
M
ea
n
Te
ac
he

r

Se
m
i-S

up
er
vi
se
d
Le
ar
ni
ng

w
ith

Le
ar
ne

d
Re

gu
la
riz
at
io
n

Sa
m

Sp
ils
bu

ry
,A

al
to

U
ni
ve
rs
ity

Desert Island
A motivating Example

You take a holiday on a beach island.
You have 10,000 photos of coconut trees.

You want to classify them into
different types of trees.
But after labelling 100 of them,
you are tired.
Can you use the 100 labelled images and
99900 other images to label the rest?

1/52

Semi Supervised Learning

• Using the 100 images alone will probably overfit.

• Regularization on just 100 images will probably not save us.

• Maybe the other images can help.

2/52

Semi Supervised Learning
More formal definition

• We have a set S, with disjoint subsets L (the labelled set) and U
the unlabelled set, such that L ∪ U ⊂ S, but L 6⊂ U.

• Oracle function EX(x, L) = 0, ..., n (class labels).

• Oracle function EX(x,U) = −1,∀x ∈ U

• Objective: Find some h(x) using both EX(x, L) and EX(x,U) that
minimizes the generalization error(h,D) on the true
distribution.

3/52

Semi Supervised Learning
Deep Learning Hat

• Ideas
– Autoencoders?
– Variational Autoencoders?
– GANs? a

aGAN’s can be used for SSL! See
https://paperswithcode.com/paper/improved-techniques-for-training-gans

4/52

Semi Supervised Learning
Alternative

• We can still overfit to latent variable space ...

• Use U to learn to regularize h learned on L!

5/52

Regularization
A closer analysis

(a) Overfitting (b) Regularization

Figure: Effect of Regularization

6/52

Regularization
Regularizing using unlabelled data

(a) Overfitting (b) Regularization (c) Consistency Cost

Figure: Just using the "unlabelled data" may end up introducing errors due
to bad predictions

7/52

Regularization
Regularizing using unlabelled data

(a) Overfitting (b) Consistency Cost (c) Regularized
Consistency Cost

Figure: We can try to regularize the "teacher" that tries to predict targets
for the unlabelled data

8/52

Regularization
Regularizing using unlabelled data

(a) Overfitting (b) Regularized
Consistency Cost

(c) Ensemble Approach

Figure: By using an ensemble of models we can regularize even more

9/52

Regularization
What have we learned?

• Regularization is a good thing

• Taking into account our unlabelled data can be useful

• Ensemble models have a regularizing effect

10/52

Teacher / Student Models
Making use of what we have learned

• Two "models", "teacher" T and "student" Sa

• Ideally, T is more conservative than S, eg, it is more regularized
via noise, dropout or some other mechanism.

• S is more liberal than T, in that it does not have as much
regularization and can learn more about the limited amount of
data.

• But, via consistency cost C(T(x), S(x))), S pays a penalty if it
strays too far from T.

aThey can be the same network, but we require that T(x) 6= S(x)

11/52

Teacher / Student Models
Prior Art

• model (Finnish Invention). [RBH+15]
– Sample from network twice, with some noise mechanism

S(x) = N(x) + ε1, T(x) = N(x) + ε2.
– Cost is Classification cost plus weighted consistency cost

loss(S(x), y) + w(t)C(S(x), T(x))
– Classification cost for unlabelled examples (y = −1) is defined

to be zero.
– Consistency cost weight w(t) increases as time goes on, as

training continuous we care more about being consistent on the
training data S than being right on the labelled data L.

12/52

Teacher / Student Models
 model, PyTorch

model = DropoutMLP()
criterion = CrossEntropyLoss(ignore_index=-1)
consistency = MSELoss()

for epoch in range(epochs):
for label, data in loader:
out = model(data)
again = model(data)

assert out != again

w = weight(epoch)
loss = criterion(out, label) + w * consistency(out, again)
loss.backward()
optimizer.step()

13/52

Teacher / Student Models
Prior Art

• Problem: T(x) is stochastic, it would be nicer to use an
ensemble and incorporate all our regularization knowledge

• Enter Temporal Ensembling (Another Finnish Invention). [LA17]

14/52

Teacher / Student Models
Temporal Ensembling

Figure: model vs Temporal Ensembling

15/52

Teacher / Student Models
Temporal Ensembling

• Similar idea for loss, classification cost plus consistency cost:
loss(S(x), y) + w(t)C(S(x), T(x))

• However, use an ensemble of consistency targets, eg, an
exponential
moving average of ensemble predictions.

• In practice, we store the "mean prediction" for a given data
point, eg
Zi = αZi + (1− α)z̄i, where z̄i is the incoming prediction from S.

16/52

Teacher / Student Models
Temporal Ensembling model, PyTorch
model = DropoutMLP()
criterion = CrossEntropyLoss(ignore_index=-1)
consistency = MSELoss()
Z = torch.tensor(
np.random.uniform(size=(n_training_points, n_classes))

)

for epoch in range(epochs):
for i, (label, data) in enumerate(loader):
out = model(data)
assert out != again
w = weight(epoch)
loss = criterion(out, label) + w * consistency(out, Z[i])
loss.backward()
optimizer.step()
Z[i] = alpha * Z[i] + (1 - alpha) * out 17/52

Teacher / Student Models
Temporal Ensembling

• Benefits
– Only need to evaluate T once per input on each epoch, instead

of sampling many times to get ensemble of noise
– Target Zi is less noisy than with model.

• Drawbacks
– Need a "past" to compare with
– Only see the ensemble information once per data point in the

training set, therefore, once per epoch. This leads to slow
training.

18/52

Mean Teacher
Basic Idea

• Finnish Invention! [TH]

• Measure consistency cost for student loss as before.

• Two networks, update teacher weights from student weights
directly, instead of updating mean prediction.

19/52

Mean Teacher
Architecture

Figure: Mean Teacher Architecture

20/52

Mean Teacher
Mean Teacher, PyTorch

student = DropoutMLP()
teacher = DropoutMLP()
criterion = CrossEntropyLoss(ignore_index=-1)
consistency = MSELoss()

for epoch in range(epochs):
for i, (label, data) in enumerate(loader):
s_out, t_out = student(data), teacher(data)
assert s_out != t_out
w = weight(epoch)
loss = criterion(out, label) + w *

consistency(s_out, t_out) * (1 - exp(-25 * epoch ** 2))
...
teacher.weight_ = alpha * teacher.weight_ +
(1 - alpha) * student.weight_;

21/52

Mean Teacher
Why does this work?

• Evaluating consistency cost between predictions C(S(x), T(x))
is similar to evaluating consistency between top layer.

• Feature detection layers could still be overfitted on student!

• Mean teacher allows us to regularize all layers.

• New weights can be used right away on each batch, no need to
wait entire epoch to utilize new information.

22/52

Decay Parameter
How to set α

• Too high and you trust the (probably bad) teacher model too
much.

• Too low and you forget regularization information you learned
in the past.

• Setting α = 0 makes Mean Teacher into a variant of , but
more inefficient because the Teacher never gets updated.

• Usually a good idea to vary α during training, eg, trust the
student more at the start (exploration), but the teacher more at
the end (regularization).

– This is achieved by (1 - exp(-25 * epoch ** 2)),
consistency cost schedule

23/52

Performance
Is this actually useful?

CIFAR-10 (8% labels) ImageNet 2012 (10% labels)
SOTA (SSL) 10.55%[MiMKI17] 35.24[PGH+16] ± 0.90%
Naive ConvNet MT 12.31± 0.28% (unspecified)
ResNet MT 6.28± 0.15% 9.11± 0.12%
SOTA (all labels) 2.86%[Gas17] 3.97%[HSS18]

Table: Error % on the test set

24/52

Consistency Cost
Diving Deeper

• Consistency cost is merely defined asMSE(T(x), S(x)) in our
model.

• Why not KL(T(x)||S(x))?

• Authors tried modulating between the two to find out...

25/52

Consistency Cost
Interpolating between MSE and KL Divergence

• Define Distributions parameterized by τ:
– Pτ = τp+ 1−τ

N
– Qτ = τq+ 1−τ

N

• Notice that as τ→ 0, then we are left with 1
N for both

distributions (eg, uniform).

26/52

Consistency Cost
Interpolating between MSE and KL Divergence

• Define "scaled" KL Divergence:
– 2

N2τ2
KL(pτ ||qτ)

– 2
N2τ2

∑︀
x pτ(x) ln

qτ(x)
pτ(x)

(Expanding KL term).

– 2
N2τ2

∑︀
x(τp(x) +

1−τ
N) ln

(τq(x)+ 1−τ
N)

(τp(x)+ 1−τ
N)

(Expanding distributions)

• Take the Taylor expansion of qτ and pτ:
– DKL ≈ 2

N2τ2
(
∑︀

x
1
2τ

2N(p(x) − q(x))2 + O(N2τ3))
– As τ→ 0, we have 1

N

∑︀
x(p(x) − q(x))2 (MSE)

– As τ→ 1, we have
2
N2 (

∑︀
x
1
2N(p(x) − q(x))2 + O(N2)) ≈ DKL(p||q) (KL)

27/52

Consistency Cost
Interpolating between MSE and KL

Figure: Performance of MSE vs KL, error % divergence

28/52

Consistency Cost
Interpolating between MSE and KL

• KL Divergence is a measure in difference between confidences

• MSE is a measure in difference between accuracy of predictors

• Modern NN architectures are accurate, but overconfident, so KL
divergence is not going to give us "as much" information.

29/52

Consistency Cost
Effect of consistency cost

• Further studies on what Consistency Loss is actually doing [BA]
• Penalization of output difference

– Can be seen as penalization of input-output Jacobian
– E[Q] = Ex[||Jx||2F], where Jx is the Jacobian of the Network’s

output w.r.t its inputs and F is the Frobenius Norm.
– Has been shown to be related to generalization both

theoretically [SGSR17] and empirically [NBA+18]
– Corresponds to L2 regularization for linear models, since Jx =W

30/52

Consistency Cost
Effect of consistency cost

• Penalization of weight difference
– Can be seen as penalization of input-weights Jacobian
– E[Q] = Ew[||Jw||2F], where Jw is the Jacobian of the Network’s

output w.r.t its weights and F is the Frobenius Norm.
– For MSE loss, the expected trace of the Hessian of the loss

Ex[tr(H)] can be decomposed into a product containing the
Jacobian of the weights.

– Eigenvalues of H encode local information about the
"sharpness" of the loss around a given solution. [DPBB17]

31/52

Consistency Cost
What do they look like during training

• Gradient norm of consistency loss ||Ocons|| remains high until
the end of training and dominates the graident norm of
classification loss ||Oclass||

• For both and Mean-Teacher, ||Ocons|| is much higher than in
the supervised case

32/52

Consistency Cost
Diversity

• Do the large optimization steps translate into higher prediction
diversity?

• Diversity(w1,w2) =
1
N

∑︀N |[y(i ww) 6= y(i w2)] | (eg, how much
do the classifications differ between a model at two different
training steps w1 and w2.

• Eg, Diversity(w170,w180)much higher for MT (7.1%) and (6.1%)
than supervised learning (3.9%)

• SGD is still looking for solutions even by the time that training
ends

33/52

Ensembling vs Weight Averaging
Ensembling

• High diversity between epochs indicates that you can get a
substantial regularization benefit from ensembling.

• Measure
Cens =

1
2Err(w1) +

1
2Err(w2) − Err(Ensemble(w1,w2))

• Cens substantially larger for and Mean Teacher Models.

• Means that SGD is still looking for solutions even by the time
that training ends.

34/52

Ensembling vs Weight Averaging
Weight Averaging

• Can we get the same results with weight averaging?

• Average pairs of weights and evaluate performance with
respect to weight distances

• Take Cavg =
1
2Err(w1) +

1
2Err(w2) − Err(12w1 +

1
2w2) to

measure benefit of weight averaging.

• Paper finds that improvement from weight averaging on error
(1.2± 0.2%) is larger than benefit of Cens (0.9± 0.2%).

• Nicer, because the cost of averaging is lower than the cost of
ensembling.

35/52

Ensembling vs Weight Averaging
Weight Averaging

• Can we get the same results with weight averaging?

• Average pairs of weights and evaluate performance with
respect to weight distances

• Take Cavg =
1
2Err(w1) +

1
2Err(w2) − Err(12w1 +

1
2w2) to

measure benefit of weight averaging.

• Paper finds that improvement from weight averaging on error
(1.2± 0.2%) is larger than benefit of Cens (0.9± 0.2%).

• Nicer, because the cost of averaging is lower than the cost of
ensembling.

36/52

Stochastic Weight Averaging

• Method to average weights over training cycles in general
[IPG+18]

• Use a cyclical learning rate schedule (sine curve), average all the
model weights once per cycle

• (eg, every 30 epochs).

37/52

Stochastic Weight Averaging
Fast Stochastic Weight Averaging

• Similar idea to SWA

• Average once every k cycles, where k < c, the cycle period,
starting from l− c.

• Use a cyclical learning rate schedule (sine curve), average all the
model weights once per cycle

• (eg, every 30 epochs).

38/52

Fast Stochastic Weight Averaging

• Similar idea to SWA

• Average once every k cycles, where k < c, the cycle period,
starting from l− c.

• Use a cyclical learning rate schedule (sine curve), average all the
model weights once per cycle

• (eg, every 30 epochs).

39/52

Recent Criticism

• Paper from Google Brain, 2018 [OOR+18]

• Criticism of research and experimental methods used in current
lines of SSL research

• Questions whether SSL is actually applicable to "real world"
settings

• Proposals for improvement, new baselines.

40/52

Recent Criticism
Base Architectures

• Different SSL papers use base model architectures

• Creates difficulty in comparing SSL methods that use different
baseline architectures.

• Suggestion: Use Wide ResNet-28-2, with LeakyReLU activation,
standard procedures for regularization, data augmentation and
preprocessing.

41/52

Recent Criticism
Supervised Baseline

• Different SSL papers seem have have varying results on
"supervised" baselines, even for the same network architecture

• Issue appears to be that differing "hyperparameter optimization
budgets" were used in tuning hyperparameters for SSL models
vs supervised models.

• Suggestion: Use the same "hyperparameter optimization
budgets" for both sets of models

42/52

Recent Criticism
Supervised Baseline

• Suggestion: Use the same "hyperparameter optimization
budgets" for both sets of models

• Note that in doing so, Google Brain researchers found that they
were not able to reproduce the "gap" that original authors of
and Mean Teacher reported.

– Originally published results:
» CIFAR-10: Improved from 34.85% to 12.36%

– Reproduction:
» CIFAR-10: Improved from 20.26% to 16.37%

43/52

Recent Criticism
Compare to Transfer Learning

• SSL papers make no comparison to Transfer Learning, but this is
the more "realistic" scenario

• Transfer Learning: Pre-train on ImageNet, then fine-tune on the
limited labelled data

• In doing so, authors found that pre-training on ImageNet and
fine-tuning on 4000 data points with CIFAR-10 gets 12.09%
error, which is lower than 12.36% reported for SSL.

44/52

Recent Criticism
Data Augmentation

• In reality, unlabelled images may contain classes that are not
part of the labels.

• Example: We want to classify between dogs and cats, our
unlabelled images contain foxes, birds, other animals

• Reality: The unlabelled data is not "harmless", it may actually
prove to be distracting, since it contains features but has the
value of noise.

• Suggestion: Caveat approach with notice that it must not
contain unlabelled images outside the class distribution =

45/52

Recent Criticism
Amount of unlabelled and labelled data

• Varying the amount of labelled and unlabelled data does not
have a completely predictable result on the test error curve

• Just adding more unlabelled data does not always make things
better.

Figure: Varying labelled and unlabelled data (test error)

46/52

Recent Criticism
Validation Set Size

• Previous experiments used the rest of the "unlabelled" data as
the validation set

• Validation set in and Mean Teacher papers is unreasonably
large (7000 validation examples to 1000 labelled examples)

• Using this validation set to choose hyperparameters is
unrealistic, usually validation set would be 10% of the size of the
training set

47/52

References I

[BA] Pavel Izmailov Andrew Gordon Wilson Ben Athiwaratkun,
Marc Finzi, There are many consistent explanations of
unlabelled data: Why you should average, ICLR.

[DPBB17] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua
Bengio, Sharp minima can generalize for deep nets., ICML
(Doina Precup and Yee Whye Teh, eds.), Proceedings of
Machine Learning Research, vol. 70, PMLR, 2017,
pp. 1019–1028.

[Gas17] Xavier Gastaldi, Shake-shake regularization of 3-branch
residual networks., ICLR (Workshop), OpenReview.net,
2017.

48/52

References II

[HSS18] Jie Hu, Li Shen, and Gang Sun, Squeeze-and-excitation
networks., CVPR, IEEE Computer Society, 2018,
pp. 7132–7141.

[IPG+18] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry P. Vetrov, and Andrew Gordon Wilson, Averaging
weights leads to wider optima and better generalization.,
CoRR abs/1803.05407 (2018).

[LA17] Samuli Laine and Timo Aila, Temporal ensembling for
semi-supervised learning., ICLR, OpenReview.net, 2017.

49/52

References III

[MiMKI17] Takeru Miyato, Shin ichi Maeda, Masanori Koyama, and
Shin Ishii, Virtual adversarial training: a regularization
method for supervised and semi-supervised learning.,
CoRR abs/1704.03976 (2017).

[NBA+18] Roman Novak, Yasaman Bahri, Daniel A. Abolafia, Jeffrey
Pennington, and Jascha Sohl-Dickstein, Sensitivity and
generalization in neural networks: an empirical study.,
ICLR, OpenReview.net, 2018.

50/52

References IV

[OOR+18] Avital Oliver, Augustus Odena, Colin A. Raffel, Ekin Dogus
Cubuk, and Ian J. Goodfellow, Realistic evaluation of deep
semi-supervised learning algorithms., NeurIPS (Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, eds.),
2018, pp. 3239–3250.

[PGH+16] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan,
Chunyuan Li, Andrew Stevens, and Lawrence Carin,
Variational autoencoder for deep learning of images,
labels and captions., NIPS (Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and
Roman Garnett, eds.), 2016, pp. 2352–2360.

51/52

References V

[RBH+15] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri
Valpola, and Tapani Raiko, Semi-supervised learning with
ladder networks., NIPS (Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett,
eds.), 2015, pp. 3546–3554.

[SGSR17] Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel
R. D. Rodrigues, Robust large margin deep neural
networks., IEEE Trans. Signal Processing 65 (2017), no. 16,
4265–4280.

[TH] Antti Tarvainen and Valpola Harri,Mean teachers are
better role models: Weight-averaged consistency targets
improvesemi-supervised deep learning results, NIPS.

52/52

	Motivating Example

