
Deep Autoregressive
Models

… mainly PixelCNN and Wavenet

�1

Another Way to Generate

!2

UWaterloo

• Use Chain Rule

• Engineer Neural Networks to approximate the density functions

P(xn, xn−1, . . . , x2, x1) = P(xn |xn−1, . . . , x2, x1) * P(xn−1 |xn−2, . . . , x2, x1) . . . P(x2 |x1) * P(x1)

P(xn, xi−n, . . . , x2, x1) = Πn
i=1PNN(xi |xi−1, . . . , x2, x1)

• This works because sufficiently complex NN can approximate any
function

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=STAT946F17/Conditional_Image_Generation_with_PixelCNN_Decoders#Reference

Another Way to Generate

!2

UWaterloo

• Use Chain Rule

• Engineer Neural Networks to approximate the density functions

P(xn, xn−1, . . . , x2, x1) = P(xn |xn−1, . . . , x2, x1) * P(xn−1 |xn−2, . . . , x2, x1) . . . P(x2 |x1) * P(x1)

P(xn, xi−n, . . . , x2, x1) = Πn
i=1PNN(xi |xi−1, . . . , x2, x1)

• This works because sufficiently complex NN can approximate any
function

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=STAT946F17/Conditional_Image_Generation_with_PixelCNN_Decoders#Reference

What’s Ahead

!3

PixelRNN

Gated PixelCNN

Wavenet

Just the CNN implementation

PixelRNN (a naive look) van den Oord et al, 2016a

!4

P(x) = Πn2

i=1P(xi |xi−1, . . . , x1)

• Pixel values are treated as discrete (0-255)
• Softmax at output to predict class distribution for each pixel
• The original paper had a more efficient implementation using 2D RNNs
• Too complicated; we’ll focus on the CNN variant instead

karpathy

• Fix a frame of reference
• Flatten the context pixels and use RNN to

approximate the density functions

https://karpathy.github.io/2015/05/21/rnn-effectiveness/

PixelCNN

!5

van den Oord et al, 2016a

RNNs are more expressive but are too slow to train

• Instead use CNNs to predict the pixel value

• Every conditional distribution is modelled as CNN

• A CNN filter uses the neighbouring pixel values to
compute the output

PixelCNN

!5

van den Oord et al, 2016a

RNNs are more expressive but are too slow to train

• Instead use CNNs to predict the pixel value

• Every conditional distribution is modelled as CNN

• A CNN filter uses the neighbouring pixel values to
compute the output

But for this to work two issues need to be fixed

• CNN filter does not obey causality
• CNN filter has limited neighbourhood and only

“sees” part of the context

Fixing Causality

!6

Zero out “future” weights in the Conv filter

For colour images
• Divide the # of output channels into 3 groups
• Sample R, then G|R and then B|G, R

Layer L+1

Layer L

sergeiturukin

We have to make sure the future doesn’t
influence the present

Paper presents 2 types of masks, more on this later…

http://sergeiturukin.com/2017/02/22/pixelcnn.html

Fixing Limited Neighbourhood

!7

Increase the effective receptive field by adding more layers

Discussed in DL course’s CNN
lecture

Combining this with masked filters creates another problem, more on this later…

Aalto Deep Learning 2019

https://mycourses.aalto.fi/course/view.php?id=20606

PixelCNN: Implementation Details

!8

- Two types of masks
1 1 1
1 0 0
0 0 0

1 1 1
1 1 0
0 0 0

A B

For the first layer
(connected to the input) All other conv layers

- To maintain same output shape everywhere, no pooling layers

- Use residual connections to speed up convergence

NLL Test (train)

PixelRNN results on CIFAR10

Gated PixelCNN

!9

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

Gated PixelCNN on CIFAR10

NLL Test (train)

After fixing these issues, the authors were able to get better results from PixelCNNs

Let’s see how…

Gated PixelCNN

!10

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

We sorta fixed this by adding more layers to increase receptive field
But due to masked filters, this creates a blind spot

- Here, darker shades => influence from farther layer

- Due to masked convolutions, the grey coloured
pixels never influence the output pixel (red)

- This happens no matter how many layers we add

Gated PixelCNN

!10

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

We sorta fixed this by adding more layers to increase receptive field
But due to masked filters, this creates a blind spot

- Here, darker shades => influence from farther layer

- Due to masked convolutions, the grey coloured
pixels never influence the output pixel (red)

- This happens no matter how many layers we add

Gated PixelCNN

!11

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

Blindspot problem is fixed by splitting each convolutional layers into Horizontal
and Vertical stacks

Gated PixelCNN

!12

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

- Vertical stack only looks at the rows
above the output pixel

- Horizontal stack only looks at pixels to the
left of output pixel in the same row

- These outputs are then combined after
each layer

- To maintain causality constraint, horizontal
stack can see the vertical stack but not vice
versa

Blindspot problem is fixed by splitting each convolutional layers into Horizontal
and Vertical stacks

Gated PixelCNN

!13

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

- Vertical stack only looks at the rows above
the output pixel

- Horizontal stack only looks at pixels to
the left of output pixel in the same row

- These outputs are then combined after
each layer

- For causality, horizontal stack can see the
vertical stack but not vice versa

Blindspot problem is fixed by splitting each convolutional layers into Horizontal
and Vertical stacks

Gated PixelCNN

!14

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

For horizontal stack, avoid masking filters by choosing filter of size
(1 x kernel_size/2 + 1)

sergeiturukin

http://sergeiturukin.com/2017/02/22/pixelcnn.html

Gated PixelCNN

!15

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

For vertical stack, avoid masking filters by choosing filter of size
(kernel_size/2 + 1 x kernel_size)

sergeiturukin

- Add one more padding layer at top
and bottom

- Perform normal convolution
but just crop the output

- Since output and input dimensions are
to be kept the same, this effectively
shifts the output up by 1 row

http://sergeiturukin.com/2017/02/22/pixelcnn.html

Gated PixelCNN

!15

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

For vertical stack, avoid masking filters by choosing filter of size
(kernel_size/2 + 1 x kernel_size)

sergeiturukin

- Add one more padding layer at top
and bottom

- Perform normal convolution
but just crop the output

- Since output and input dimensions are
to be kept the same, this effectively
shifts the output up by 1 row

http://sergeiturukin.com/2017/02/22/pixelcnn.html

Gated PixelCNN

!15

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

For vertical stack, avoid masking filters by choosing filter of size
(kernel_size/2 + 1 x kernel_size)

sergeiturukin

- Add one more padding layer at top
and bottom

- Perform normal convolution
but just crop the output

- Since output and input dimensions are
to be kept the same, this effectively
shifts the output up by 1 row

http://sergeiturukin.com/2017/02/22/pixelcnn.html

Gated PixelCNN

!16

van den Oord et al, 2016b

PixelRNN outperforms PixelCNN due to two reasons:

1. RNNs have access to entire neighbourhood of previous pixels

2. RNNs have multiplicative gates (due to LSTM cells), which are more expressive

Replace ReLU with this gated activation function

y = tanh(Wk, f * x) ⊙ σ(Wk,g * x)
* is conv operation

- Split the feature maps in half and pass them through
the tanh and sigmoid functions

- Compute element-wise product

Gated PixelCNN: All of it

!17

UWaterloo

Notice:
- These connections are per layer
- Vertical stack is added to horizontal but not other way around
- Residual connections in horizontal stack
- Apart from this, there are also layer-wise skip connections that are

added together before output layer

https://wiki.math.uwaterloo.ca/statwiki/index.php?title=STAT946F17/Conditional_Image_Generation_with_PixelCNN_Decoders#Reference

PixelCNN Conditioning

!18

We can condition our distribution on some latent variable h

This latent variable (which can be one-hot encoded for classes) is passed through the
gating mechanism

V is a matrix of size dim(h) x channel size

PixelCNN Conditioning

!18

We can condition our distribution on some latent variable h

This latent variable (which can be one-hot encoded for classes) is passed through the
gating mechanism

V is a matrix of size dim(h) x channel size

PixelCNN as Decoders

!19

- Without modification, this conditioned PixelCNN can be used as a decoder in an
AutoEncoder architecture

- It will be conditioned on the latent representation learned by the encoder

PixelVAE, Gulrajani et al, 2016

Okay, Google… What are Wavenets?

!20

• Extends PixelCNN to audio sequences - 1D CNN 

• State-of-the-art in Text to Speech (TTS);  
Powers the Google Assistant  

• No masking needed for 1D, just do normal convolution and shift
the output 

van den Oord et al, 2016c

Dilated Convolutions

!21

Dilated convolution allows the network to operate on a coarser scale

vdumoulin

• Use a larger than original filter and
zero-out some pixels

• Similar to pooling or strides

• By stacking together many dilated
conv layers, the effective receptive
field can grow much faster

https://github.com/vdumoulin/conv_arithmetic

Dilated Convolutions

!21

Dilated convolution allows the network to operate on a coarser scale

vdumoulin

• Use a larger than original filter and
zero-out some pixels

• Similar to pooling or strides

• By stacking together many dilated
conv layers, the effective receptive
field can grow much faster

https://github.com/vdumoulin/conv_arithmetic

Dilated Convolutions in Wavenet

!22

• Dilation factor is doubled after each layer up to a limit, then repeated

• Eg., 1, 2, 4, …, 512, 1, 2, 4, …, 512, etc

• Exponentially increasing dilation => exponentially increasing receptive field

Otherwise, Wavenet is just PixelCNN

!23

Gated activation Skip and Residual Connections

Conditioning to generate specific types of samples
eg: British/American accents

!24

Thank you!

