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Abstract

Sleep is an essential function of the human body. It has a restorative effect on
both physical and mental health functions. Short and long-term consequences of
sleep disruption include changes to stress response, anxiety, and depression, as well
as deficiencies in memory, cognition, and performance.

Several methods have been developed to assess sleep. While polysomnography
is considered the golden standard of sleep assessment, researchers have focused on
alternate ways of tracking sleep using non-intrusive and less costly methods such
as actigraphy. Some studies suggested that screen activity from smartphones can
be an indicator of the sleep and wake states of an individual as smartphone usage
increased drastically in the last decade.

Mood disorders are mental health conditions that disrupt the emotional state of
individuals. Sudden and extreme mood changes interfere with the patients’ daily
rhythm in many ways, including their sleep behavior. Timely diagnosis of the severity
of mood disorders plays a critical role in their treatment process. Previous research
shows strong links between decreased sleep quality in patients suffering from mood
disorders.

This thesis uses the data from a digital phenotyping study, Mobile Monitoring of
Mood (MoMo-Mood), to analyze the sleep behaviors of patients with mood disorders
using some sleep parameters. In addition, a predictive model is built to investigate
the severity of depression using the information tracked via actigraph and bed sensor.
Lastly, the perceived sleep quality from questionnaires is compared with the data
tracked by these sensors to evaluate the differences in the three different groups
of patients: bipolar disorder, borderline personality disorder, and major depressive
disorder.

Keywords mood disorders, digital phenotyping, sleep assessment, actigraphy;,
depression
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1 Introduction

Sleep is undoubtedly an essential process for the health and well-being of humans.
Without sufficient sleep, our perception, memory, emotions, and thoughts become
unclear and incomplete [1]. The factors affecting sleep quality and the disorders
caused by inadequate sleep have been major focus areas of health research. According
to the study by Shim et al., depression, tiredness and anxiety are correlated with a
lower sleep quality [2]. Another study reveals that individuals with poor sleep quality
have higher risks of developing psychiatric disorders and lower quality of life [3].

Sleep quality is usually used as an umbrella term for some metrics that are related
to the characteristics of sleep such as total sleep/wake time, sleep efficiency, and sleep
onset time [4]. Analyzing sleep behavior requires an understanding of sleep quality
measures. Previous research on sleep quality focuses on quantifying these metrics
above using a diagnostic tool that is equipped with sensors to monitor the patients
and the subjective assessment of sleep. For example, O’Donnell et al’s investigation
of the relationship between subjective evaluations and objective measurement of sleep
in healthy adults indicates significant associations and correlations for total sleep
time and sleep onset latency [5]. On the contrary, some patients who are experiencing
depression and who reported sleep complaints were found to have no sleep problems
which might back the idea that subjective and objective sleep measurements of the
patients who have mood disorders are inconsistent.

Mood disorders are a group of psychiatric conditions that influence one’s emotions
and behaviors [6]. Major depressive disorder is known to be the most common mood
disorder, affecting 25% of women and half as many men throughout their lives [7].
Another common mood disorder is bipolar disorder which affects approximately 2.4%
of the population according to a large cross-sectional survey [8]. Bipolar patients
usually experience major depression periods along with manic episodes in which the
patient is highly energetic and euphoric [7]. There are also other mental disorders
that are more related to the personality than the mood of the person and they are
known as personality disorders. Although personality disorders are defined as a
different category under mental health conditions, patients suffering from personality
disorders usually experience mood swings which can vary in length and frequency
compared to mood disorders [9]. There is no single screening tool that diagnoses
all personality disorders, clinicians use tests that are specifically designed for each
disorder. For example, McLean Screening Instrument for BPD (MSI-BPD) and the
Structured Clinical Interview for DSM-IV Axis II are used to diagnose borderline
personality disorder (BPD) [10].

Accurate sleep measurement is crucial to assess the parameters affecting sleep
quality and evaluate their importance in sleep behavior. Polysomnography (PSG) is
widely accepted as the main objective sleep measurement method and it is used to
validate other methods thanks to its detailed assessment of sleep [11]. PSG monitors
numerous functions of the body: the electrical activity in the brain, eye movements,
heart activity, oxygen saturation, muscle activity, and respiratory activity [11, 12].
While PSG offers an accurate tracking of sleep, the cost, time as well as the procedure
required to utilize PSG make it an inconvenient method for some sleep studies [13].



Recent advances in wearable technology have allowed researchers to track sleep in a
portable, cheaper, and non-intrusive way. Actigraphy is a portable wearable that
monitors sleep /wake cycles and motor activities. Wrist actigraphy has been validated
by comparing its estimations of total sleep time, wakefulness after sleep onset, and
sleep efficiency with ones from polysomnography in many studies [14]. Nevertheless,
it is still found to be inconsistent when estimating other parameters and factors such
as sleep-onset latency and daytime sleeping [14].

With their increasing capabilities and availability, smartphones have become
yet another alternative measurement tool for digital health studies [15]. Although
wrist actigraphy has already eased the monitoring of patients, it has a couple of
shortcomings when it comes to reproducibility and scalability. Some studies [16] use
custom-made actigraph devices equipped with an additional sensor related to the
study’s objective and the costs of scaling the study to a larger group of participants
are still high due to actigraph prices. Phone activity data is also utilized in digital
phenotyping studies which investigate the daily rhythm of individuals [17, 18]

Against this backdrop, as the amount of sleep-related data stored in digital
platforms increases drastically, machine learning and artificial intelligence-based
methods have become the solutions to key challenges in digital health studies as
in many domains [19]. Traditional machine learning models rely on tuning a best-
performing model for the general population but this does not always yield the best
result in health and well-being where the model might need to be optimized at the
individual level since individual differences are key characteristics of health-related
data. In their study on the prediction of sleep-wake status using actigraphy, Khademi
et al. claim that personalized models are especially suitable for sleep data which
includes high variability in sleep patterns across individuals [20]. Their results show
that personalized models outperform the general models for around 30% of the
participants, noting that they might perform even better if the study is extended
to analyze activity detection and introduce fully unsupervised models which were
implemented in previous studies [21].
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2 Background

2.1 Sleep assessment methods

Several methods have been developed for assessing different aspects of sleep. This
section covers the most common methods used for measuring sleep parameters and
their advantages and disadvantages.

2.1.1 Polysomnography

Polysomnography (PSG) is considered the most detailed method for measuring
sleep [11]. PSG as a term was coined by Holland et al. to define the monitoring,
analysis, and interpretation of several physiological parameters such as brain activity,
muscle activation, eye movements, breathing activity, and oxygen saturation level
[22]. There might also be additional parameters depending on the aim of the study.
The comprehensive information about many different human body activities obtained
by PSG helps researchers to diagnose various sleep disorders such as sleep apnea,
insomnia, parasomnia, and REM sleep disorders [12]. Previous studies related to
sleep assessment of patients with mood disorders often include PSG as a method to
track sleep parameters.

Paul et al.[23] investigated the effects of nightmares on the sleep quality and
sleep architecture of BPD patients using sleep recordings from an ambulatory PSG
device. The sleep measure included many parameters including total sleep time,
sleep efficiency, sleep onset latency, REM latency, and the number of REM periods.

Although PSG is a painless and non-invasive method, it is often considered
intrusive due to the subject’s unusual sleep environment during the study. It requires
control and supervision of the subject under standardized conditions in a laboratory
setting. It is also expensive, time-consuming, and labor-intensive [13].

2.1.2 Ballistocardiography

Ballistocardiography is a non-intrusive method to monitor the movement in the body
caused by the ejection of the blood at each cardiac cycle [24]. Heartbeat can be
estimated from the oscillations that are captured using various types of sensors in
BCG such as piezoelectric, pressure, and capacitance sensors [25].

Although most studies focus on the diagnosis of cardiovascular diseases using
BCQG, it is also offered as an alternative method for sleep assessment in several studies.
In Mack et al’s work [26], a BCG-based monitoring system is compared to actigraphy,
using PSG as the gold standard. The study shows that BCG has better performance
in detecting sleep onset times than in actigraphy. In [25], wakefulness classification
is conducted using the heartbeats measured by a BCG sensor. Another work by
Guerrero et al. investigates the detection of sleep-related breathing disorders using a
pressure bed sensor that measures ballistocardiographic signals that are later used
to analyze respiratory movements [27].
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2.1.3 Actigraphy

Actigraphy is a non-invasive method for tracking motor activity [28]. An actigraph is
usually in the form of a wrist-worn device that includes an accelerometer to measure
movement, a clock to specify timestamps, and a non-volatile memory unit to store
information [29]. They can also be customized by integrating additional sensors.

Previous studies have focused on quantifying the agreement between sleep param-
eters measured by actigraphy and PSG. In Sivertsen et al’s work on elderly adults
treated for chronic primary insomnia, actigraphy is found to have high sensitivity for
detecting sleep while having a poor performance in detecting wakefulness [30]. Also,
actigraphy underestimated total wake time and sleep-onset latency and consequently
overestimated total sleep time and sleep efficiency. Compared with polysomnogra-
phy, actigraphy captured only part of the treatment effects on total wake time and
sleep-onset latency and failed to detect significant changes in sleep efficiency.

In their review of sleep assessment studies including subjects with chronic condi-
tions, Conley et al. claim that actigraphy may overestimate sleep and underestimate
wake, and the agreement may be lower in people with chronic conditions who often
have poor sleep and low activity levels [31].

2.1.4 Smartphone screen activity

Smartphones have been widely used in various digital phenotyping and sleep assess-
ment studies as their capabilities have improved greatly in recent years [15]. Unlike
PSG or actigraphy, they are accessible to the majority of the population. Smart-
phones are equipped with many different sensors such as accelerometer, pedometer,
gyroscope, GPS, and ambient light sensor which allow tracking of different types of
data [32]. Users can utilize smartphones to track various personal health information
thanks to the increasing number of health-related applications [33]. Common uses of
these applications include counting calorie intake, tracking physical activities, and
monitoring sleep patterns and quality.

A naive approach to estimate sleep intervals from smartphone data would be
done by tracking screen activity. The largest period of inactivity can be defined as a
sleep event. This approach assumes the last screen activity would occur right before
sleep and the screen would be active immediately after the user wakes up. Also,
this approach is not sensitive to any sleep disruptions which might occur during the
night.

In their work on identifying chronotypes from smartphone activity, Aledavood et
al. described the subjects’ active periods as the aggregated intervals of screen-on
events [34]. As chronotypes do not change often, they utilized the aggregated data
over longer periods of time.

2.2 Mood disorders and sleep

Mood is described as a persistent and prolonged feeling that is experienced inwardly
and affects all elements of a person’s conduct [6]. Mood disorders emerge in the
existence of disruptions in emotions. For example, extreme lows are defined as
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depression, and extreme highs are called mania. Sleep disturbances are common for
patients with all kinds of mood disorders. Likewise, mood disorders are diagnosed in
around 40% of patients with chronic sleep problems [7].

Major depressive disorder (MDD) is a mental disorder that is diagnosed in the
presence of pervasive depressed mood and lack of interest in pleasurable activities
[35]. Often, MDD has other implications such as low self-esteem, feelings of guilt,
inability to concentrate, and disrupted sleep [36]. A review of 63 studies shows that
the lifetime prevalence of MDD varies from 2% to 21% for different countries in the
world [37]. According to the World Health Organization (WHO), MDD will have
the largest share in the global burden of disease by 2030 [35]. Sleep disturbance
is considered a symptom of MDD and most patients have irregular sleep patterns.
Sleep regulation can act as a precursor for depressive episodes in some individuals
with MDD [7].

Bipolar disorder (BD) is a severe mood disorder that is characterized by fluctua-
tions in the mood states of an individual. The global lifetime prevalence of bipolar
disorder is estimated to be more than 1% [38]. BD is also a significant cause of
disability for the young population as it causes cognitive and functional impairment
as well as an increased suicidal tendency. In BD patients, decreased need for sleep is
observed during the mania periods and total sleep time is shorter than usual [39].
The study by Barbini et al. (1996) shows significant correlations between shorter
sleep duration and manic symptoms [40]. In Perlman et al’s work [41], depressive
symptoms were predicted by the shorter sleep duration in patients with bipolar I
disorder.

Borderline personality disorder (BPD) is a mental disorder with a long-term
pattern of unstable mood regulation, impulse control, social relationships, and self-
image [42]. It is also associated with a high suicide rate and intensive treatment
use, which makes early diagnosis very crucial. The prevalence of BPD is estimated
to be around 1.6% of the general population according to the surveys [43]. BDP
patients often experience disturbances in sleep continuity and altered REM sleep
[44]. In Selby’s work, BDP was found significantly associated with some chronic
sleep problems such as sleep onset difficulties and difficulty in maintaining sleep [45].

2.2.1 Patient Health Questionnaire (PHQ-9)

The Patient Health Questionnaire (PHQ) is a self-report questionnaire consisting
of multiple-choice questions that assess the presence and severity of mental health
disorders [46]. PHQ-9 is the 9-item module that includes questions about common
depression-related symptoms, such as feeling down or hopeless, having difficulty
sleeping, and having difficulty concentrating. The PHQ-9 score can be obtained by
summing up the answers to each question that can be scored from 0 (not at all) to 3
(nearly every day) and the total score can range from 0 to 27.

The reliability and validity of the PHQ-9 have been assessed in many previous
studies. Initially, Kroenke et al. claimed that a PHQ-9 score of 10 or higher had
a high accuracy rate for detecting major depression, with a sensitivity of 88% (the
ability to correctly identify those with the condition) and a specificity of 88% (the
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ability to correctly identify those without the condition) [46]. In the study by Beard et
al. [47], a large set of patients with MDD, BD, and other mental disorders (N=1023)
were administered PHQ-9 and other several self-reports of depression and anxiety.
The PHQ-9 test showed 83% sensitivity and 72% specificity for scores of 13 and
higher. Sun et al. investigated the validity of the questionnaire for patients with
MDD [48]. First, patients (N=109) were administered an initial PHQ-9, and half
of the subjects (N=54) were evaluated again after 2 weeks. The Cronbach’s alpha
coefficient was found to be 0.892 and the correlation coefficient of the initial test and
retest was 0.737.

By using the PHQ-9, healthcare professionals can assess the severity of the
depression of a patient and determine the appropriate course of treatment. This may
include referral to a mental health specialist, prescribing medication, or recommending
therapy. The PHQ-9 can also be used to monitor a patient’s progress over time, as a
decrease in the score may indicate improvement in symptoms. The table below shows
the corresponding depression severity and treatment action for each score group [49].

PHQ-9 score Severity level Action for treatment

<H Minimal None

5-9 Mild Monitoring, PHQ-9 retake at follow-up

10-14 Moderate Treatment planning, counseling, or phar-
macotherapy

15-19 Moderately Pharmacotherapy treatment, psychother-

severe apy

>19 Severe Immediate pharmacotherapy treatment
and referral to a mental health specialist
in case of inadequate response to therapy

Table 1: Classification of PHQ-9 and Proposed Actions for Treatment
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2.2.2 Digital phenotyping

The phenotype of an organism refers to the collection of its observable traits that
stem from the genetics as well as the environment of an organism [50]. When it
comes to human beings, behavior is a particularly challenging phenotype to delve
into due to its temporal and contextual dependence [51]. While orthodox approaches
strived to explore it with questionnaires or interviews, digital devices are now an
indispensable part of human life and hence offer new methods to understand human
behavior. Indeed, since almost all digital devices that humans interact with, including
smartphones, computers, wearables, and the internet in general, collect or generate
data that can be informative as to the behavior and health of individuals, the term
“digital phenotyping” is regarded as a novel technology for data collection in medicine
and health research [52].

While there are definitions of varying scope in the literature, digital phenotyping
is described as the moment-by-moment quantification of the individual-level human
phenotype, in situ, using data from personal digital devices [53]. For instance,
biometric and personal data such as voice, pulse rate, or finger taps can be tracked
from an individual’s smartphone and then analyzed to measure behavior, physiological
states, and cognitive functioning [54]. In this sense, the data that are tracked can
be both active and passive. While active data is where an individual is required
to perform a task or act in a certain way to capture data, such as the completion
of a questionnaire, passive data is captured without an explicitly conscious user
engagement, namely that no action other than the daily activity of the individual
[55].

Digital phenotyping has been utilized in many studies under health and behavioral
science and the number of such studies has been rising as the availability and
capabilities of the sensors for data collection increase.

Mobile Monitoring of Mood (MoMo-Mood) pilot study by Triana et al. [56]
investigated the use of smartphones and wearables for data collection from subjects
with MDD and controls. In the study, the data were collected through five different
sources: psychological questionnaires, smartphones, experience sampling, actigraph,
and bed sensor.

Aledavood et al. [34] identified the daily rhythms of individuals from the data
collected through a smartphone app and explored the relationship between social
networks and chronotypes. In the study, screen-on events from the smartphone apps
for data collection were used as activity identifiers and the frequency of such events
was analyzed to create daily activity patterns which are then classified into two
chronotypes: larks (above average morning activity) and owls (above average night
activity). After constructing the social networks for each subject on call and text
data, owls were found to be more central in the social networks and have larger
personal networks.

Zulueta et al. [57] investigated the relationship between the severity of mood dis-
turbance and mobile phone keyboard activity to explore the use of passively collected
data to predict changes in mood states. Subjects were given a customized mobile
phone with a keystroke tracker and they were also given Hamilton Depression Rating
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Scale (HDRS) and Young Mania Rating Scale (YMRS) on a weekly basis. Then,
linear mixed models with predictor variables such as average typing delay, backspace
and autocorrect rates and the total number of typing sessions were implemented
to predict the HDRS and YMRS scores of the subjects. As a result, the keystroke
activity predicted both manic and depressive symptoms of participants, which could
be helpful to identify mood changes in patients with bipolar disorder.

In their meta-analysis on the use of actigraph for the evaluation of mood disorders,
Tazawa et al. analyzed 38 studies that utilized actigraphy to compare patient and
control groups as well as pre-treatment and post-treatment data [58]. Patients with
depression were found to be less active during the day and they had longer time
spent awake after sleep onset. Also, total sleep time and sleep latency were longer in
euthymic patients than in healthy controls.
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3 Materials and Methods

This chapter presents the dataset description and the methods used in this work.

3.1 Dataset description

In this work, the data collected during Mobile Monitoring of Mood (MoMo-Mood)
study is used as the dataset. The MoMo-Mood study was carried out in collaboration
with Aalto University, University of Helsinki, and Helsinki University Central Hospital
in order to evaluate the effectiveness of wearables for quantifying the behaviors and
the states of patients with psychiatric disorders [56].

Previous research on the pilot version of the MoMo-Mood study focused on analyz-
ing the subjects in two groups as there were fewer subjects (N=37) [59, 60]. Alakorkko
estimated the sleep duration estimates using the bed sensor data, calculated the
correlation between different questionnaires in MoMo-Mood and showed that the
sensors used in the study provided similar information about the daily rhythm of the
subjects [59]. Hakala classified the controls and patients based on noise, location,
and smartphone screen data using different techniques such as LDA, decision tree,
and k-means clustering [60]. Recently, Ziaei Bideh investigated the behavioral pat-
terns of the subjects using call, message, and location data from the same dataset [61].

The current dataset includes 164 participants from the following different groups;
e 31 healthy controls

21 patients with bipolar disorder (BD)

27 patients with borderline personality disorder (BPD)

« 85 patients with major depressive disorder (MDD)

The study included two different phases;

o an initial active period in which the participants were required to answer daily
surveys related to their moods

e a passive period in which the participants filled psychological surveys like the
PHQ-9

In addition, the participants were asked to use a ballistocardiographic sensor,
Murata SCA11H node, and an actigraph, Philips Actiwatch 2, to track their daily
sleep and activity levels. Also, a smartphone data collection tool called AWARE was
installed on their smartphones to track smartphone use activity from several built-in
sensors. Niima study platform, developed at Aalto University, was used to gather
this dataset [62]. The details of each sensor and the features of the collected data
are described in 3.1.1.

There are six different data sources in the study which can be categorized into
two categories; sensors and questionnaires.
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3.1.1 Sensors

The sensors used to monitor the sleep activity of the patients are explained in this
subsection. Also, the data format of each sensor is described.

Philips Actiwatch 2 Philips Actiwatch 2 is a commonly used wrist-worn actigraph
that can track physical activity, sleep, and the intensity of photopic light [63]. The
device logs information at 30 seconds epoch length. The device has been used in
various studies related to the detection of sleep duration and validation of sleep
monitoring devices [64, 65].

Figure 1: Philips Actiwatch 2 [63]

In their study on the relationship between sleep quality and fat mass in college
students, Kahlhofer et al. assessed the sleep quality and total sleep duration using
Actiwatch 2 [66]. Lambiase et al. utilized Actiwatch 2 in a study to assess waking
movement behavior in older women [67]. The total movement volume and physical
activity collected through the actigraph were compared to another wrist-worn acti-
graph, namely ActiGraph GT1M, and the physical activity from the participants’
self-reports. Actiwatch 2 was found to be useful for assessing activity patterns and
ranking total movement volume.

Attribute Description

user Anonymized user id

device Identifier of the device used to capture the data

time Timestamp

activity Proprietary measure of activity via built-in accelerometer
white light [luminance measure (lux/x?)

interval status  Active/Rest status based on the proprietary algorithm

Table 2: Features of the data collected by Actiwatch 2
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Attribute Description

user Anonymized user id

device Identifier of the device used to capture the data
time Timestamp

hr Heart rate (beats per minute)

IT Respiration rate (breaths per minute)
sV Heart stroke volume

hrv Heart rate variability

ss Signal strength

status Bed occupancy

bbt0 Beat-to-beat time

bbt1 Beat-to-beat time

bbt2 Beat-to-beat time

Table 3: Features of the data collected by Murata SCA11H bed sensor

Murata SCA11H Murata SCA11H is a non-intrusive, ballistocardiographic bed
sensor used to track various measurements related to body functions such as circulation
and respiration [68]. The sensor includes an accelerometer to collect acceleration
data from the movement of the bed that occurs during cardiac activity. The sensor
records each parameter at 1Hz frequency and communicates to a server via WiFi for
data transfer.

The calibration of the sensor plays an important role in the accuracy of infor-
mation. The calibration requires four parameters to be set; background noise level
during bed occupancy and minimum, maximum, and typical amplitude of BCG
signal from an occupied bed [59]

\ .i‘/—\

Figure 2: Murata SCA11H

As the status column indicates bed occupancy status, it is expected that the values
should stay stable over short periods since it is likely that the status would last for
some time. For example, if the bed is occupied during some time at night, there should
not be too frequent changes in status. However, there are some counterexamples as
shown in the below figure.
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Figure 3: Sleep status changes during a night for the control G96iHU6Pr69i

Given that the bed is occupied when the status value is 1 and empty when the
value is 0, Figure 3 indicates that the subject left the bed many times during the
night. While there might be a few wake states during the night, the high number of
changes in status shows that it is likely that the sensor was not calibrated properly.

AWARE Framework AWARE is an open-source toolkit to collect context on
smartphones [69]. It helps researchers to utilize the information that can be captured
with various sensors in mobile devices and it is available as an application for both
Android and iOS devices. In AWARE, the data is stored in the local device for most
small-scale studies but it is also possible to upload the sensor and plugin data to
the cloud in a large-scale study. AWARE uses one-way hashing to encrypt data that
include personal identifiers.

AWARE tracks data from three different types of sources:

o hardware: accelerometer, photometer, magnetometer, and more
» software: user’s call and message activity, calendar

e human-based: questionnaires, voice or gesture input

In this thesis, only the data from the screen sensor is utilized to capture active
and passive periods of smartphone use.
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Attribute Description

user Anonymized user id

device Identifier of the device used to capture the data
time Timestamp

datetime Datetime format of the timestamp
screen_status  Phone screen status (off, on, locked, unlocked)

Table 4: Features of the screen activity data collected through AWARE

3.1.2 Questionnaires

A set of questionnaires were filled out by the subjects during the study period.
The timing of the questionnaires was divided into morning and evening. Morning
questionnaires were mostly about the mood at wake state and the quality of the
previous night’s sleep while the evening questionnaires included modified questions
from multiple known questionnaires including, The Patient Health Questionnaire
(PHQ) [46], Perceived Social Support Scale-Revised (PSSS-R), Morning Evening
Questionnaire (MEQ), and Adult ADHD Self-Report Scale (ASRS) [70], Overall
Anxiety Severity and Impairment Scale (OASIS), and NEO Five Factor Inventory
(NEO-FFI). The scores of each questionnaire were calculated as the sum of the
responses to the items. In this work, only the morning questionnaire was analyzed
as it contained items related to the subject’s sleep [56].

3.2 Methods

This section presents the methods applied to answer the research objectives mentioned
earlier.

3.2.1 Defining the features related to sleep behaviour

As the aim of this study is to investigate the differences in sleep behaviors of patients
with different mood disorders, some sleep parameters are extracted from the data.
The definitions of these parameters and how they are retrieved are explained below.

Total sleep time (TST)

Total sleep time is defined as the time spent sleeping during the night. It is an
important sleep parameter as it might indicate abnormal sleeping behaviors such as
insomnia, which is characterized by difficulties in staying asleep. TST is also used in
calculating sleep efficiency, which is another key parameter in sleep studies [71].

In this work, total sleep time is calculated by checking the information tracked
by the sensors. Each sensor used in the study has a different way to indicate the
sleep event. The day period is adjusted from 3 p.m. to the next day’s 3 p.m. to
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avoid miscalculations for sleep events starting after midnight.

In actigraph, status column has three possible values;

— ACTIVE: high activity, the subject is awake
— REST: low activity, the subject is resting

— REST-S: low activity, the subject is likely to be sleeping

For actigraph data, the algorithm for extracting the sleep interval uses the largest
difference in time for two consecutive records with different status values, defining
the first point as bedtime and the last as wake-up time.

Similarly to actigraph, the bed sensor has a status column that indicates bed
occupancy. Status column in the bed sensor has four possible values;

— 0: low signal, the subject is not in bed
1: ok signal, the bed is occupied and the subject is likely to be sleeping
2: high signal, the bed is occupied but the subject is likely to be awake

3: signal overload, the measured heart rate is close to the maximum value

For smartphone screen activity, there are four possible values for the activity
status of the participant.

0: screen is off
1: screen is on
— 2: screen is locked

3: screen is unlocked

In screen activity data, the largest inactive period in a day is treated as the sleep
interval. It is possible to divide the status codes into two groups; 0 and 3 are possible
bedtime indicators while 2 and 4 represent activities that might occur at wake-up
time.

Another approach for capturing the sleep event from screen activity could be
limiting the bedtime and wake-up time status codes to 2 and 3, respectively.
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Wakefulness after sleep onset (WASO)

Wakefulness after sleep onset is defined as the amount of time a person spends time
awake during the sleep period [71]. The unit for this parameter is minutes. WASO
reflects the fragmentation of sleep which refer to the awakenings during sleep.

In this work, after classifying sleep and wake states for all participants, WASO is
calculated by comparing the white light illuminance values during the sleep states
with a threshold value. The threshold value refers to the lowest illuminance value
that would indicate that the person has turned the lights on. The threshold is
decided after an analysis of the luminance values received by the actigraph during
the night periods in which the subjects were asleep. The threshold was found as 40
lux which does not contradict the previous research. Dautovich et al. defined dim
light exposure as lux values smaller than 100 in their work about the effects of light
exposure in healthy adults’ sleep [72]. If the luminance value is higher than 40, it is
very likely that a light source is activated which could trigger the awakening of the
subject.

Sleep efficiency (SE)

Sleep efficiency is defined as the ratio of effective sleep time and total sleep time. It
refers to the percentage of total time spent sleeping while being in bed and it is used
to determine how well the sleep was [71].

Unlike in previous studies, sleep efficiency is calculated as the percentage of total
sleep which was not disturbed by a wake-up event. The wake-up events which are
captured to calculate WASO are subtracted from the TST. Effective sleep time is
defined as the sleep period under luminance values lower than the threshold, meaning
the lights were off.

Sleepeffective = Sleeptotal — waso

Then sleep efficiency would be;

Sleepeffective
Sleeptotal

Based on the formula above, sleep efficiency can only take values between 0 and
1. A sleep efficiency score of 0 would indicate that the subject was awake during
the whole sleep event, which is unlikely to happen. A score of 1 would mean that
the subject did not experience any sleep disturbance due to exposure to white light
during sleep. Previous research suggests a good sleep efficiency score to be at least
80%, indicating scores less than 80% cause risks to the health and well-being of
the individuals. Dew et al. claimed that sleep efficiency below 80% increases the
mortality risk in older adults [73]. Another study on anxiety symptoms and sleep
efficiency in older women used the same cutoff score for defining good sleep [74].
Akerstedt et al. suggested a "rather good" sleep would occur at a sleep efficiency of
87% or more while a "rather poor" sleep occurs at an efficiency score of 57% or less
[75].

sleepers =
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3.2.2 Predicting the depression severity using the information from the
sensors

Another research question of this thesis is to investigate whether the severity of
depression can be predicted using the data obtained by the sensors for sleep assessment,
including actigraph and bed sensor.

Early detection of increasing frequency of depressive episodes from passively
collected data can help the patients to receive treatment at the early stages of a mood
disorder which makes the treatment more manageable as it reduces the emotional
and financial burden [76]. It also allows patients to access support and resources
which help them to manage their symptoms and improve their overall quality of life.

Actigraph and bed sensors are non-invasive tools that are used to collect data
on a person’s activity levels and sleep patterns over time. This data can provide
valuable insights into an individual’s overall well-being, including their mood and
level of distress. A machine learning model that can effectively analyze this data
may be able to identify patterns or trends that are associated with different levels
of depression severity, which could be useful for identifying early warning signs of
depression and for monitoring treatment progress.

The following subsections explain the main concepts of the prediction model
implemented for this work.

Decision trees

Decision trees are a non-parametric used mainly for supervised classification and
regression tasks [77]. A decision tree predicts the value of a target variable by learning
decision rules inferred from the features in the data. These features are called predic-
tor variables [78]. In decision trees, the number of parameters and the structure of
the model are decided by the given data rather than an assumption of the distribution.

Decision trees are commonly used for [78];

o Feature selection: It refers to the selection of relevant variables in the data

o Assessing the relative importance of features: After identifying the relevant
variables, it is important to understand how each affects the model output.
The importance of a feature is based on the loss of the model accuracy when
the variable is removed from the model. Usually, the more a variable has an
effect on the accuracy, the greater the importance of that variable is.

« Handling of missing data: A common way to deal with missing data is to discard
the records which contain missing values in any dimension of the data. However,
this causes a loss of information in the data and can result in increasing the
bias of the model. Decision trees can be used to treat the missing values as
a target variable, to predict them based on the present data which contain
information.

o Prediction: Most popular usage of decision trees is to predict the values of a
target variable based on a set of predictor variables.
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o Data manipulation: It is possible to split the complex categories and break
them down into more manageable parts using decision trees.

Depending on the use case, the performance of decision trees can be increased
by combining the results of multiple trees [79]. There are several ways to combine
decision trees including bagging, boosting, and random forests.

Bagging, or bootstrap aggregating, involves training multiple decision trees on
different subsets of the data and then combining the results of the individual trees
to make a final prediction [80]. Boosting involves training multiple decision trees
in a sequence, where each tree is trained on the errors made by the previous tree
in the sequence [81]. Random forests combine both bagging and feature bagging,
to train multiple decision trees on different subsets of the data and aggregate their
predictions by often averaging [82].

A previous comparison of three methods [83] show that in cases with little or no
classification noise, random forest is competitive with (and perhaps slightly superior
to) bagging but not as accurate as boosting. On the other hand, if there is a significant
amount of classification noise, bagging performs much better than boosting, and
sometimes better than randomization.

Overall, combining decision trees can improve the performance of a model by
reducing overfitting and improving the generalizability of the model. However, it
is important to carefully tune the parameters of the combined model in order to
achieve the best possible performance.
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entropy = 0.926
samples = 537
value = [354, 183]
class =0

bmi < 26.45 bmi < 28.15
entropy = 0.72 entropy = 0.977
samples = 342 samples = 195
value = [274, 68] value = [80, 115]
class = 0 class =1
bmi<9.1 age < 27.5 glucose < 145.5 glucose < 158.5
entropy = 0.201 entropy = 0.833 entropy = 0.82 entropy = 0.9
samples = 96 samples = 246 samples = 43 samples = 152
value = [93, 3] value = [181, 65] value = [32, 11] value = [48, 104]
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VAR
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Figure 4: A visualization of a decision tree model for classifying diabetes [84]

XGBoost

XGBoost, also known as Extreme Gradient Boosting, is an ensemble tree method that
is implemented using the gradient boosting framework [85]. It is a popular machine
learning algorithm used for classification and regression tasks and has been widely
applied to various fields such as computer vision, natural language processing, and
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finance. XGBoost has gained widespread adoption due to its ability to achieve state-
of-the-art results on many different types of data, and its computational efficiency.
The algorithm works by iteratively learning a series of weak models, which are then
combined to produce a strong, ensemble model [85]. XGBoost uses decision trees as
its base learners, and introduces new features such as regularization and sparsity-
aware splitting, to improve the predictive performance of the model. The algorithm
differs from standard gradient-boosted decision trees as it is a more regularized form
of gradient boosting which allows better control on overfitting hence increasing model
performance [85].

XGBoost algorithm has also been widely used in medical applications in which
a decision is made through the output of a prediction model. Budholiya et al.
have utilized a Bayesian-optimised XGBoost classifier to predict heart disease in
patients [86]. In their work on improving the diagnosis of depression, Sharma et al.
implemented an XGBoost classifier to detect mental disorder cases [87].

Data preprocessing

Data preprocessing is a crucial step in any data analysis or machine learning pipeline,
as it involves a range of techniques to clean, transform, and prepare the raw data
for further analysis [88]. This process is necessary as real-world data is often noisy,
incomplete, and inconsistent, which can hinder the performance of downstream tasks
[89]. Data preprocessing techniques aim to address these issues by improving the
quality and homogeneity of the data, and by making it more suitable for the intended
analysis or modeling. Common data preprocessing techniques include data cleaning,
data scaling, data reduction, and data transformation [90]. These techniques are
crucial for ensuring the validity and reliability of the downstream analysis, and for
enabling the effective use of machine learning algorithms.
In this work, the following preprocessing techniques are involved:

« Data cleaning: the missing information in the data is removed, the noisy data is
smoothed, and outliers and other inconsistencies in the data are removed. The
data collected in the MoMo-Mood study contains outliers due to inaccurate
measurements or incorrect calibration of the sensors.

» Data integration: refers to combining the data from multiple sources to provide
a unified view of the whole dataset. The dataset is not collected through a
single channel in some real-world scenarios. For example, in the MoMo-Mood
study, the subjects are given unique actigraph devices which collect the data
separately from each other, then the data from each device is integrated to
form a single dataset.

» Data scaling: Each feature in the data collected by the sensors has its own
statistical distribution. For example, the data collected by the actigraph have
different ranges of values for the light sensor and daily activity. As both features
are included in the training data, they are normalized to be interpreted on the
same scale.
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o Data transformation: The data used in supervised machine learning tasks
include a label which is the target variable for the prediction. In this work,
labels that reflect the PHQ9 score group are created using the scores of each
PHQ9 item as the MoMo-Mood dataset does not contain any labels that provide
context for the depression severity.

The classification model

The model implemented in this work is based on a supervised classification task in
which the labels 0 and 1 represent moderate and severe depression, respectively. As
mentioned in 2.2.1, PHQ-9 is a valid instrument for measuring depression severity
therefore the classes of the scores can be used as labels in this task. The classes are
divided according to the severity level information in 2.2.1;

e 0: mild and moderate levels combined
e 1: moderately severe and severe levels combined

As there have been multiple instances of PHQ-9 surveys during the study for
the participants, some participants have multiple PHQ-9 scores. The scores from all
survey instances are utilized to create the dataset for this prediction model. The
below table shows the distribution of PHQ-9 scores among different groups.

PHQ-9 Score Group (%)

Subject Group N 1 2 3 4 5

Control 271 9483 4.80 037 0.00 0.00
BD 100 4.00 21.00 24.00 18.00 33.00
BPD 124 8.06 19.35 20.16 18.55 33.87
MDD 577 9.36  22.88 29.64 1594 22.18

Table 5: Distribution of severity groups of all PHQ-9 tests among different subject
groups

Since each PHQ-9 score represents the person’s mood within the past two weeks,
actigraph and bed sensor data tracked in that interval are combined to capture the
relevant data for a specific PHQ-9 score. As the epoch lengths of the actigraph (30
seconds) and bed sensor (1 second) differ, the data from the bed sensor is resampled in
30 seconds bins to accurately match with actigraph data. The datasets are matched
by the epoch timestamp, using the subject identifier as the key and a tolerance period
of 30 seconds in case of a missing epoch. The PHQ-9 score data is also combined
following a similar logic, checking the matched data for timestamps up to 2 weeks
prior to the score date.

Then, a decision-tree-based boosting algorithm, XGBoost, is implemented to be
trained using the data from the actigraph and bed sensor to predict the depression
severity of subjects. Before training the model, the subjects are divided into two
cohorts: training and test. The training cohort includes 80% of all subjects (N=40)
whose data is used to train the model. The test cohort includes the remaining 20%



27

(N=11) whose data is used to evaluate the model. Using separate cohorts allows for
assessing the generalizability of the model and controlling the bias which might be
introduced if a subject’s data is used for both training and testing.

The prediction model trained using the data from the actigraph and bed sensor
is evaluated using several metrics commonly used in similar classification tasks,
including accuracy, precision, recall, and F'1 score.

Accuracy is the proportion of correct predictions made by the classifier out of all
the predictions made. While accuracy is a useful metric in evaluating classifiers, it
can be misleading in cases where the classes are imbalanced, as the classifier may
achieve high accuracy by simply predicting the majority class all the time [91].

Precision is calculated as the number of true positive predictions divided by the
total number of positive predictions made. It is useful for evaluating the classifier’s
ability to correctly identify positive instances. In this work, precision refers to the
proportion of highly depressed subjects out of all subjects that are classified as highly
depressed by the model.

Recall is calculated as the number of true positive predictions divided by the
total number of positive instances in the data. It refers to the proportion of highly
depressed subjects that were correctly identified by the model.

F1l-score is the harmonic mean of precision and recall. It is calculated as the
product of precision and recall divided by the sum of precision and recall. The fl-score
is a useful metric for evaluating classifiers when the goal is to balance precision and
recall.

The choice of evaluation metric depends on the specific goals of the classification
task. In some cases, maximizing accuracy may be the most important goal, while
in other cases, maximizing precision or recall may be more important. Since the
aim of the classifier is to correctly detect the subjects whose PHQ-9 scores fall into
moderately severe and severe categories, it is desired to minimize the false negatives as
the consequences of identifying a highly depressed subject as mildly depressed would
cause more harm to the treatment process. On the other hand, classifying subjects
with mild depression as highly depressed could result in unnecessary treatment,
increasing the costs and the chances of unwanted side effects.

Another aspect of model evaluation is to understand how the model’s predictions
are decided and how each feature contributes to these predictions. The need for
model interpretability has increased as machine learning models are present in many
decision-making systems in a wide range of domains including healthcare [92]. Model
interpretability is particularly important in healthcare as the consequences of incorrect
or misunderstood predictions can be severe [93]. For example, if a machine learning
model is used to predict the likelihood of a patient developing a particular disease, it
is important that the model’s predictions can be understood and trusted by both
the patient and the healthcare provider. This is because the patient may make
treatment decisions based on the model’s predictions, and the healthcare provider
may use the model’s predictions to guide their treatment recommendations. Also,
model interpretability is needed for regulatory purposes to ensure the predictions
are transparent and trustworthy [94].

Elshawi et al. [95] compared five global and two local interpretability techniques
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in a machine learning model implemented for predicting hypertension. They found
the global techniques had an edge over local techniques as they can explain the entire
set of features. In applications in which the risk of a disorder is predicted, it is more
important to understand the main risk factors than each factor’s role in the outcome.
Local explanations of individual cases can be combined to get a global interpretation,
but this approach would be computationally expensive.

In this work, model interpretability is explained using Feature Importance and
Shapley Values. Feature importance is a global interpretability technique as it
evaluates each feature’s importance by the increase in the model’s prediction error
when the feature is absent [96]. Shapley value explanation is a local interpretability
technique that is derived from game theory [97]. Each feature in the model is assumed
to be a player in a game where the prediction is the payoff. The Shapley value fairly
distributes the payoff among the features by evaluating the model’s performance
when each feature is included or excluded in a set of features.

3.2.3 Analyzing the perceived sleep quality from morning survey re-
sponses

During the course of the MoMo-Mood study, the subjects were asked to answer some
questions at different stages of the day. In the morning questionnaire during the
active phase of the study, they received a couple of questions about the previous
night’s sleep.

e Q1: Did you sleep well?
e Q2: Do you feel well-rested?

e Q3: How many hours did you sleep last night?

Q1 and Q2 have a 7-point Likert scale for the responses, ranging from 1 (strong
disagreement) to 7 (strong agreement). Q3 has an interval scale as the options start
from less than 5 hours up to more than 10 hours with hourly intervals in between.

All three questions are used to reflect the perceived sleep quality of the participants.
A correlation analysis is conducted between the survey answers and the sleep features
from the sensors to reveal possible relationships between perceived sleep quality and
actual sleep quality tracked by the sensors.
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4 Results

This chapter includes the findings from the sensor analyses using the methods
described in the section 3.2.

4.1 Total sleep time

Daily total sleep time is one of the most common features used in studies related to
sleep quality. Previous research shows bidirectional links between mood disorders
and reduced/increased total sleep time [98] depending on the type of the disorder.

Total sleep time is calculated as the difference between the bedtimes and the
wake-up times. It is calculated by the methods explained in 3.2.1 for each sensor.
In order to compare the sleep amount tracked by each sensor, each subject group is
filtered so that the included participants are tracked by all three sensors on a given
day.

Subject group N  Data length (rows)

control 12 2155
bd 12 1634
bpd 15 1120
mdd 38 6011
all 7 10920

Table 6: Statistics of the filtered data
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Figure 5: Total sleep amount in each sensor for all groups
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Figure 5 shows the distribution of total sleep time in each sensor for all subject
groups. Total sleep times tracked by the bed sensor are lower while actigraph has
the highest values. The median sleep amount in the bed sensor is also the lowest
compared to the other two sensors in all groups. The groups share a similar pattern
when it comes to the distribution of sleep amounts in each sensor.

Figure 6 below shows the comparison of two different approaches to detect the
sleep event for screen activity mentioned in the section 3.2.1. The median TST seems
to be higher in the new approach as the nightly sleep is no longer disturbed as often
as in the old approach where the longest inactive period was defined as sleep. In the
new approach, periods during the night spent inactive that are longer than 1 hour is
also counted in nightly sleep. The dispersion seems to remain the same for almost
all subject groups.
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Figure 6: Comparison of two approaches for calculating sleep interval from screen
activity
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4.2 Difference in bedtime

Actigraph is selected as the ground truth for bedtime comparisons since it provides
the most stable sleep status for a user. In the bed sensor, there are abrupt changes
in status which make it harder to detect the sleep event accurately.

The regular interval for data collected by the bed sensor is one second. Figure 2
is an example of the sudden status changes in the bed sensor.

Comparing total sleep amounts is not sufficient to understand whether the in-
formation from the sensors agrees with each other. Bedtime and wake-up times
can be very different although the sleep amount is close for the two sensors. Figure
7 shows the distribution of differences between the actigraph’s bedtime and bed
sensor’s bedtime for all groups. MDD patients have the largest dispersion while the
differences in the control group and BD patients vary less. The bedtime differences
are shorter than half an hour for the controls and BD group. For BPD and MDD, it
is slightly over 30 mins.
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Figure 7: Difference of bedtimes in hours for actigraph and bed sensor
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In Figure 8, the difference in bedtimes in screen and actigraph is shown. The
median difference is around half an hour for the control, BPD, and MDD groups
while it is close to an hour for the BD group. Also, the dispersion is largest for the
BD group. Compared to Figure 7, the distributions of the control and MDD groups
remain very similar.
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Figure 8: Difference of bedtimes in hours for actigraph and screen activity
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4.3 Sleep efficiency and time spent awake after sleep onset

As defined in the section 3.2.1, sleep efficiency (SE) and time spent awake after sleep
onset (WASO) are commonly used parameters for determining sleep quality. As sleep
disturbances are a well-known symptom of mood disorders, our hypothesis is that
the subjects in the control group would have lower WASO and higher sleep efficiency.
The figures 9 and 10 show the cumulative distribution of the values for each of the
parameters. It is important to note

As expected, both figures reflect a similar pattern as sleep efficiency is calculated
using WASO and TST. Controls have the highest proportion of smaller values of
WASO as was stated in our hypothesis. However, it does not apply to all the data
points as there are also controls with a WASO greater than a patient in another
group. MDD patients have the highest proportion of smaller WASO values in the
patient groups and the highest values of WASO were observed in BPD patients.
At least 70% of the WASO values are shorter than one hour in all subject groups.
Extreme values of WASO (higher than 2 hours) are present in around 20% of the
BPD and MDD groups. In controls and MDDs, they only occur in around 5% and
10% of the data, respectively (Figure 9).
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Figure 9: Empirical cumulative distribution function of WASO
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In Figure 10, sleep efficiency scores obtained after subtracting WASO from total
sleep time are given. Controls are MDD groups have the largest share of a sleep
efficiency score of 1 which means there were no wake-up events during the course of
the sleep.
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Figure 10: Empirical cumulative distribution function of sleep efficiency
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4.4 Predicting the severity of depression

As discussed in 3.2.2, this work aims to show whether the data received by sleep
assessment tools could indicate the severity of depression of an individual. This
section presents the evaluation of the classification model using the metrics described
in the model subsection in 3.2.2.

Figure 11 illustrates the normalized confusion matrix for the test set. Normaliza-
tion allows for easier comparison of the performance of the classifier across different
classes, as it removes the influence of class imbalance. From the axes, it is seen that
the areas top-left and bottom-right define the true negatives (TN) and true positives
(TP), respectively. Top-right and bottom-left refer to the false positives (FP) and
false negatives (FN) in the same order. The model achieved an accuracy of 0.77 for
the positive class but only an accuracy of 0.24 for the negative class. It overestimates
the severity of depression as the positive class refers to high levels of depression.

0.7
0.0 0.24
0.6
]
s
< 0.5
3
=
0.4
1.0 4 0.23
0.3
0.0

Predicted label

Figure 11: Confusion matrix of the trained model

Figure 12 shows the feature importance scores of each input feature of the model
which means the relative contribution of each feature to the overall prediction made
by the model. The values are assigned based on the number of times the features
are used in the tree. Features coming from the data tracked by the bed sensor seem
to have the highest contribution. The weights of these features are very close as they
are related. For example, rr (respiration rate) is linked to hr (heart rate). Activity
level from actigraph has the least contribution in the model’s decision on depression
severity.
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Shapley values of the model features for the whole data are given in Figure 13.
As defined in 3.2.2, Shap values indicate the impact of features in the model output.
Feature value indicates the numerical value the features get. Heart rate (hr) does not
seem to affect the model output as much as other values as both low and high values
of hr are assigned positive SHAP values. On the other hand, lower values of heart
rate variability lead to lower chances of severe depression. Higher values of heart
stroke volume (sv) lead to higher chances of classifying high levels of depression. As
activity level increases, the model predicted more likelihood of depression. It is worth
noting that the separation of Shap values for a feature should be more distinct based
on the feature value. This figure shows clearly that the model has done arbitrary
predictions for some data points as the effects of the features remain unclear.
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4.5 Analysis of the perceived sleep quality from the morning
questionnaires

During the course of the MoMo-Mood study, the subjects were asked to answer some
questions at different stages of the day. In the morning questionnaire during the
active phase of the study, they received a couple of questions about the previous
night’s sleep.

o QI1: Did you sleep well?
e Q2: Do you feel well-rested?

e Q3: How many hours did you sleep last night?

Q1 and Q2 have a 7-point Likert scale for the responses, ranging from 1 (strong
disagreement) to 7 (strong agreement). Q3 has an interval scale as the options start
from less than 5 hours up to more than 10 hours with hourly intervals in between.

The statistical summary of the responses for Q1 is given in Table 7. Most of the
responses come from the MDD group as it contains the highest number of subjects.
However, the average number of days the survey was answered is highest in the BPD
group followed by the control group. Controls have the best-perceived sleep quality
followed by the BD and MDD groups.

Group N Total response Avg. days answered Mean of the answers

control 30 479 15.97 5.36
bd 20 268 13.4 4.41
bpd 18 305 16.94 3.57
mdd 57 840 14.74 4.07

Table 7: Statistics of the responses for Q1

Participation statistics are the same for both Q1 and Q2 according to Table 8.
Also, controls and BPD patients are in the same order as the previous question’s
answers. MDD patients feel more well-rested than BD patients unlike Q1 answers,
but the difference between both groups seems to be lower than in Q1.

Group N Total response Avg. days answered Mean of the answers

control 30 479 15.97 5.13
bd 20 268 13.4 3.55
bpd 18 305 16.94 3.04
mdd 57 840 14.74 3.69

Table 8: Statistics of the responses for Q2
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Figure 14 and Figure 15 show the average TST tracked by actigraph for each
answer in both questions. Total sleep time is not directly related to both sleeping well
and feeling well-rested as there are other parameters to take into account, including
WASO and sleep latency. TST might become a better indicator in case of low scores
for both of these questions as the lack of sleep impacts the morning mood.

In Figure 14, survey scores of 1 or 2 have the least total sleep time for all groups.
Controls have less TST compared to other groups for all responses. The difference
between the TSTs of the groups is the smallest around the survey responses close
to the average. The Pearson correlation between TST and the survey answers is
highest for the BD group (0.34) while it is lower than 0.1 for the rest of the groups.
As mentioned earlier, total sleep time is not the only element of good sleep hence a
correlation is not expected.
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Figure 14: Mean values of TST for each response in Q1
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Figure 15: Mean values of TST for each response in Q2

Figure 15 shows a similar trend as controls and MDDs have shorter TSTs compared
to BDs and BPDs, especially the lower end of the survey answers (1 to 4). Answers
on the higher end (5 to 7) are present when the TST is around 8.5 hours.
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Figure 16 shows the histogram of the counts of each answer to the Q3. Total
sleep times of controls, BDs, and MDDs seem to have normal distribution as the data
is symmetrical and the data around the mean is more frequent. It is not possible
to compare the total sleep time from the sensors with the survey responses as the
responses are in categorical order and no numerical data points are included.
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Figure 16: Total sleep time based on survey responses
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5 Discussion

5.1 Estimating sleep parameters using the data from the
Sensors

In the MoMo-Mood study, daily rhythms of healthy controls and patients suffering
from different mood disorders were tracked including their sleep behaviors. As the
first step in this thesis, some parameters widely used in sleep studies are calculated
from the data obtained by the sensors to interpret the sleep-related data. As the
sensory data included sleep /wake statuses, it was possible to calculate a set of selected
parameters including total sleep time (TST), wakefulness after sleep onset (WASO),
and sleep efficiency (SE).

Each sensor had its own method for detecting sleep events. For actigraph, sleep
and wake states were calculated by the built-in Actiwatch algorithm using the
information tracked, such as physical activity and the amount and duration of the
ambient white light illuminance. The states were already included in a status column
in the data therefore no specific algorithm was needed. For the bed sensor, the states
were determined based on the calibration and the signal strength. Similar to the
actigraph, the states were logged in a status column. Lastly, in screen activity data,
there was no status column, hence sleep states were detected by calculating the
longest inactive period during the day which could refer to nightly sleep. Since this
approach did not take the screen status into account, a new method was proposed by
defining the sleep period as the period between the latest screen lock event and the
next earliest screen unlock event. However, this approach caused some data to be
discarded as the lock and unlock events were not available as often as screen-on and
screen-off events. The reason for not using screen-on and screen-off to determine the
sleep/wake states was that they could be initiated without the user’s consent, such
as receiving a notification or lack of activity for a short period of time triggering a
change in the screen status.

In the analysis, for all subject groups, median TST was the lowest from the screen
activity while it was the highest from the data collected by the bed sensor. All sensors
combined, the mean TST for the control group was the shortest with 7.03 hours
while the MDD group had a mean TST of 8 hours. When compared with the values
from the actigraph, the bedtimes from the bed sensor showed more agreement than
the ones from the screen activity. Also, the BD group had the highest dispersion,
meaning that the differences were more likely to be unique values.

5.2 Predicting the depression severity of patients using the
actigraph and bed sensor data

As mentioned earlier in 4.1, previous research claims a bidirectional relationship
between sleep disturbance and depression. To explore if such a relationship is present
in the MoMo-Mood dataset, an XGBoost classification model is implemented in this
work to classify patients with low and high depression levels using their data from the
actigraph and bed sensor. The choice of the algorithm was made based on its ability to
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produce accurate and interpretable predictions. The model evaluation revealed that
the information tracked by actigraph and bed sensor was not sufficient to interpret
the effects of the features on understanding the severity of depression given the poor
accuracy. However, the model was more accurate in correctly predicting the patients
with high levels of depression than the individuals with slighter depression. This
information suggests that the model can be used in scenarios in which the depression
levels of individuals are checked in a preliminary step to ensure only patients with
high levels of depression are likely to be evaluated by the model to form the final
decision of receiving treatment.

5.3 Analyzing the perceived quality from the morning ques-
tionnaires

As the final analysis in this work, the answers to three sleep-related questions from
the morning questionnaire were compared with the sleep parameters calculated earlier
from the sensory data. The initial hypothesis was that the perceived sleep quality
would be correlated with the sleep quality obtained from the parameters. However,
there was no significant correlation found between the answers to all three questions
and the parameters TST and SE. The lack of correlation can be associated with
the fact that sleep quality does not depend on the sleep parameters individually but
rather as a combination of them. WASO was not included in this analysis to avoid
multicollinearity since it was already used to calculate SE and was known to have a
negative correlation with it.

The perceived TST from the survey answers mostly represented a symmetrical
distribution (control, BD, MDD) which is similar to the self-rated sleep durations
from Landolt’s study [99]. As the survey answers were in categorical order, an exact
comparison between TSTs from the sensory data was not conducted.

5.4 Further work

Sleep is a complex process that is affected by various physiological, biochemical, and
other internal and external factors. This work only utilizes the sleep-related features
from the sensory data in the MoMo-Mood dataset to understand the sleep behaviors
of the subjects. The sensory data includes a limited set of factors that might affect
an individual’s sleep behavior. There are several ideas for further work that could be
conducted to build on the findings of this work.

First, the sleep analysis can be extended by gathering more specific information
from the participants related to their sleep. A sleep diary including bedtime and
wake-up time, the number of naps during the day, caffeine/alcohol consumption, and
daily activity level would be a valuable tool to understand the other factors affecting
nightly sleep.

Secondly, some information regarding the treatment process of the subjects
suffering from mood disorders could help to understand the effect of different types
of treatments on sleep quality. This information could be utilized to improve sleep in
a particular patient group. It would also be useful to verify the results of this work



42

as it does not assume any difference in the subjects belonging to the same patient
group.

Another direction of future work would focus on the changes in PHQ-9 scores of the
subjects to investigate whether they affect sleep behaviors. While this could provide
additional information about the relationship between the severity of depression and
sleep, it would also lower the number of subjects in the analysis as not all subjects
were administered the test multiple times.

Finally, the analysis modules related to sleep that were part of this thesis will be
incorporated in Niimpy, an open-source behavioral data analysis toolbox developed
by Ikdheimonen et al. [100], to utilize them in studies using other sets of similar
data.
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6 Summary

This thesis aimed to investigate three main research objectives using the data collected
in the MoMo-Mood study. The dataset included information tracked by three different
sources; actigraphy, ballistocardiography, and smartphone screen activity. The first
objective was to find out if the sleep behaviors of each subject group differs. Sleep
parameters of healthy controls and patients suffering from mood disorders (BD, BPD,
MDD) are calculated and compared at group levels. These parameters included total
sleep time, wakefulness after sleep onset, and sleep efficiency. The second objective
was to predict the severity of depression for the subjects in patient groups. Firstly,
the scores from the PHQ-9 tests administered during the study were collected and
matched with the sensor data from the appropriate time period- up to 2 weeks prior
to the test date. After the data preprocessing, the data was split into training and test
cohorts using an 80:20 ratio. Then, an XGBoost classifier was trained using the data
of the subjects in the training cohort. The model was evaluated using accuracy, recall,
and precision. Furthermore, the feature importance of the model was investigated
to have a better understanding of the predictions. The poor accuracy of the model
suggested that the data from the actigraph and bed sensor was not sufficient for the
model to understand the classes. The last objective of this thesis was to compare
the perceived sleep quality obtained from the morning questionnaires with the sleep
parameters calculated from the actigraph data. There was no significant correlation
found between the survey answers and the sleep parameters. The distributions
of total sleep time from the survey answers of the three groups were found to be
normally distributed.
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