a
more general cell identification algorithm for detecting a unit cell and the
structure expanded by it in complex environments.
Cell identification starts by determining the basis vectors of the unit cell.

The search for the basis vectors starts by selecting a seed atom that serves
as a starting point for finding a unit cell. There are multiple approaches for
selecting this seed atom, and depending on the expected complexity of
the analyzed structures, one may need to use several spatially distributed
seed points. A good initial guess is to use atoms that are close to the centre
of mass of the system.
When a seed atom has been chosen, we collect all neighbouring atoms

within a radius rmax. From this set, we then choose only those atoms that
belong to the same species as the seed atom. The displacement vectors
from the seed atom to these atoms form the first possible set of unit cell
basis vectors, va. This process is illustrated in Fig. 8. All of the basis vectors
of the original simulation cell that are shorter than the defined maximum
cell size rmax are automatically included as possible bases.
For each vector v in the set va, we form a graph Gv of atoms that are

connected by the periodicity defined by the vector. The graph is formed by
first including all the atoms within rmax from the seed atom as nodes in the
network. Next for each atom in the graph, we look for an atom with the
same element in the two directions ±v. If such an atom exists, it is added to
the graph, if not already present, the two atoms are marked as being

Fig. 8 Illustration of finding the candidate set va of basis vectors and
filtering this set into vb based on the connectivity of atoms
corresponding to these vectors. The neighbourhood of the seed
atom is searched within a radius rmax for atoms of the same species
as the seed atom. The vectors connecting the seed atom to such
atoms form a candidate set va of basis vectors for the unit cell. For
each of these vectors v, a graph Gv is created. The set vb is then
formed by choosing vectors with enough connections in the graph
as illustrated for the vectors v4 and v7

Table 1. Summary of parameters used in the classification

Name Description Default

iseed Index of the seed atom —

rmax Maximum cell basis vector length —

ε Clustering radius used in dimensionality detection 3.5 Å

Δr Distance tolerance for finding atoms —

αpar Angle below which basis vectors are considered to be parallel 20°

rbond The distance parameter that is used to find bonded atoms 0.75 Å

nbmin Minimum number of edges in graph Gv for the vector v to be valid 0.75nneigh
nvmin Minimum number of nodes for subgraph to be valid 0.5nseed
nemin Minimum number of edges for subgraph to be valid 2(d+ 1)

ΔC Similarity threshold for detecting outliers 0.40

h2Dmax Maximum thickness of a 2D material. Measured from the centre of the top-most atom to the centre of the bottom-most atom 5 Å

l2Dmax Maximum allowed basis vector length for 2D materials with only one unit cell in the original simulation 5 Å

noutliersmax Maximum accepted number of outlier atoms 0.5natoms

Variable d is the number of directions with repetitions of the cell (three for surface, two for 2D material), nseed is the number of edges in the subgraph in which
the seed atom is located, nneigh is the number of atoms within the radius rmax from the seed atom and natoms is the number of atoms in the original system
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connected by an edge. The directionality of the edges are taken into
account, meaning that an edge E(i, j) is distinguished from E(j, i). The search
extends also beyond the periodic boundary conditions, and it is possible
that an atom is connected to a periodic copy of itself in a neighbouring
cell.
The possible basis vectors va are next filtered by checking the number of

edges corresponding to the vector v in the graph Gv. If the number of
edges is less than the tunable parameter nbmin, v is rejected, as there are not
enough repetitions of atoms corresponding to that vector near the seed
atom. The default value of nbmin is given in Table 1. The remaining set of
vectors is labelled as vb. This filtering prevents the usage of candidate
vectors that result only from the presence of defects or adsorbates, making
the search robust against such outlier atoms. An illustration of the
connections in a valid and an invalid graph Gv are shown in Fig. 8.
Next, we determine how many linearly independent vectors there are in

the set vb, that is we calculate the rank of the space spanned by this set.
Exactly linearly dependent vectors could be identified by storing them as
rows of a matrix and reducing this matrix to row echelon form. Because the
atomic structures are rarely perfectly aligned, the vectors will in reality be
parallel only up to some threshold. For this reason, we use angles to
measure the linear dependence of vectors and specify an angle threshold
αpar to identify the parallel ones. To do this, we calculate the following
variables

nij ¼ bvi ´bvj (3)

αijk ¼ bvi � bnjk

�� �� (4)

Vector nij is a normal vector for the plane defined by vectors bvi and bvj , and
its length is the sine of the angle between these two vectors. Variable αijk is
equal to the sine of the angle between the vector bvi and the plane defined
by vectors bvj and bvk . The values αijk, αjki and αkij are calculated for all
combinations of vector triplets vi, vj and vk in the set vb. First, we find all
triplets for which αijk, αjki and αkij ≥ sin(αpar). If at least one such triplet is
found, it represents a unit cell with repetitions in three directions, i.e., a
surface. If no such triplet is found, we instead find all pairs vi, vj for which |
nij| ≥ sin(αpar). If at least one such pair is found, then it represents a unit cell
with repetitions in two directions, i.e., a 2D material.
If more than one combination of valid vectors is found, a graph GΣ is

formed for each of them by combining the individual graphs Gv that

correspond to vectors in the combination. The combinations are filtered so
that only the ones which have a number of edges e in the graph GΣ equal
to the maximum found value of e are kept. This filtering is done to avoid
choosing basis vector combinations that correspond to symmetric
substructures inside the correct unit cell.
The remaining cells are all valid and equal in terms of the repetitions of

the seed atom. From this remaining set, we then select cells with size
similar to the smallest found size and then choose the combination with
the highest orthogonality between the basis vectors. These properties are
desirable when the cell is used to track the structure as explained in
section Tracking. With small cells, the tracking can better adapt to local
changes, and orthogonality makes it easier to find the atoms that belong
to a cell. Cell volumes V or areas A are readily available from the already
calculated quantities αijk and nij

A ¼ vi ´ vj
�� �� ¼ vij j vj

�� �� nij

�� �� (5)

V ¼ vi � vj ´ vk
� ��� �� ¼ vij j vj

�� �� vkj j njk

�� ��αijk (6)

The orthogonality between the vectors is measured by the sum of the
squared cross-products between the normalized vectors. By using the
identity |a · b|2= |a|2|b|2− |a × b|2, we can quantify the orthogonality as
follows:

bvi � bvj�� ��2þ bvj � bvk�� ��2þ bvk � bvij j2 (7)

¼ 3� nij

�� ��2� njk

�� ��2� nkij j2 (8)

Determining unit cell contents
The unit cell shape is determined by the unit cell vectors, but the atoms
belonging to the unit cell and their positions still need to be determined.
Not every atom within the radius rmax has to belong to the unit cell, as
there might be adsorbates or defects within the neighbourhood. To
correctly identify atoms within the cell, the graph GΣ, corresponding to the
best basis vectors, is divided into its connected components, i.e.,
subgraphs that are connected internally, but not to each other. Figure 9
illustrates the separation into these connected components. Atoms that
are not part of the cell can now be filtered by discarding subgraphs that
have too few edges or nodes. This makes the detection robust against any
possible outlier atoms that are not part of the correct unit cell. Filtering can
be done by discarding the subgraphs where degðvÞh i � nemin and n � nvmin,
where 〈deg(v)〉 is the average degree of the subgraph nodes that are
within the radius rmax and n is the number of nodes in the subgraph. The
default values of nemin and nvmin can be seen in Table 1.
Each remaining valid connected component now represents a set of

periodically repeated atoms corresponding to the same relative position
within a repetition of the unit cell. For each atom in a valid connected
component, a relative position in its respective unit cell repetition is
calculated. These relative positions, which are in the interval [0, 1], are
wrapped to the periodic repetition nearest to the origin of the cell and
averaged to reach a robust estimate for a final relative atom position in the
unit cell.

Cell validation
Sometimes the unit cell found in this way cannot represent a valid surface
or 2D material because it is too sparse. This can happen, for example, when
the cell contains many outliers. To detect these cases, we run the
dimensionality detection routine as described in section Dimensionality
detection on the found unit cell with a clustering threshold ϵ= rbond. The
default value for rbond is given in Table 1. If during this dimensionality
detection, multiple clusters are detected for the original cell or the
detected dimensionality is incorrect, the structure cannot be classified as a
surface or a 2D material. In these cases, the structure is classified as a
generic 2D structure.
The quality of cell identification depends heavily on the number of

repetitions of the cell in the original system. If the algorithm finds that the
best basis vectors correspond to the vectors of the original simulation cell,
the correct classification cannot be guaranteed as we then only have
information from one repetition. By default, these systems are classified as
being generic 2D structures, but without the cell information. An exception
to this can be made for 2D materials, in which it is quite typical to perform
the simulation by using a single repetition of a primitive cell. To allow the
identification of these systems, a maximum allowed basis vector length
l2Dmax for 2D materials with only one unit cell in the original simulation can

Fig. 9 Illustration of the connected components of the graph GΣ
corresponding to two vectors v2 and v4 shown in Fig. 8. The
connected components will be filtered based on their size and
connectivity. In this example, only two of the connected compo-
nents are valid and thus the final unit cell will have two atoms. The
positions of these two atoms will be based on an average gathered
from the connected components. Notice that an outlier atom from
an adsorbate is here included in a connected component, but this
does not have a large impact on the final averaged positions
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be specified. When a relatively small value for l2Dmax is allowed, it is a
reasonable assumption that the unit cell does not contain defects or
adsorbates, and it can be accepted. The parameter l2Dmax is not applicable to
surfaces because by our definition, valid surfaces must have a repetition in
three linearly independent directions, and thus systems with single
repetition of a unit cell can never represent a surface.

Tracking
During unit cell detection, only the area within the radius rmax from the
seed atom is taken into account. Usually the unit cell is also repeated
beyond this radius. To correctly identify all atoms that are a part of the
underlying structure, a more extensive tracking of unit cell repetitions is
needed. This becomes especially important for detecting outlier atoms
that do not match the atoms in any repetition of the unit cell.
Tracking works by identifying atoms belonging to periodic repetitions of

the unit cell. This search is initiated by finding periodic copies of the seed
atom near the positions rseed+ v, where rseed is the seed atom position
and v is any of the unit cell basis vectors or their corresponding opposite
vectors. If such atom locations are found, they are used as new seed
locations r0seed, otherwise r0seed ¼ rseed þ v. Using r0seed as a new cell origin,
the atoms belonging to the neighbouring cell are then identified by
searching for atoms in the known positions of the unit cell. In larger
systems, the orientation and size of individual unit cells can be changed
locally by external factors, such as adsorbates or pressure. To better adapt
to these local distortions and reorientations of the lattice, the unit cell basis
vectors v are updated as v0 ¼ r0seed � rseed. If new atoms are identified as
belonging to a neighbouring unit cell, the search is extended in a breadth-
first manner, i.e., the search continues recursively by using the new origin
r0seed and new basis vectors v′, and the neighbouring cells closest to the
original seed location are searched before advancing to the next layer of
neighbouring cells. The branches of the search are stopped when no new
atoms are identified within a neighbouring cell.

Outlier detection
Often 2D systems include atoms that cannot be attributed to the unit cell.
Such atoms include adsorbates, vacancies, substitutions, interstitials and
surface reconstructions. Being able to distinguish these outlier atoms is
useful because it enables the search for structural combinations that go
beyond bulk-terminated surfaces or ideal 2D materials.
During the tracking of the unit cells, the atoms that can be attributed to

periodic repetitions of a unit cell are identified. However, in many cases,
some of these atoms lie outside the extent of the surface and are in fact
outliers that happen to be near a position where an atom is expected to be
found based on the translational symmetry. This is also seen in Figs. 8 and
9, where one atom from the adsorbate happens to be near a position
where a surface atom is expected. To better distinguish these outliers, we
compare the chemical environments of all atoms in the unit cells to the
ideal environment, as found in the detected unit cell. There are many ways
to accurately quantify the local chemical environment near an atom,
including the smooth overlap of atomic positions (SOAP)34 and atom-
centered symmetry functions (ACSF).35 However, for the purpose of
detecting outliers, only a rough estimate for the chemical environment is
needed, and we apply a simpler and faster-to-compute quantity that is
based on counting the occurrence of atomic elements within a finite
radius. The chemical environment of atom a thus consists of a vector.

Ca ¼ n1; n2; ¼½ � (9)

where ni is the number of atoms with atomic number i within a distance
rcova þ rcovi þ rbond. We only consider atomic numbers that are found in the
unit cell. Here rcova and rcovi are covalent radii and rbond is a tunable
parameter. The similarity between a real chemical environment Cb and the
ideal chemical environment Ca as found in the unit cell is then measured
as:

T Ca;Cbð Þ ¼
X
i

min nai ; n
b
i

� �
=
X
i

nai (10)

This measure represents the ratio of common elements in the
neighbourhoods of Ca and Cb to the number of neighbouring elements
in the ideal environment Ca. This form is similar in style to the Tanimoto
similarity measure,36 but is modified so that the comparison is always done
to the ideal environment instead of the combined environments Ca and
Cb. If this similarity is above a controllable parameter ΔC, the atom is

assigned to a unit cell. Otherwise the atom is labelled as an outlier. The
default value for ΔC is given in Table 1.
After this analysis, the outlier atoms are flagged as atoms that were not

matched to any repetition of the unit cell or were rejected from a unit cell
by the chemical similarity check. If the number of outliers is bigger than
noutliersmax , which defaults to 50% of the total atoms, the found unit cell is not
accepted. This is done to avoid using cells that are a part of a larger
heterostructure or which have an exceptionally large fraction of outliers.

Parameters and generalizability
Several parameters control the classification and allow the user to
customize the routine to different datasets. In Table 1, all the controllable
parameters are introduced together with an explanation and the default
values.
The given default parameters are a good starting point for most systems,

but can be adjusted to specific environments. The optimal value for
parameters Δr, rmax and iseed are highly dependent on the system, and
producing good estimates for them can be hard. One approach is to find
optimal parameter values for each structure separately by trying out
multiple parameter values. The optimal parameters can be selected by
specifying a list of possible values for each parameter, performing the
classification with all possible combinations of these parameters and then
keeping the result that gives the least amount of outlier atoms. This
parameter cross-validation requires that the position tolerance is kept
below the minimum distance between the two atoms in the structure so
that thr outliers are properly detected.

DATA AVAILABILITY
An overview of the classification results together with the original geometries are
provided in Supplementary Note 1. In Supplementary Note 2, we provide
descriptions for the different fields in the classification overview, instructions on
accessing the classification code and a guide for accessing the original calculations in
the NOMAD Archive by using the unique NOMAD Archive identifiers and the
REpresentational State Transfer (REST) interface provided by the NOMAD Archive.37

The source code and installation instructions for the classification tools can be found
in https://github.com/SINGROUP/matid.
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