Nanostructuring few-layer graphene films with swift heavy ions for electronic application: tuning of electronic and transport properties†

N. A. Nebogatikova,1,4 I. V. Antonova,1,2* S. V. Erohin,2,6 D. G. Kvashnin,1,2,6 A. Olejniczak,5 V. A. Volodin,1,2 and A. V. Krasheninnikov,1,2†

The morphology and electronic properties of single and few-layer graphene films nanostructured by the impact of heavy high-energy ions have been studied. It is found that ion irradiation leads to the formation of nano-sized pores, or antidots, with sizes ranging from 20 to 60 nm, in the upper one or two layers. The sizes of the pores proved to be roughly independent of the energy of the ions, whereas the areal density of the pores increased with the ion dose. With increasing ion energy (>70 MeV), a profound reduction in the concentration of structural defects (by a factor of 2–5), relatively high mobility values of charge carriers (700–1200 cm² V⁻¹ s⁻¹) and a transport band gap of about 50 meV were observed in the nanostructured films. The experimental data were rationalized through atomistic simulations of ion impact onto few-layer graphene structures with a thickness matching the experimental samples. We showed that even a single Xe atom with energy in the experimental range produces a considerable amount of damage in the graphene lattice, whereas high dose ion irradiation allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by the previous ions, which increases the average radius of the pore to match the experimental results. We also found that the formation of “welded” sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays is likely at high ion energies (above 70 MeV).

Introduction

High energy ions (>1 MeV per nucleon) can be used for local structural modifications of materials.1–4 Depending on the ion energy and material properties, modifications can occur at the surface of the irradiated samples and in their bulk. Many materials can be subjected to such modifications in a constructive way, including metals, dielectrics, semiconductors, polymers, and ceramics. For example, irradiation of polymer films and their subsequent etching can be used for the preparation of porous track membranes with pore sizes ranging from nanometers to several micrometers, which are widely employed for solution filtration.1–3,5 The formation of pores in a membrane material after etching becomes possible due to the substantial modification of the material atomic structure that occurs in cylindrical regions along the ion trajectories, the so-called “tracks”.4,6

During the impact of high-energy ions, considerable amount of energy is released in track regions over short times. The slowing down of an energetic ion moving in a solid target can be separated into two channels with different mechanisms, which can be referred to as electronic and nuclear stop-
ping. They usually can be described by electronic (S_e) and nuclear (S_n) stopping power, respectively. The nuclear stopping originates from collisions between the ion and nuclei of the target atoms partially screened by the core electrons. The energy loss is determined by screened Coulomb interactions and momentum transfer. A common feature is that the nuclear stopping is dominant only for ions of relatively low energy ($E_{\text{kin}} < 100$ keV per nucleon). The electronic stopping is governed by inelastic collisions between the ion and the electrons in the target and dominates at higher ion energies. Due to the different mechanisms of conversion of electronic excitations into heat, the electronic structure of the target strongly affects the outcome of the ion impact. In metals, the electronic excitations are delocalized due to the presence of conduction electrons. In insulators, excitations may result in a strong heating of the lattice, and once deposited energy exceeds the threshold value which depends on the material, in the formation of defects inside the cylindrical track regions. For swift heavy ions, structural modifications due to electronic stopping are normally the most pronounced in the vicinity of the surface, whereas defects due to nuclear stopping mostly appear at the ends of ion trajectories or ranges, which are typically several micrometers. Due to extreme conditions during the conversion of electronic excitations into heat, processes that normally proceed at high pressures and elevated temperatures may occur. For instance, two such examples for graphite are the transition of carbon atoms from the sp2 to sp3 hybridizations may occur. For instance, two such examples for graphite that normally proceed at high pressures and elevated temperatures on the surface.

The formation processes of large structural surface defects are rather complex; however, a sharp threshold dependence on ion energy and, in some cases, phase transitions (melting, etc.) that occur at the surface of materials under irradiation are typical of these processes. During the irradiation of graphite samples with ions whose energy varies from 100 MeV to 1.5 GeV, hillocks were formed on the surface of the samples. The height of the hillocks varied from 0.3 to 0.9 nm, and their mean diameter from 2 to 3.5 nm. Interestingly and importantly, the characteristic sizes of surface defects proved to be nearly independent of the type of the ions and S_e values. Moreover, Liu et al. have shown that the threshold value of S_e for damage creation in the graphite surface is 7.2 keV nm$^{-1}$, in agreement with theoretical predictions. At lower values of S_e (and a smaller heat release in the target material) no significant structural changes were detected. For the range of ionization losses from 9 to 18 keV nm$^{-1}$, the number of nano-hillocks formed as a function of S_e exhibited a dependence with saturation, i.e., the probability of hillock formation at the HOPG surface reached 1 only for S_e values higher than 18 keV nm$^{-1}$. Based on these observations, the authors predicted that swift heavy ion irradiation of graphite does not result in the formation of “classical” tracks, but rather leads to discontinuous randomly distributed amorphous regions.

Apart from microscopy, Raman scattering has emerged as a rather powerful and informative tool for studying the structural transformations7,13,14 that occur in irradiated graphite and graphene films. In the Raman spectrum of irradiated graphite and graphene samples, the emergence of the D peak (~ 1360 cm$^{-1}$) and D' peak (~ 1624 cm$^{-1}$) can be detected.12 Both D and D' bands are second-order defect-induced bands that require symmetry violation (presence of defects) for their activation. The difference is that the D-band results from an inter-valley process (the phonon of A_1' symmetry) whereas the D' band originates from intra-valley scattering (E_{2g} symmetry). In a typical experiment, the D' band detection requires a higher concentration of defects due to a small D'-peak intensity. A theoretical explanation why the D'-band intensity is typically weaker than that of the D-band was provided by analyzing the angular dependence of the scattering vectors. Several studies also showed that the D to D'-band intensity ratio ($I_D/I_{D'}$) depends on the nature of defects, for example $I_D/I_{D'} \sim 3$ for sp3-type defects, ≈ 7 for vacancies, and ~ 3.5 for boundaries.16,17 According to Raman spectroscopy data13, the ion dose at which the presence of defects can be detected was much lower for graphene than for graphite ($\lesssim 1 \times 10^{11}$ vs. 2.5×10^{12} ions per cm2 for graphene and graphite, respectively). Besides, the different ratios between the intensities of the D- and D'-peaks suggest that different structural defects form in graphite and single layer graphene under identical irradiation conditions.

The evolution of the electrical properties of single-layer graphene and few-layer graphene films irradiated with high-energy ions still remains a poorly studied matter. While the literature on the response to the irradiation of graphene is vast, the data on the resistance growth, on the change of conductivity type, and on the profound reduction of charge-carrier mobility in graphene samples irradiated with low-energy ions (30 keV Ga$^+$ ions and 5 MeV H$^+$ ions) have only been reported.14,18 On irradiation of graphene films with protons at a dose of 2×10^{12} protons per cm2, the formation of structural defects with dangling bonds in the films was reported.18 On interaction with the atmosphere, the dangling bonds can absorb molecules of various gases and water. Ko et al.18 expressed an opinion that, due to the Coulomb interaction, the absorbed molecules can act as scattering centers for charge carriers, pointing out that one of the possible applications of graphene can be gas and humidity sensors.

In the present study, we irradiated graphene and few-layer graphene films with high-energy heavy ions and observed the formation of nanosized pores (antidot) in the upper layers of the films (1 or 2 monolayers). We observed that the increasing ion energy gives rise to a profound reduction in the number of structural defects. The ion-nanostructured graphene layers were found to exhibit a strong dependence of charge-carrier mobility upon ion energy. A possibility of a band gap opening in such structures due to the introduction of antidot arrays with reconstructed (defect-free) “welded” edges was demonstrated, and a theoretical model for this process was proposed.
Methods

Experiment

Single and few-layer graphene films up to 3 nm thick were prepared by electrostatic exfoliation of graphite on 300 nm SiO₂/Si substrates.20–23 Practically, all samples contained parts with a thickness of 1–2 monolayers, but the main part of the samples was 2–3 nm thick. About 40 samples in total were studied. For changing the morphology of the samples, the irradiation of samples with Xe ions was performed. To avoid complete heating of the irradiated targets, the ion flux density was maintained in the range from 2 × 10⁸ to 5.7 × 10⁸ cm⁻² s⁻¹. The irradiation was carried out at room temperature in a vacuum, at a pressure of 6.3 × 10⁻⁶ Torr. The ion energy was varied in the range from 26 to 167 MeV, and the irradiation dose in the range from 5 × 10⁹ to 5 × 10¹² ions per cm². The irradiation was performed on the ion beam line for applied research at the IC-100 cyclotron of FLNR JINR, Dubna.

For examining the properties of the pristine (non-irradiated) and irradiated films, the following experimental techniques were used: optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), Raman light scattering, along with the electronic transport measurements. Micro-Raman spectroscopy measurements were carried out under ambient conditions at room temperature using the 514.5 nm (2.41 eV) excitation line of an argon ion laser. The laser light shone onto the sample was restricted to 2 × 10⁻³ mW to avoid laser-induced heating. The Raman spectra were recorded in back-scattering geometry. For this purpose, a triple T64000 Horiba Jobin Yvon spectrometer equipped with a micro-Raman setup was used. The spectra were registered in Z(XY)Z polarization geometry: the polarizations of the incident and scattered light were perpendicular to each other. A Solver PRO NT-MDT scanning microscope was employed for obtaining AFM images from the surface of the examined films and substrates and for evaluating the sample thicknesses. The measurements were carried out in contact and semi-contact modes. The rounding radius of the used probe never exceeded 10 nm; normally, it was equal to ~2–3 nm. Apart from the study of the surface relief, measurements in lateral-force (friction-force) mode were carried out for the visualization of regions differing in their chemical compositions. The current-voltage characteristics were measured with a Keithley picoammeter (model 6485) on film samples provided with two contacts prepared from a silver alloy. The silver alloy was applied onto the film surface and, then, the sample was annealed at a temperature of 125 °C for 20 min to remove the polymer component from the alloy. SEM images were obtained using a JEOL JSM-7800F scanning electron microscope in which the energy of the primary electrons was equal to 2 keV.

Q-DLTS measurements were performed using an ASEC-03 DLTS spectrometer for the analysis of carrier emission times as functions of temperature. We varied the time window τₘ while keeping the temperature unchanged. Then, we had τₘ = (t₂ − t₁)/ln(t₂/t₁), where t₁ and t₂ are the times at which the Q-DLTS signal (due to the relaxation of the dielectric-trapped charge ΔQ = Q(t₂) − Q(t₁)) was measured after the end of the filling pulse. The examined temperatures ranged from 80 to 350 K.

Atomic simulations

The interpretation of the experimental results through atomistic simulations requires proper treatment of the dynamic energy exchange between electronic and ionic subsystems in the irradiated system. To achieve this, we used a two-temperature molecular dynamics model in which the atomic subsystem is described by classical molecular dynamics simulations, whereas the electronic subsystem is characterized by local electronic temperature and treated as a continuum on a regular grid. The model accounts for the energy transfer between these subsystems. For the calculations we used the LAMMPS code.23 Heat transfer between the electronic and atomic subsystems is carried out via an inhomogeneous Langlevin thermostat. Energy transport within the electronic subsystem is described according to the heat diffusion equation with added source terms for heat transfer between the subsystems:

$$\frac{\partial T_e}{\partial t} = \nabla (k_e \nabla T_e) - g_p (T_e - T_i)$$ \hspace{1cm} (1)

where Cₑ is the electronic specific heat, kₑ is the electronic thermal conductivity, and gₑ is the coupling constant for the electron-ion interaction. The second term on the right side of the equation represents energy exchange with the atomic system energy due to the temperature difference between the atomic (Tᵢ) and electronic (Tₑ) subsystems.

The electronic specific heat was obtained from ref. 24 and expressed in polynomial form:

$$C_e = C_0 + \sum_{n=0}^{4} (10^{-3} T_e)^{n} a_n \exp(-AT_e^2),$$ \hspace{1cm} (2)

The important parameter in the model is the electronic thermal conductivity of graphene, which cannot be obtained directly from the experimental data because the measured values are not relevant for energy dissipation during swift heavy ion impacts. In the model, kₑ is proportional to the electronic specific heat Cₑ and thermal diffusivity Dₑ. Using the experimental value of thermal diffusivity leads to a high melting threshold of graphene and thus the destruction of graphene is not observed. Such behavior was mentioned before in a report where the thermal diffusivity two orders of magnitude smaller than the experimental value was used. We also adopted this approach. Therefore, the electronic thermal conductivity in the presented model varies with respect to temperature from 0.003 W K⁻¹ m⁻¹ to ~35 W K⁻¹ m⁻¹.

The parameter gₑ can be expressed as gₑ = m/τᵟ, where τᵟ is the timescale for energy loss due to the electron-ion interactions and m is the carbon atom mass. For graphene, the characteristic relaxation time due to the interaction with optical phonons is τᵟ ≈ 150 fs,28 and therefore gₑ was set to 80 g mol⁻¹ ps⁻¹.
The main mechanism of energy transfer from high-energy ions to the material being irradiated is the ionization loss. The electronic stopping power was calculated using the TRIM package with the setup matching the experiment. We estimated the ionization losses S_e for graphene from 6 to 17 keV nm$^{-1}$ for the ion energy in the range from 26 to 167 MeV.

The energy input from ion irradiation was simulated by setting the initial electron temperature profile in the form of a Gaussian distribution in graphene. The simulations comprised two steps. The first step was a short two-temperature simulation (~1 ps), during which most of the energy from the electronic subsystem was transferred into the ionic system, because in the case of high-energy heavy ions, the ion passage through the few-layer graphene sample occurs on a sub-fs time scale. Since the phonon relaxation time in graphene is longer than a ps, it is clear that there is not sufficient time to form an equilibrium phonon system before most of the energy has already dissipated away. Therefore, the second step is long geometry relaxation during which the structural changes in the graphene were observed.

The system used in the simulations consisted of a 60 \times 60 nm2 four layered graphene sheet of \sim600,000 atoms with periodic boundary conditions.

Results

The electrostatically exfoliated single-layer and few-layer graphene films were investigated by various methods prior to and after the ion bombardment (Fig. 1). An AFM image of the surface of a few-layer graphene film prior to its irradiation is shown in Fig. 1(a). In the surface profile of the non-irradiated film, mono-atomic steps are clearly seen (see Fig. 1(d)). Fig. 1(b) and (c) show the AFM and SEM scans taken from the surface of few-layer graphene films irradiated respectively with 26 and 167 MeV ions. For both samples, the irradiation dose was 3×10^{11} ions per cm2. Fig. 1(e) and (f) show the AFM profiles for Fig. 1(b). The characteristic size of the pores in Fig. 1(c), (e) and (f) amounts to \sim20–60 nm. From the AFM profiles, it is evident that the characteristic depth of the nanopores for 3 nm thick few-layer graphene films (~10 graphene monolayers) is approximately 0.3–0.7 nm. The latter result means that, during the irradiation of the samples with 26 MeV ions, the pore formation process proceeded in one or two upper monolayers (since the inter-layer separation in few-layer graphene is equal to ~0.35 nm). It should be noted that for films irradiated with 26 MeV ions, pores with a depth of one monolayer predominated. In the case of irradiation with 167 MeV ions, pores with a depth of two monolayers are more often observed in the few-layer graphene. The dark spots seen in the SEM images are likely associated with the formation of defects (or amorphization) at the surface or in pores because without defects pores with 1–2 monolayers depth should not lead to so strong a contrast. The characteristic density of holes on the film surface proved to be \sim1010–1011 cm$^{-2}$. The total number of pores was proportional to the ion dose; yet, it was one order of magnitude smaller than the dose and independent of ion energy. It was found that all pores in all irradiated films were roughly identical in size. A more accurate pore size distribution and the distance between pores as a function of ion energy are shown in Fig. S1 in the ESI.† The samples can be divided into two groups with similar parameters inside the group: the first group includes samples irradiated with ions having energies of 26 and 46 MeV (pore size ~15–20 nm) and the second one, the samples irradiated with ions with energies of 77 and 167 MeV (pore size ~24–28 nm). If we compare the pore distance between the groups, this parameter for the second group is slightly higher (23–26 nm for $E \geq 77$ MeV). In the case of AFM measurements (Fig. S2 in the ESI), pore sizes are slightly higher than those extracted from the SEM data. The difference between the sizes of pores in the samples irradiated with 26 MeV and 167 MeV ions is more pronounced (~30 and ~60 nm). Determination of the pore spacing distribution in the case of AFM was hampered by large noises on the surface relief.

Additional information on the structural changes in the irradiated films was gained using the Raman scattering method. The measurements were performed at an excitation wavelength of 514.5 nm. The Raman spectra of the irradiated few-layer graphene films versus ion dose at a fixed ion energy are shown in Fig. 2(a) and (b). In the spectra, the following peaks were observed: the D peak (1360 cm$^{-1}$), the G peak (1580 cm$^{-1}$), the D$'$ peak (1625 cm$^{-1}$), and the 2D peak (2725 cm$^{-1}$). The G and 2D peaks are normally observed in the Raman spectra of graphene and graphite. However, the relative intensity of the peaks usually exhibits a strong dependence on the number of layers in the films under study. Normally, the D and D$'$ peaks are not observed in the Raman spectra of pristine single and few-layer graphene since, for these materials, in the ideal graphene lattice the selection rules turn out to be violated. Yet, the D and D$'$ peaks may emerge on the introduction
leads to the appearance of edge atoms with dangling bonds in the film structure. The observed dependence of the I_D/I_G ratio on ion energy at a fixed irradiation dose (see Fig. 2(d)) suggests that a greater amount of defects forms in the structure of graphene films irradiated with lower-energy ions in comparison with high-energy ions. Our atomistic calculations show that depending on the ion energy, the pores formed in graphene films differ in the structure (Fig. 2(e)). Whereas Xe ions with energy $E = 26 \text{ MeV}$ induce the amorphization of the structure with a large number of defects, high-energy ions ($E = 167 \text{ MeV}$) create pronounced pores with the closed structure of the edges, as detailed later in the Discussion section.

Most of the papers consider changes in the position of the 2D band since it is more sensitive to strain. Nevertheless, Raman measurements were conducted for a set of irradiated films with different thicknesses. Therefore, we do not analyze the 2D-band shape dependence on the irradiation conditions.

For examining the effects of ion irradiation on the electrical properties of few-layer graphene films, we studied the value of charge-carrier mobility, the temperature dependence of electric current, and the characteristic relaxation time of non-equilibrium charges in irradiated and non-irradiated films. It was found that, as a result of the irradiation of the films with ions under different conditions, nanostructures with fundamentally different electrical properties were formed.

For determining the charge-carrier mobility in the films, measurements of film conductivity in transistor configuration were performed (Fig. 3 and Fig. S3 in the ESIf). In these measurements, the silicon substrate was used as the gate. The drift field V_{DS} between the source contact and the drain...
contact was 0.2 V. Depending on sample sizes, the characteristic resistance values of the pristine and irradiated films were \(\sim 1.5-5 \) kOhm (this value somewhat increased in the irradiated material). A typical dependence of the current \(I_{DS} \) flowing between the source and the drain on the gate voltage \(V_G \) is shown in Fig. 3(a). Here, the charge-carrier mobility \(\mu \) was calculated by the following formula:\(^{33,34}\)

\[
\mu = \frac{\Delta I_{DS}}{\Delta V_G} \frac{1}{C_{SiO_2} V_{DS} W} L
\]

In formula (3), \(C_{SiO_2} \) is the specific capacitance of the oxide layer on the surface of the silicon substrate (oxide thickness 300 nm, \(\varepsilon \sim 3.9 \)), and \(W \) and \(L \) are the width and length of the few-layer graphene film, respectively. In the non-irradiated films, the mobility of charge carriers was equal to 1300–1500 cm\(^2\) V\(^{-1}\) s\(^{-1}\). The dependences of the charge-carrier mobility on the ion energy and ion dose are shown in Fig. 3(c) and (d), respectively. In few-layer graphene films irradiated with low-energy ions, the mobility of charge carriers decreased by one or two orders of magnitude, down to 4–100 cm\(^2\) V\(^{-1}\) s\(^{-1}\). In the films irradiated with high-energy ions (with energy greater than 70 MeV), the charge-carrier mobility remained rather high, 600–900 cm\(^2\) V\(^{-1}\) s\(^{-1}\), see Fig. 3(c). As follows from Fig. 3(d), the holes and electrons exhibit different sensitivities of their mobility to the irradiation dose. The electron mobility decreases in value with the increase in the irradiation dose and with the increase in the number of structural defects in the films, see Fig. 3(d). For pores, a more complex dependence is observed. Such an effect can be explained by the different atomic structures of the formed pores. The pores formed by low-energy ions display a highly distorted structure with a huge number of scattering centers whereas high-energy ions create pores with pronounced edges, therefore, the resulting structure can be represented as a graphene nanomesh into which a high-density array of nanoscale pores are punched. Neighboring pores induce a quantum confinement effect in graphene and open a small band gap (see Discussion below). It is important to mention that the electrical properties and, first of all, the carrier mobility of samples irradiated with 167 MeV ions are not degraded with time as it is usually observed for graphene with non-reconstructed pores. For instance, for 167 MeV ion dose of \(1 \times 10^{11} \) ions per cm\(^2\), the electron mobility measured in a year after irradiation was equal to 1000–1300 cm\(^2\) V\(^{-1}\) s\(^{-1}\).

The charge-carrier trapping and emission processes in the irradiated films were studied by means of charge deep-level transient spectroscopy. The properties of the nanostructured films were found to exhibit a strong dependence on the irradiation conditions. In the films irradiated with 46 MeV ions, the processes of charge-carrier capture at electrically active centers were identified (Fig. 4(a)); these processes manifested themselves in the emergence of peaks observed in the Q-DLTS spectra in the temperature interval from 260 to 305 K. An analysis of the temperature dependence of the characteristic relaxation time of non-equilibrium charges in Arrhenius coordinates (Fig. 4(b)) has allowed us to determine the activation energy of the traps, which turned out to fall in the interval from 0.51 to 0.54 eV.

In the films irradiated with high-energy ions (167 MeV), no charge-carrier capture processes were detected. The formation of deep-level traps in few-layer graphene films appears to correlate with the observation of defects in the Raman spectra and with the formation processes of dangling bonds in the films.

A different picture was observed while analyzing the temperature dependence of electric current in the irradiated films (see Fig. 5). In the films irradiated with 26 and 46 MeV ions, no variation of electric current with temperature in the temperature range from 80 to 300 K was observed (see Fig. 5(b) and (c)). In the films irradiated with higher-energy ions, a profound variation of the current in the temperature range from 90 to 300 K was detected (Fig. 5(a)).

Discussion

The observed changes in the properties of irradiated films can be attributed to the dependence of the amount of energy lost by the ions during their interaction with the target films on ion energy. The ionization losses prevail over atomic losses in the ion projection range. We estimated energy losses of both types using the TRIM program (Fig. 6). In the present study, the projected ion ranges were in the interval from ~5 to
reached values greater than 5 keV. Vázquez et al. examined swift heavy ion-induced defect production in suspended single layer graphene using Raman spectroscopy and a two-temperature molecular dynamics model. The authors showed that an increase in the electronic stopping power of the ion results in a decrease in the size of the pore-type defects, with a defect formation threshold at 1.22–1.48 keV per layer or 3.5–4.2 keV nm–1. These results allow Vázquez et al. to predict that swift heavy ions can create nanopores in graphene, and that their size can be tuned between 1 and 4 nm diameter by choosing a suitable stopping power.

However, in our study, the defect formation threshold is overcome for all ions used, and the pore sizes are more than an order of magnitude larger than those predicted in ref. 24. In order to study in detail the behavior of the lattice under the impact of ions with such energy and understand the underlying processes, we carried out atomistic simulations of the irradiation process. We provided a direct description of the experimental data by simulation of few-layer graphene of a similar thickness (∼2 nm, 4 layers), whereas the impact of the SiO2 substrate was modeled by a pure repulsive field. We simulated a similar irradiation setup and found that irradiation with only one Xe atom with energy in the experimental range (167 MeV) sufficiently distorts the graphene lattice, which leads to the formation of a pore with a size of ∼5 nm. This result originates from the energy transfer from the electronic to atomic subsystem of graphene with further heating of the lattice and evaporation of carbon atoms.

Despite the substantial damage of graphene, the obtained pore is nevertheless smaller than that observed in our experiments. However, the high ion irradiation dose (dose of 5 × 10^12 ions per cm^2) allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by previous ions. In this case, the size of the formed structure linearly increases (Fig. 7(a)) and after the fifth ion impact, the average radius of the pore gets close to the experimental range.

The substrate plays an important role in the observed effect. For example, it was demonstrated in ref. 36 that the irradiation of freestanding bilayer graphene leads to a plow up of the pore edges, whereas our simulations show that the confinement of the graphene from one side leads to evaporation of the atoms to one direction with the stimulation of the connection of neighboring layers. This agrees with the previous observations of the “geometrical” effects of the substrate on the evolution of displaced atoms during the irradiation of supported graphene. Strong local heating of the SiO2 substrate (up to 1500–3000 °C) that takes place in the picosecond timescale (10^{-12}–10^{-11}s) can possibly stimulate a pronounced increase in pore size.

The high temperature in the irradiated region leads to the evaporation of carbon with the formation of the pores, see Fig. 7(b). We can suggest that this effect is mostly pronounced on the surface, where the atoms evaporate, whereas the layers underneath can mostly retain the atomic structure and further repair the defects. This can explain the observation of very shallow pores. The free edges of the neighboring graphene layers tend to connect with each other in order to minimize the edge energy. This effect is quite common and was observed in bilayered graphene, graphite filaments, multi-wall carbon nanotubes, graphite and nanographite cases. It was shown that at least in the case of bilayer graphene, such a process is energetically favorable and connection of the edges proceeds without any energy barrier. As a result, the formation of a nanostructured bilayer-graphene film with a number of sp^3-hybridized atoms turns out to be possible.

We studied the electronic properties of the perfect system when graphene layers seamlessly connect with each other. Such nanostructures combine the flat geometry of graphene with the curvature of small diameter nanotubes at the edges and can display semiconductor and metallic properties.
depending on the atomic geometry.35,46,47 The main advantageous feature of such structures in comparison with the structures traditionally fabricated by means of nanolithography consists of the possibility of realization of a high mobility of charge carriers due to the absence of charge-carrier scattering at edge atoms. Namely, nanomeshes consisting of graphene with closed edges can display high transport characteristics as suggested by wave-packet dynamical calculations of antidot arrays in bilayered graphene35 showing a high transmission probability of charge carriers. Therefore, graphene with closed edges can couple together high conducting properties of carbon nanotubes and controllable electronic properties of graphene ribbons which makes possible the fabrication of perfect two-dimensional conductors for future nanoelectronics.

Even though the bilayer graphene with periodically arranged pores with closed edges is a perfect model which cannot directly correspond to the sample obtained in the experiment, the opening of the band gap due to quantum confining by closed edges probably has the real basis. The theory considered previously only relatively small pores of nanometer sizes.35,47 Their properties can be sufficiently different from the nanostructures studied in this work. We considered here the dependence of the band gap of bilayer graphene with closed edges on the width w of the flat graphene between edges. We found that the band gap of such a structure monotonously decreases as w increases. We fit these band gap values with a function of A/w^α, where $A = 3.024 \text{ eV nm}^2$ and α is found to be 2, which exactly corresponds to an effective-mass particle-in-a-box behavior. The obtained trend clearly manifests that even at the experimentally measured distances between neighboring holes of 10 nm, the structures display a band gap value of $\sim 10 \text{ meV}$, which agrees well with the experimental data given below. Also, these estimations are supported by our previous data35 obtained for the bilayer graphene with periodically arranged hexagonal holes. The band gap of such nanostructures depends on the distance between neighboring holes as A'/w'^α, where $A' = 0.43 \text{ eV nm}^2$ and $\alpha' = 1.41$ (shown by a gray dashed line in Fig. 7(c)). At experimentally measured distances of 10 nm, such a trend also gives $\sim 10 \text{ meV}$.

It is worth noting that the electronic transport properties of graphene films irradiated with ions with different energies (Fig. 3(c)) change drastically at a critical ion energy of 70 MeV ($S_e \sim 14 \text{ keV nm}^{-1}$). At higher ion energies (above 70 MeV) and low irradiation doses (lower than 3×10^{11} ions per cm2), the mobility of charge carriers weakly differs from the charge-carrier mobility in the pristine films. Fig. 6(a) shows the calculated losses for ionization and for the production of atomic displacements in a graphite target for Xe ions with energies 46 and 167 MeV. The dependence of ionization losses on the ion energy is shown in Fig. 6(c). The mobility of charge carriers is a parameter exhibiting a very high sensitivity to the structural perfection of the film. A high mobility of charge carriers in the layers irradiated with ions having energy above 70 MeV points to a smaller amount of irradiation induced defects, and this finding fairly well correlates with the Raman data. It appears that a reconstruction of dangling bonds in different graphene sheets occurs in bi-layer graphene films at ion energies exceeding this threshold value ($S_e = 14 \text{ keV nm}^{-1}$) yielding "welded" nanopore joints. Also to be taken into consideration is the fact that one formed pore corresponds to approximately ten ions that have impinged the film. All in all, an amount of energy

![Fig. 7](image-url)

(a) Hole size as a function of the number of Xe ions irradiated on the considered region. The range of experimental values of the pore size is denoted in orange. The upper and down series of the insets (relative to the data) represent the atomic structures of the holes formed by ions with energy 167 and 26 MeV, respectively. (b) Temperature and structural changes of three-layered graphene in MD simulations after the irradiation at Xe energy 100 MeV. The evolution of the graphene structure at the chosen steps is shown. In the inset, the zoomed side view connected edges is shown. (c) The band gap of the infinite ribbon with connected edges as a function of the distance between connected regions (the fitted quantum confinement trend is shown by a black dashed curve). The band gap via the region between the pores calculated in ref. 35 is represented by a gray dashed curve. The schematic views of the corresponding structures are presented in the inset.
Nanoscale

roughly equal to 140 keV is locally absorbed in bi-layer graphene to yield one pore with the reconstructed edges. To complete the picture, we have to note here that such structures most likely demonstrate an opening of a 50 meV transport band gap and no occurrence of electrically active defects in the films as revealed by the Q-DLTS data.

During the irradiation of the films with lower-energy ions \((S_e < 14 \text{ keV nm}^{-1}) \), according to the Raman data, the formation of pore edges with dangling bonds occurs, followed by subsequent oxidation of film edges. According to the Q-DLTS data, such structures contain electrically active defects with activation energy \(\sim 0.52 \text{ eV} \), have a metallic conductivity, and contain no forbidden energy ranges in their band structure.

Simultaneously, a profound reduction of hole mobility in graphene films irradiated with low ion doses was observed (Fig. 3(d)). The reduction of hole mobility can be related to the formation of highly amorphous regions whereas increasing the ion energy leads to the formation of pores with pronounced edges (compare the atomic structures of pores created by the Xe ion with an energy of 26 MeV and 167 MeV, see Fig. 2(e)). Therefore, the effects of ion irradiation with low and high energies on the atomic structure and therefore electronic properties of the films are substantially different. The pore with dangling bonds can be considered as the only scattering center (the irradiation of low energy ions can be roughly represented as amorphization of the film), whereas the pore with connected edges (created by high-energy ions) can be referred to as the boundary for the charge carriers. Neighboring pores confine the graphene region, which leads to band gap opening and the formation of a preferred direction for charge transport with a high mobility.

The effect of the antidot lattice (30 nm antidots with 30 nm neck width between them) created in graphene by means of an electron beam on carrier transport was analyzed by Mackenzie.48 The carrier mobility decreased after nanostructuring from 300 to 5–100 cm² V⁻¹ s⁻¹ depending on the number of antidot lines. Such a value for carrier mobility is rather small compared to that in the pristine graphene obtained by the micromechanical exfoliation approach and then transferred onto the SiO₂ substrate, but it is typical of nanostructured graphene devices. Low carrier mobility for nanostructured graphene is usually caused by the negative influence of the scattering edge atoms and adsorbed functional groups. The dependence of carrier mobility on the antidot number in ref. 48 is shown to be the same as that for the hole mobility in our investigation.

A similar effect of mobility decreasing was observed when single-layer graphene samples were nanostructured with the use of block copolymers.49,50 The decrease in mobility for such nanostructured graphene films was much more pronounced (from 700 to 200 cm² V⁻¹ s⁻¹) than for those prepared from bilayer graphene (from 730 to 530 cm² V⁻¹ s⁻¹). Oh et al.50 did not discuss this difference, but it can be assumed that oxygen plasma treatment and high temperature annealing used in their study led to the partial reconstruction of nanopores in bilayer graphene.

Electrical and structural properties of the graphene films irradiated with 30–35 keV Ga⁺ and C⁺ ions in the dose range of \(10^{11} \text{ to } 10^{13} \text{ ions per cm}^2 \) were investigated in ref. 14 and 32. The transition to a carrier hopping transport was found in both studies14,32 for a high irradiation dose \((\sim 10^{13} \text{ to } 10^{14} \text{ ions per cm}^2) \). Such a change in the electrical properties is usually caused by the appearance of charge-carrier strong scatters in the graphene structure. In our investigation, we found similar centers for films irradiated with \(E < 70 \text{ MeV} \) ions. Usually, it is suggested that the effect is related to dangling bonds and edge atom formation.

Conclusions

The structure and properties of few-layered graphene samples nanostructured by irradiating them with high-energy heavy ions (Xe ions with energies from 26 to 167 MeV, ion doses of \(3 \times 10^{10} \text{ to } 5 \times 10^{12} \text{ ions per cm}^2 \)) were investigated. It was found that ion irradiation leads to the formation of nanopores with sizes from 20 to 60 nm in the upper layers of few-layered graphene samples (1–2 monolayers). The sizes of the pores were roughly independent of the energy and dose of the ions. The number of pores was directly proportional to the ion dose with a coefficient of 0.1. It was found that, with increasing ion energy, there occurred a profound reduction in the concentration of structural defects. For instance, according to the Raman data, the ratio between the intensity of the defect-induced D peak and the intensity of the G peak decreased by a factor of 2–5 with increasing ion energy from 26 to 167 MeV. By means of charge deep-level transient spectroscopy, it was found that in the structures irradiated with 26 MeV ions electrically active defects with 0.52 eV activation energy were observed, whereas no electrically active defects were detected in the structures irradiated with 167 MeV ions. It was demonstrated that, depending on the ion energy, one can obtain nanostructured graphene layers with different charge-carrier mobility values in the layers. For instance, in the layers irradiated with less than 70 MeV ions the charge-carrier mobility was found to fall in the range from 1 to 100 cm² V⁻¹ s⁻¹, whereas in graphene layers irradiated with higher-energy ions, 77 to 146 MeV, the mobility was in the range of 700–1200 cm² V⁻¹ s⁻¹ (at ion doses of \((1–3) \times 10^{11} \text{ ions per cm}^2 \)). Before irradiation, the mobility value in these layers was 1000–1500 cm² V⁻¹ s⁻¹. The possibility of opening a band gap of about 50 meV in the nanostructured samples irradiated with 167 MeV Xe ions due to the introduction of an array of antidots with reconstructed edges has most likely been observed. The experimental findings were rationalized through atomistic simulations. We predicted that even a single Xe atom with energy in the experimental range produces considerable amount of damage in the graphene lattice whereas the high ion irradiation dose allows one to propose a high probability of consecutive impacts of several ions onto an area already amorphized by previous ions and increasing of the average radius of the pore to the experimental range. Also, it was
found that at high energies (above 70 MeV), the formation of "welded" sheets due to interlayer covalent bonds at the edges and, hence, defect-free antidot arrays in few-layer graphene are possible under certain irradiation conditions, possibly by using an overlay system with periodic holes as a mask.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors are thankful to Dr. S. A. Smagulova for the Q-DLTS measurements. Simulations of graphene irradiation (S. V. E., D. G. K. and P. B. S.) were supported by the Russian Science Foundation (Project identifier: 17-72-20223). A. V. K. acknowledges the financial support from the Ministry of Education and Science of the Russian Federation in the framework of the Increase Competitiveness Program of NUST “MISIS” (no. K3-2017-021). D. G. K. (electronic structure calculations) acknowledges the grant from the president of the Russian Federation for government support of young Ph.D. scientists (MK-3326.2017.2). N. A. acknowledges the financial support from the RFBR (no. 18-32-00449) and the grant from the president of the Russian Federation for government support of young Ph.D. scientists (SP-5416.2018.2). L. A. C. (study of models) acknowledges the financial support from RFBR 17-02-0195. We also thank CSC-IT Center for Science Ltd, Finland for generous grants of computer time.

Notes and references