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PACS. 47.55.Kf – Multiphase and particle-laden flows.

PACS. 83.85.Pt – Computational fluid dynamics.

Abstract. – We study the settling dynamics of non-Brownian particles during steady-state
sedimentation under realistic conditions by computer simulations. We show that the velocity
fluctuations parallel to gravity change systematically with the particle volume fraction Φ. For
dilute systems, their distribution function has a non-Gaussian form, with an extended tail in
the direction of the downward velocity, while for dense systems the situation is the opposite.
In the intermediate regime at Φ ≈ 0.05 the fluctuations are Gaussian. We show that these
distributions can be understood from the dependence of the settling velocity and its fluctuations
on the local density around each particle.

The sedimentation of non-colloidal particles is a common phenomenon in nature on which
many important technological processes are based, e.g. in paper and pulp industry. It is
also an interesting example of non-equilibrium dynamics whose details are still inadequately
understood in the case of a finite volume fraction Φ of the particles [1]. Under appropriate
boundary conditions, such as in fluidized beds, a sedimenting system driven by gravity can
reach a steady-state velocity distribution P (v) [2]. In such experiments the average velocity
of the particles 〈v‖〉 is zero while the fluid flows upward with velocity vf which depends on Φ.
In the horizontal direction perpendicular to gravity, P (v⊥) is centered around 〈v⊥〉 = 0 for
obvious symmetry reasons.

While the behavior of vf(Φ) has been the subject of intense study [1], there are far fewer
studies of the velocity distribution function itself. In the most simple-minded approximation,
one would expect the particle velocities v to be uncorrelated leading to a Gaussian distribution
for P (δv) as in the case of ordinary Brownian motion. Interestingly enough, this is not the
case. Ichiki and Hayakawa [4] observed in their model simulations of a 2D fluidized bed that
at Φ = 0.327 P (v‖) was asymmetric. Both of its branches could be fitted separately to a
Gaussian distribution, but the upward branch was more extended.

In the subsequent experiments of Rouyer et al. [5], a suspension of spherical particles
was studied experimentally by using a quasi-2D fluidized bed. They considered the case of
c© EDP Sciences
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high Peclét and low Reynolds numbers with Φ ∈ [0.08, 0.76] and confirmed that P (v‖) was
asymmetric. The downward branch was near Gaussian with

P
(
v‖/σ

(
v‖

)) ∝ exp
[
− β

(∣∣v‖
∣∣/σ

(
v‖

))ξ
]
, (1)

where ξ = 2. The velocities have been normalized by the average fluctuation σ(v‖) =
√
〈v2

‖〉
from the Gaussian part, and β is a constant. The upward branch was, however, a stretched
exponential with the value of ξ decreasing from about 1.8 to 1 when the volume fraction
increased from 0.12 to 0.70.

To explain their results, Rouyer et al. suggested that the particles can be considered to
be “slow” or “fast”: In the denser areas the particles form a kind of clusters, where the
motion of single particles is Brownian-like. The motion of the “fast particles” in the more
dilute streams between the “clusters” is more correlated and they are typically moving fast
upwards. They also studied P (v⊥) and found it to be non-Gaussian. They pointed out that
the correlated feature of the motion of the fast particles should also stretch the tails of the
horizontal velocity distribution.

Most recently, Miguel and Pastor-Satorras [6] performed computer simulations for a 2D
system (with an additional velocity-dependent friction term in order to mimic a quasi-2D
experimental setup) using the Oseen tensor method. For Φ = 0.01, they found again that
P (v‖) was asymmetric, but this time more stretched in the downward direction. They also
adopted an argument based on fast and slow particles: The “fast particles” are those in
downward streams and the “slow” ones are those caught into the swirls between the streams.
Furthermore, they studied the autocorrelation function of the particle velocities and found
that after an initial rapid decay region there was a region of slower decay. These two different
decaying regions were connected to the two different types of particles.

Although at first sight appealing, the idea of separate fast and slow particles is not sup-
ported by the recent experiments of Lei et al. [7]. They measured particle density fluctuations
during sedimentation and showed that, in all cases, the density fluctuations were smaller
than those in a uniformly random configuration. Thus the origin of the non-Gaussian velocity
distributions requires a more thorough study.

In this work our aim is to study the velocity distributions of sedimenting non-Brownian
particles over a wide range of volume fractions. This is achieved by a simulation method which
accurately describes a sedimenting two-phase system under realistic physical conditions [8].
First, we verify that P (v‖) is indeed non-Gaussian for small and large values of Φ, but it
changes shape so that the extended tail at small Φ ≈ 0.005 is in the direction of downward
velocities, while for Φ ≈ 0.3 the situation is the opposite. This means that at intermediate,
semi-dilute values of Φ ≈ 0.05–0.1, P (v‖) is essentially Gaussian. We show that these results
can be explained by the dependence of the settling velocity and its fluctuations on the local
density around each particle. We demonstrate that, while the particles with the highest local
density settle fastest, the overall velocity fluctuations are largest in the semi-dilute case here.
Using this idea, we show how the dependence of these fluctuations as the local density lead to
the observed distribution functions.

We employ an immersed boundary type of simulation method described in detail in ref. [8].
The fluid is treated in continuum by using a finite-difference method on a regular grid to solve
the Navier-Stokes equation. To properly include the hydrodynamic interactions, the boundary
conditions between the fluid phase and the solid particles are taken into account by adding
a fictitious force density to the equation of motion of the fluid so that in the interior of the
particles the fluid moves like a rigid object. This force is derived by tracking explicitly the
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Fig. 1 – The vertical velocity distributions P (v‖) for three different volume fractions: Φ = 0.005
(dashed line), 0.05 (dotted line) and 0.30 (solid line).

motion of the solid particles and, whenever the motion of the fluid and the particle templates
differ in certain predefined points, a restoring force is added. The hydrodynamic interaction
between the particles is thus generated by the dynamics of the fluid. In addition to this, a
direct elastic collision potential is used between the particles to prevent overlap. It is required,
since once two particles are separated by less than one lattice spacing, the hydrodynamic
interaction is modelled inadequately. Thus the collision potential mimics the short-range
repulsion due to lubrication forces between the particles. The method is suitable for modelling
non-Brownian suspensions up to particle Reynolds numbers of Re = rV0/η ≈ 10, where η is
the viscosity of the fluid, r the radius of the particle and V0 is the terminal velocity of a single
settling particle. The method has been tested for a variety of different cases in refs. [8–10].

The data shown here are for a suspension of monodisperse spherical particles whose den-
sity is 2.5 times the fluid density. The system sizes used in this work are 32 × 32 × 64 in
units of the radius of the particles, where the larger dimension is in the direction of gravity.
Periodic boundary conditions in all directions were used to obtain the steady state which was
determined by the average settling velocity and its fluctuations. We fixed the fluid viscosity so
that the particle Reynolds number Re ≈ 0.5. In order to mimic the fluidized bed experiments,
the particle velocities have been measured in the frame where 〈v‖〉 = 0.

To verify the present system, we computed vf and the velocity fluctuations σ(v‖) and
σ(v⊥). We find vf to follow very closely the expected Richardson-Zaki relation V0(1−Φ)4.5 up
to Φ = 0.3 [11]. For the velocity fluctuations scaled by vf we find scaling as Φm with m ≈ 0.50
for σ(v‖) and 0.55 for σ(v⊥). In sedimentation experiments it has been found that m varies
from 1/3 to 1/2 [3, 12].

The actual velocity distributions P (v‖) from simulations are shown in fig. 1. The remark-
able feature in these data is the systematic change of P with Φ. For the smallest Φ = 0.005
(dashed line), the distribution is non-Gaussian with a longer tail in the direction of downward
velocities. At an intermediate value of Φ = 0.05 (dotted line), the distribution is symmetric
and closely Gaussian. Finally, for a system with Φ = 0.30 the distribution is skewed to the
opposite direction, i.e. it has a longer tail in the direction of upward velocities (solid line).
These distributions are in good agreement with the fluidized bed experiments of Rouyer et
al. [5] and with the previous simulations [4, 6]. We have also computed the horizontal distri-
butions P (v⊥) and found that they are symmetric, but leptokurtic (see below). These data
will be published elsewhere [13].

To demonstrate the systematic variation of P with Φ we have first computed the skewness
of the distributions, defined by γ1 = µ3/µ

3/2
2 , where µn(v) = 〈vn〉. For symmetric distributions



16 EUROPHYSICS LETTERS

0.01 0.1

-0.8

-0.6

-0.4

-0.2

0

0.2 a

Φ

γ
1(

v ‖
)

0.01 0.1

0

0.5

1

1.5 b

Φ

γ
2(

v ‖
)

0.01 0.1
0

0.5

Φ

γ
2
(v

⊥)

Fig. 2 – (a) The skewness γ1 of P (v‖). (b) The corresponding kurtosis γ2(v‖). The kurtosis of the
horizontal velocities γ2(v⊥) is shown in the inset.

such as for P (v⊥), γ1 = 0. In fig. 2(a) we show γ1(v‖) up to Φ = 0.3. The systematic change
from negative to positive values of γ1 is evident, and in accordance with fig. 1 the distribution
is symmetric at Φ ≈ 0.05.

The second quantity we consider here is the kurtosis which describes the weight of the tails
of the distribution. We define it as γ2 = µ4/µ2

2−3 so that it is zero for a Gaussian distribution.
In fig. 2(b) we show γ2(v‖). We can see that the tails are most extended for small volume
fractions, while again around Φ ≈ 0.05, γ2 ≈ 0. For larger Φ, the tails become extended again.
For completeness, in the inset of fig. 2(b) we also show γ2(v⊥) for the horizontal distribution.
It can be seen that its tails are also extended and correlate with the changes in P (v‖). This
demonstrates that the vertical velocity fluctuations indeed influence the horizontal ones.

For the non-Gaussian cases found here it is possible to try to fit to the stretched exponential
function of eq. (1) as in ref. [5]. However, we find that in the regime Φ < 0.01, P (v‖)’s do
not fit well to this form. For the large volume fractions Φ > 0.1, the ξ’s fitted to the upward
branch of the distribution decrease from 2.0 to 1.7 while Φ increases from 0.1 to 0.3. For
the same range of Φ, Rouyer et al. measured ξ to decrease from about 1.75 to 1.5. For the
downward branch they found that ξ ≈ 2 independent of Φ. Here we obtain ξ ≈ 2.2 with
no clear Φ-dependence, either. Thus, we can conclude that our results are in quantitative
agreement with the experiments, but the non-Gaussian distributions in a dilute system are
not well described by stretched exponentials.

Next we will discuss the physical reasons behind the vertical distributions. To quantify
the role of density inhomogeneities in determining P (v‖), we introduce here the concept of a
local volume fraction φ. It is defined as the number of particles within a certain volume Vp

around a test particle, multiplied by the ratio of the one-particle volume and the volume of the
region. The choice of the shape and size of Vp is somewhat arbitrary. Based on the symmetry
of the system, a spheroidal region, with a possibly different radius in the direction parallel
to the gravity, is a natural choice. The size of the region has here been chosen such that φ
correlates as much as possible with the vertical velocity. This can be achieved by maximizing
the square of the normalized cross correlation between φ and v‖, defined by

c2
v‖,φ =

(〈
v‖φ

〉 − 〈
v‖

〉〈φ〉)2

σ2
(
v‖

)
σ2(φ)

. (2)

Such a procedure can be motivated by the assumption that there is a characteristic spatial size
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Fig. 3 – The distributions of the local volume fraction from the simulations with Φ = 0.005, 0.05
(triangles and circles in a) and 0.30 (squares in b). Gaussian fits are shown with solid lines. The
corresponding distributions for uniformly random configurations are shown with dotted lines.

of velocity fluctuations that can be recognized by its ability to explain the particle velocity
fluctuations. Such a characteristic size has been notified in the sedimentation experiments by
Segrè et al. [14, 15]. Numerically, we found that c2

v‖,φ can be maximized to a good degree of
approximation by choosing a spheroidal region of size 11× 11× 20 for all values of Φ studied
here. The values for c2

v‖φ vary from 0.20 for Φ = 0.005 to 0.25 for Φ = 0.30. It is reasonable
to assume that the shape and the size of the chosen region reflect the vorticity structure of
the fluid. The fact that such a region is more elongated in the direction of gravity is in good
agreement with the experimental results of Segrè et al. [14].

The distributions of the local volume fraction φ are shown in fig. 3 for different values
of Φ. As expected, Q(φ)’s are Gaussian and their maxima coincide with the total volume
fraction. However, the distributions Q(φ) are much narrower than those corresponding to
uniformly random configurations which are shown with dotted lines. This result is in good
agreement with the experiments of Lei et al. [7] on the particle number fluctuations during
sedimentation. These distributions suggest that the particles form one continuous phase
rather than a separation into “cluster” and “intermediate” particles. In order to further study
this assumed homogeneity, we have also calculated the distribution of the smallest distances
between particles and found no indication of two phases.

The key point in understanding the role of the local density is the observation that regions
of larger φ tend to sediment faster than regions with smaller φ. An intuitive reason for this
behavior is that an area of large local density behaves like a blob of heavier fluid obtaining
a downward velocity relative to the surrounding fluid [15, 16]. This is demonstrated in fig. 4
where we show the dependence of the average vertical velocity of particles with fixed φ 〈v‖〉φ
on the local volume fraction φ for several different total volume fractions Φ. Based on these
data, we can write the total particle velocity as v‖ = 〈v‖〉φ + δv‖, where 〈v‖〉φ ≈ a(Φ − φ)
describes the part of the velocity that is determined by φ, and δv‖ is the residual fluctuation
induced by all the other factors, e.g. details of the particle configuration (here a is a positive Φ-
dependent coefficient). To quantify this, we define the remaining residual velocity fluctuation

(RVF) as σφ(v‖) =
√

〈δv‖2〉φ =
√

〈v‖2〉φ − 〈v‖〉2φ. These data for different values of Φ are
shown in fig. 5. The fluctuations are smallest for small and large volume fractions, and have
a maximum around φ ≈ 0.08.
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Fig. 4 – The average vertical velocity of the particles as a function of φ with fixed total volume
fractions (from left to right): Φ = 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, and 0.30.

Fig. 5 – The RVFs in the direction parallel to gravity as a function of φ. From left to right the data
are for fixed values of Φ = 0.005, 0.01, 0.02, 0.05, 0.10, 0.20, and 0.30.

The behavior of the distributions P (v‖) can now be explained by the φ-dependence of the
RVFs. Namely, the whole function P (v‖) can be obtained by summing up the velocities of
all the particles with different φ’s. Since the Q(φ)’s are Gaussian, and 〈v‖〉φ depends linearly
on φ, P (v‖) would be Gaussian, too, if the RVFs did not depend on φ. This is, however,
the case only at Φ ≈ 0.05, i.e. in a semi-dilute suspension. For dilute suspensions we can see
from fig. 5 that the RVFs increase strongly with φ, which means that the fluctuations in the
downward velocity part of P (v‖) are enhanced, in accordance with our data. For the opposite
case of suspensions denser than Φ ≈ 0.05, the RVFs decrease with increasing φ, and thus there
are enhanced fluctuations in the opposite (upward) direction. This explains the systematic
change in the sign of the skewness of P (v‖) as a function of Φ.

Thus, although there is no need to conceptually separate “fast” and “slow” particles with
qualitatively different behavior, in the dilute case the fastest particles (as in ref. [6]) are
those with the highest local concentration φ around them, and their fluctuations are largest
leading to the non-Gaussian tail in P (v‖). On the other hand, for dense systems the largest
fluctuations are caused by the particles with the lowest φ (Rouyer et al. call these particles
fast ones [5]). This produces a non-Gaussian tail on the other side of P (v‖).

We note that these tails undermine the use of the concept of “temperature” in sedimenta-
tion even though it is often used in the context of granular media [17]. Our results also show
that the concept of “gravitational temperature” introduced recently by Segrè et al. [15] can
only be used to explain the part of P (v‖) coming from the dependence of v‖ on local density φ.

Finally, we can also reinterpret the two regions of decay in the particle velocity autocor-
relation function observed by Miguel and Pastor-Satorras [6]. Instead of “fast” and “slow”
particles, our data indicate that the fast initial decay corresponds to the decay in δv‖ and the
slow asymptotic decay is due to the decay in the autocorrelation of φ.

To summarize, we have shown here that for steady-state sedimentation of non-Brownian
particles, the velocity fluctuations have a non-Gaussian character for dilute and dense suspen-
sions. Most remarkably, the skewness of the distribution P (v‖) changes as a function of Φ: for
small Φ there is more weight at the large (negative) downward velocities, while the situation
is opposite for Φ > 0.1. These results can be explained by considering the dependence of the
vertical particle velocity and its fluctuations on the local particle concentration φ.
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