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ABSTRACT

In this paper, we present a simple and efficient method for training deep neural
networks in a semi-supervised setting where only a small portion of training data
is labeled. We introduce self-ensembling, where we form a consensus prediction
of the unknown labels using the outputs of the network-in-training on different
epochs, and most importantly, under different regularization and input augmenta-
tion conditions. This ensemble prediction can be expected to be a better predictor
for the unknown labels than the output of the network at the most recent training
epoch, and can thus be used as a target for training. Using our method, we set
new records for two standard semi-supervised learning benchmarks, reducing the
(non-augmented) classification error rate from 18.44% to 7.05% in SVHN with
500 labels and from 18.63% to 16.55% in CIFAR-10 with 4000 labels, and further
to 5.12% and 12.16% by enabling the standard augmentations. We additionally
obtain a clear improvement in CIFAR-100 classification accuracy by using ran-
dom images from the Tiny Images dataset as unlabeled extra inputs during train-
ing. Finally, we demonstrate good tolerance to incorrect labels.

1 INTRODUCTION

It has long been known that an ensemble of multiple neural networks generally yields better pre-
dictions than a single network in the ensemble. This effect has also been indirectly exploited when
training a single network through dropout (Srivastava et al., 2014), dropconnect (Wan et al., 2013),
or stochastic depth (Huang et al., 2016) regularization methods, and in swapout networks (Singh
et al., 2016), where training always focuses on a particular subset of the network, and thus the com-
plete network can be seen as an implicit ensemble of such trained sub-networks. We extend this idea
by forming ensemble predictions during training, using the outputs of a single network on different
training epochs and under different regularization and input augmentation conditions. Our train-
ing still operates on a single network, but the predictions made on different epochs correspond to an
ensemble prediction of a large number of individual sub-networks because of dropout regularization.

This ensemble prediction can be exploited for semi-supervised learning where only a small portion
of training data is labeled. If we compare the ensemble prediction to the current output of the net-
work being trained, the ensemble prediction is likely to be closer to the correct, unknown labels of
the unlabeled inputs. Therefore the labels inferred this way can be used as training targets for the
unlabeled inputs. Our method relies heavily on dropout regularization and versatile input augmen-
tation. Indeed, without neither, there would be much less reason to place confidence in whatever
labels are inferred for the unlabeled training data.

We describe two ways to implement self-ensembling, Π-model and temporal ensembling. Both ap-
proaches surpass prior state-of-the-art results in semi-supervised learning by a considerable margin.
We furthermore observe that self-ensembling improves the classification accuracy in fully labeled
cases as well, and provides tolerance against incorrect labels.

The recently introduced transform/stability loss of Sajjadi et al. (2016b) is based on the same prin-
ciple as our work, and the Π-model can be seen as a special case of it. The Π-model can also be
seen as a simplification of the Γ-model of the ladder network by Rasmus et al. (2015), a previously
presented network architecture for semi-supervised learning. Our temporal ensembling method has
connections to the bootstrapping method of Reed et al. (2014) targeted for training with noisy labels.
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Figure 1: Structure of the training pass in our methods. Top: Π-model. Bottom: temporal en-
sembling. Labels yi are available only for the labeled inputs, and the associated cross-entropy loss
component is evaluated only for those.

Algorithm 1 Π-model pseudocode.
Require: xi = training stimuli
Require: L = set of training input indices with known labels
Require: yi = labels for labeled inputs i ∈ L
Require: w(t) = unsupervised weight ramp-up function
Require: fθ(x) = stochastic neural network with trainable parameters θ
Require: g(x) = stochastic input augmentation function

for t in [1,num epochs] do
for each minibatch B do
zi∈B ← fθ(g(xi∈B)) . evaluate network outputs for augmented inputs
z̃i∈B ← fθ(g(xi∈B)) . again, with different dropout and augmentation
loss ←− 1

|B|
∑
i∈(B∩L) log zi[yi] . supervised loss component

+ w(t) 1
C|B|

∑
i∈B ||zi − z̃i||2 . unsupervised loss component

update θ using, e.g., ADAM . update network parameters
end for

end for
return θ

2 SELF-ENSEMBLING DURING TRAINING

We present two implementations of self-ensembling during training. The first one, Π-model, en-
courages consistent network output between two realizations of the same input stimulus, under two
different dropout conditions. The second method, temporal ensembling, simplifies and extends this
by taking into account the network predictions over multiple previous training epochs.

We shall describe our methods in the context of traditional image classification networks. Let the
training data consist of total of N inputs, out of which M are labeled. The input stimuli, available
for all training data, are denoted xi, where i ∈ {1 . . . N}. Let set L contain the indices of the labeled
inputs, |L| = M . For every i ∈ L, we have a known correct label yi ∈ {1 . . . C}, where C is the
number of different classes.

2.1 Π-MODEL

The structure of Π-model is shown in Figure 1 (top), and the pseudocode in Algorithm 1. During
training, we evaluate the network for each training input xi twice, resulting in prediction vectors zi
and z̃i. Our loss function consists of two components. The first component is the standard cross-
entropy loss, evaluated for labeled inputs only. The second component, evaluated for all inputs,
penalizes different predictions for the same training input xi by taking the mean square difference

2



Published as a conference paper at ICLR 2017

between the prediction vectors zi and z̃i.1 To combine the supervised and unsupervised loss terms,
we scale the latter by time-dependent weighting function w(t). By comparing the entire output
vectors zi and z̃i, we effectively ask the “dark knowledge” (Hinton et al., 2015) between the two
evaluations to be close, which is a much stronger requirement compared to asking that only the final
classification remains the same, which is what happens in traditional training.

It is important to notice that, because of dropout regularization, the network output during training
is a stochastic variable. Thus two evaluations of the same input xi under same network weights θ
yield different results. In addition, Gaussian noise and augmentations such as random translation
are evaluated twice, resulting in additional variation. The combination of these effects explains
the difference between the prediction vectors zi and z̃i. This difference can be seen as an error in
classification, given that the original input xi was the same, and thus minimizing it is a reasonable
goal.

In our implementation, the unsupervised loss weighting function w(t) ramps up, starting from zero,
along a Gaussian curve during the first 80 training epochs. See Appendix A for further details about
this and other training parameters. In the beginning the total loss and the learning gradients are thus
dominated by the supervised loss component, i.e., the labeled data only. We have found it to be
very important that the ramp-up of the unsupervised loss component is slow enough—otherwise,
the network gets easily stuck in a degenerate solution where no meaningful classification of the data
is obtained.

Our approach is somewhat similar to the Γ-model of the ladder network by Rasmus et al. (2015), but
conceptually simpler. In the Π-model, the comparison is done directly on network outputs, i.e., after
softmax activation, and there is no auxiliary mapping between the two branches such as the learned
denoising functions in the ladder network architecture. Furthermore, instead of having one “clean”
and one “corrupted” branch as in Γ-model, we apply equal augmentation and noise to the inputs for
both branches.

As shown in Section 3, the Π-model combined with a good convolutional network architecture
provides a significant improvement over prior art in classification accuracy.

2.2 TEMPORAL ENSEMBLING

Analyzing how the Π-model works, we could equally well split the evaluation of the two branches in
two separate phases: first classifying the training set once without updating the weights θ, and then
training the network on the same inputs under different augmentations and dropout, using the just
obtained predictions as targets for the unsupervised loss component. As the training targets obtained
this way are based on a single evaluation of the network, they can be expected to be noisy. Temporal
ensembling alleviates this by aggregating the predictions of multiple previous network evaluations
into an ensemble prediction. It also lets us evaluate the network only once during training, gaining
an approximate 2x speedup over the Π-model.

The structure of our temporal ensembling method is shown in Figure 1 (bottom), and the pseudocode
in Algorithm 2. The main difference to the Π-model is that the network and augmentations are
evaluated only once per input per epoch, and the target vectors z̃ for the unsupervised loss component
are based on prior network evaluations instead of a second evaluation of the network.

After every training epoch, the network outputs zi are accumulated into ensemble outputs Zi by
updating Zi ← αZi + (1− α)zi, where α is a momentum term that controls how far the ensemble
reaches into training history. Because of dropout regularization and stochastic augmentation, Z thus
contains a weighted average of the outputs of an ensemble of networks f from previous training
epochs, with recent epochs having larger weight than distant epochs. For generating the training
targets z̃, we need to correct for the startup bias in Z by dividing by factor (1 − αt). A similar
bias correction has been used in, e.g., Adam (Kingma & Ba, 2014) and mean-only batch normal-
ization (Salimans & Kingma, 2016). On the first training epoch, Z and z̃ are zero as no data from
previous epochs is available. For this reason, we specify the unsupervised weight ramp-up function
w(t) to also be zero on the first training epoch.

1Squared difference gave slightly but consistently better results than cross-entropy loss in our tests.
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Algorithm 2 Temporal ensembling pseudocode. Note that the updates of Z and z̃ could equally
well be done inside the minibatch loop; in this pseudocode they occur between epochs for clarity.
Require: xi = training stimuli
Require: L = set of training input indices with known labels
Require: yi = labels for labeled inputs i ∈ L
Require: α = ensembling momentum, 0 ≤ α < 1
Require: w(t) = unsupervised weight ramp-up function
Require: fθ(x) = stochastic neural network with trainable parameters θ
Require: g(x) = stochastic input augmentation function
Z ← 0[N×C] . initialize ensemble predictions
z̃ ← 0[N×C] . initialize target vectors
for t in [1,num epochs] do

for each minibatch B do
zi∈B ← fθ(g(xi∈B , t)) . evaluate network outputs for augmented inputs
loss ←− 1

|B|
∑
i∈(B∩L) log zi[yi] . supervised loss component

+ w(t) 1
C|B|

∑
i∈B ||zi − z̃i||2 . unsupervised loss component

update θ using, e.g., ADAM . update network parameters
end for
Z ← αZ + (1− α)z . accumulate ensemble predictions
z̃ ← Z/(1− αt) . construct target vectors by bias correction

end for
return θ

The benefits of temporal ensembling compared to Π-model are twofold. First, the training is faster
because the network is evaluated only once per input on each epoch. Second, the training targets
z̃ can be expected to be less noisy than with Π-model. As shown in Section 3, we indeed obtain
somewhat better results with temporal ensembling than with Π-model in the same number of training
epochs. The downside compared to Π-model is the need to store auxiliary data across epochs, and
the new hyperparameter α. While the matrix Z can be fairly large when the dataset contains a large
number of items and categories, its elements are accessed relatively infrequently. Thus it can be
stored, e.g., in a memory mapped file.

An intriguing additional possibility of temporal ensembling is collecting other statistics from the
network predictions zi besides the mean. For example, by tracking the second raw moment of
the network outputs, we can estimate the variance of each output component zi,j . This makes it
possible to reason about the uncertainty of network outputs in a principled way (Gal & Ghahramani,
2016). Based on this information, we could, e.g., place more weight on more certain predictions
vs. uncertain ones in the unsupervised loss term. However, we leave the exploration of these avenues
as future work.

3 RESULTS

Our network structure is given in Table 5, and the test setup and all training parameters are detailed
in Appendix A. We test the Π-model and temporal ensembling in two image classification tasks,
CIFAR-10 and SVHN, and report the mean and standard deviation of 10 runs using different random
seeds.

Although it is rarely stated explicitly, we believe that our comparison methods do not use input aug-
mentation, i.e., are limited to dropout and other forms of permutation-invariant noise. Therefore we
report the error rates without augmentation, unless explicitly stated otherwise. Given that the ability
of an algorithm to extract benefit from augmentation is also an important property, we report the
classification accuracy using a standard set of augmentations as well. In purely supervised training
the de facto standard way of augmenting the CIFAR-10 dataset includes horizontal flips and random
translations, while SVHN is limited to random translations. By using these same augmentations we
can compare against the best fully supervised results as well. After all, the fully supervised results
should indicate the upper bound of obtainable accuracy.
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Table 1: CIFAR-10 results with 4000 labels, averages of 10 runs (4 runs for all labels).

Error rate (%) with # labels
4000 All (50000)

Supervised-only 35.56± 1.59 7.33± 0.04
with augmentation 34.85± 1.65 6.05± 0.15

Conv-Large, Γ-model (Rasmus et al., 2015) 20.40± 0.47
CatGAN (Springenberg, 2016) 19.58± 0.58
GAN of Salimans et al. (2016) 18.63± 2.32
Π-model 16.55± 0.29 6.90± 0.07

Π-model with augmentation 12.36± 0.31 5.56± 0.10
Temporal ensembling with augmentation 12.16± 0.24 5.60± 0.10

Table 2: SVHN results for 500 and 1000 labels, averages of 10 runs (4 runs for all labels).

Error rate (%) with # labelsModel 500 1000 All (73257)
Supervised-only 35.18± 5.61 20.47± 2.64 3.05± 0.07

with augmentation 31.59± 3.60 19.30± 3.89 2.88± 0.03
DGN (Kingma et al., 2014) 36.02± 0.10
Virtual Adversarial (Miyato et al., 2016) 24.63
ADGM (Maaløe et al., 2016) 22.86
SDGM (Maaløe et al., 2016) 16.61± 0.24
GAN of Salimans et al. (2016) 18.44± 4.8 8.11± 1.3
Π-model 7.05± 0.30 5.43± 0.25 2.78± 0.03

Π-model with augmentation 6.65± 0.53 4.82± 0.17 2.54± 0.04
Temporal ensembling with augmentation 5.12± 0.13 4.42± 0.16 2.74± 0.06

3.1 CIFAR-10

CIFAR-10 is a dataset consisting of 32× 32 pixel RGB images from ten classes. Table 1 shows a
2.1 percentage point reduction in classification error rate with 4000 labels (400 per class) compared
to earlier methods for the non-augmented Π-model.

Enabling the standard set of augmentations further reduces the error rate by 4.2 percentage points
to 12.36%. Temporal ensembling is slightly better still at 12.16%, while being twice as fast to
train. This small improvement conceals the subtle fact that random horizontal flips need to be done
independently for each epoch in temporal ensembling, while Π-model can randomize once per a
pair of evaluations, which according to our measurements is ∼0.5 percentage points better than
independent flips.

A principled comparison with Sajjadi et al. (2016b) is difficult due to several reasons. They provide
results only for a fairly extreme set of augmentations (translations, flipping, rotations, stretching,
and shearing) on top of fractional max pooling (Graham, 2014), which introduces random, local
stretching inside the network, and is known to improve classification results substantially. They
quote an error rate of only 13.60% for supervised-only training with 4000 labels, while our cor-
responding baseline is 34.85%. This gap indicates a huge benefit from versatile augmentations
and fractional max pooling—in fact, their baseline result is already better than any previous semi-
supervised results. By enabling semi-supervised learning they achieve a 17% drop in classification
error rate (from 13.60% to 11.29%), while we see a much larger relative drop of 65% (from 34.85%
to 12.16%).

3.2 SVHN

The street view house numbers (SVHN) dataset consists of 32× 32 pixel RGB images of real-world
house numbers, and the task is to classify the centermost digit. In SVHN we chose to use only the
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Table 3: CIFAR-100 results with 10000 labels, averages of 10 runs (4 runs for all labels).

Error rate (%) with # labels
10000 All (50000)

Supervised-only 51.21± 0.33 29.14± 0.25
with augmentation 44.56± 0.30 26.42± 0.17

Π-model 43.43± 0.54 29.06± 0.21
Π-model with augmentation 39.19± 0.36 26.32± 0.04
Temporal ensembling with augmentation 38.65± 0.51 26.30± 0.15

Table 4: CIFAR-100 + Tiny Images results, averages of 10 runs.

Error rate (%) with # unlabeled
auxiliary inputs from Tiny Images

Random 500k Restricted 237k
Π-model with augmentation 25.79± 0.17 25.43± 0.32
Temporal ensembling with augmentation 23.62± 0.23 23.79± 0.24

official 73257 training examples following Salimans et al. (2016). Even with this choice our error
rate with all labels is only 3.05% without augmentation.

Table 2 compares our method to the previous state-of-the-art. With the most commonly used 1000
labels we observe an improvement of 2.7 percentage points, from 8.11% to 5.43% without augmen-
tation, and further to 4.42% with standard augmentations.

We also investigated the behavior with 500 labels, where we obtained an error rate less than half
of Salimans et al. (2016) without augmentations, with a significantly lower standard deviation as
well. When augmentations were enabled, temporal ensembling further reduced the error rate to
5.12%. In this test the difference between Π-model and temporal ensembling was quite significant
at 1.5 percentage points.

In SVHN Sajjadi et al. (2016b) provide results without augmentation, with the caveat that they
use fractional max pooling, which is a very augmentation-like technique due to the random, local
stretching it introduces inside the network. It leads to a superb error rate of 2.28% in supervised-
only training, while our corresponding baseline is 3.05% (or 2.88% with translations). Given that
in a separate experiment our network matched the best published result for non-augmented SVHN
when extra data is used (1.69% from Lee et al. (2015)), this gap is quite surprising, and leads us to
conclude that fractional max pooling leads to a powerful augmentation of the dataset, well beyond
what simple translations can achieve. Our temporal ensembling technique obtains better error rates
for both 500 and 1000 labels (5.12% and 4.42%, respectively) compared to the 6.03% reported by
Sajjadi et al. for 732 labels.

3.3 CIFAR-100 AND TINY IMAGES

The CIFAR-100 dataset consists of 32× 32 pixel RGB images from a hundred classes. We are
not aware of previous semi-supervised results in this dataset, and chose 10000 labels for our ex-
periments. Table 3 shows error rates of 43.43% and 38.65% without and with augmentation, re-
spectively. These correspond to 7.8 and 5.9 percentage point improvements compared to supervised
learning with labeled inputs only.

We ran two additional tests using unlabeled extra data from Tiny Images dataset (Torralba et al.,
2008): one with randomly selected 500k extra images, most not corresponding to any of the CIFAR-
100 categories, and another with a restricted set of 237k images from the categories that correspond
to those found in the CIFAR-100 dataset (see appendix A for details). The results are shown in
Table 4. The addition of randomly selected, unlabeled extra images improved the error rate by 2.7
percentage points (from 26.30% to 23.63%), indicating a desirable ability to learn from random
natural images. Temporal ensembling benefited much more from the extra data than the Π-model.
Interestingly, restricting the extra data to categories that are present in CIFAR-100 did not improve
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Figure 2: Percentage of correct SVHN classifications as a function of training epoch when a part of
the labels is randomized. With standard supervised training (left) the classification accuracy suffers
when even a small portion of the labels give disinformation, and the situation worsens quickly as
the portion of randomized labels increases to 50% or more. On the other hand, temporal ensembling
(right) shows almost perfect resistance to disinformation when half of the labels are random, and
retains over ninety percent classification accuracy even when 80% of the labels are random.

the classification accuracy further. This indicates that in order to train a better classifier by adding
extra data as unlabeled inputs, it is enough to have the extra data roughly in the same space as the
actual inputs—in our case, natural images. We hypothesize that it may even be possible to use
properly crafted synthetic data as unlabeled inputs to obtain improved classifiers.

In order to keep the training times tolerable, we limited the number of unlabeled inputs to 50k per
epoch in these tests, i.e., on every epoch we trained using all 50k labeled inputs from CIFAR-100 and
50k additional unlabeled inputs from Tiny Images. The 50k unlabeled inputs were chosen randomly
on each epoch from the 500k or 237k extra inputs. In temporal ensembling, after each epoch we
updated only the rows of Z that corresponded to inputs used on that epoch.

3.4 SUPERVISED LEARNING

When all labels are used for traditional supervised training, our network approximately matches
the state-of-the-art error rate for a single model in CIFAR-10 with augmentation (Lee et al., 2015;
Mishkin & Matas, 2016) at 6.05%, and without augmentation (Salimans & Kingma, 2016) at 7.33%.
The same is probably true for SVHN as well, but there the best published results rely on extra data
that we chose not to use.

Given this premise, it is perhaps somewhat surprising that our methods reduce the error rate also
when all labels are used (Tables 1 and 2). We believe that this is an indication that the consis-
tency requirement adds a degree of resistance to ambiguous labels that are fairly common in many
classification tasks, and that it encourages features to be more invariant to stochastic sampling.

3.5 TOLERANCE TO INCORRECT LABELS

In a further test we studied the hypothesis that our methods add tolerance to incorrect labels by
assigning a random label to a certain percentage of the training set before starting to train. Figure 2
shows the classification error graphs for standard supervised training and temporal ensembling.

Clearly our methods provide considerable resistance to wrong labels, and we believe this is because
the unsupervised loss term encourages the mapping function implemented by the network to be
flat in the vicinity of all input data points, whereas the supervised loss term enforces the mapping
function to have a specific value in the vicinity of the labeled input data points. This means that
even the wrongly labeled inputs play a role in shaping the mapping function—the unsupervised
loss term smooths the mapping function and thus also the decision boundaries, effectively fusing
the inputs into coherent clusters, whereas the excess of correct labels in each class is sufficient for
locking the clusters to the right output vectors through the supervised loss term. The difference to
classical regularizers is that we induce smoothness only on the manifold of likely inputs instead
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of over the entire input domain. For further analysis about the importance of the gradient of the
mapping function, see Simard et al. (1998).

4 RELATED WORK

There is a large body of previous work on semi-supervised learning (Zhu, 2005). In here we will
concentrate on the ones that are most directly connected to our work.

Γ-model is a subset of a ladder network (Rasmus et al., 2015) that introduces lateral connections into
an encoder-decoder type network architecture, targeted at semi-supervised learning. In Γ-model, all
but the highest lateral connections in the ladder network are removed, and after pruning the un-
necessary stages, the remaining network consists of two parallel, identical branches. One of the
branches takes the original training inputs, whereas the other branch is given the same input cor-
rupted with noise. The unsupervised loss term is computed as the squared difference between the
(pre-activation) output of the clean branch and a denoised (pre-activation) output of the corrupted
branch. The denoised estimate is computed from the output of the corrupted branch using a para-
metric nonlinearity that has 10 auxiliary trainable parameters per unit. Our Π-model differs from
the Γ-model in removing the parametric nonlinearity and denoising, having two corrupted paths,
and comparing the outputs of the network instead of pre-activation data of the final layer.

Sajjadi et al. (2016b) recently introduced a new loss function for semi-supervised learning, so called
transform/stability loss, which is founded on the same principle as our work. During training, they
run augmentation and network evaluation n times for each minibatch, and then compute an unsu-
pervised loss term as the sum of all pairwise squared distances between the obtained n network
outputs. As such, their technique follows the general pseudo-ensemble agreement (PEA) regular-
ization framework of Bachman et al. (2014). In addition, they employ a mutual exclusivity loss
term (Sajjadi et al., 2016a) that we do not use. Our Π-model can be seen as a special case of the
transform/stability loss obtained by setting n = 2. The computational cost of training with trans-
form/stability loss increases linearly as a function of n, whereas the efficiency of our temporal
ensembling technique remains constant regardless of how large effective ensemble we obtain via the
averaging of previous epochs’ predictions.

In bootstrap aggregating, or bagging, multiple networks are trained independently based on subsets
of training data (Breiman, 1996). This results in an ensemble that is more stable and accurate
than the individual networks. Our approach can be seen as pulling the predictions from an implicit
ensemble that is based on a single network, and the variability is a result of evaluating it under
different dropout and augmentation conditions instead of training on different subsets of data. In
work parallel to ours, Huang et al. (2017) store multiple snapshots of the network during training,
hopefully corresponding to different local minima, and use them as an explicit ensemble.

The general technique of inferring new labels from partially labeled data is often referred to as boot-
strapping or self-training, and it was first proposed by Yarowsky (1995) in the context of linguistic
analysis. Whitney & Sarkar (2012) analyze Yarowsky’s algorithm and propose a novel graph-based
label propagation approach. Similarly, label propagation methods (Zhu & Ghahramani, 2002) infer
labels for unlabeled training data by comparing the associated inputs to labeled training inputs using
a suitable distance metric. Our approach differs from this in two important ways. Firstly, we never
compare training inputs against each other, but instead only rely on the unknown labels remaining
constant, and secondly, we let the network produce the likely classifications for the unlabeled inputs
instead of providing them through an outside process.

In addition to partially labeled data, considerable amount of effort has been put into dealing with
densely but inaccurately labeled data. This can be seen as a semi-supervised learning task where part
of the training process is to identify the labels that are not to be trusted. For recent work in this area,
see, e.g., Sukhbaatar et al. (2014) and Patrini et al. (2016). In this context of noisy labels, Reed et al.
(2014) presented a simple bootstrapping method that trains a classifier with the target composed of
a convex combination of the previous epoch output and the known but potentially noisy labels. Our
temporal ensembling differs from this by taking into account the evaluations over multiple epochs.

Generative Adversarial Networks (GAN) have been recently used for semi-supervised learning with
promising results (Maaløe et al., 2016; Springenberg, 2016; Odena, 2016; Salimans et al., 2016). It
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Table 5: The network architecture used in all of our tests.

NAME DESCRIPTION
input 32× 32 RGB image
noise Additive Gaussian noise σ = 0.15
conv1a 128 filters, 3× 3, pad = ’same’, LReLU (α = 0.1)
conv1b 128 filters, 3× 3, pad = ’same’, LReLU (α = 0.1)
conv1c 128 filters, 3× 3, pad = ’same’, LReLU (α = 0.1)
pool1 Maxpool 2× 2 pixels
drop1 Dropout, p = 0.5
conv2a 256 filters, 3× 3, pad = ’same’, LReLU (α = 0.1)
conv2b 256 filters, 3× 3, pad = ’same’, LReLU (α = 0.1)
conv2c 256 filters, 3× 3, pad = ’same’, LReLU (α = 0.1)
pool2 Maxpool 2× 2 pixels
drop2 Dropout, p = 0.5
conv3a 512 filters, 3× 3, pad = ’valid’, LReLU (α = 0.1)
conv3b 256 filters, 1× 1, LReLU (α = 0.1)
conv3c 128 filters, 1× 1, LReLU (α = 0.1)
pool3 Global average pool (6× 6→ 1×1 pixels)
dense Fully connected 128→ 10
output Softmax

could be an interesting avenue for future work to incorporate a generative component to our solution.
We also envision that our methods could be applied to regression-type learning tasks.
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A NETWORK ARCHITECTURE, TEST SETUP, AND TRAINING PARAMETERS

Table 5 details the network architecture used in all of our tests. It is heavily inspired by ConvPool-
CNN-C (Springenberg et al., 2014) and the improvements made by Salimans & Kingma (2016). All
data layers were initialized following He et al. (2015), and we applied weight normalization and
mean-only batch normalization (Salimans & Kingma, 2016) with momentum 0.999 to all of them.
We used leaky ReLU (Maas et al., 2013) with α = 0.1 as the non-linearity, and chose to use max
pooling instead of strided convolutions because it gave consistently better results in our experiments.

All networks were trained using Adam (Kingma & Ba, 2014) with a maximum learning rate of
λmax = 0.003, except for temporal ensembling in the SVHN case where a maximum learning rate
of λmax = 0.001 worked better. Adam momentum parameters were set to β1 = 0.9 and β2 = 0.999
as suggested in the paper. The maximum value for the unsupervised loss component was set to
wmax ·M/N , where M is the number of labeled inputs and N is the total number of training inputs.
For Π-model runs, we used wmax = 100 in all runs except for CIFAR-100 with Tiny Images where
we set wmax = 300. For temporal ensembling we used wmax = 30 in most runs. For the corrupted
label test in Section 3.5 we used wmax = 300 for 0% and 20% corruption, and wmax = 3000 for
corruption of 50% and higher. For basic CIFAR-100 runs we used wmax = 100, and for CIFAR-100
with Tiny Images we used wmax = 1000. The accumulation decay constant of temporal ensembling
was set to α = 0.6 in all runs.

In all runs we ramped up both the learning rate λ and unsupervised loss component weight w during
the first 80 epochs using a Gaussian ramp-up curve exp[−5(1 − T )2], where T advances linearly
from zero to one during the ramp-up period. In addition to ramp-up, we annealed the learning rate
λ to zero and Adam β1 to 0.5 during the last 50 epochs, but otherwise we did not decay them
during training. The ramp-down curve was similar to the ramp-up curve but time-reversed and with
a scaling constant of 12.5 instead of 5. All networks were trained for 300 epochs with minibatch
size of 100.
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CIFAR-10 Following previous work in fully supervised learning, we pre-processed the images us-
ing ZCA and augmented the dataset using horizontal flips and random translations. The translations
were drawn from [−2, 2] pixels, and were independently applied to both branches in the Π-model.

SVHN We pre-processed the input images by biasing and scaling each input image to zero mean
and unit variance. We used only the 73257 items in the official training set, i.e., did not use the
provided 531131 extra items. The training setups were otherwise similar to CIFAR-10 except that
horizontal flips were not used.

Implementation Our implementation is written in Python using Theano (Theano
Development Team, 2016) and Lasagne (Dieleman et al., 2015), and is available at
https://github.com/smlaine2/tempens.

Model convergence As discussed in Section 2.1, a slow ramp-up of the unsupervised cost is very
important for getting the models to converge. Furthermore, in our very preliminary tests with 250
labels in SVHN we noticed that optimization tended to explode during the ramp-up period, and we
eventually found that using a lower value for Adam β2 parameter (e.g., 0.99 instead of 0.999) seems
to help in this regard.

We do not attempt to guarantee that the occurrence of labeled inputs during training would be some-
how stratified; with bad luck there might be several consecutive minibatches without any labeled
inputs when the label density is very low. Some previous work has identified this as a weakness, and
have solved the issue by shuffling the input sequences in such a way that stratification is guaranteed,
e.g. Rasmus et al. (2015) (confirmed from the authors). This kind of stratification might further
improve the convergence of our methods as well.

Tiny Images, extra data from restricted categories The restricted extra data in Section 3.3 was
extracted from Tiny Images by picking all images with labels corresponding to the 100 categories
used in CIFAR-100. As the Tiny Images dataset does not contain CIFAR-100 categories aquar-
ium fish and maple tree, we used images with labels fish and maple instead. The result was a total
of 237 203 images that were used as unlabeled extra data. Table 6 shows the composition of this
extra data set.

It is worth noting that the CIFAR-100 dataset itself is a subset of Tiny Images, and we did not
explicitly prevent overlap between this extra set and CIFAR-100. This led to approximately a third
of the CIFAR-100 training and test images being present as unlabeled inputs in the extra set. The
other test with 500k extra entries picked randomly out of all 79 million images had a negligible
overlap with CIFAR-100.
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Table 6: The Tiny Images (Torralba et al., 2008) labels and image counts used in the CIFAR-100
plus restricted extra data tests (rightmost column of Table 4). Note that the extra input images were
supplied as unlabeled data for our networks, and the labels were used only for narrowing down the
full set of 79 million images.

Label # Label # Label # Label #
apple 2242 baby 2771 bear 2242 beaver 2116
bed 2767 bee 2193 beetle 2173 bicycle 2599
bottle 2212 bowl 2707 boy 2234 bridge 2274
bus 3068 butterfly 3036 camel 2121 can 2461
castle 3094 caterpillar 2382 cattle 2089 chair 2552
chimpanzee 1706 clock 2375 cloud 2390 cockroach 2318
couch 2171 crab 2735 crocodile 2712 cup 2287
dinosaur 2045 dolphin 2504 elephant 2794 fish∗ 3082
flatfish 1504 forest 2244 fox 2684 girl 2204
hamster 2294 house 2320 kangaroo 2563 keyboard 1948
lamp 2242 lawn mower 1929 leopard 2139 lion 3045
lizard 2130 lobster 2136 man 2248 maple∗ 2149
motorcycle 2168 mountain 2249 mouse 2128 mushroom 2390
oak tree 1995 orange 2650 orchid 1902 otter 2073
palm tree 2107 pear 2120 pickup truck 2478 pine tree 2341
plain 2198 plate 3109 poppy 2730 porcupine 1900
possum 2008 rabbit 2408 raccoon 2587 ray 2564
road 2862 rocket 2180 rose 2237 sea 2122
seal 2159 shark 2157 shrew 1826 skunk 2450
skyscraper 2298 snail 2369 snake 2989 spider 3024
squirrel 2374 streetcar 1905 sunflower 2761 sweet pepper 1983
table 3137 tank 1897 telephone 1889 television 2973
tiger 2603 tractor 1848 train 3020 trout 2726
tulip 2160 turtle 2438 wardrobe 2029 whale 2597
willow tree 2040 wolf 2423 woman 2446 worm 2945
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