Graph Convolutional Networks (GCNs)

Dimitris Papatheodorou

Aalto University
dimitrispapatheodorou95@gmail.com

May 21, 2019

Overview

(1) Introduction

- Problem Setting
- Graph Laplacian
(2) Graph Convolutional Networks
- The ideas behind the problem
- GCN idea and convolutions on graphs
- Spectral Graph Convolutions (SGC)
- Implementation and results

Problem Setting

- Graphs are structured representations of data, such as citation networks, social networks, the World-Wide-Web, protein-interaction networks, and others.

Problem Setting

- Graphs are structured representations of data, such as citation networks, social networks, the World-Wide-Web, protein-interaction networks, and others.
- Recent work on generalizing neural networks to graphs in various ways for different tasks (graph classification, nodes classification, clustering, link prediction, node embeddings, and more).

Problem Setting

- Graphs are structured representations of data, such as citation networks, social networks, the World-Wide-Web, protein-interaction networks, and others.
- Recent work on generalizing neural networks to graphs in various ways for different tasks (graph classification, nodes classification, clustering, link prediction, node embeddings, and more).
- We will denote a undirected graph as $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, with:
- nodes $v_{i} \in \mathcal{V}$ (N nodes)
- edges $\epsilon_{i j}=\left(v_{i}, v_{j}\right) \in \mathcal{E}$ (M edges)
- adjacency matrix $\mathcal{A} \in \mathbb{R}^{N \times N}$ (binary or weighted)
- degree matrix $\mathcal{D}_{i i}=\sum_{j} \mathcal{A}_{i j}$
- unnormalized graph Laplacian $\Delta=\mathcal{D}-\mathcal{A}$
- normalized graph Laplacian $\mathcal{L}=I_{N}-\mathcal{D}^{-\frac{1}{2}} \mathcal{A D}^{-\frac{1}{2}}$

Intuition of graph Laplacian

Intuition of graph Laplacian

- The graph Laplacian can be considered as the discrete analogue (applied on graphs) of the Laplacian operator ∇^{2} on graphs, which is differential operator given by the divergence of the gradient of a function f on Euclidean space.
$\rightarrow \Delta f=\nabla^{2} f=\operatorname{div}(\operatorname{grad}(f))$

Intuition of graph Laplacian

- The graph Laplacian can be considered as the discrete analogue (applied on graphs) of the Laplacian operator ∇^{2} on graphs, which is differential operator given by the divergence of the gradient of a function f on Euclidean space.
$\rightarrow \Delta f=\nabla^{2} f=\operatorname{div}(\operatorname{grad}(f))$

The Gradient Operator

- For a function on the Euclidean space, the gradient operator gives the derivative of the function along each direction at every point.
- For a function on a discrete "graph space", the graph gradient operator gives the difference of the function along each edge at every
vertex:
\rightarrow For edge $\epsilon=(u, v):\left.\operatorname{grad}(f)\right|_{\epsilon}=f(u)-f(v)$.
$\Rightarrow \operatorname{grad}(f)=K^{\top} f$, where K is the incidence matrix of size $M \times N$.
(by assigning an arbitrary orientation on the edges)

Intuition of graph Laplacian

$$
\begin{aligned}
& \operatorname{grad}(f)=K^{\top} f=\left[\begin{array}{c}
-2 \\
2 \\
1 \\
1
\end{array} e_{4 \times 1} e_{1}: f_{1}-f_{2}, f_{4}: f_{2}-f_{3}, f_{2}-f_{4}\right.
\end{aligned}
$$

Intuition of graph Laplacian

The Divergence Operator

- In the Euclidean space, divergence at a point gives the net outward flux of a vector field.
- For graphs, the vector field is just the gradient of a graph function.
- In the discrete "graph space", we define the graph divergence of a function g over the edges of a graph (eg the graph gradient) as a mapping from g to $K g$.
$\rightarrow \nabla f=\operatorname{div}(\operatorname{grad}(f))=K K^{\top} f$, where $K K^{\top}$ is the Laplacian.

Intuition of graph Laplacian

The Divergence Operator

- In the Euclidean space, divergence at a point gives the net outward flux of a vector field.
- For graphs, the vector field is just the gradient of a graph function.
- In the discrete "graph space", we define the graph divergence of a function g over the edges of a graph (eg the graph gradient) as a mapping from g to $K g$.
$\rightarrow \nabla f=\operatorname{div}(\operatorname{grad}(f))=K K^{\top} f$, where $K K^{\top}$ is the Laplacian.
- Notice that the laplacian $\Delta=K K^{\top}$ here is Cholesky decomposed, thus it's positive semi-definite.

Intuition of graph Laplacian

$$
g=\left[\begin{array}{c}
-2 \\
2 \\
1 \\
1
\end{array} \begin{array}{c}
e_{1} \\
e_{2} \\
e_{3} \\
e_{4}
\end{array} \quad \operatorname{div}(9)=\mathrm{kg}=\left[\begin{array}{c}
-2 \\
5 \\
-2 \\
0 \\
1
\end{array}\right]_{5 \times 1}^{v_{4}} \begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4}
\end{array}\right.
$$

Intuition of graph Laplacian

$$
K K^{\top}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right]_{5 \times 4}\left[\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & -1
\end{array}\right]=\left[\begin{array}{ccccc}
(1) & -1 & 0 & 0 & 0 \\
-1 & 3 & -1 & -1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
0 & -1 & 0 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right]_{5 \times 5}=L
$$

- Circled items: degrees of the vertices!
- Now the definition is more clear: $\Delta=\mathcal{D}-\mathcal{A}$

Intuition of graph Laplacian

Another example

Labeled graph	Degree matrix	Adjacency matrix	Laplacian matrix
	$\left(\begin{array}{llllll}2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$	$\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$	$\left(\begin{array}{rrrrrr}2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right)$

Intuition of graph Laplacian

More intuition

- For continuous spaces, the Laplacian is the secord derivative, so it measures how smooth is a function over its domain.
- It's the same for graph laplacians: the function values don't change by much from one node to an adjacent one.

Intuition of graph Laplacian

More intuition

- For continuous spaces, the Laplacian is the secord derivative, so it measures how smooth is a function over its domain.
- It's the same for graph laplacians: the function values don't change by much from one node to an adjacent one.
- Formally (general case of weighted graphs):

$$
E(f)=\frac{1}{2} \sum_{u \sim v} w_{u v}(f(u)-f(v))^{2}=\left\|K^{\top} f\right\|^{2}=f^{\top} \Delta f
$$

Intuition of graph Laplacian

More intuition

- For continuous spaces, the Laplacian is the secord derivative, so it measures how smooth is a function over its domain.
- It's the same for graph laplacians: the function values don't change by much from one node to an adjacent one.
- Formally (general case of weighted graphs):

$$
E(f)=\frac{1}{2} \sum_{u \sim v} w_{u v}(f(u)-f(v))^{2}=\left\|K^{\top} f\right\|^{2}=f^{\top} \Delta f
$$

- Equivalent to Dirichlet energy, for open set $\Omega \subseteq \mathbb{R}^{n}$ and function $f: \Omega \rightarrow \mathbb{R}$:

$$
E(f)=\frac{1}{2} \int_{\Omega}\|\nabla f(x)\|^{2} d x
$$

a measure of how variable a function is.

Intuition of graph Laplacian

- So, minimizing the variation of a graph function leads us to the Laplacian.
- The functions that minimize $f^{\top} \Delta f$ are the eigenvectors of Δ.
- This can be shown either directly, or via the Courant-Fischer-Weyl min-max principle / variational theorem on the Rayleigh quotient of the laplacian for unit norm functions.
(See more in Algorithmic Methods of Data Mining course slides)

Intuition of graph Laplacian

Interesting Properties

- $\Delta=K K^{\top}$, thus the Laplacian is a Gram Matrix.

Intuition of graph Laplacian

Interesting Properties

- $\Delta=K K^{\top}$, thus the Laplacian is a Gram Matrix.
- The multiplicity of its zero eigenvalue λ_{0} is equal to the number of components of the graph. (multiplicity: remember the characteristic polynomial $\operatorname{det}(A-\lambda I)=0)$.

Intuition of graph Laplacian

Interesting Properties

- $\Delta=K K^{\top}$, thus the Laplacian is a Gram Matrix.
- The multiplicity of its zero eigenvalue λ_{0} is equal to the number of components of the graph. (multiplicity: remember the characteristic polynomial $\operatorname{det}(A-\lambda I)=0)$.
- The second smallest eigenvalue (aka Fiedler value) of the Laplacian matrix will be zero if and only if the graph is disconnected.
- The smaller the second smallest eigenvalue, the less 'connected' the graph.
- Interlacing property: For a graph with Laplacian Δ and eigenvalues of $\Delta: \lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$, if we delete an edge, the new eigenvalues are: $\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n-1}$. It holds that:

$$
2 \geq \lambda_{1} \geq \mu_{1} \geq \lambda_{2} \geq \mu_{2} \geq \cdots \geq \mu_{n-1} \geq \lambda_{n} \geq 0
$$

This is the same for the adjacency matrix and nodes!

The ideas behind the problem

- Kipf's and Welling's paper [Kipf and Welling(2016)] focuses on nodes classification, where node labels are available for a small number of nodes.

The ideas behind the problem

- Kipf's and Welling's paper [Kipf and Welling(2016)] focuses on nodes classification, where node labels are available for a small number of nodes.
- That's a graph-based semi-supervised learning problem.

The ideas behind the problem

- Kipf's and Welling's paper [Kipf and Welling(2016)] focuses on nodes classification, where node labels are available for a small number of nodes.
- That's a graph-based semi-supervised learning problem.
- It can be tackled by smoothing label information over the graph via some form of explicit graph-based regularization:

$$
\begin{gathered}
\mathcal{J}=\mathcal{J}_{0}+\lambda \mathcal{J}_{\mathrm{reg}} \\
\mathcal{L}_{\mathrm{reg}}=\sum_{i, j} \mathcal{A}_{i j}\left\|f\left(X_{i}\right)-f\left(X_{j}\right)\right\|^{2}=f(X)^{\top} \Delta f(X)
\end{gathered}
$$

- $\mathcal{J}_{\text {reg }}$ is the graph laplacian regularization term
- \mathcal{J}_{0} is the supervised loss wrt the labeled parts of the graph
- $f(\cdot)$ is a diffentiable function (eg a neural network)
$\circ X=\left\{X_{i} \mid i=1, \ldots, N\right\}$ is a matrix of node feature vectors

Are they good enough?

It that any good?

Are they good enough?

It that any good?

- Yes, but it assumes that connected nodes are likely to share the same label.

Are they good enough?

It that any good?

- Yes, but it assumes that connected nodes are likely to share the same label.
- Edges do not necessarily encode node similarity! They may contain additional information.

Are they good enough?

It that any good?

- Yes, but it assumes that connected nodes are likely to share the same label.
- Edges do not necessarily encode node similarity! They may contain additional information.
- This assumption restrict the modeling capacity of our classifier.

GCNs main idea

A better idea?

- GCNs encode the graph structure directly using a neural network $f(X, \mathcal{A})$

GCNs main idea

A better idea?

- GCNs encode the graph structure directly using a neural network $f(X, \mathcal{A})$
- using the unregularized supervised loss \mathcal{J}_{0}

GCNs main idea

A better idea?

- GCNs encode the graph structure directly using a neural network $f(X, \mathcal{A})$
- using the unregularized supervised loss \mathcal{J}_{0}
- and by conditioning f on \mathcal{A} they distribute gradient information from \mathcal{J}_{0} and will enable it to learn representations of nodes both with and without labels.

Convolutions on graphs

- For a multi-layer $f(X, \mathcal{A}) \mathrm{GCN}$, a simple propagation rule could be:

$$
\begin{gathered}
H^{(0)}=X \\
H^{(\ell+1)}=f\left(H^{(\ell)}, \mathcal{A}\right)=\alpha\left(\mathcal{A} H^{(\ell)} W^{(\ell)}\right)
\end{gathered}
$$

where α is an activation function and W^{ℓ} the trainable weight matrix of the ℓ-th layer.

Convolutions on graphs

- For a multi-layer $f(X, \mathcal{A}) \mathrm{GCN}$, a simple propagation rule could be:

$$
\begin{gathered}
H^{(0)}=X \\
H^{(\ell+1)}=f\left(H^{(\ell)}, \mathcal{A}\right)=\alpha\left(\mathcal{A} H^{(\ell)} W^{(\ell)}\right)
\end{gathered}
$$

where α is an activation function and W^{ℓ} the trainable weight matrix of the ℓ-th layer.

- For better results: \circ Enforce self-loops: $\tilde{\mathcal{A}}=\mathcal{A}+I_{N}$ - Symmetrical normalization: $\tilde{D}^{-\frac{1}{2}} \tilde{\mathcal{A}} \tilde{D}^{-\frac{1}{2}}$

$$
H^{(\ell+1)}=f\left(H^{(\ell)}, \mathcal{A}\right)=\alpha\left(\tilde{D}^{-\frac{1}{2}} \tilde{\mathcal{A}} \tilde{D}^{-\frac{1}{2}} H^{(\ell)} W^{(\ell)}\right)
$$

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions.

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions. What we need:

- Signal $x \in \mathbb{R}^{N}$ (scalar for every node)

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions. What we need:

- Signal $x \in \mathbb{R}^{N}$ (scalar for every node)
- Filter $g_{\theta}=\operatorname{diag}(\theta), \theta \in \mathbb{R}^{N}$

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions. What we need:

- Signal $x \in \mathbb{R}^{N}$ (scalar for every node)
- Filter $g_{\theta}=\operatorname{diag}(\theta), \theta \in \mathbb{R}^{N}$
- Eigendec normalized laplacian: $\mathcal{L}=\mathrm{I}_{N}-\mathcal{D}^{-\frac{1}{2}} \mathcal{A D}^{-\frac{1}{2}}=U \Lambda U^{\top}$

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions. What we need:

- Signal $x \in \mathbb{R}^{N}$ (scalar for every node)
- Filter $g_{\theta}=\operatorname{diag}(\theta), \theta \in \mathbb{R}^{N}$
- Eigendec normalized laplacian: $\mathcal{L}=\mathrm{I}_{N}-\mathcal{D}^{-\frac{1}{2}} \mathcal{A} \mathcal{D}^{-\frac{1}{2}}=U \wedge U^{\top}$
- SGC multiplication operator \star in the Fourier (frequency) domain

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions. What we need:

- Signal $x \in \mathbb{R}^{N}$ (scalar for every node)
- Filter $g_{\theta}=\operatorname{diag}(\theta), \theta \in \mathbb{R}^{N}$
- Eigendec normalized laplacian: $\mathcal{L}=\mathrm{I}_{N}-\mathcal{D}^{-\frac{1}{2}} \mathcal{A} \mathcal{D}^{-\frac{1}{2}}=U \wedge U^{\top}$
- SGC multiplication operator \star in the Fourier (frequency) domain
- $U^{\top} x$ graph Fourier transform of the Signal
- We can understand g_{θ} as function of $\Lambda: g_{\theta}(\Lambda)$

What we get:

$$
g_{\theta} \star x=U g_{\theta} U^{\top} x
$$

Spectral Graph Convolutions (SGC)

\rightarrow To understand this idea we take a look at Spectral Graph Convolutions. What we need:

- Signal $x \in \mathbb{R}^{N}$ (scalar for every node)
- Filter $g_{\theta}=\operatorname{diag}(\theta), \theta \in \mathbb{R}^{N}$
- Eigendec normalized laplacian: $\mathcal{L}=\mathrm{I}_{N}-\mathcal{D}^{-\frac{1}{2}} \mathcal{A} \mathcal{D}^{-\frac{1}{2}}=U \wedge U^{\top}$
- SGC multiplication operator \star in the Fourier (frequency) domain
- $U^{\top} x$ graph Fourier transform of the Signal
- We can understand g_{θ} as function of $\Lambda: g_{\theta}(\Lambda)$

What we get:

$$
g_{\theta} \star x=U g_{\theta} U^{\top} x
$$

\rightarrow This procedure is computationally expensinve though.
Eigendecomposition is expensive and multiplication with U is $\mathcal{O}\left(N^{2}\right)$.

Spectral Graph Convolutions (SGC)

Solution by
[Hammond et al.(2011)Hammond, Vandergheynst, and Gribonval]: Approximate $g_{\theta}(\Lambda)$ using Chebyshev polynomials $T_{k}(x)$ of $K^{t h}$ order.

Spectral Graph Convolutions (SGC)

Solution by
[Hammond et al.(2011)Hammond, Vandergheynst, and Gribonval]:
Approximate $g_{\theta}(\Lambda)$ using Chebyshev polynomials $T_{k}(x)$ of $K^{t h}$ order.
Chebyshev Polynomials Review:

- Recurrence Formula:

$$
\begin{aligned}
T_{0}(x) & =1 \\
T_{1}(x) & =x \\
T_{n+1}(x) & =2 x T_{n}(x)-T_{n-1}(x)
\end{aligned}
$$

- Using Rodrigues' formula:

$$
T_{n}(x)=\frac{(-2)^{n} n!}{(2 n)!} \sqrt{1-x^{2}} \frac{d^{n}}{d x^{n}}\left(1-x^{2}\right)^{n-1 / 2}
$$

Spectral Graph Convolutions (SGC)

So we get this approximation:

$$
g_{\theta^{\prime}}(\Lambda) \approx \sum_{k=0}^{K} \theta_{k}^{\prime} T_{k}(\tilde{\Lambda})
$$

where $\circ \Lambda$ is rescaled: $\tilde{\Lambda}=\frac{2}{\lambda_{\max }} \Lambda-I_{N}$,

- $\lambda_{\text {max }}$ is the largest eigenvalue of \mathcal{L},
- $\theta^{\prime} \in \mathbb{R}^{K}$ Chebyshev coefficients

Thus for the convolution we get:

$$
g_{\theta^{\prime}} \star x \approx \sum_{k=0}^{K} \theta_{k}^{\prime} T_{k}(\tilde{L}) x, \text { which is } \mathcal{O}(|\mathcal{E}|)
$$

with $\tilde{L}=\frac{2}{\lambda_{\max }} L-I_{N}$
$\rightarrow K$-localized expression, thus depends only on nodes that are at maximum K steps away from the central node.

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.
- What if we only use $K=1$? We get a linear function wrt to \mathcal{L} and on the graph laplacian spectrum. Is that any good? :S

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.
- What if we only use $K=1$? We get a linear function wrt to \mathcal{L} and on the graph laplacian spectrum. Is that any good? :S
- Yes! Stacking simple functions still lets us explore a rich class of convolutional filters and comes with some extra benefits:

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.
- What if we only use $K=1$? We get a linear function wrt to \mathcal{L} and on the graph laplacian spectrum. Is that any good? :S
- Yes! Stacking simple functions still lets us explore a rich class of convolutional filters and comes with some extra benefits:
- Such filters are also not limited by the explicit form and parameterization of the approximation,

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.
- What if we only use $K=1$? We get a linear function wrt to \mathcal{L} and on the graph laplacian spectrum. Is that any good? :S
- Yes! Stacking simple functions still lets us explore a rich class of convolutional filters and comes with some extra benefits:
- Such filters are also not limited by the explicit form and parameterization of the approximation,
- less likely to overfit on local neighborhoods

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.
- What if we only use $K=1$? We get a linear function wrt to \mathcal{L} and on the graph laplacian spectrum. Is that any good? :S
- Yes! Stacking simple functions still lets us explore a rich class of convolutional filters and comes with some extra benefits:
- Such filters are also not limited by the explicit form and parameterization of the approximation,
- less likely to overfit on local neighborhoods
- but still able to convolve a $k^{\text {th }}$ order neighborhood through k layers,

Stacked SGCs \rightarrow Profit?

- Simply stacking SGCs gives as a neural network.
- What if we only use $K=1$? We get a linear function wrt to \mathcal{L} and on the graph laplacian spectrum. Is that any good? :S
- Yes! Stacking simple functions still lets us explore a rich class of convolutional filters and comes with some extra benefits:
- Such filters are also not limited by the explicit form and parameterization of the approximation,
- less likely to overfit on local neighborhoods
- but still able to convolve a $k^{\text {th }}$ order neighborhood through k layers,
- and less expensive, so we can STACK MORE LAYERS! to increase the model's capacity

Stacked SGCs \rightarrow Profit?

Furthermore, because we are engineers we can assume $\lambda_{\max } \approx 2$ and hope the gods of neural networks help the parameters adapt this change in scale during training.

Stacked SGCs \rightarrow Profit?

Furthermore, because we are engineers we can assume $\lambda_{\max } \approx 2$ and hope the gods of neural networks help the parameters adapt this change in scale during training.

- The simplified version is:

$$
g_{\theta^{\prime}} \star x \approx \theta_{0}^{\prime} x+\theta_{1}^{\prime}\left(\mathcal{L}-I_{N}\right) x=\theta_{0}^{\prime} x-\theta_{1}^{\prime} \mathcal{D}^{-\frac{1}{2}} \mathcal{A D}^{-\frac{1}{2}} x
$$

Stacked SGCs \rightarrow Profit?

Furthermore, because we are engineers we can assume $\lambda_{\max } \approx 2$ and hope the gods of neural networks help the parameters adapt this change in scale during training.

- The simplified version is:

$$
g_{\theta^{\prime}} \star x \approx \theta_{0}^{\prime} x+\theta_{1}^{\prime}\left(\mathcal{L}-I_{N}\right) x=\theta_{0}^{\prime} x-\theta_{1}^{\prime} \mathcal{D}^{-\frac{1}{2}} \mathcal{A D}^{-\frac{1}{2}} x
$$

- Constraining the numbers of parameters even more address overfitting and computational cost:

$$
g_{\theta} \star x \approx \theta\left(I_{N}+\mathcal{D}^{-\frac{1}{2}} \mathcal{A D}^{-\frac{1}{2}}\right) x, \text { where } \theta=\theta_{0}^{\prime}=-\theta_{1}^{\prime}
$$

Stacked SGCs \rightarrow Profit?

Furthermore, because we are engineers we can assume $\lambda_{\max } \approx 2$ and hope the gods of neural networks help the parameters adapt this change in scale during training.

- The simplified version is:

$$
g_{\theta^{\prime}} \star x \approx \theta_{0}^{\prime} x+\theta_{1}^{\prime}\left(\mathcal{L}-I_{N}\right) x=\theta_{0}^{\prime} x-\theta_{1}^{\prime} \mathcal{D}^{-\frac{1}{2}} \mathcal{A} \mathcal{D}^{-\frac{1}{2}} x
$$

- Constraining the numbers of parameters even more address overfitting and computational cost:

$$
g_{\theta} \star x \approx \theta\left(I_{N}+\mathcal{D}^{-\frac{1}{2}} \mathcal{A D}^{-\frac{1}{2}}\right) x, \text { where } \theta=\theta_{0}^{\prime}=-\theta_{1}^{\prime}
$$

- Eigenvalues of $I_{N}+\mathcal{D}^{-\frac{1}{2}} \mathcal{A D} \mathcal{D}^{-\frac{1}{2}} \in[0,2] \rightarrow$ exploding/vanishing gradients. Solution: apply the renormalization trick again:

$$
g_{\theta} \star x \approx \theta\left(\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}}\right) x
$$

Stacked SGCs \rightarrow Profit?

General form for signal $X \in \mathbb{R}^{N \times C}$ (C channels) and F filters with $\Theta \in \mathbb{R}^{C \times F}$ filter parameters:

$$
Z=\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta,
$$

$Z \in \mathbb{R}^{N \times F}$ being convolved signal matrix.
The complexity of the operation is $\mathcal{O}(|\mathcal{E}| F C)$, as $\tilde{A} X$ can be efficiently implemented as a product of a sparse matrix with a dense matrix.

An example

2-layer GCN:

- Preprocess: $\hat{\mathcal{A}}=\tilde{\mathcal{D}}^{-\frac{1}{2}} \tilde{\mathcal{A}} \tilde{\mathcal{D}}^{-\frac{1}{2}}$
- Neural Network:

$$
Z=f(X, \mathcal{A})=\operatorname{softmax}\left(\hat{\mathcal{A}} \operatorname{ReLU}\left(\hat{\mathcal{A}} X W^{(0)}\right) W^{(1)}\right)
$$

- Cross-Entropy loss:

$$
\mathcal{J}=-\sum_{\ell \in \mathcal{Y}_{L}} \sum_{f=1}^{F} Y_{\ell f} \ln Z_{\ell f}
$$

where \mathcal{Y}_{L} is the set of node indices that have labels.

- Adam on a full dataset batch + early stopping
- Dropout for all layers and L_{2} regularization for the first one.
- Glorot weight initialization (aka Xavier normal)

Experiments

Datasets

Table 1: Dataset statistics, as reported in Yang et al. (2016).

Dataset	Type	Nodes	Edges	Classes	Features	Label rate
Citeseer	Citation network	3,327	4,732	6	3,703	0.036
Cora	Citation network	2,708	5,429	7	1,433	0.052
Pubmed	Citation network	19,717	44,338	3	500	0.003
NELL	Knowledge graph	65,755	266,144	210	5,414	0.001

Experiments

Classification

Table 2: Summary of results in terms of classification accuracy (in percent).

Method	Citeseer	Cora	Pubmed	NELL
ManiReg [3]	60.1	59.5	70.7	21.8
SemiEmb [28]	59.6	59.0	71.1	26.7
LP [32]	45.3	68.0	63.0	26.5
DeepWalk [22]	43.2	67.2	65.3	58.1
ICA [18]	69.1	75.1	73.9	23.1
Planetoid* [29]	$64.7(26 \mathrm{~s})$	$75.7(13 \mathrm{~s})$	$77.2(25 \mathrm{~s})$	$61.9(185 \mathrm{~s})$
GCN (this paper)	$\mathbf{7 0 . 3}(7 \mathrm{~s})$	$\mathbf{8 1 . 5 (4 \mathrm { s })}$	$\mathbf{7 9 . 0}(38 \mathrm{~s})$	$\mathbf{6 6 . 0}(48 \mathrm{~s})$
GCN (rand. splits)	67.9 ± 0.5	80.1 ± 0.5	78.9 ± 0.7	58.4 ± 1.7

Experiments

Propagation models evaluation on classification accuracy using random weight initialization

Table 3: Comparison of propagation models.

Description	Propagation model	Citeseer	Cora	Pubmed	
Chebyshev filter (Eq. 5)	$K=3$	$\sum_{k=0}^{K} T_{k}(\tilde{L}) X \Theta_{k}$	69.8	79.5	74.4
	$K=2$		69.6	81.2	73.8
$1^{\text {st }}$-order model (Eq. 6)		$X \Theta_{0}+D^{-\frac{1}{2}} A D^{-\frac{1}{2}} X \Theta_{1}$	68.3	80.0	77.5
Single parameter (Eq. 7)	$\left(I_{N}+D^{-\frac{1}{2}} A D^{-\frac{1}{2}}\right) X \Theta$	69.3	79.2	77.4	
Renormalization trick (Eq. 8)	$\tilde{D}^{-\frac{1}{2}} \tilde{A} \tilde{D}^{-\frac{1}{2}} X \Theta$	$\mathbf{7 0 . 3}$	$\mathbf{8 1 . 5}$	$\mathbf{7 9 . 0}$	
$1^{\text {st }}$-order term only	$D^{-\frac{1}{2}} A D^{-\frac{1}{2}} X \Theta$	68.7	80.5	77.8	
Multi-layer perceptron	$X \Theta$	46.5	55.1	71.4	

Experiments

Node Embeddings

$$
Z=\tanh \left(\hat{\mathcal{A}} \tanh \left(\hat{\mathcal{A}} \tanh \left(\hat{\mathcal{A}} X W^{(0)}\right) W^{(1)}\right) W^{(2)}\right)
$$

(a) Karate club network

(b) Random weight embedding

Figure 3: Left: Zachary's karate club network (Zachary, 1977), colors denote communities obtained via modularity-based clustering (Brandes et al., 2008). Right: Embeddings obtained from an untrained 3-layer GCN model (Eq. 13) with random weights applied to the karate club network. Best viewed on a computer screen.

Experiments

Node Embeddings for classification

Adding a softmax layer to the previous model:

Some code

Graph Convolution Layer (1/2)

class GraphConvolution(Module):

```
def __init__(self, in_features, out_features, bias=True, init_method='xavier'):
    super(GraphConvolution, self).__init__()
    self.in_features = in_features
    self.out_features = out_features
    self.weight = Parameter(torch.FloatTensor(in features, out features))
    if bias:
        self.bias = Parameter(torch.FloatTensor(out features))
    else:
        self.register_parameter('bias', None)
    self.reset_parameters(method=init_method)
    def forward(self, input, adj):
    support = torch.mm(input, self.weight)
    output = torch.spmm(adj, support)
    if self.bias is not None:
        return output + self.bias
        else:
        return output
```


Some code

Graph Convolution Layer (2/2)

def reset_parameters(self, method='xavier'):
if method == 'uniform':
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.uniform_(-stdv, stdv)
elif method == 'kaiming':
nn.init.kaiming_normal_(self.weight.data, a=0, mode='fan_in')
if self.bias is not None:
nn.init.constant_(self.bias.data, 0.0)
elif method == 'xavier':
nn.init.xavier_normal_(self.weight.data, gain=0.02)
if self.bias is not None:
nn.init.constant_(self.bias.data, 0.0)
else:
raise NotImplementedError

Some code

Graph Convolution Network

```
class GCN(nn.Module):
    def __init__(self, nfeat, nhid, nclass, dropout, init_method='xavier', dropout_input=False):
        super(GCN, self).__init__()
        self.gcl = GraphConvolution(nfeat, nhid, init_method=init_method)
        self.gc2 = GraphConvolution(nhid, nclass, init_method=init_method)
        self.dropout = dropout
        self.dropout_input = dropout_input
    def forward(self, x, adj):
        if self.dropout_input:
            X = F.dropout(x, self.dropout, training=self.training)
        x = F.relu(self.gcl(x, adj))
        x = F.dropout(x, self.dropout, training=self.training)
        x = self.gc2(x, adj)
        return F.log_softmax(x, dim=1)
```


Some code

Training (1/2)

```
def lr_scheduler(epoch, opt):
        return opt.lr * (0.5 ** (epoch / opt.lr_decay_epoch))
# Train
def train(epoch):
    global best_acc
    t = time.time()
    model.train()
    optimizer.lr = lr_scheduler(epoch, opt)
    optimizer.zero_grad()
    output = model(features, adj)
    loss_train = F.nll_loss(output[idx_train], labels[idx_train])
    acc train = accuracy(output[idx_train], labels[idx_train])
    loss_train.backward()
    optimizer.step()
```


Some code

Training (2/2)

```
# Validation for each epoch
model.eval()
output = model(features, adj)
loss_val = F.nll_loss(output[idx_val], labels[idx_val])
acc_val = accuracy(output[idx_val], labels[idx_val])
if acc_val > best_acc:
    best_acc = acc_val
    state = {
    'model': model,
    'acc': best_acc,
    'epoch': epoch,
    }
    torch.save(state, os.path.join(save_point, '%s.t7' % (opt.model)))
```


References

David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via spectral graph theory.
Applied and Computational Harmonic Analysis, 30(2):129-150, 2011.
Thomas N Kipf and Max Welling.
Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

The End

