CapsuleNet

Capsules to rescue CNN: informative vectors instead of a single scalar output!
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Matrix capsules with EM routing (110 citations

Abstract
e

ers ol specii ype o sty such s an byt or s obje
sty eor e e rtabity e

MNIST, Cifar-10 classification and reconstruction| :  F=:F=2 ===

Prlr o sead e oupt o ihe e o v
Sesla prodict withthe predicion soming fror he lower e caf

(g7 hinton, aasabonr, roast)igoogle.con

1 Introduction ABSTRACT

A cupsule of nowrons i o
hosame entity. Fach ayer in 3 capsul nerork coniains many capsules. We de-
10 ensure hat only  tiny fraction of he opcie aray is ver processed ol o iy capsules. We

g pour gid 0w bow o o Laowicle

arXiv:1710.09829v2 [cs.CV] 7 Nov 201

Scen o inaions sl ol v 3 sinele Linaton. e s
o h pose mati oF many dfferet capees i e v abowe by muliplying
5 Euchor
) s gyt iy by sl i | iy Thesecoefcients e i each
1 e, v s, o sl i, e

gl ot 13 ol e e e i e s of sl

sl sroups of et caled k™ T can
Uting an b

volld iteaions o
Havce. On he smINORD benche. apeule secuce e amber of e e

iteratie process will e solving the problem of asigning puts o wholes.

0 whit hox ackersrial aacks han o baseline comalutionl neurl nerwark

enity
et i onpore (ho e o, w0y

1 INTRopUCTION
caiis, In s puper e caplore an ateesing alicrative which s 0 we | Comolutonsl curl nts e bsed un e siaple Tt U 1 vision systen needs (o use he s
e of
the sharing of |

1t Contsence on Neura Infonmtion ocesig Sysams (NIFS 2017, Long B i feasis

Tt Simple, i SfEC on the pase A 1t reprssents th reltionship heteen sn object or
objoctprt and the vier. The sim of capsule 1 o make gond use of tis nderlying lneariy,
ol o dealing ik viewpoint vaiations nd o o ing Segmentaton deciions,

agreement v

delected. A pt produces 8 vte by i b 3 el et

it seprescassthe \iwpoinl nvarial ston: o e whoe, As he

Viewpoine ehanges. he pose marices of th na coondinated vay

e ot b

Fiing it clustrs of ihdiesiosl o st s i it of kv o s o vy

of solvag em of ssigaing parts (o wholes. This s 2o vl because we cumon

he igh-dimensional pose space i the way the lv-dimensoral tanslarion space is grdded

it comoluions. To slve tis chlenge, we e @ (! frate process caled “rouing-
et opdites the pobubility with hic i

ploxiniy ofth vote coming fom that pat tth vores coming, o arher pars tha e asigoed

Tohat whole.

et than just s

a1 i & o Wy b G egmig P diond At W o
Standiad neugal el it i bused on @ orparison bercen & snsle incomming actily vector 1 &
lesrmed weight voctor




Capsule is a better representation of neurons than
convolution.

Because you achieve viewpoint invariance in the activities of
neurons.

In English,
when you see a car, you should be able to tell that it is a car from an arbitrary viewpoint.



Motivation — Challenges of CNNs

e Kernels filter features from input

conv1_1:a few of the 64 filters

e Lower layers learn basic features, such
as edges, cornes

e Higher layers learn complex features




Motivation — Challenges of CNNs

e Input that maximizes a specific
class

e Does not look like a real image
at all

goose ostrich

Figure 1: Numerically computed images, illustrating the class appearance models, learnt by a
ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured
in a single image. Better viewed in colour.

Simonyan, et al



Motivation — Challenges of CNNs
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Data augmentation can help:
e Flip

Rotation

Translation

Crop

Added noise

Contrast

Brightness

Shear angle

Style transfer

GooglieNet

original greyscale silhouette edges texture



Motivation — Challenges of CNNs

e CNNs rely on texture too
much

(a) Texture image (b) Content image (¢) Texture-shape cue conflict
814%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indri 17.3% grey fox 26.4% indri
82%  black swan 33%  Siamese cat 9.6%  black swan Data augmentation can help:
e Flip
100100100100 99 g7 99 100100 gg - 100100100100 L Rotation
75 e Translation
& as 49 48 B e Crop
: e Added noise
= e Contrast
e Brightness
e Shear angle
; | e Style transfer
original | greysce silhouette texture L




Motivation — Challenges of CNNs

e CNN are easily fooled. All of
these are recognized as
faces

e CNN cannot easily
extrapolate. This requires
augmentation.




Motivation — Challenges of CNNs

e Kernels output scalars
o Little orientational and relative spatial relationships between features

e Max pooling loses valuable information
o  Weak spatial hierarchies between simple and complex object



Capsules — emulate neurons better with a capsule!

e Activation outputs a vector instead of a scalar
o Length: probability that the entity is present within its limited domain
o Direction: “instantiation parameters” of the input (e.g. pose, lighting and etc.)
o Even if the direction (pose) changes, the length (probability) may stay the same.
m Activity Equivariance

Single neuron 7 0.9 7 0.3
Single capsule with

2 neurons T
(Number rotated by 20°) 7 / /



Capsules — how does our brains work?

e We decompose hierarchical
representations and do pattern
matching.

e Takes avector as input and outputs a
vector

e Output vector encodes information about
feature transformations

O 0.95 O (.1,0,.4)
0.7 09 0.9 0.7 09

(7,0,04) (9,0,.4) (9.0,.8) (7.0,.4) (9,2 .4)

e The representation is view-angle
invariant.

Traditional Convolutional Layer Capsule Layer
(scalar output) (vector output)



Capsule in a nutshell

Takes a vector as input and outputs a vector



Capsules — how does our brains work?

e We decompose hierarchical representations and do pattern matching.

e The representation is view-angle invariant.

O face neuron

O 0° face neuron O +20° face neuron Q -20° face neuron

‘ face capsule 2 face capsule
(0.9, -20°) ", ] (0.9,+20°)

Traditional Convolutional
Layer
(scalar output)

Capsule Layer
(vector output)

Less parameters




Intuition of Capsule



How does a capsule work? — Traditional Neuron

X_n: a scalar from previous convolution layer. Represents feature activation level



How does a capsule work? — Capsule
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Weight matrices encode spatial and other relationships between lower level features

and higher level features.
Output vector is a predicted position of the higher level feature given the lower level

feature.



How does a capsule work?

M

A .
> Moy Copile ]

/

w&\; '> A Cl

J. | Squesh ()

A\

.

5 A
Mos
Non-negative scalar weight c_n is determined using “dynamic routing”.

Sum([c_1, ..., c_n]) =1
Len([c_1, .., c_n]) = #Number of the next level capsules



How does a capsule work? — Capsule vs. Traditional Neuron

Capsule vs. Traditional Neuron
Input from low-level
epeile el vector(u;) scalar(z;)
Affine -
Transform | 918~ waw a
Operation o i
Weightin i
SV | &=l | aj =T, wizi+b
Sum
Nonlinear sl s _
Activation | V9 = T+lis;I? sl hj = f(a;)
Output vector(v;) scalar(h;)




How does a capsule work? — Dynamic Routing

Procedure 1 Routing algorithm.

I: procedure ROUTING(@;;, 7, 1)
2 for all capsule 7 in layer [ and capsule j in layer (I + 1): b;; < 0.
3 for r iterations do

4 for all capsule i in layer I: ¢; + softmax(b;) > softmax computes Eq. 3
5 for all capsule j in layer (I 4+ 1): s; < 3. ¢;;0;);
6: for all capsule j in layer (I + 1): v; < squash(s;) > squash computes Eq. |
7 for all capsule 7 in layer [ and capsule j in layer (I + 1): b;; + b;; + 0;};.v;
return v,

e u_hat: output of previous level capsule

e r:routing iteration, (3 is recommended)

e | previous level

e v_j: output of next level capsule

e b_ij: temporary coefficient holder. At the end, it's stored to c_ij



How does a capsule work? — Dynamic Routing




How does a capsule work? — Squashing as nonlinearity

additional “squashing” unit scaling

e Length of short vectors => ~0
e Length of long vectors => ~1



How does a capsule work? — Squashing as nonlinearity

Squash: vector-to-vector nonlinearity

1.0
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Squashing scaler
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additional “squashing”
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0 1 2 3 4 5
Vector norm squared: |sj|2



CapsNet architecture — Encoder (classifier)
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e 2D Convolutional layer: Convert pixel intensities to the activities of local feature detectors
e PrimaryCaps layer (convolutional): Invert rendering process
e DigitCaps layer (fully connected):



CapsNet architecture — Decoder (reconstruction)

10<

]

512

FC
Rel U
] )

1024

..nd-"

.
.

Sigr_n_oi

FC

\

d

>784

-

=0 Masked [ = Representation of the reconstruction taraet



CapsNet architecture — Margin Loss

L =T} max(0,m™ — ||v;c||)2 + A (1 — Tx) max(0, ||vi|| — m_)2

e Calculate loss for each capsule at the top-level digit capsule,
o i.e.foreach class

T_k = 1 iff a class exists in an image

m+: 0.9

m-: 0.1

Lambda: down-weighting for initial learning iterations

Total loss: Sum([L_1, ..., L_k])



CapsNet architecture — Total Loss

Loss = Loss_margin + 0.0005 * MSE(reconstructed_image, input_image)



Experiment — MNIST
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e accuracy: 99.7%
e loss: 0.00855



CapsNet architecture — Interpretable activation vectors
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Experiment — CIFAR-10

e 32x32x3 image classification
e 10 classes, SOTA: 99%, Paper: 89.4%

CapsNet CIFAR-10
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Experiment — CIFAR-10
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Experiment — CIFAR-10
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Extra - smalINORB (Dynamic Routing with EM)
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e smalINORB dataset (48 600 images)

O

O 0 O O O

96x96 images

5 classes

10 instances per class
18 azimuths per instance
9 elevations per instance
6 lightning conditions



Extra - Dynamic Routing with EM

e EM algorithm AXBX(4x4+1) KXKXBXxCx4x4 DXEX4x4

instead of dynamic
routing

. Pose
Capsule ap -

s} Activation

Test set | Azimuth | Elevation
| CNN  Capsules || CNN  Capsules

Novel viewpoints 20% 13.5% 17.8%  12.3%
Familiar viewpoints | 3.7% 3.7% 4.3% 4.3%




Conclusion

e Capsules are convolutions with block non-linearity and routing
e Capsules require less parameters than conv (6.8M vs. 35.4M)
o However, the routing procedure involves slow iterations
e Capsules try to build better model hierarchical relationships inside
of internal knowledge representation of an NN.
e Nonetheless, capsule networks are not very popular yet.
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