Layer-Dependent Band Gaps of Platinum Dichalcogenides

Jingfeng Li, Sadhu Kolekar, Mahdi Ghorbani-Asl, Tibor Lehnert, Johannes Biskupek, Ute Kaiser, Arkady V. Krasheninnikov, and Matthias Batzill*

ABSTRACT: Owing to the relatively strong interlayer interaction, the platinum dichalcogenides exhibit tunability of their electronic properties by controlling the number of layers. Both PtSe$_2$ and PtTe$_2$ display a semimetal to semiconductor transition as they are reduced to bi- or single layers. The value of the fundamental band gap, however, has been inferred only from density functional theory (DFT) calculations, which are notoriously challenging, as different methods give different results, and currently, there is no experimental data. Here, we determine the band gap as a function of the number of layers by local scanning tunneling spectroscopy on molecular beam epitaxy (MBE)-grown PtSe$_2$ and PtTe$_2$ islands. We find band gaps of 1.8 and 0.6 eV for mono- and bilayer PtSe$_2$, respectively, and 0.5 eV for monolayer PtTe$_2$. Trilayer PtSe$_2$ and bilayer PtTe$_2$ are semimetallic. The experimental data are compared to DFT calculations carried out at different levels of theory. The calculated band gaps may differ significantly from the experimental values, emphasizing the importance of the experimental work. We further show that the variations in the calculated fundamental band gap in bilayer PtSe$_2$ are related to the computed separation of the layers, which depends on the choice of the van der Waals functional. This sensitivity of the band gap to interlayer separation also suggests that the gap can be tuned by uniaxial stress, and our simulations indicate that only modest pressures are required for a significant reduction of the gap, making Pt dichalcogenides suitable materials for pressure sensing.

KEYWORDS: 2D materials, layer dependence, PtSe$_2$, PtTe$_2$, scanning tunneling spectroscopy, van der Waals materials, transition metal dichalcogenides

Layered transition metal dichalcogenides (TMDs) are a diverse class of materials\(^1\)–\(^3\) whose strong anisotropic structures of in-plane covalent bonding and only weak van der Waals interactions between molecular planes enable the reduction of their dimensions to single molecular layers without breaking the covalent bonds. Although no bonds are broken, monolayer or few molecular layer thick TMDs frequently exhibit different properties as compared to their bulk counterpart materials.\(^4\)–\(^12\) The electronic structure may be altered due to a combination of quantum confinement effects and the lack of interlayer interactions of the frontier electronic orbitals between the layers. These interlayer interactions and thus the layer-dependent properties vary for different members of the TMD family. Density functional theory (DFT) calculations have suggested that interlayer interactions are particularly strong in the Pt dichalcogenides.\(^13\)–\(^17\) While PtS$_2$ is semiconducting, PtSe$_2$ and PtTe$_2$ are (semi)metallic in their bulk form with the chalcogen $p$-derived electron pockets at the $\Gamma$-point and hole pockets at the K-point. A more detailed Fermi-surface sampling also showed a hole pocket at nonsymmetry points in the 3D Brillouin zone (BZ) within the $\Gamma$-M-L-A plane for 1T-PtSe$_2$.\(^18\) In bulk materials, these Pt dichalcogenides have attracted significant interest because of their topologically protected bands\(^19\)–\(^22\) and defect induced magnetism\(^23\) that may persist down to the mono- and bilayer thickness.\(^24\) When the material is thinned to single molecular sheets, both PtSe$_2$ and PtTe$_2$ exhibit a transition to a semiconductor material with significant band gaps opening for the monolayer. On a DFT level,\(^14\) band gaps of 1.18 and 0.24 eV have been predicted for monolayer and...
bilayer PtSe₂, respectively. For PtTe₂, a 0.4 eV band gap for monolayer PtTe₂ has been predicted, while bilayer PtTe₂ remains (semi)metallic. PtS₂ on the other hand is semiconducting in the bulk, and consequently, no metal to semiconducting transition is observed as a function of the number of layers. Experimentally, the semiconducting behavior of monolayer PtTe₂ and mono- and bilayer PtSe₂ was found recently by angle-resolved photoemission spectroscopy (ARPES) measurements. 25-27 However, the band gap cannot directly be determined from valence band measurements alone. Here, we study the properties of these nanoscale Pt dichalcogenides by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) and correlate these experimental results to properties derived by DFT calculations.

RESULTS AND DISCUSSION

PtSe₂ and PtTe₂ have been synthesized on graphitic substrates by molecular beam epitaxy at growth temperatures of 240–260 °C. For STM and STS characterization, the Pt dichalcogenides were grown on highly oriented pyrolytic graphite (HOPG). ARPES studies of PtTe₂ were performed on bilayer graphene/ SiC(0001) substrates. For transmission electron microscopy (TEM) characterization, Pt dichalcogenides were grown directly on a graphene-covered TEM grid. While the transfer of chemical vapor deposition (CVD)-grown TMDs to TEM grids for their analysis is common practice, the direct molecular beam epitaxy (MBE) growth on graphene on a TEM grid enables additional characterization of the growth such as epitaxial alignment between the substrate (graphene) and the Pt dichalcogenides.

Phase Characterization. Pt dichalcogenides are expected to form the 1T phase. However, previous reports for ultrathin films have also implicated a 2H phase, 28 and the possibility of nanostructured monolayers with both 1T and 1H grains has been demonstrated for PtSe₂. 29 Moreover, Pt tellurides may exist in various compositional phases from mono- to ditellurides. 30,31 The high vapor pressure of chalcogens makes a prediction of the compositional phase difficult, and it may sensitively depend on the MBE growth conditions. As different phases are conceivable, it is necessary to confirm the composition and phase obtained under the conditions employed in this study.

The initial characterization of the phase of the films grown here was done by X-ray photoemission spectroscopy (XPS). Pt selenide and telluride films were grown on HOPG. Figure 1 shows XPS data for the Pt-4f and Se-3d or Te-3d peaks for Pt selenide and Pt telluride films, respectively. The peak positions are referenced relative to the C 1s peak set to 284.8 eV. A Shirley background is subtracted, and all peaks are fitted with Voigt functions. The Pt-4f7/2/4f5/2 binding energies are measured at 73.4/77 and 72.8/76.4 eV for Pt selenide and Pt telluride, respectively. The binding energies for Se-3d3/2/3d5/2 are determined at 54.9/55.8 eV, and the binding energies for Te-3d3/2/3d5/2 are found at 573.4/583.9 eV. The 0.6 eV chemical shift of the Pt peaks for the two dichalcogenides is consistent with the larger electronegativity of Se compared to Te. Generally, the peak position of Pt agrees with reports for Pt dichalcogenides, 12,21 suggesting the successful synthesis of PtSe₂ and PtTe₂. To further verify the phase, we performed ex situ TEM characterization.

To characterize MBE grown Pt chalcogenides by TEM, the films were directly grown on suspended graphene on a TEM grid. Prior to the growth, the TEM grid was outgassed in an ultrahigh vacuum (UHV) by annealing to 300 °C for 12 h, and then, the Pt chalcogenides were deposited under the same conditions as those for the other growth substrates. Subsequent to the growth, the samples were taken out of the UHV growth chamber for TEM analysis. The samples were annealed in the TEM to desorb some adsorbates from the air exposure at 200 °C for 30 min, but nevertheless, additional carbon decorating the PtSe₂ and the PtTe₂ edges was detected. TEM characterization confirmed the formation of the Pt chalcogenides on the graphene sheet in an island growth mode. On large-scale images, two regions are observed with distinctively different island sizes as can be seen in Figure 2a. This is likely a consequence of local contamination on the graphene/TEM grid that affects the nucleation and growth in some regions. The distribution of lateral island areas is about 30–100 nm² in one region and 100–650 nm² in the other. The regions with the smaller islands are similar to those grown in situ on HOPG and observed by STM (discussed below), and thus, these regions are deemed to have been contamination-free during growth, while the larger islands are likely formed by adsorption and agglomeration at pre-existing contamination on the graphene. All the regions show carbon contamination, which is expected to have occurred during postgrowth air exposure. The island heights vary from monolayer to multilayers. The HRTEM images of the bilayer islands are shown in Figure 2c. While the image contrast allows one to exclude the possibility of the 2H phase for both monolayer and bilayers, the contrast differences between different stackings of the 1T layers in the bilayers, i.e., 1T or 3R stacking, are very small (see Figure S1) and do not allow one to unambiguously differentiate between these stackings from image contrast alone. However, the Se and Pt sublattices and the number of layers were identified from frequently observed Se vacancies by analyzing line scans along the Pt and Se atoms as shown in Figure S2. Importantly, the HRTEM images (see Figure 2) in combination with the line scans (Figure S2) as well as the simulated images of different possible structures (see Figure S1) confirm the formation of bilayer PtSe₂ with a 1T structure. While this identifies specific islands, the small
imaging contrast to the 3R stacking does not allow us to exclude the possibility of the presence of 3R stackings anywhere in the sample. DFT calculations including many-body dispersion corrections to account for weak van der Waals interactions, however, indicate the preference of the 1T stacking in bilayers (Figure S3). Thus, DFT and selected TEM image analyses are consistent with a majority of 1T stacked bilayer islands. The Fourier transformation shown in Figure 2b also demonstrates that the PtSe₂ islands have a lattice constant of $a_{\text{PtSe}_2} = 0.38$ nm, consistent with the previously reported data. Interestingly, despite the weak van der Waals interactions between graphene and PtSe₂, the PtSe₂ islands grow epitaxially on the graphene substrate; i.e., the hexagonal lattice of the islands is aligned with respect to the hexagonal structure of graphene. This is apparent from the Fourier transform that shows both the periodicity of the substrate and the Pt chalcogenide islands. The HRTEM images of MBE grown PtTe₂ islands are similar in many respects to those of PtSe₂, as is evident from Figure 2d. The imaging contrast of the flake may vary slightly in different regions of the image, which originates from slight focus variations over the imaged surface area as well as contamination. Moreover, at the edges of the flake (near the corners of the image), the hexagonal structure from the underlying graphene support is visible. The PtTe₂ monolayer islands could also be identified as 1T phase with a lattice constant of 0.41 nm. Also, an epitaxial relationship with the graphene substrate was observed. While HRTEM confirms the phases of the MBE grown Pt dichalcogenides as 1T, the layer-dependent band gaps were characterized by STM/STS as well as ARPES studies for PtTe₂.

**Layer-Dependent Electronic Properties.** MBE grown Pt dichalcogenide islands on conducting HOPG substrates are well-suited for probing the local electronic structure by STS. Islands of Pt dichalcogenides with different numbers of layers allow one to directly probe the band gap on different terraces and thus reveal the layer-dependent properties. Figure 3 presents large-scale STM images of PtSe₂ and PtTe₂ islands grown on HOPG. The cross-sectional scan shows that these islands exhibit terraces with different numbers of layers. The apparent step height of the first layer, i.e., the step from the HOPG substrate to the Pt dichalcogenide, is strongly bias

![Figure 2](https://doi.org/10.1021/acsnano.1c02971)

**Figure 2.** Cc/Cs-corrected HRTEM analysis of Pt chalcogenides directly grown on graphene supported on a TEM grid. (a) Large-scale TEM image showing a region of suspended graphene over a TEM grid. Clearly, there are two regions with different island morphologies. The region with smaller, more uniformly distributed islands is associated with the growth on a contamination free surface. In a second region, larger islands are observed, which are associated with nucleation and growth at the surface contamination. (b) Zoomed-in TEM image of Pt selenide islands on graphene. The fast Fourier transformation (FFT) shows the reciprocal lattice points for graphene (blue circles) and Pt selenide (red circles). The rotational alignments of the reciprocal lattice of the graphene substrate and the PtSe₂ islands show that PtSe₂ grows mainly in an epitaxial relationship. Second order reflections of PtSe₂ are located along the red dotted circle. Moreover, the lattice constant of Pt selenide is determined from the Fourier transform to be $0.38$ nm, which is consistent with the lattice constant of PtSe₂. The FFT was inverted for better visibility. The high resolution TEM image of a PtSe₂ bilayer island is shown in (c). The Pt and Se sublattices are indicated, and it shows that the structure is consistent with the 1T phase of the transition metal dichalcogenides. Similarly, the crystal structure of PtTe₂ can be confirmed to be 1T from the HRTEM image shown in (d). Data with a yellow frame correspond to PtTe₂ samples, and black frames show data from a PtSe₂ sample.

![Figure 3](https://doi.org/10.1021/acsnano.1c02971)

**Figure 3.** Large-scale STM images of Pt dichalcogenide islands grown by MBE on HOPG substrates. (a, b) STM image and corresponding line profile for the PtSe₂ islands. (c, d) STM image and line profile for the PtTe₂ islands. The line profiles are shown along the line indicated in the corresponding STM images. It can be seen that typical islands expose monolayer (ML), bilayer (BL), and trilayer (TL) terraces, which enable characterization of the layer-dependent electronic properties by STS.
voltage-dependent because of the semiconducting nature of the monolayer. For PtSe$_2$, for example, we measure apparent heights as small as 0.3 nm for bias voltages close to the band gap (in a range of $-1$ to $+0.3$ V), while at larger bias voltages (larger than $+0.5$ V), a step height of 0.8 nm is measured. In the latter case, we tunnel into the empty states of the film and the measured height is closer to the true topographical height of the first layer on HOPG. This would indicate a large van der Waals gap between the HOPG and the Pt dichalcogenides, comparable to what has been reported for other TMDs grown on graphitic substrates. Similar to the monolayer, the step height to the bilayer is again dominated by electronic effects for small bias voltages. At larger bias voltages, the bilayer step height is deemed to be less affected by electronic effects and a step height of 0.50 $\pm$ 0.03 nm is determined. This value corresponds to the interlayer separation in PtSe$_2$, which is discussed in more detail below in connection to the DFT calculations. Atomically resolved images of monolayer PtSe$_2$ on HOPG show a $2 \times 2$ superstructure but not for multilayers. Figure 4 presents the atomic resolution STM images of such monolayer samples. HRTEM of samples grown under the same conditions indicates that the monolayer is 1T-PtSe$_2$.

Figure 4. STM characterization of monolayer PtSe$_2$ and PtTe$_2$ grown on HOPG. Monolayer PtSe$_2$ exhibits a $2 \times 2$ superstructure in STM images as shown in (a). The inset shows the Fourier transform of the STM image. The $1 \times 1$ reciprocal lattice points are indicated by green circles. The additional spots indicate the $2 \times 2$ superstructure. This superstructure is considered the result of a moiré structure, schematically illustrated in (a) by superimposing the graphene atomic crystal (gray circles) with lattice points of the PtSe$_2$ (green circles). It can be seen that three unit cells of graphene almost match two unit cells of PtSe$_2$. Although the structure is not completely commensurate, a $2 \times 2$ superstructure emerges. A zoomed-in image of the STM image of the PtSe$_2$ monolayer is shown in (b). On rare occasions, a different superstructure with a $\sqrt{13} \times \sqrt{13}$ periodicity is observed, shown in (c). This is considered to be due to a rotation of the PtSe$_2$ grain relative to the graphene substrate. Monolayer PtTe$_2$ exhibits a $3 \times 3$ superstructure in STM if imaged with a 0.5 V bias voltage, as shown in (d).

Figure 5. Layer-dependent band gap measured by STS. (a) STM image of a PtSe$_2$ island with different layer heights. The points for STS measurements are indicated by the colored dots, and the corresponding dI/dV spectra are shown for the monolayer (b), bilayer (c), and trilayer (d) regions. STM images of a PtTe$_2$ island with different terrace heights are shown in (e), and the corresponding dI/dV spectra for the monolayer (f), bilayer (g), and trilayer (h) regions are shown. The measured band gaps are given in the STS spectra. STS has been taken with a set point of 0.7 V and 50 pA.
Moreover, HRTEM demonstrated the rotational alignment between graphite and PtSe$_2$ and 3 times the lattice constant of HOPG ($3 \times a_{\text{HOPG}} = 0.74$) corresponds closely to 2 times the lattice constant of PtSe$_2$ ($2 \times a_{\text{PtSe}_2} = 0.76$). Therefore, we assign the $2 \times 2$ structure observed in STM to a moiré superstructure due to a close-to-coincidence lattice between the HOPG substrate and PtSe$_2$. The superpositioning of the graphene lattice with the lattice of PtSe$_2$ is schematically shown in Figure 4a, illustrating the formation of a $2 \times 2$ structure. Further evidence that PtSe$_2$ on HOPG is forming a moiré superstructure comes from the occasional observation of minority structures that originate from a rotation of the PtSe$_2$ with respect to the substrate. In these domains, a much larger moiré superstructure with a $\sqrt{13} \times \sqrt{13}$ $R13.9^\circ$ unit cell with respect to the PtSe$_2$ structure is observed. An example of such a structure is shown in Figure 4c. Moiré supercells in PtSe$_2$ were previously reported for monolayers on Pt(111) substrates, but the interaction with graphite is expected to be significantly weaker than with a transition metal surface. For PtTe$_2$ on HOPG substrates, a $3 \times 3$ moiré structure is observed for bias voltages around +0.5 V in STM images, shown in Figure 4d, which can be interpreted with a near-coincidence lattice of $3 \times a_{\text{PtTe}_2}$ to $5 \times a_{\text{HOPG}}$. Below, we calculate the interaction between graphene and PtSe$_2$ and find very weak interactions, which suggests that the observed moiré pattern in the STM images may not be due to a physical distortion of the Pt dichalcogenides but rather are imaging effects through resonant tunneling in Pt dichalcogenide/graphene electronic states. This is further supported by the strong bias voltage effect in PtTe$_2$ that allows one to observe a moiré pattern only for a narrow voltage range.

Figure 5 shows STM images of PtSe$_2$ and PtTe$_2$ islands that exhibit terraces with mono-, bi-, and trilayer thickness. STS measurements on these three regions indicate strong changes in the band gap. In PtSe$_2$, the monolayer exhibits a large gap of $1.79 \pm 0.04$ eV, which shrinks to $0.62 \pm 0.02$ eV for the bilayer, and the sample becomes metallic for the trilayer. The uncertainty represents the standard deviation from around 50 data points for the monolayer and around 25 data points for bitrilayer samples, where each data point is the average of 9−16 spectra. In addition to measurements of different islands of the same sample, we were also conducting measurements on different samples grown with slightly varying coverage that allows one to obtain larger terraces. An example for STS on larger top terraces is shown in Figure S4 for PtSe$_2$. Within the range of terrace sizes of up to 100s of nanometers in diameter, we do not see a variation of the band gap at the center of the terraces, while a variation is observed toward the edges of the islands. In contrast, PtTe$_2$ exhibits a band gap of $0.51 \pm 0.02$ eV only for the monolayer, while the bi- and trilayers are metallic. The measurement of PtTe$_2$ follows similar statistics as for PtSe$_2$, and additional data for larger terraces are shown in Figure 6. ARPES measurement of PtTe$_2$ grown on graphene/SiC, its comparison with STS measurements for monolayer PtTe$_2$ on HOPG, and with DFT simulations. (a) ARPES of the monolayer with some bilayer islands as the STM characterization (b) of the sample indicates. (c) Comparison of the STS data for the monolayer with the ARPES measurements. The VBM at $\Gamma$ (better seen in the second derivative of the ARPES data) coincides closely with the intensity onset in the STS spectra. Additional intensities in the ARPES spectra away from the $\Gamma$ point are attributed to the bilayer regions on the sample. This is justified by a comparison to the ARPES spectra of the bilayer sample shown in (d). These bilayer samples show a metallic band that intersects the Fermi level in between $\Gamma$ and K. DFT simulations for mono- and bilayer PtTe$_2$ are shown in (e) and (f), respectively. It is apparent that the inclusion of SOC is required to be in agreement with the experimental ARPES measurement, as the overlay of the DFT band structure with the experiment shows.
To compare the valence band edge in STS with band structure measurements, we also grew PtTe$_2$ on graphene/SiC and performed ARPES measurements with our in-house setup using a He-II source. Figure 6a shows the ARPES data for predominantly monolayer samples (with some bilayer regions) as can be seen from the STM images of the corresponding sample, presented in Figure 6b. ARPES for bilayer samples shows the metallic character of the sample with bands crossing the Fermi level. Our STS data for the monolayer also compare well with the ARPES data with the valence band maximum at $\Gamma$ in ARPES coinciding with the band onset in the STS spectra as illustrated in Figure 6c. Note that there is additional photoemission intensity visible within the band gap of the ARPES data, which is associated with the existence of some metallic bilayer islands in the sample, which was confirmed by STM imaging of the sample. ARPES measurements on predominantly bilayer samples are shown in Figure 6d, which highlights the presence of a metallic band.

In order to rationalize the experimental observations, we carried out DFT calculations as detailed in the Methods. The 1T structure has been expected to be thermodynamically most stable for both PtSe$_2$ and PtTe$_2$ and this has been confirmed in our sample characterization. It is worth pointing out that the monolayer 1H phase would exhibit a metallic character according to our DFT simulations shown in Figure S6, and thus, no band gap opening would be expected. Thus, in the following, only the 1T structure is considered in our calculations. The optimized lattice constants were found to be in good agreement with the experimental values, as presented in Table S1. To test our theoretical approach further, we compared the calculated band structures with the experimental ARPES data for PtTe$_2$ mono- and bilayer samples (comparable calculations for 1T-PtSe$_2$ are shown in Figure S7). It is apparent that a good agreement with the experimental band structure is obtained only if spin–orbit coupling (SOC) is included in the calculations as shown for the monolayer in Figure 6e and the bilayer in Figure 6f. An overlay of the experimental band structure with the calculated bands is also shown. The good agreement validates the DFT approach. The calculations indicate that monolayer PtTe$_2$ and PtSe$_2$ exhibit an indirect band gap with the VBM at the $\Gamma$ point and the CBM at low symmetry points along the $\Gamma$–M direction. However, as we show next, the magnitude of the band gap determined from DFT can vary significantly depending on the approach.

Before we turn to the computational band gap values, we first examine if the graphene substrate plays a role in the experimental band gap measurements. Band gap renormalization for TMDs on metal supports has been discussed extensively mainly for the Mo dichalcogenides. Clearly, on pure transition metals, such as Au, a strong decrease of the fundamental band gap compared to free-standing material is observed. On weakly interacting substrates such as graphene or graphite, the situation is less clear though. For MoS$_2$, for
Thus, similar to the studies on MoS$_2$ the experimental gap values for Pt dichalcogenides. Next, we order between graphene and PtSe. Projected densities of states suggest that the band gap of the Fermi level resembling the Dirac cone of graphene. The orientation of the layers along the armchair and zigzag standing layers. To further test the influence of the substrate supported on graphitic substrates are good models for quasi-particle band gap calculations at the G$_0$W$_0$ (single-shot GW) level increases the band gap of PtSe$_2$ (PtTe$_2$) to 2.44 eV (1.29 eV). These values are normally overestimations of the band gaps for the free-standing monolayers. As PBE usually underestimates band gaps, we can assume that the experimental values are between the PBE and the G$_0$W$_0$ values, in agreement with the experimental data. The calculated band gaps are also in good agreement with the previously reported values at a similar level of theory. The increase of the number of layers from mono- to bilayer leads to a significant reduction of the calculated band gap and gives rise to a semimetalic behavior for the trilayer and beyond (Table 1), confirming the strong interlayer interaction in these materials.

In the case of multilayer systems, however, the chosen vdW correction method has a major influence on the calculated band gap. While the DFT+D3 method turns out to underestimate the distance between layers, more advanced TS and MBD corrections increase the interlayer distance, approaching the experimental range of 5.08–5.3 Å. To further evaluate the dependence of band gaps on the applied level of theory, we systematically changed the interlayer distance and recalculated the band gaps at the PBE, Heyd-Scuseria-Ernzerhof (HSE), and G$_0$W$_0$ levels (Figure 8a) and found a strong dependence on the interlayer separation, which may explain the differences in the previously reported theoretical values of the gap, as different methods of accounting for the vdW interaction give different results. It has been shown that the VBM and CBM states are mainly due to the Se-$p$, orbitals normal to the lattice plane, which are sensitive to the interlayer separation, which in turn, affects the gap value.

Keeping in mind the strong dependence of the band gap in PtSe$_2$ and PtTe$_2$ on the interlayer separation, we further investigated the response of the bilayer system under compression applied perpendicularly to the surface. The PtSe$_2$ bilayer was subjected to a normal compressive load in a “displacement regulation simulation”, in which the equilibrium interlayer distance is systematically reduced in steps and the total energy is recalculated. The energies and the area of the interface were used to calculate the applied pressure ($P$) at each step. The band gap evolution under applied compression indicates almost linear behavior with increasing pressure (Figure 8b). The band gaps calculated at the PBE level were found to be more sensitive to the pressure than those from the G$_0$W$_0$ method. The slope of this band gap vs pressure curve (the band gap normalized to the gap without external pressure) is about 28% (11%) per 1 GPa of pressure at the PBE (G$_0$W$_0$) levels. The pressure-induced band gap change

### Table 1. Computed and Experimentally Determined Band Gap Values in PtSe$_2$ and PtTe$_2$ as a Function of Number of Layers

<table>
<thead>
<tr>
<th></th>
<th>1L</th>
<th>2L</th>
<th>3L</th>
<th>4L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE (SOC)</td>
<td>1.20 eV</td>
<td>0.22 eV</td>
<td>0.01 eV</td>
<td>0 eV</td>
</tr>
<tr>
<td>G$_0$W$_0$ (SOC)</td>
<td>2.44 eV</td>
<td>1.174 eV</td>
<td>0.30 eV</td>
<td>0 eV</td>
</tr>
<tr>
<td>DFT (ref 14)</td>
<td>1.18 eV</td>
<td>0.24 eV</td>
<td>−0.08 eV (semimetallic)</td>
<td>−0.29 eV (semimetallic)</td>
</tr>
<tr>
<td>STS experiment</td>
<td>1.79 ± 0.04 eV</td>
<td>0.62 ± 0.02 eV</td>
<td>0 eV</td>
<td>0 eV</td>
</tr>
<tr>
<td>PBE (SOC)</td>
<td>0.33 eV</td>
<td>0 eV</td>
<td>0 eV</td>
<td>0 eV</td>
</tr>
<tr>
<td>G$_0$W$_0$ (SOC)</td>
<td>1.29 eV</td>
<td>0 eV</td>
<td>0 eV</td>
<td>0 eV</td>
</tr>
<tr>
<td>DFT (ref 14)</td>
<td>0.4 eV</td>
<td>−0.51 eV (semimetallic)</td>
<td>−0.94 eV (semimetallic)</td>
<td>−1.06 eV (semimetallic)</td>
</tr>
<tr>
<td>STS experiment</td>
<td>0.51 ± 0.02 eV</td>
<td>0 eV</td>
<td>0 eV</td>
<td>0 eV</td>
</tr>
</tbody>
</table>

Table 1. Computed and Experimentally Determined Band Gap Values in PtSe$_2$ and PtTe$_2$ as a Function of Number of Layers

example, the measured gaps vary between 2.15 and 2.4 eV for graphite$^{40,41}$ or 2.53 eV for graphene/Ir$^{12}$ substrates, while some DFT calculations predict gaps as large as 2.8 eV for the monolayer.$^{43,44}$ However, the used DFT method may cause an overestimation of the gap value, and thus, the reduced experimental gap may not be direct evidence of a substrate induced gap narrowing. Nevertheless, the spread of the experimental values may indicate that subtle effects on growth conditions and substrate properties can affect the gap values. Thus, similar to the studies on MoS$_2$, more studies by others on different substrates are needed to clarify the robustness of the experimental gap values for Pt dichalcogenides. Next, we show that on a pure DFT level the band gap value of monolayer PtSe$_2$ is not affected by a graphene substrate. The PtSe$_2$/graphene heterostructure is constructed with 3 × 3 2 unit cells of graphene and 2 × 2 2 unit cells of the PtSe$_2$ monolayer corresponding to a lattice mismatch of only 0.7% (Figure 7). Structural optimization with many-body dispersion correction leads to an average interlayer distance of $d = 3.47$ Å between PtSe$_2$ and graphene. We have also checked different stacking orders between graphene and PtSe$_2$ by varying the lateral orientation of the layers along the armchair and zigzag directions of graphene. The results indicate an energy variance of just 0.1–2.8 meV, suggesting weak uniform interactions between the components. The band structure of the heterostructure shows the linear energy dispersion close to the Fermi level resembling the Dirac cone of graphene. The projected densities of states suggest that the band gap of the PtSe$_2$ monolayer on graphene is very similar to that of the free-standing monolayer, indicating that Pt dichalcogenides supported on graphic substrates are good models for qualitative analysis of the electronic properties of the free-standing layers. To further test the influence of the substrate on the band gap, the separation between graphene and PtSe$_2$ was artificially reduced by up to 10% of its equilibrium separation and the gap value was re-evaluated. The results are presented in Figure S8. No substantial effect was found with the gap changing by less than 0.03 eV. We note though that the states in the conduction band will likely be shifted upward in the experiment, as DFT/Perdew–Burke–Ernzerhof (PBE) underestimates the gap. It is also noteworthy that interface band alignment in the graphene/PtSe$_2$ system causes a slight shift of the Fermi level toward the conduction band in the DFT calculations associated with a small charge transfer to PtSe$_2$; see Figure S9. This is similar to the slight $n$-type doping we measure experimentally for PtSe$_2$ monolayers by STS shown in Figure Sb.

Our electronic structure calculations using the PBE functional show that PtSe$_2$ and PtTe$_2$ monolayers have indirect band gaps of 1.20 and 0.33 eV, respectively. The application of quasi-particle band gap calculations at the G$_0$W$_0$ (single-shot GW) level increases the band gap of PtSe$_2$ (PtTe$_2$) to 2.44 eV (1.29 eV). These values are normally overestimations of the band gaps for the free-standing monolayers. As PBE usually underestimates band gaps, we can assume that the experimental values are between the PBE and the G$_0$W$_0$ values, in agreement with the experimental data. The calculated band gaps are also in good agreement with the previously reported values at a similar level of theory. The increase of the number of layers from mono- to bilayer leads to a significant reduction of the calculated band gap and gives rise to a semimetalic behavior for the trilayer and beyond (Table 1), confirming the strong interlayer interaction in these materials.
in PtSe$_2$ is more pronounced in the comparison to group VI TMDs such as MoSe$_2$, suggesting that noble TMDs are promising materials for pressure-tunable optoelectronic devices or sensors.

CONCLUSIONS

The 1T Pt dichalcogenides can be grown by MBE as epitaxially aligned islands on various graphitic substrates. On HOPG, individual islands expose multiple terrace heights, thus enabling one to measure the electronic property variation as a function of the number of layers by STS. For PtSe$_2$, a transition from a metal for more than a 3-layer thick island to a semiconductor occurs only for the monolayer. The fundamental band gaps have been determined experimentally in bilayer PtSe$_2$, suggesting that significant band gaps of 1.8 and 0.5 eV, respectively. In both chambers, Pt is evaporated from a 2 mm Pt rod in water-cooled mini e-beam evaporators and the chalcogens are evaporated from water-cooled Knudsen cells. During deposition, the substrate temperature was held at 240 to 260 °C. The telluride growth chamber was connected via a vacuum transfer to a surface analysis UHV chamber equipped with RT-STM, ARPES, X-ray photoemission spectroscopy, and low energy electron diffraction (LEED) for sample characterization. The selenide growth chamber had a large sample to source distance, which reduced the growth rate and allowed only for a growth rate of 0.33 ML/h estimated from the STM images. The growth chamber was connected to a RT Omicron STM, and samples were transferred to another UHV chamber for XPS analysis. STS measurements were conducted in a dedicated low temperature STM/STS with a closed cycle cooling system. PtSe$_2$ and PtTe$_2$ were transferred to this chamber through air or using a vacuum suitcase. The samples were annealed to 200 °C in the UHV chamber prior to the STS studies. Electrochemically etched tungsten tips were used for STS. $dI/dV$ spectra were recorded using a lock-in amplifier with a modulation voltage of 30 mV.

HRTEM were conducted on PtSe$_2$ and PtTe$_2$ directly grown on a graphene covered TEM grid. The graphene was grown by CVD on a copper foil and transferred to the TEM grid. The grown samples were exposed to air but packed in an inert gas atmosphere for shipping to the TEM facility. Before TEM analysis, the samples were annealed to 200 °C in vacuum. The TEM images were acquired with the Cc/Cs-corrected sub-angstrom low-voltage electron microscope (SALVE), which was used at an acceleration voltage of 80 kV. Measured values for chromatic and spherical aberrations were in the range of −10 to −20 μm. Used dose rates for the atomic resolved images were in the range of 10$^6$ e$^-$/nm$^2$. The images were recorded with a 4k × 4k Ceta camera with exposure times of 1 s.

METHODS

Experimental Details. (Sub)monolayer PtSe$_2$ and PtTe$_2$ are grown by MBE on graphene or graphite. For HRTEM studies, CVD grown graphene was transferred to a TEM grid. Prior to MBE growth on such substrates, the graphene/TEM grid was annealed in ultrahigh vacuum (UHV) at 300 °C for 12 h. For ARPES studies, single crystalline bilayer graphene was obtained on a 6H-SiC(0001) substrate by vacuum annealing. This substrate allows for TMDs to grow with a single orientation and thus enables angle-resolved studies. In contrast, graphite (HOPG) substrates have twist domains and thus are less well-suited for angle-dependent studies but are suitable for STM work. The HOPG substrates are freshly cleaved in air and outgassed at 450 °C in vacuum for 12 h. PtSe$_2$ and PtTe$_2$ are grown in separate UHV chambers dedicated to selenide and telluride growth, respectively. In both chambers, Pt is evaporated from a 2 mm Pt rod in water-cooled mini e-beam evaporators and the chalcogens are evaporated from water-cooled Knudsen cells. During deposition, the substrate temperature was held at 240 to 260 °C. The telluride growth chamber was connected via a vacuum transfer to a surface analysis UHV chamber equipped with RT-STM, ARPES, X-ray photoemission spectroscopy, and low energy electron diffraction (LEED) for sample characterization. The selenide growth chamber had a large sample to source distance, which reduced the growth rate and allowed only for a growth rate of 0.33 ML/h estimated from the STM images. The growth chamber was connected to a RT Omicron STM, and samples were transferred to another UHV chamber for XPS analysis. STS measurements were conducted in a dedicated low temperature STM/STS with a closed cycle cooling system. PtSe$_2$ and PtTe$_2$ were transferred to this chamber through air or using a vacuum suitcase. The samples were annealed to 200 °C in the UHV chamber prior to the STS studies. Electrochemically etched tungsten tips were used for STS. $dI/dV$ spectra were recorded using a lock-in amplifier with a modulation voltage of 30 mV. HRTEM were conducted on PtSe$_2$ and PtTe$_2$ directly grown on a graphene covered TEM grid. The graphene was grown by CVD on a copper foil and transferred to the TEM grid. The grown samples were exposed to air but packed in an inert gas atmosphere for shipping to the TEM facility. Before TEM analysis, the samples were annealed to 200 °C in vacuum. The TEM images were acquired with the Cc/Cs-corrected sub-angstrom low-voltage electron microscope (SALVE), which was used at an acceleration voltage of 80 kV. Measured values for chromatic and spherical aberrations were in the range of −10 to −20 μm. Used dose rates for the atomic resolved images were in the range of 10$^6$ e$^-$/nm$^2$. The images were recorded with a 4k × 4k Ceta camera with exposure times of 1 s.

Computational Details. Density functional theory (DFT) calculations were performed within the projector augmented wave method as implemented in VASP code. The generalized gradient approximation (GGA) proposed by Perdew–Burke–Ernzerhof (PBE) was used as the exchange-correlation functional. The plane wave calculations are performed with an energy cutoff of 600 eV. The Brillouin zone of the system was sampled using 12 × 12 × 1 k-mesh for monolayer and 12 × 12 × 12 k-mesh for bulk materials. The long-range vdW interactions were taken into account using DFT-D3, and many-body dispersions. HSE06 calculations were carried out using the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional. The calculations of quasiparticle energies and eigenvalues were performed by applying single-shot GW on the self-consistent DFT/PBE ground-state calculations. The GW band gap energies were converged with respect to the empty states, and 512 empty bands were applied for all the calculations. A 6 × 6 × 1 k-point is used with all G-vectors included in the GW calculations. All the electronic structure calculations included the spin–orbit coupling (SOC) effect.
Figure S1: high resolution TEM image simulation for 1T, 2H, and 3R phases of PtSe$_2$; Figure S2: TEM structure identification via Se vacancies; Figure S3: calculated energies of bilayer PtSe$_2$ with different stacking; Figure S4: additional STS data for PtSe$_2$; Figure S5: additional STS data for PtTe$_2$ Table S1: comparison of the DFT lattice constant to experimental values; Figure S6: electronic structure calculations for metallic H phase PtSe$_2$; Figure S7: electronic structure calculations for PtSe$_2$ with and without spin–orbit coupling; Figure S8: electronic structure of PtSe$_2$/graphene with artificially altered layer separation; Figure S9: calculated charge transfer between PtSe$_2$ and graphene (PDF)

AUTHOR INFORMATION

Corresponding Author
Matthias Batzill – Department of Physics, University of South Florida, Tampa, Florida 33620, United States; orcid.org/0000-0001-8984-8427; Email: mbatzill@usf.edu

Authors
Jingfeng Li – Department of Physics, University of South Florida, Tampa, Florida 33620, United States
Sadhu Kolekar – Department of Physics, University of South Florida, Tampa, Florida 33620, United States
Mahdi Ghorbani-Asl – Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Science, 01328 Dresden, Germany; orcid.org/0000-0003-3060-4369
Tibor Lehner – Electron Microscopy Group of Materials Science, Ulm University, 89081 Ulm, Germany; orcid.org/0000-0002-4904-9580
Johannes Biskupek – Electron Microscopy Group of Materials Science, Ulm University, 89081 Ulm, Germany
Ute Kaiser – Electron Microscopy Group of Materials Science, Ulm University, 89081 Ulm, Germany
Arkady V. Krasheninnikov – Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany; Department of Applied Physics, Aalto University, 00076 Aalto, Finland; orcid.org/0000-0003-0074-7588

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.1c02971

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We acknowledge funding from the German Research Foundation (DFG), project KU 48661/1, and through the collaborative research center “Chemistry of Synthetic 2D Materials” SFB-1415-417590517. We further thank the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for providing computing time on the GCS Supercomputer HAWK at Höchstleistungsrechenzentrum Stuttgart (www.hlrs.de) and also TU Dresden (Taurus cluster) for generous grants of CPU time. The USF group acknowledges financial support from NSF through awards 1801199 and 2140038.

REFERENCES


Supporting Information:

Layer-Dependent Band Gaps of Platinum-Dichalcogenides

Jingfeng Li,¹ Sadhu Kolekar,¹ Mahdi Ghorbani-Asl,² Tibor Lehnert,³ Johannes Biskupek,³ Ute Kaiser,³ Arkady V. Krasheninnikov,²,⁴ Matthias Batzill¹,*

¹ Department of Physics, University of South Florida, Tampa, FL 33620, USA
² Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, 01328 Dresden, Germany
³ Electron Microscopy Group of Materials Science, Ulm University, 89081 Ulm, Germany
⁴ Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
Figure S1 shows structure and image simulations of different PtSe\textsubscript{2} configurations. In Fig. S1 (a) and (b), the monolayer and double-layer 1T-phase and in (c) a double-layer 2H-phase of PtSe\textsubscript{2} is indicated. For completeness, 2 and 3-layered 3R-PtSe\textsubscript{2} (with the individual layers having a 1T structure) simulations are given in (d) and (e). Pt is given in blue and Se in orange. HRTEM multislice image simulations are performed to support the identification of the PtSe\textsubscript{2} in the 1T-phase (Fig. S1 (a) and (b)). The difference between the 1T and the 2H phase is striking as, even in a multilayer system, the 2H-phase does not exhibit a signal within a hexagon (Fig. S1 (c)) as is the case for 1T-PtSe\textsubscript{2}. However, the 1T and 3R image simulations are very similar. Due to the appearance of vacancies, we were able to identify the 1T structure for PtSe\textsubscript{2} as it is shown in Fig. S2. In Fig. S2(a), the same CC/Cs-corrected HRTEM image is shown as in Fig. 2(c) from the main manuscript. The blue framed area is magnified in (b) and shows a Se vacancy (lower contrast compared to neighbouring atom columns), which is compared to a simulated image of a bilayer 1T-PtSe\textsubscript{2} structure with a vacancy (red frame). Between the triangles, a line-scan is performed, the result of which is shown in the diagram below (blue for the experimental and red for the simulated image). The lowered contrast, due to the vacancy can be clearly identified in the diagram. As the contrast is halved at the vacancy (1 Se) compared to the pristine atom column with two Se atoms (2 Se), it can be deduced that a bilayer system with a 1T PtSe\textsubscript{2} structure is present. For a more descriptive representation, a side view of a structure simulation with a single Se vacancy (red circle) is given in (c). The black frame gives a side view cutout, which is represented in the line-scan in (b). Black double arrows are a guidance for the eye to identify the atoms from an atomic column that belong together. The 80 kV image simulations are performed with a spherical aberration of -10 \textmu m, a focal spread of 5 Å and an image spread of 0.27 Å. A sampling of 0.09 Å/pixel and an electron dose of 5x10\textsuperscript{6} e/\text{nm}\textsuperscript{2} are used. Noise, due to the finite dose, is considered via Poisson statistics.

Due to the possibility of a clear vacancy identification and the determination of the layers in Fig S2, it is clear that a 3R structure, as shown in Fig S1 (d) and (e), is not present in this bilayer island.
Figure S1: Cc/Cs-corrected high-resolution (HR)TEM image simulations with bright atom contrast of different PtSe$_2$ configurations. (a) and (b) show the 1T structure and (c), a two-layered 2H-phase of PtSe$_2$, (d) and (e) show two-layered as well as three-layered 3R structure. The side views of the PtSe$_2$ structure indicate the stacking order for the different configurations and the top view indicate the atomic positions of Se (orange) and Pt (blue), which are identical to the corresponding image simulations. A striking difference can be recognized between the 1T and the 2H phase in the HRTEM image simulations as for the 2H phase no atomic signal within a hexagon appears.
Figure S2: Identification of Se vacancies and verification of bi-layer 1T PtSe2 structure. (a) is the same Cc/Cs-corrected HRTEM image of PtSe2 as in figure 2(c). Bright spots correspond to the atom columns. The blue frame in (a) is magnified in (b), and shows near the centre a Se vacancy, which is identified by lower contrast compared to the neighbouring simulated bi-layer structure (marked in red). The red and blue curves underneath the images correspond to the experimental and simulated line-scans. As seen, two Se atoms in the column (2 Se) produce higher contrast than the column with a vacancy (1 Se). For better understanding, the side view of the corresponding structure model is given in (c). The black framed area shows the bi-layer structure with one Se vacancy. It should be mentioned that Fourier-filtering is used to enhance the frequencies of PtSe2, resulting in a better visibility of the vacancies (see Shree and co-workers [Shivangi Shree et al 2020 2D Mater. 7 015011]).
Figure S3: The energetics of PtSe$_2$ bilayer with different stacking of layers. According to the DFT calculations with many-body dispersion to account for vdW interaction, the 1T stacking is preferable.
Figure S4: Scanning tunneling microscopy and spectroscopy on PtSe$_2$. The spectra are taken at the indicated spots on bilayer (green) and trilayer (purple) terraces. The bilayers are semiconducting while the trilayer are metallic. The spectra are displayed on a linear scale as well as on a logarithmic scale for better identification of the band gap.
Figure S5: Scanning tunneling microscopy and spectroscopy on PtTe₂. The spectra are taken at the indicated spots on monolayer (red) and bilayer (green) islands. The monolayer islands are semiconducting while the bilayer islands are metallic. The spectra are displayed on a linear scale as well as on a logarithmic scale for better identification of the band gap.

Table S1: Comparison of optimized lattice constants in DFT with experimental values.

<table>
<thead>
<tr>
<th></th>
<th>PBE+D3</th>
<th>PBE+TS</th>
<th>PBE+MBD</th>
<th>Exp</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtSe₂</td>
<td>3.77/4.82</td>
<td>3.78/4.91</td>
<td>3.77/4.91</td>
<td>3.73/5.08*</td>
</tr>
<tr>
<td>PtTe₂</td>
<td>4.05/5.09</td>
<td>4.1/5.10</td>
<td>4.06/5.14</td>
<td>4.03/5.22*</td>
</tr>
</tbody>
</table>

Fig. S6: Electronic structure calculation for H-phase PtSe\textsubscript{2} for monolayer (1L) bilayer (2L) and bulk. Note that H-PtSe\textsubscript{2} is metallic down to the monolayer.

Figure S7: Band structure calculations for 1T-PtSe\textsubscript{2} without SOC (left) and with SOC (right) for monolayers (top) and bilayers (bottom).
Figure S8: The electronic structures of the PtSe$_2$/graphene system when the separation between PtSe$_2$ and graphene is decreased with respect to the equilibrium value $d_{eq}$. It is evident that the effect is very small, and the band gap changes by less than 0.03 eV.

Figure S9: Charge transfer in the PtSe$_2$/graphene system as calculated using DFT. Red areas corresponds to the charge loss, green to charge gain. Bader analyses gave a values of $6 \times 10^{11}$ e/cm$^2$, which agrees with slight n-doping of PtSe$_2$ observed in the experiment.