
Graph Convolutional Networks (GCNs)

Dimitris Papatheodorou

Aalto University

dimitrispapatheodorou95@gmail.com

May 21, 2019

Dimitris Papatheodorou (Aalto University) GCNs May 21, 2019 1 / 35



Overview

1 Introduction
Problem Setting
Graph Laplacian

2 Graph Convolutional Networks
The ideas behind the problem
GCN idea and convolutions on graphs
Spectral Graph Convolutions (SGC)
Implementation and results

Dimitris Papatheodorou (Aalto University) GCNs May 21, 2019 2 / 35



Problem Setting

Graphs are structured representations of data, such as citation
networks, social networks, the World-Wide-Web, protein-interaction
networks, and others.

Recent work on generalizing neural networks to graphs in various ways
for different tasks (graph classification, nodes classification,
clustering, link prediction, node embeddings, and more).

We will denote a undirected graph as G = (V, E), with:

nodes υi ∈ V (N nodes)
edges εij = (υi , υj) ∈ E (M edges)
adjacency matrix A ∈ RN×N (binary or weighted)
degree matrix Dii =

∑
j Aij

unnormalized graph Laplacian ∆ = D −A
normalized graph Laplacian L = IN −D− 1

2AD− 1
2
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Intuition of graph Laplacian

The graph Laplacian can be considered as the discrete analogue
(applied on graphs) of the Laplacian operator ∇2 on graphs, which is
differential operator given by the divergence of the gradient of a
function f on Euclidean space.
→ ∆f = ∇2f = div(grad(f ))

The Gradient Operator

For a function on the Euclidean space, the gradient operator gives
the derivative of the function along each direction at every point.

For a function on a discrete ”graph space”, the graph gradient
operator gives the difference of the function along each edge at every
vertex:
→ For edge ε = (u, v) : grad (f )|ε = f (u)− f (v).
⇒ grad(f ) = K>f , where K is the incidence matrix of size M × N.
(by assigning an arbitrary orientation on the edges)
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Intuition of graph Laplacian
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Intuition of graph Laplacian

The Divergence Operator

In the Euclidean space, divergence at a point gives the net outward
flux of a vector field.

For graphs, the vector field is just the gradient of a graph function.

In the discrete ”graph space”, we define the graph divergence of a
function g over the edges of a graph (eg the graph gradient) as a
mapping from g to Kg .
→ ∇f = div(grad(f )) = KK>f , where KK> is the Laplacian.

Notice that the laplacian ∆ = KK> here is Cholesky decomposed,
thus it’s positive semi-definite.
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Intuition of graph Laplacian
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Intuition of graph Laplacian

Circled items: degrees of the vertices!

Now the definition is more clear: ∆ = D −A
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Intuition of graph Laplacian

Another example
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Intuition of graph Laplacian

More intuition

For continuous spaces, the Laplacian is the secord derivative, so it
measures how smooth is a function over its domain.

It’s the same for graph laplacians: the function values don’t change
by much from one node to an adjacent one.

Formally (general case of weighted graphs):

E (f ) =
1

2

∑
u∼v

wuv (f (u)− f (v))2 =
∥∥∥K>f

∥∥∥2
= f >∆f

Equivalent to Dirichlet energy, for open set Ω ⊆ Rn and function
f : Ω→ R:

E (f ) =
1

2

∫
Ω
‖∇f (x)‖2dx

a measure of how variable a function is.
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Intuition of graph Laplacian

So, minimizing the variation of a graph function leads us to the
Laplacian.

The functions that minimize f >∆f are the eigenvectors of ∆.

This can be shown either directly, or via the Courant-Fischer-Weyl
min-max principle / variational theorem on the Rayleigh quotient of
the laplacian for unit norm functions.
(See more in Algorithmic Methods of Data Mining course slides)
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Intuition of graph Laplacian

Interesting Properties

∆ = KK>, thus the Laplacian is a Gram Matrix.

The multiplicity of its zero eigenvalue λ0 is equal to the number of
components of the graph. (multiplicity: remember the characteristic
polynomial det(A− λI ) = 0).

The second smallest eigenvalue (aka Fiedler value) of the Laplacian
matrix will be zero if and only if the graph is disconnected.

The smaller the second smallest eigenvalue, the less ’connected’ the
graph.

Interlacing property: For a graph with Laplacian ∆ and eigenvalues of
∆: λ1 ≥ λ2 ≥ · · · ≥ λn, if we delete an edge, the new eigenvalues
are: µ1 ≥ µ2 ≥ · · · ≥ µn−1. It holds that:

2 ≥ λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ≥ µn−1 ≥ λn ≥ 0

This is the same for the adjacency matrix and nodes!
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The ideas behind the problem

Kipf’s and Welling’s paper [Kipf and Welling(2016)] focuses on
nodes classification, where node labels are available for a small
number of nodes.

That’s a graph-based semi-supervised learning problem.

It can be tackled by smoothing label information over the graph via
some form of explicit graph-based regularization:

J = J0 + λJreg

Lreg =
∑
i ,j

Aij ‖f (Xi )− f (Xj)‖2 = f (X )>∆f (X )

◦ Jreg is the graph laplacian regularization term
◦ J0 is the supervised loss wrt the labeled parts of the graph
◦ f (·) is a diffentiable function (eg a neural network)
◦ X = {Xi |i = 1, . . . ,N} is a matrix of node feature vectors
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Are they good enough?

It that any good?

Yes, but it assumes that connected nodes are likely to share the same
label.

Edges do not necessarily encode node similarity! They may contain
additional information.

This assumption restrict the modeling capacity of our classifier.
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GCNs main idea

A better idea?

GCNs encode the graph structure directly using a neural network
f (X ,A)

using the unregularized supervised loss J0

and by conditioning f on A they distribute gradient information from
J0 and will enable it to learn representations of nodes both with and
without labels.
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Convolutions on graphs

For a multi-layer f (X ,A) GCN, a simple propagation rule could be:

H(0) = X

H(`+1) = f
(

H(`),A
)

= α
(
AH(`)W (`)

)
where α is an activation function and W ` the trainable weight matrix
of the `-th layer.

For better results: ◦ Enforce self-loops: Ã = A+ IN
◦ Symmetrical normalization: D̃−

1
2 ÃD̃−

1
2

H(`+1) = f
(

H(`),A
)

= α
(

D̃−
1
2 ÃD̃−

1
2 H(`)W (`)

)
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Spectral Graph Convolutions (SGC)

→ To understand this idea we take a look at Spectral Graph Convolutions.

What we need:

Signal x ∈ RN (scalar for every node)

Filter gθ = diag(θ), θ ∈ RN

Eigendec normalized laplacian: L = IN −D−
1
2AD−

1
2 = UΛU>

SGC multiplication operator ? in the Fourier (frequency) domain

U>x graph Fourier transform of the Signal

We can understand gθ as function of Λ: gθ(Λ)

What we get:
gθ ? x = UgθU>x

→ This procedure is computationally expensinve though.
Eigendecomposition is expensive and multiplication with U is O(N2).
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Spectral Graph Convolutions (SGC)

Solution by
[Hammond et al.(2011)Hammond, Vandergheynst, and Gribonval]:
Approximate gθ(Λ) using Chebyshev polynomials Tk(x) of K th order.

Chebyshev Polynomials Review:

◦ Recurrence Formula:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

◦ Using Rodrigues’ formula:

Tn(x) =
(−2)nn!

(2n)!

√
1− x2

dn

dxn

(
1− x2

)n−1/2
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Spectral Graph Convolutions (SGC)

So we get this approximation:

gθ′(Λ) ≈
K∑

k=0

θ′kTk(Λ̃),

where ◦ Λ is rescaled: Λ̃ = 2
λmax

Λ− IN ,
◦ λmax is the largest eigenvalue of L,
◦ θ′ ∈ RK Chebyshev coefficients

Thus for the convolution we get:

gθ′ ? x ≈
K∑

k=0

θ′kTk(L̃)x , which is O(|E|)

with L̃ = 2
λmax

L− IN
→ K -localized expression, thus depends only on nodes that are at
maximum K steps away from the central node.

Dimitris Papatheodorou (Aalto University) GCNs May 21, 2019 19 / 35



Stacked SGCs → Profit?

Simply stacking SGCs gives as a neural network.

What if we only use K = 1? We get a linear function wrt to L and on
the graph laplacian spectrum. Is that any good? :S

Yes! Stacking simple functions still lets us explore a rich class of
convolutional filters and comes with some extra benefits:

Such filters are also not limited by the explicit form and
parameterization of the approximation,
less likely to overfit on local neighborhoods
but still able to convolve a k th order neighborhood through k layers,
and less expensive, so we can STACK MORE LAYERS! to increase the
model’s capacity
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but still able to convolve a k th order neighborhood through k layers,
and less expensive, so we can STACK MORE LAYERS! to increase the
model’s capacity
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Stacked SGCs → Profit?

Furthermore, because we are engineers we can assume λmax ≈ 2 and hope
the gods of neural networks help the parameters adapt this change in scale
during training.

◦ The simplified version is:

gθ′ ? x ≈ θ′0x + θ′1 (L − IN) x = θ′0x − θ′1D−
1
2AD−

1
2 x

◦ Constraining the numbers of parameters even more address overfitting
and computational cost:

gθ ? x ≈ θ
(

IN +D−
1
2AD−

1
2

)
x , where θ = θ′0 = −θ′1

◦ Eigenvalues of IN +D−
1
2AD−

1
2 ∈ [0, 2] → exploding/vanishing

gradients. Solution: apply the renormalization trick again:

gθ ? x ≈ θ
(

D̃−
1
2 ÃD̃−

1
2

)
x
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2 ÃD̃−

1
2

)
x

Dimitris Papatheodorou (Aalto University) GCNs May 21, 2019 21 / 35



Stacked SGCs → Profit?

Furthermore, because we are engineers we can assume λmax ≈ 2 and hope
the gods of neural networks help the parameters adapt this change in scale
during training.
◦ The simplified version is:

gθ′ ? x ≈ θ′0x + θ′1 (L − IN) x = θ′0x − θ′1D−
1
2AD−

1
2 x

◦ Constraining the numbers of parameters even more address overfitting
and computational cost:

gθ ? x ≈ θ
(

IN +D−
1
2AD−

1
2

)
x , where θ = θ′0 = −θ′1

◦ Eigenvalues of IN +D−
1
2AD−

1
2 ∈ [0, 2] → exploding/vanishing

gradients. Solution: apply the renormalization trick again:

gθ ? x ≈ θ
(

D̃−
1
2 ÃD̃−
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Stacked SGCs → Profit?

General form for signal X ∈ RN×C (C channels) and F filters with
Θ ∈ RC×F filter parameters:

Z = D̃−
1
2 ÃD̃−

1
2 X Θ,

Z ∈ RN×F being convolved signal matrix.

The complexity of the operation is O(|E|FC ), as ÃX can be efficiently
implemented as a product of a sparse matrix with a dense matrix.
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An example

2-layer GCN:

Preprocess: Â = D̃−
1
2 ÃD̃−

1
2

Neural Network:

Z = f (X ,A) = softmax
(
ÂReLU

(
ÂXW (0)

)
W (1)

)
Cross-Entropy loss:

J = −
∑
`∈YL

F∑
f =1

Y`f ln Z`f ,

where YL is the set of node indices that have labels.

Adam on a full dataset batch + early stopping

Dropout for all layers and L2 regularization for the first one.

Glorot weight initialization (aka Xavier normal)
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Experiments

Datasets
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Experiments

Classification
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Experiments

Propagation models evaluation on classification accuracy using
random weight initialization
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Experiments

Node Embeddings

Z = tanh
(
Â tanh

(
Â tanh

(
ÂXW (0)

)
W (1)

)
W (2)

)
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Experiments

Node Embeddings for classification
Adding a softmax layer to the previous model:
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Some code

Graph Convolution Layer (1/2)
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Some code

Graph Convolution Layer (2/2)
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Some code

Graph Convolution Network
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Some code

Training (1/2)
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Some code

Training (2/2)
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The End
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