
Eurographics Symposium on Rendering (2006)
Tomas Akenine-Möller and Wolfgang Heidrich (Editors)

Ambient Occlusion for Animated Characters

Janne Kontkanen1 Timo Aila1,2

1Helsinki University of Technology 2Hybrid Graphics, Ltd.

Figure 1: Three frames from an animation. Notice the changing ambient occlusion especially around the knees and armpits.
Our method produces such dynamic ambient occlusion effects with an acceptable runtime cost, and should thus be

immediately applicable to real-time applications such as computer games.

Abstract
We present a novel technique for approximating ambient occlusion of animated objects. Our method automatically
determines the correspondence between animation parameters and per-vertex ambient occlusion using a set of
reference poses as its input. Then, at runtime, the ambient occlusion is approximated by taking a dot product
between the current animation parameters and static per-vertex coefficients. According to our results, both the
computational and storage requirements are low enough for the technique to be directly applicable to computer
games running on current graphics hardware. The resulting images are also significantly more realistic than the
commonly used static ambient occlusion solutions.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism — Color, shading, shadowing, and texture

1. Introduction

Ambient occlusion [ZIK98] refers to the shadows arising
from ambient lighting, i.e., from light that comes equally
from all directions. While such special lighting conditions
are rarely met in practice, ambient occlusion is a surprisingly
plausible approximation in many practical applications. As
has been shown by the movie industry and production ren-
dering community [Lan02,Chr02], ambient occlusion is able
to approximate effects that are otherwise attainable only by
computing global illumination. For instance, sharp corners
appear darker than open areas and objects cast plausible con-
tact shadows on the surfaces they are resting on.

Compared to a full global illumination solution, ambient
occlusion is significantly faster to compute. In addition, the

self-occlusion of a rigid object can be computed as a pre-
process and then re-used in different environments. Since
the data can be stored in a texture map or as vertex at-
tributes, the technique has a negligible run-time overhead.
Therefore ambient occlusion is steadily gaining interest in
the real-time graphics community [Pha04]. Recent methods
can also handle the inter-object ambient occlusion of dy-
namically moving rigid objects by using pre-computed data
structures [KL05, MMAH05, ZHL∗05].

Animated objects are much more difficult to deal with be-
cause the ambient occlusion needs to be updated dynami-
cally. Consider an animated character: if the ambient occlu-
sion is computed for a default pose or as an average of sev-
eral reference poses, the overall appearance of the character

c© The Eurographics Association 2006.



J. Kontkanen & T. Aila / Ambient Occlusion for Animated Characters

tends to be convincing but there are typically some striking
errors that shatter the illusion. These can be seen, for ex-
ample, when the character raises her hand. Obviously the
armpit should get lighter in this case. One solution is a more
or less brute force re-computation of the ambient occlusion
using optimized rasterization methods and heuristic approx-
imations [KLA04, Bun05]. These methods do not need any
a priori information about the animation and are thus univer-
sally applicable, although the generality comes with a rather
costly runtime evaluation.

Our new approximation is based on parameterizing the
ambient occlusion as a linear combination of animation pa-
rameters, as detailed in Section 3. The animation parameters
can be pretty much anything, although in our test cases they
were simply the angles of the joints. The parameterization
is computed automatically from a set of reference poses and
their pre-computed ambient occlusion values. As a result, if
a character raises her arm, the armpit gets lighter due to its
dependence on the shoulder joint parameters. See Figure 1
for another example.

The results (Section 4) demonstrate that our model pro-
duces significantly more believable results than the com-
monly used average ambient occlusion method while still
having an acceptable runtime cost.

2. Related Work

In this section we concentrate on reviewing algorithms that
compute shadows from very large light sources, i.e., from
either ambient illumination or environment maps. Addition-
ally, a substantial amount of literature exists about soft shad-
ows from smaller area light sources, see Hasenfratz et al.
[HLHS03] for a recent survey.

Accessibility shading [Mil94] is a predecessor of the am-
bient occlusion technique. Accessibility shading models the
local variations of surface materials due to processes such as
dirtying, cleaning, tearing, aging or polishing. For example,
the accessibility of a surface location determines how much
dirt is gathered into it. Computing ambient occlusion can be
seen as computing the accessibility of light.

Ambient occlusion has become a popular technique in
production rendering [Lan02, Chr02]. It is typically com-
puted on the surfaces of each object and stored in a texture
map or as vertex attributes. The most straightforward method
is to use rasterization or ray tracing to sample the hemispher-
ical visibility around the surface of the object, but a similar
result can be achieved by rendering the object from multiple
directions and accumulating the visibility on each surface
element. In any case, the goal is to evaluate

A(x,n) :=
1
π

Z
Ω

V (x,ω)bω ·ncdω, (1)

on the surface of the object. Here x is the location and n
is the normal vector on the receiving surface. V (ω,x) is the

visibility function that has value zero when no geometry is
visible in direction ω and one otherwise. In the above,

R
Ω

refers to integration over a hemisphere oriented according to
the surface normal n.

Ambient occlusion is a simplified version of the ob-
scurances illumination model [ZIK98], where the visibility
function V of ambient occlusion (Equation 1) is replaced by
a function of distance, giving the obscurance W :

W (x,n) :=
1
π

Z
Ω

ρ(d(x,ω))bω ·ncdω, (2)

in which d(x,ω) refers to the distance of the first intersection
when a ray is shot from x towards ω. ρ is a function that maps
the distance suitably. Iones et al. [IKSZ03] suggest 1− eτd ,
where τ is a user-defined constant.

Mendez et al. [MSC03] introduce a method for dynami-
cally updating the obscurances information in the presence
of moving objects. Obscurances are re-sampled only in a se-
lected region of the scene by utilizing temporal coherence.
However, since the obscurances are evaluated per patch, the
method requires a huge number of patches to account for
high quality contact shadows. Thus, while the method is us-
able for approximating the global illumination in large scale,
the fine detail present in contact shadows requires a different
approach.

Kautz et al. [KLA04] introduce a lookup-table-based ras-
terization method for quick computation of hemispherical
occlusion. As a further optimization they use a two-level
hierarchy of the triangle data in order to compute shad-
ows from low-frequency lighting environments at interactive
rates. Similarly to all methods that compute the shadows at
vertices instead of pixels, artifacts are hard to avoid without
highly tessellated geometry. Sattler et al. [SSZK04] compute
the visibility from the vertices into a number of directions
using GPU. They also utilize the coherence in the visibility
function to achieve interactive frame rates with deformable
objects in dynamic distant illumination. Bunnell [Bun05] ap-
proximates triangles using disks, and combines the occlu-
sion of multiple disks heuristically. The process results in
exaggerated in occlusion in many cases, but the author fixes
this using a clever iterative algorithm. Furthermore, a hierar-
chical presentation of the disks reduces the execution time
to an acceptable level.The process is still, however, quite
expensive compared to methods that do not re-compute the
visibility dynamically. Our method belongs to that class of
approximations.

Kontkanen and Laine [KL05] pre-compute an ambient oc-
clusion field around each rigid object. The field stores at-
tenuation functions that tell approximately, for each point in
space, how much occlusion the object causes to that point.
The effects of multiple objects are combined heuristically,
and the inter-occlusion of dynamically moving rigid objects
can be approximated in real-time. Zhou et al. [ZHL∗05] dis-
cuss a closely related method, which pre-computes the oc-

c© The Eurographics Association 2006.



J. Kontkanen & T. Aila / Ambient Occlusion for Animated Characters

clusion caused by a rigid object in a set of points outside
the object. The occlusion is represented using either Haar
wavelets or Spherical Harmonics, and thus the contribution
of multiple objects can be handled more accurately than in
the method of Kontkanen and Laine, albeit at higher compu-
tational cost. Malmer et al. [MMAH05] further develop the
method by Kontkanen and Laine. They use a regular 3D grid
instead of a cube map and pay more attention to questions
such as how to choose the resolution of the grid, and how to
combine occlusion from several shadow casters.

James and Fatahalian present a general method to pre-
compute deformable scenes [JF03]. They simulate both the
deformation state and illumination with their data-driven
model. This method is closely related to ours, but since we
only concentrate on synthetizing the illumination (ambient
occlusion), our method is simpler and thus more directly us-
able in applications such as computer games.

3. Ambient Occlusion for Animated Characters

The input of our algorithm consists of reference poses along
with the pre-computed ambient occlusion values for all ver-
tices. Each reference pose is represented using a pose vector
j containing animation parameters j0, j1... jN−1. The anima-
tion parameters can be, for example, angles of joints. Typ-
ically the valid range of each animation parameter is read-
ily available from the character animation rig. In our imple-
mentation the reference poses were generated by construct-
ing random poses from the allowable pose space, which was
defined by limiting the valid range of each parameter sep-
arately. Such reference poses are particularly suitable when
no a priori information of runtime animation is available.

Our goal is to establish a linear mapping from an arbitrary
pose vector j to the approximate ambient occlusion value at
each vertex av:

av = jT tv (3)

where tv is a per-vertex vector that has N coefficients.

We will now look at the computation of the coefficient
vectors tv, and then discuss the implicit assumptions and
limitations built into this model.

3.1. Per-vertex coefficients

Given the matrix of pre-computed ambient occlusion values
A and animation parameters J for all the reference poses, our
goal is to establish the mapping:

A = JT (4)

in which the matrices are built as

J =

 all animation parameters of reference pose 0
all animation parameters of reference pose 1

...



T =

 effect of animation parameter 0 to all vertices
effect of animation parameter 1 to all vertices

...



A =

 per-vertex ambient occlusion of reference pose 0
per-vertex ambient occlusion of reference pose 1

...


Each column of T describes how all the animation parame-
ters affect a particular vertex. This is exactly what we want
to solve. Each column of A contains the ambient occlusion
of all reference poses in one vertex.

Equation 4 is a group of overdetermined systems of linear
equations since there, in general, are more reference poses
than there are animation parameters. So, there is no exact
solution T. However, an optimal solution in MSE-sense is
obtained by:

T = J+A (5)

where J+ refers to the pseudo-inverse [GHG96] of the pose
matrix J. Once T has been computed, the run-time evalu-
ation at each vertex can be done according to Equation 3.
Now tT

v is a column of T that corresponds to the vertex, and
j is the pose vector containing the animation parameters for
an arbitrary pose. The amount of runtime work is thus pro-
portional to the number of animation parameters.

So far our discussion overlooks one important special
case: what if the ambient occlusion at a vertex does not de-
pend on any of the animation parameters? In order to handle
this situation, we augment J with one column that contains
constant data, i.e., is the same for all reference poses. This
creates a new virtual animation parameter that captures am-
bient occlusion that is not dependent on any of the actual
animation parameters.

3.2. Assumptions and Limitations
There are two simplifying assumptions built into this model.
First, the model assumes that the ambient occlusion depends
linearly on the animation parameters. In many cases this
is an acceptable approximation, e.g., the ambient occlusion
caused by upper arm on lower arm is probably almost lin-
early dependent on the angle of the elbow joint, but admit-
tedly not all animation parameters behave so nicely.

The second assumption is that the animation parameters
can be handled independently so that the ambient occlu-
sion is simply a sum of the occlusions resulting from indi-
vidual parameters. Obviously this assumption does not al-
ways hold. For instance, whether or not the character’s hand
causes a contact shadow on her nose depends on many ani-
mation parameters, such as joint angles in the shoulder and
elbow. It would be possible to capture such "higher-order"
effects as well, but only at significantly higher computational
and storage cost. Therefore we decided to disregard such ef-
fects in favor of faster runtime implementation.

c© The Eurographics Association 2006.



J. Kontkanen & T. Aila / Ambient Occlusion for Animated Characters

Baby Jessi
Vertices 11281 41947
Params 73 54

Table 1: The scenes used in test animations.

Figure 3: Peak signal-to-noise ratio (PSNR) of ambient oc-
clusion during 30 frames when Jessi is running. The error
is evaluated against a ray traced reference solution. Higher
PSNR indicates less error. Clearly, the new method gives
consistently better approximation of ambient occlusion.

Provided that the precomputation has been done with a
large amount of reference poses, the effects that cannot be
represented by our model get averaged away and thus do not
in general manifest themselves as distracting artifacts.

4. Results
We tested our algorithm in two animated scenes, Baby and
Jessi (Table 1). The tests were executed on a 3GHz Pen-
tium 4 with 1GB of memory. The ambient occlusion of the
reference poses was computed by custom ray tracer, and
took 6 hours for 1000 random reference poses in the Baby
scene and 20 hours for 600 random poses of Jessi. Obvi-
ously faster methods, e.g. GPU-based computation, could be
exploited in the pre-computation stage, but we did not in-
vestigate that. The Equation 5, including the pseudo-inverse
took only a few seconds in Matlab. The reference poses were
generated by choosing random values for the animation pa-
rameters. To avoid illegal poses, the knowledge of the valid
ranges of the parameters was utilized.

The ground truth solutions were computed using ray trac-
ing with 1000 samples per vertex. We compared our method
against a static average solution, which was computed by
simply averaging the ambient occlusion from all the refer-
ence poses. Figure 2 shows a comparison of the errors aris-
ing from our method as well as from the comparison method.
While the difference is fairly clear in the still images, it is
even more pronounced in animations. Figure 3 shows the
peak signal-to-noise ratios (PSNR) when compared to the
ground truth. As can be seen, our method results in consis-
tently higher PSNR and thus lower error. Further comparison
images are shown in Figures 4 and 5.

Average AO Our method Ground truth

Figure 4: Static average ambient occlusion (Left) and our
method (Middle) compared against the ground truth (Right).
The ground truth was obtained by tracing 1000 quasi-
random rays per vertex. The second and fourth rows show
the difference images against the ground truth.

The runtime cost of our method consists solely of the per-
vertex dot product between the current animation parameters
and the pre-computed weights. In Baby and Jessi this means
73 and 54 scalar multiply-accumulations per vertex, respec-
tively. The amount of computations is roughly four times
the cost of transforming a vertex. For example, NVIDIA
7900 GTX could theoretically process hundreds of millions
of vertices per second in these scenes, assuming 650MHz
clock and 8 vertex shaders running in parallel, each being a
4-way SIMD unit. Admittedly, in practice the performance
would be somewhat lower, but in any case we did not con-
sider it necessary to start experimenting with an optimized
runtime implementation. The storage requirements using 16-
bit floats are 1.6MB for Baby and 4.3MB for Jessi.

5. Discussion and Future Work

The presented new ambient occlusion method for animated
characters should be usable in computer games today. The
improved accuracy, compared to the the static average ambi-
ent occlusion, comes with a reasonable additional cost. One
practical possibility would be to select either the old or the
new technique at runtime for each character, and thus imple-
ment level of detail for ambient occlusion.

In this paper we used a dense run-time representation
for storing the per-vertex coefficients. However, in a typi-
cal scene only a small portion of the coefficients are sig-
nificantly large. For, instance in the baby-scene 95% of the
coefficients had an absolute value less than 0.1 and 53%
were smaller than 0.01 (for computing these statistics, the
animation parameters were scaled and translated to range
[−0.5,0.5]). Clamping these values to zero would enable

c© The Eurographics Association 2006.



J. Kontkanen & T. Aila / Ambient Occlusion for Animated Characters

a) b) c)

d) e)

Figure 2: A comparison of the average ambient occlusion model (a) and our new technique (b) against the ground truth (c).
As can be seen from the corresponding difference images (d) and (e), our new model is more accurate. The real difference,
however, is much more apparent in animations. The difference images have been exaggerated for illustration purposes.

simple compression techniques. Alternatively, it might be
worthwhile to experiment with clustered PCA compression
of the coefficients.

Another interesting possibility would be to try using
something else than joint angles as animation parameters.
For example, the distance of two joints might have advan-
tages, although that would easily result in data amplifica-
tion, and more elaborate compression techniques would be
required.

Acknowledgements Thanks to Jaakko Lehtinen for his in-
sightful comments. Janne Kontkanen was supported by Bit-
boys, Hybrid Graphics, Remedy Entertainment, Anima Vi-
tae, and the National Technology Agency of Finland. Timo
Aila was supported by the Academy of Finland. Jessi and
Baby meshes were exported from Poser 6 by Curious Labs.

References
[Bun05] BUNNELL M.: Dynamic ambient occlusion and indirect

lighting. In GPU Gems 2 (2005), Addison Wesley, pp. 223–234.

[Chr02] CHRISTENSEN P. H.: Note #35: Ambient Occlusion,
Image-Based Illumination, and Global Illumination. PhotoRe-
alistic RenderMan Application Notes (2002).

[GHG96] GENE H. GOLUB C. F. V. L.: Matrix Computations,
3rd edition. Johns Hopkins University Press, 1996.

[HLHS03] HASENFRATZ J.-M., LAPIERRE M., HOLZSCHUCH

N., SILLION F.: A Survey of Real-Time Soft Shadows Algo-
rithms. Computer Graphics Forum 22, 4 (2003).

[IKSZ03] IONES A., KRUPKIN A., SBERT M., ZHUKOV S.:
Fast, Realistic Lighting for Video Games. IEEE Computer
Graphics and Applications 23, 3 (2003), 54–64.

[JF03] JAMES D. L., FATAHALIAN K.: Precomputing interactive
dynamic deformable scenes. ACM Trans. Graph. (Proc. SIG-
GRAPH) 22, 3 (2003), 879–887.

[KL05] KONTKANEN J., LAINE S.: Ambient occlusion fields. In
Proc. I3D (2005), ACM Press, pp. 41–48.

[KLA04] KAUTZ J., LEHTINEN J., AILA T.: Hemispherical Ras-
terization for Self-Shadowing of Dynamic Objects. In Rendering
Techniques 2004 (Proc. EGSR) (2004), pp. 179–184.

[Lan02] LANDIS H.: RenderMan in Production, ACM SIG-
GRAPH 2002 Course 16, 2002.

[Mil94] MILLER G.: Efficient algorithms for local and global ac-
cessibility shading. In Proc. SIGGRAPH 94 (1994), pp. 319–326.

[MMAH05] MALMER M., MALMER F., ASSARSSON U.,
HOLZSCHUCH N.: Fast Precomputed Ambient Occlusion for
Proximity Shadows. Tech. Rep. RR-5779, INRIA, 2005.

[MSC03] MÉNDEZ A., SBERT M., CATÀ J.: Real-time Obscu-
rances with Color Bleeding. In Proceedings of the 19th spring
conference on Computer graphics (2003), pp. 171–176.

[Pha04] PHARR M.: Ambient occlusion. In GPU Gems (2004),
Fernando R., (Ed.), Addison Wesley, pp. 667–692.

[SSZK04] SATTLER M., SARLETTE R., ZACHMANN G., KLEIN

R.: Hardware-accelerated ambient occlusion computation. In
Proc. VMV ’04 (2004), pp. 119–135.

[ZHL∗05] ZHOU K., HU Y., LIN S., GUO B., SHUM H.-Y.: Pre-
computed shadow fields for dynamic scenes. ACM Trans. Graph.
(Proc. SIGGRAPH) 24, 3 (2005), 1196–1201.

[ZIK98] ZHUKOV S., IONES A., KRONIN G.: An ambient light
illumination model. In Rendering Techniques ’98 (Proc. EGWR)
(1998), pp. 45–55.

c© The Eurographics Association 2006.



J. Kontkanen & T. Aila / Ambient Occlusion for Animated Characters

Average AO Our method Ground truth

Figure 5: Static average ambient occlusion (Left) and our method (Middle) compared against the ground truth (Right). The
ground truth was obtained by tracing 1000 quasi-random rays per vertex. The second, fourth, and sixth rows show the difference
images against the ground truth.

c© The Eurographics Association 2006.


