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What’s a Neural Network?

Figure: A simple NN (left) and a BNN (right)[Blundell, 2015].

Probabilistic interpretation of NN:

▶ Model: y = f (x;w) + ϵ, ϵ ∼ N(0, σ2)

▶ Likelihood: P(y |x,w) = N(y ; f (x;w), σ2)

▶ Prior: P(w) = N(w; 0, σ2
w I)

▶ Posterior: P(w|y , x) ∝ P(y |x,w)P(w)
▶ MAP: w⋆ = argmaxw P(w|y , x)
▶ Prediction: y ′ = f (x′;w⋆)
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Figure: A simple NN (left) and a BNN (right)[Blundell, 2015].

Probabilistic interpretation of NN:

▶ Model: y = f (x;w) + ϵ, ϵ ∼ N(0, σ2)

▶ Likelihood: P(y |x,w) = N(y ; f (x;w), σ2)
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w I)
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▶ MAP: w⋆ = argmaxw P(w|y , x)
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What’s a Neural Network?

Figure: A simple NN (left) and a BNN (right)[Blundell, 2015].

Probabilistic interpretation of NN:

▶ Model: y = f (x;w) + ϵ, ϵ ∼ N(0, σ2)

▶ Likelihood: P(y |x,w) = N(y ; f (x;w), σ2)

▶ Prior: P(w) = N(w; 0, σ2
w I)

▶ Posterior: P(w|y , x) ∝ P(y |x,w)P(w)
▶ MAP: w⋆ = argmaxw P(w|y , x)
▶ Prediction: y ′ = f (x′;w⋆)
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What’s a Bayesian Neural Network?

Figure: A simple NN (left) and a BNN (right)[Blundell, 2015].

What do I mean by being Bayesian?

▶ Model: y = f (x;w) + ϵ, ϵ ∼ N(0, σ2)

▶ Likelihood: P(y |x,w) = N(y ; f (x;w), σ2)

▶ Prior: P(w) = N(w; 0, σ2
w I)

▶ Posterior: P(w|y , x) ∝ P(y |x,w)P(w)
▶ MAP: w⋆ = argmaxw P(w|y , x)

▶ Prediction: y ′ = f (x′;w),w ∼ P(w|y , x)
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What’s a Bayesian Neural Network?

Figure: A simple NN (left) and a BNN (right)[Blundell, 2015].

What do I mean by being Bayesian?

▶ Model: y = f (x;w) + ϵ, ϵ ∼ N(0, σ2)

▶ Likelihood: P(y |x,w) = N(y ; f (x;w), σ2)

▶ Prior: P(w) = N(w; 0, σ2
w I)

▶ Posterior: P(w|y , x) ∝ P(y |x,w)P(w)
▶ MAP: w⋆ = argmaxw P(w|y , x)
▶ Prediction: y ′ = f (x′;w),w ∼ P(w|y , x)
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Why Should We Care?
Calibrated prediction uncertainty:
The models should know what they don’t know.
One Example: [Gal, 2017]

▶ We train a model to recognise dog breeds.
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Why Should We Care?
Calibrated prediction uncertainty:
The models should know what they don’t know.
One Example: [Gal, 2017]

▶ We train a model to recognise dog breeds.

▶ What would you want your model to do when a cat are given?

▶ A prediction with high uncertainty.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Why Should We Care?
Calibrated prediction uncertainty:
The models should know what they don’t know.
One Example: [Gal, 2017]

▶ We train a model to recognise dog breeds.

▶ What would you want your model to do when a cat are given?

▶ A prediction with high uncertainty.
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Why Should We Care?
Calibrated prediction uncertainty:
The models should know what they don’t know.
One Example: [Gal, 2017]

▶ We train a model to recognise dog breeds.
▶ What would you want your model to do when a cat are given?
▶ A prediction with high uncertainty.

buffer
Successful Applications:

▶ Identify adversarial examples [Smith, 2018].
▶ Adapted exploration rate in RL [Gal, 2016].
▶ Self-driving car [McAllister, 2017, Michelmore, 2018] and

medican analysis [Gal, 2017].

buffer Self-driving car and medican analysis.
buffer Self-driving car and medican analysis.
buffer Self-driving car and medican analysis.
buffer Self-driving car and medican analysis.
buffer Self-driving car and medican analysis.
One simple algorhthm: dropout as Bayesian approximation.
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How To Learn a Bayesian Neural Network?

What’s the difficult part?
▶ P(w|y , x) is generally intractable

▶ Standard approximate inference (difficult):

▶ Laplace Approximation [MacKay, 1992];
▶ Hamiltonian Monte Carlo [Neal, 1995];
▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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What’s the difficult part?
▶ P(w|y , x) is generally intractable

▶ Standard approximate inference (difficult):
▶ Laplace Approximation [MacKay, 1992];

▶ Hamiltonian Monte Carlo [Neal, 1995];
▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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What’s the difficult part?
▶ P(w|y , x) is generally intractable

▶ Standard approximate inference (difficult):
▶ Laplace Approximation [MacKay, 1992];
▶ Hamiltonian Monte Carlo [Neal, 1995];

▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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▶ P(w|y , x) is generally intractable

▶ Standard approximate inference (difficult):
▶ Laplace Approximation [MacKay, 1992];
▶ Hamiltonian Monte Carlo [Neal, 1995];
▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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What’s the difficult part?
▶ P(w|y , x) is generally intractable

▶ Standard approximate inference (difficult):
▶ Laplace Approximation [MacKay, 1992];
▶ Hamiltonian Monte Carlo [Neal, 1995];
▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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How To Learn a Bayesian Neural Network?

What’s the difficult part?
▶ P(w|y , x) is generally intractable

▶ Standard approximate inference (difficult):
▶ Laplace Approximation [MacKay, 1992];
▶ Hamiltonian Monte Carlo [Neal, 1995];
▶ (Stochastic) Variational Inference [Blundell, 2015].

▶ Most of the algorithms above are complicated both in theory
and in practice.

▶ A simple and pratical Bayesian neural network: dropout
[Gal, 2016].
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Dropout as Bayesian Approximation
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Dropout as Bayesian Approximation

Dropout works by randomly setting network units to zero.

▶ In classical neural network (without prediction uncertainty):

▶ During training: turn on dropout,
▶ During prediction: turn off dropout.

▶ In Bayesian neural network (with prediction uncertainty):

▶ During training: turn on dropout,
▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
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Dropout works by randomly setting network units to zero.

▶ In classical neural network (without prediction uncertainty):
▶ During training: turn on dropout,

▶ During prediction: turn off dropout.
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▶ During training: turn on dropout,
▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
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Dropout works by randomly setting network units to zero.
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▶ During training: turn on dropout,
▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
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Dropout as Bayesian Approximation

Dropout works by randomly setting network units to zero.

▶ In classical neural network (without prediction uncertainty):
▶ During training: turn on dropout,
▶ During prediction: turn off dropout.

▶ In Bayesian neural network (with prediction uncertainty):

▶ During training: turn on dropout,
▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
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Dropout as Bayesian Approximation

Dropout works by randomly setting network units to zero.

▶ In classical neural network (without prediction uncertainty):
▶ During training: turn on dropout,
▶ During prediction: turn off dropout.

▶ In Bayesian neural network (with prediction uncertainty):
▶ During training: turn on dropout,

▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
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Dropout as Bayesian Approximation

Dropout works by randomly setting network units to zero.

▶ In classical neural network (without prediction uncertainty):
▶ During training: turn on dropout,
▶ During prediction: turn off dropout.

▶ In Bayesian neural network (with prediction uncertainty):
▶ During training: turn on dropout,
▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
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Dropout as Bayesian Approximation

Dropout works by randomly setting network units to zero.

▶ In classical neural network (without prediction uncertainty):
▶ During training: turn on dropout,
▶ During prediction: turn off dropout.

▶ In Bayesian neural network (with prediction uncertainty):
▶ During training: turn on dropout,
▶ During prediction: turn on dropout.

We can obtain the distribution of prediction by repeating forward
passing several times.
That’s it!
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Why Is That?

▶ High-level idea: Implement variance inference with a specific
class of distributions qM(ω) is equivalent to implement
dropout training.

▶ Optimizing ELBO in variance inference is the same as
optimizing the cost function in dropout training.

▶ The optimal variational parameters in variance inference is the
same as the optimal parameters in dropout training.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Why Is That?

▶ High-level idea: Implement variance inference with a specific
class of distributions qM(ω) is equivalent to implement
dropout training.

▶ Optimizing ELBO in variance inference is the same as
optimizing the cost function in dropout training.

▶ The optimal variational parameters in variance inference is the
same as the optimal parameters in dropout training.
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Why Is That?

▶ High-level idea: Implement variance inference with a specific
class of distributions qM(ω) is equivalent to implement
dropout training.

▶ Optimizing ELBO in variance inference is the same as
optimizing the cost function in dropout training.

▶ The optimal variational parameters in variance inference is the
same as the optimal parameters in dropout training.
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Variational Inference

▶ We use a simple distribution qM(ω) to approximate the true
posterior distribution p(ω|y ,X ):qM(ω) ≈ p(ω|y ,X ).

▶ Minimize the KL(qM(ω)|p(ω|y ,X )) is equvalent to minimize
the negative ELBO.

▶ negative ELBO:
L(M) = −

∫
qM(ω) log p(y |X , ω)dω + KL(qM(ω)|p(ω)).

▶ After optimization, prediction can be estimated by:
y ′ = f (x′;w),w ∼ qM(ω)
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▶ We use a simple distribution qM(ω) to approximate the true
posterior distribution p(ω|y ,X ):qM(ω) ≈ p(ω|y ,X ).
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Compare Two Objective Functions

▶ negative ELBO:
L(M) = −

∫
qM(ω) log p(y |X , ω)dω+KL(qM(ω)|p(ω)).

▶ qM(ω) =
∏

i ,j qmi,j (ωi ,j) =
∏

i ,j mi ,jzi ,

where zi ∼ Bernoulli(1− pi )

▶ The loss functions will be the same if we use Monte Carlo to
simulate the integral. (reparameterization)

▶ p(ω) = N(ω; 0, I)

▶ The regularizations will be the same by using further
approximation.

▶ Coss function:
L(W ) = 1

N

∑N
n=1(yn − f (xn,W, zn)))2+λ

∑L
i ,j(||wi ,j ||2).
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∫
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▶ p(ω) = N(ω; 0, I)

▶ The regularizations will be the same by using further
approximation.
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Compare Two Objective Functions

▶ negative ELBO:
L(M) = −

∫
qM(ω) log p(y |X , ω)dω+KL(qM(ω)|p(ω)).

▶ qM(ω) =
∏

i ,j qmi,j (ωi ,j) =
∏

i ,j mi ,jzi ,

where zi ∼ Bernoulli(1− pi )
▶ The loss functions will be the same if we use Monte Carlo to

simulate the integral. (reparameterization)

▶ p(ω) = N(ω; 0, I)
▶ The regularizations will be the same by using further

approximation.

▶ Coss function:
L(W ) = 1

N

∑N
n=1(yn − f (xn,W, zn)))2+λ

∑L
i ,j(||wi ,j ||2).
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I Know You Want Some Code

▶ Train one neural network (network) with dropout;

▶ Dropout units at prediction time;

▶ Repeat several (10) times;

▶ Look at the mean and sample variance of prediction.
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▶ Repeat several (10) times;

▶ Look at the mean and sample variance of prediction.
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▶ Train one neural network (network) with dropout;

▶ Dropout units at prediction time;

▶ Repeat several (10) times;

▶ Look at the mean and sample variance of prediction.
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I Know You Want Some Code

▶ Train one neural network (network) with dropout;

▶ Dropout units at prediction time;

▶ Repeat several (10) times;

▶ Look at the mean and sample variance of prediction.
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Results
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Concrete Dropout
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How To Choose Dropout Probability?

The simplest way is Grid Search (used in original paper)
▶ Problems:

▶ Immense waste of computational resources
▶ The number of possible per-layer dropout configurations grow

exponentially as the number of the model layers increases.

▶ One solution: Restrict the grid-search to a small number of
possible dropout values

▶ Might hurt uncertainty calibration.
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More Elegant Method

Concrete Dropout

▶ Tune dropout probability pi using gradient method.
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More Elegant Method

Concrete Dropout

▶ Tune dropout probability pi using gradient method.
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What Is The Optimisation Objective?

▶ The negative ELBO we used before:
L(M) = −

∫
qM(ω) log p(y |X , ω)dω+KL(qM(ω)|p(ω)).

▶ Now, we almost use the same objective:
L(θ) = − 1

M

∑
i∈S log p(yi |Xi , ω)+KL(qθ(ω)|p(ω)).

▶ qθ(ω) =
∏

i,j qmi,j (ωi,j) =
∏

i,j mi,jzi ,
where zi ∼ Bernoulli(1− pi )

▶ S a random set of M data points

▶ − 1
M

∑
i∈S log p(yi |Xi , ω) is the model’s likelihood

▶ KL(qθ(ω)|p(ω)) is a ”regularisation” term which ensure that
the approximate posterior qθ(ω) does not deviate too far from
the prior p(ω)

▶ Except: θ = {mi ,j , pi}
▶ This time, we try to optimize both weight mi,j and dropout

probability pi
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How To Find The Optimal Parameter?

▶ Two methods are often adopted.

▶ Score function estimator
the variance of gradient can be very high

▶ Pathwise derivative estimator (also refer to reparameterization
trick)

▶ Recall the ”reparameterization trick” used in VAE.

▶ Similarly, in order to train pi , instead of sample from
Bernoulli(1-pi ), we sample from another distribution.
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▶ Recall the ”reparameterization trick” used in VAE.

▶ Similarly, in order to train pi , instead of sample from
Bernoulli(1-pi ), we sample from another distribution.
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Reparameterization For Bernoulli Distribution

▶ When using reparametrization trick, we assume that the
distribtion at hand can be re-parametrised in the form g(θ, ϵ)

▶ θ is the distribution’s parameters
ϵ is a random variable which does not depend on θ

▶ But this cannot be simply done with the discrete Bernoulli
distribution.

▶ Concrete Distribution
▶ A continous distribution used to approximate discrete random

variables.

▶ Replace dropout’s discrete Bernoulli distribution with its
continous relaxation.
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Reparameterization For Bernoulli Distribution

▶ When using reparametrization trick, we assume that the
distribtion at hand can be re-parametrised in the form g(θ, ϵ)

▶ θ is the distribution’s parameters
ϵ is a random variable which does not depend on θ

▶ But this cannot be simply done with the discrete Bernoulli
distribution.

▶ Concrete Distribution
▶ A continous distribution used to approximate discrete random

variables.

▶ Replace dropout’s discrete Bernoulli distribution with its
continous relaxation.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Concrete Dropout

▶ Using the following function, we approximate Bernoulli
distribution as concrete distribution:
z = sigmoid(1t · (logp − log(1− p)) + logu − log(1− u))

▶ Sample from u ∼ Unif (0, 1), z ∼ Bern(1− p) (approximately)

▶ Compared with Gaussian case:

▶ Sample from ϵ ∼ N(0, 1), z ∼ N(u, σ)

▶ Now, we have everything needed to train the model.
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Concrete Dropout

▶ Using the following function, we approximate Bernoulli
distribution as concrete distribution:
z = sigmoid(1t · (logp − log(1− p)) + logu − log(1− u))

▶ Sample from u ∼ Unif (0, 1), z ∼ Bern(1− p) (approximately)
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Result

Using concrete dropout, we can choose the dropout probability
effectively, and also get a better performance.

The performance of Concrete dropout against base-line models
with DenseNet on the CamVid road scene semantic segmentation
dataset
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Thanks for listening
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