Two errors have occurred in the calculations for Fig. 4(a) of the original Letter. First, the graphene atomic areal density, which is needed to convert the slopes from Fig. 3 to the experimental data points in Fig. 4(a), should be 3.82×10^{19} m$^{-2}$ (a value of 3.31×10^{19} m$^{-2}$ was used). As a result, the correct experimental cross sections are lower by 13.5%.

Second, Eq. (10) in the Supplemental Material for the original Letter should have read

$$P(v, T)dv = \frac{1}{\sqrt{2\pi}v^2} \exp\left(-\frac{v^2}{2v^2}\right) dv$$

in order to satisfy $\int_{-\infty}^{\infty} P(v, T)v^2 dv = \sqrt{\pi}$. When using the corrected formula and experimental cross sections, the best fit to the data is for a threshold energy of $T_{thr} = 23.6$ eV. Figure 1 of this erratum shows the corrected version of the figure, with all curves for $T_{thr} = 23.6$ eV.

The conclusions of the Letter are not significantly affected. With the above corrections, the agreement of the experimental T_{thr} with the first-principles value of 22 eV [1] is less perfect but still quite good. Indeed, the corrected formula provides a better match between the calculated curve and experimental data points. Correlated sputtering [previous Fig. 4(b), shaded area in previous Fig. 4(a)] is no longer needed to explain the data.

We thank A. Robertson and V. Artyukhov for comments that led to the discovery of these errors. We include a computer script for calculating sputtering cross sections in the presence of lattice vibrations as Supplemental Material [2].

FIG. 1 (color online). Measured and calculated knock-on displacement cross sections. The inset shows the calculations for 12C, 300 K, and static lattice on a larger energy range.