
High Performance Graphics (2010)
M. Doggett, S. Laine, and W. Hunt (Editors)

Architecture Considerations for Tracing Incoherent Rays

Timo Aila Tero Karras

NVIDIA Research

Abstract

This paper proposes a massively parallel hardware architecture for efficient tracing of incoherent rays, e.g. for
global illumination. The general approach is centered around hierarchical treelet subdivision of the acceleration
structure and repeated queueing/postponing of rays to reduce cache pressure. We describe a heuristic algorithm
for determining the treelet subdivision, and show that our architecture can reduce the total memory bandwidth
requirements by up to 90% in difficult scenes. Furthermore the architecture allows submitting rays in an arbitrary
order with practically no performance penalty. We also conclude that scheduling algorithms can have an important
effect on results, and that using fixed-size queues is not an appealing design choice. Increased auxiliary traffic,
including traversal stacks, is identified as the foremost remaining challenge of this architecture.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Raytracing

1. Introduction

We study how GPUs and other massively parallel comput-
ing architectures could evolve to more efficiently trace in-
coherent rays in massive scenes. In particular our focus is
on how architectural as well as algorithmic decisions affect
the memory bandwidth requirements in cases where memory
traffic is the primary factor limiting performance. In these
cases, the concurrently executing rays tend to access differ-
ent portions of the scene data, and their collective working
set is too large to fit into caches. To alleviate this effect, the
execution needs to be modified in some non-trivial ways.

It is somewhat poorly understood when exactly the mem-
ory bandwidth is the primary performance bottleneck of ray
tracing. It was widely believed that that was already the case
on GPUs but Aila and Laine [AL09] recently concluded that
in simple scenes that was not the case, even without caches.
Yet, those scenes were very simple. We believe that applica-
tions will generally follow the trend seen in rendered movies,
for example Avatar already has billions of geometric primi-
tives in most complex shots. If we furthermore target inco-
herent rays arising from global illumination computations,
it seems unlikely that currently available caches would be
large enough to absorb a significant portion of the traffic.

Also, the processing cores of current massively parallel

computing systems have not been tailored for ray tracing
computations, and significant performance improvements
could be obtained by using e.g. fixed-function hardware
for traversal and intersection [SWS02, SWW∗04, WSS05].
However, for such custom units to be truly useful, we must
be able to feed them enough data, and eventually we will
need to sustain immense data rates when the rays are highly
incoherent, perhaps arising from global illumination compu-
tation. In this paper we seek architectural solutions for situ-
ations where memory traffic is the primary bottleneck, with-
out engaging into further discussion about when and where
these conditions might arise.

We study this problem on a hypothetical parallel com-
puting architecture, which is sized according to NVIDIA
Fermi [NVI10]. We observe that with current approaches
the memory bandwidth requirements can be well over hun-
dred times higher than the theoretical lower bound, and that
traversal stack traffic is a significant issue. We build on the
ray scheduling work of Pharr et al. [PKGH97] and Navratil
et al. [NFLM07], and extend their concept of queue-based
scheduling to massively parallel architectures. We analyze
the primary architectural requirements as well as the bottle-
necks in terms of memory traffic.

Our results indicate that scheduling algorithms can have
an important effect on results, and that using fixed-size

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

VEGETATION HAIRBALL VEYRON

Number of triangles 1.1M 2.9M 1.3M
Number of BVH nodes 629K 1089K 751K
Total memory footprint 86MB 209MB 104MB
Traffic lower bound 158MB 104MB 47MB

Table 1: Key statistics of the test scenes. Half of the BVH nodes are leaves. VEGETATION and HAIRBALL are difficult scenes
considering their triangle count, whereas VEYRON has very simple structure.

queues is not an appealing design choice. While our ap-
proach can reduce the scene data-related transfers by up to
95%, the overall savings are somewhat smaller due to traver-
sal stacks and newly introduced queue traffic. An important
feature of the proposed architecture is that the memory traf-
fic is virtually independent of ray ordering.

2. Test setup

We developed a custom architecture simulator for the mea-
surements. In order to have a realistic amount of parallelism,
we sized our ray tracing hardware roughly according to
NVIDIA Fermi: 16 processors, each 32-wide SIMD, 32×32
threads/processor for latency hiding, each processor coupled
with a private L1 cache (48KB, 128B lines, 6-way), and a
single L2 cache (768KB, 128B lines, 16-way) shared among
the processors. Throughout this paper we will use "B" to
denote byte. Additionally, we chose round robin scheduling
and implemented the L1 and L2 as conventional write-back
caches with LRU eviction policy.

We assume that the processors are very fast in accel-
eration structure traversal and primitive intersection tasks,
possibly due to a highly specialized instruction set or ded-
icated fixed-function units, similar to the RPU architec-
ture [WSS05]. Whether the processors are programmable or
hardwired logic is not relevant for the rest of the paper.

Our primary focus will be on the amount of data trans-
ferred between the chip and external DRAM. We count the
number of DRAM atoms read and written. The size of the
atoms is 32B, which gives good performance with currently
available memories. We ignore several intricate details of
DRAM, such as page activations or bus flips (read/write),
because existing chips already have formidable machinery
for optimizing the request streams for these aspects.

We assume that the memory transfer bottleneck is either
between L2 and DRAM or between L1 and L2, and not else-
where in the memory hierarchy. As a consequence, we re-
quire that each L1 can access multiple cachelines per clock

(e.g. [Kra07] p. 110), as otherwise the L1 fetches could be-
come a considerable bottleneck. We also acknowledge that
L2 caches are not infinitely fast compared to DRAM — for
example AMD HD 5870’s L2 is only about 3× faster than
DRAM — so we need to keep an eye on the ratio between
the total L2 and DRAM bandwidth requirements.

2.1. Rays

We are primarily interested in incoherent rayloads that could
arise in global illumination computations. These rays typi-
cally start from surfaces and need to find the closest intersec-
tion; furthermore any larger collection of rays tends to con-
tain rays going to almost all directions and covering large
portions of the scene. The exact source of such rays is not
important for our study, and we choose to work with diffuse
interreflection rays. We first determine the primary hit point
for each pixel of a 512×384 viewport, and then generate 16
diffuse interreflection rays per pixel, distributed according to
the Halton sequence [Hal60] on a hemisphere and further-
more randomly rotated around the normal vector. This gives
us 3 million diffuse rays, and we submit these in batches of
1 million rays to the simulator. Each batch corresponds to a
rectangle on the screen (256×256, 256×256, 512×128); we
did not explore other batch sizes or shapes.

To gauge the effect of ray ordering we sort the rays inside
a batch in two ways prior to sending them to the simulator.
MORTON sorting orders the rays according to a 6D (origin
and direction) space-filling curve. This order is probably bet-
ter than what one could realistically accomplish in practice.
RANDOM sorting orders the rays randomly, arriving at pretty
much the worst possible ordering. From a usability point of
view, an ideal ray tracing platform would allow submitting
the rays in a more or less arbitrary order without compromis-
ing the performance. Also, the benefit of static reordering
can be expected to diminish with increasing scene complex-
ity as the nodes visited by two neighboring rays will gener-
ally be further apart in the tree.

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

Processor

L1
cache

L2
cache

DRAM

Launcher

rays entering
the treelet

compacted

work

new

work

bypassed
work from
other processors

rays exiting
the treelet

newly
launched
rays

stacktop
cache
misses

Rays
Scene
data

0: active

Threads 0 ... 31Warps

1: active

3: active

4: vacant

5: compacting

...

31: active

2: launching

mux

nodes
and
triangles

Queues
bound

Stacks

Figure 1: High-level view of our architecture along with the
most important aspects of data flow.

2.2. Scenes

Ideally, we would conduct experiments with very large and
difficult scenes. Due to simulator infrastructure weaknesses
(execution speed, memory usage) we had to settle for much
smaller scenes, in the range of 1–5M triangles, but we were
able to select scenes with fairly difficult structure. In fact,
the number of triangles in a scene is a poor predictor for
the amount of memory traffic. With highly tessellated com-
pact objects such as cars and statues, rays tend to terminate
quickly after having descended to a leaf node. With veg-
etation and other organic shapes, on the other hand, it is
common for rays to graze multiple surfaces before finally
intersecting one. We therefore selected two organic scenes,
VEGETATION and HAIRBALL, in addition to a car interior
VEYRON. Key statistics of the scenes are shown in Table 1.
Traffic lower bound is the total amount of scene-related traf-
fic when each node and triangle is fetched exactly once per
batch. It can exceed the footprint of the scene because we
trace the rays in three batches.

We use bounding volume hierarchies (BVH) built using
greedy surface area heuristic (SAH) without triangle split-
ting. The maximum size of a leaf node is set to 8 triangles.

3. Architecture

We will start by explaining some basic concepts and the
functionality of our architecture. We then run an existing
GPU ray tracer on our architecture and analyze its memory
bandwidth requirements. It turns out that stack-related traffic
is an important subproblem, and we introduce a simple ap-
proach for avoiding most of it. The ideas in this section can
be employed independently from the more advanced aspects
of our architecture that will be explained in Section 4.

Figure 1 illustrates the basic concepts of our architecture.
Each processor hosts 32 warps and each warp consists of a
static collection of 32 threads that execute simultaneously

Data type Size Contents
Ray 32B Origin, direction, tmin, tmax
Ray state 16B Ray index (24 bits), stack pointer (8 bits),

current node index, closest hit (index, t)
Node 32B AABB, child node indices
Triangle 32B Three vertex positions, padding
Stack entry 4B Node index

Table 2: The most common data types.

in SIMD fashion. We assume one-to-one mapping between
rays and threads. Traversal and intersection require approx-
imately 30 registers for each thread (32 bits per register);
about 12 for storing the ray and ray state (Table 2), and the
rest for intermediate results during computation. Each pro-
cessor contains a launcher unit, that is responsible for fetch-
ing work from a queue the processor is currently bound to.
The queue stores ray states, and the ray itself is fetched later
directly from DRAM. Launcher copies the data from the
queue to a warp’s registers. Once the warp gets full, it is
ready for execution, and the launcher starts filling the next
vacant warp if one exists.

At this point, it is sufficient to only consider a single queue
(i.e. the input queue), to which all processors are bound from
the beginning. The queue is initialized to contain all the rays
of a batch, and processors consume rays from it whenever
one or more of their warps become vacant. Since ray states
in the input queue always represent new rays that start from
the root, it would be possible to optimize their memory foot-
print by omitting the unnecessary fields. However, the total
traffic generated by the input queue is negligible in any case,
so we choose to ignore such optimizations for simplicity. A
scenario with multiple queues is introduced in Section 4.

3.1. Work compaction

Whenever a warp notices that more than 50% of its rays have
terminated, it triggers compaction if the launcher grants a
permission for it. The terminated rays write their result to
memory and are ejected from the processor. Non-terminated
rays are sent back to the launcher, which then copies their
data to the warp it is currently filling. The process is similar
to fetching new rays from a queue, but in case of compaction
we also copy the ray to avoid having to read it again. Since
compaction is a relatively rare operation, it does not have to
happen instantaneously.

Compaction is very important with highly divergent ray
loads. Without it the percentage of non-terminated rays
dropped to as low as 25% in our tests. With this kind of sim-
ple compaction we can sustain around 60–75% even in diffi-
cult scenarios, which suggests over 2× potential increase in
overall performance. However, since compaction increases
the number of concurrently executing rays, their collective
working set grows as well. While this inevitably puts more
pressure on the caches, it is hard to imagine a situation where

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

Test setup Total Scene Stack L1↔L2 Threads
traffic traffic traffic vs. alive

L2↔DR. L2↔DR. L2↔DR.
(GB) (GB) (GB) required (%)

VEGETATION M 13.6 5.6 7.7 2.3× 75
VEGETATION R 24.9 12.5 12.1 1.6× 73
HAIRBALL M 11.2 5.0 6.0 2.0× 75
HAIRBALL R 18.5 9.2 9.1 1.6× 65
VEYRON M 1.9 0.6 1.1 6.9× 68
VEYRON R 9.2 3.9 5.1 2.5× 73

Table 3: Measurements for the baseline method [AL09] with
compaction. The remaining ∼0.2GB of traffic is due to ray
fetches and result write. M=MORTON, R=RANDOM.

the resulting increase in memory traffic would nullify the
benefits of increased parallelism.

Compaction is turned on in all tests so that the numbers
are comparable.

3.2. Baseline ray tracing method

We take the persistent while-while GPU tracer [AL09] as our
baseline method. In their method processors are pointed to
a pool of rays and autonomously fetch new rays whenever a
warp terminates. During execution a ray always fetches and
intersects the two child nodes together, proceeds to the closer
intersected child, and pushes the other intersected child’s in-
dex to a per-ray traversal stack.

Table 3 shows the baseline method’s memory traffic in our
scenes with MORTON and RANDOM sorting of rays. The to-
tal L2↔DRAM bandwidth requirements are very large com-
pared to the lower bound shown in Table 1. With RANDOM

we see 150–200× more traffic than theoretically necessary.
MORTON sorting reduced the traffic almost 5× in VEYRON,
but in other scenes the effect was surprisingly small given
that this is basically the worst-to-best case jump. In VEYRON

we can furthermore see that while DRAM traffic was greatly
reduced, the required L2 bandwidth compared to DRAM
bandwidth was rather large (6.9×), implying that L1 caches
were not effective even in this simple case.

3.3. Stack top cache

Our baseline method uses the the stack memory layout of
Aila and Laine [AL09], who kept them in CUDA’s [NVI08]
thread-local memory. This memory space is interleaved so
that the first stack entry of 32 adjacent threads (i.e. warp) are
consecutive in memory, same for the second entry, and so
on. This is an attractive memory layout as long as the stack
accesses of a warp stay approximately in sync, but with inco-
herent rays this is no longer the case and reordering of rays
due to compaction further amplifies the problem. An addi-
tional test that ignored all traversal stack traffic revealed that
stacks are an important problem and responsible for approx-
imately half of the total traffic in all six cases of Table 3.

Test setup Total Stack Total Stack
traffic traffic traffic traffic
N = 4 N = 4 N = 8 N = 8
(GB) (GB) (GB) (GB)

VEGETATION MORTON 6.0 0.186 5.9 0.016
VEGETATION RANDOM 12.9 0.186 12.8 0.016
HAIRBALL MORTON 5.3 0.104 5.2 0.009
HAIRBALL RANDOM 9.6 0.104 9.5 0.009
VEYRON MORTON 0.9 0.119 0.8 0.006
VEYRON RANDOM 4.2 0.119 4.1 0.006

Table 4: Total and stack traffic measurements for baseline
augmented with an N-entry stack top cache.

An alternative layout is to dedicate a linear chunk of stack
memory for each ray. While this approach is immune to
compaction and incoherence between rays, all rays are con-
stantly accessing distinct cache lines. Since this exceeds the
capacity of our caches, thrashing follows.

Horn et al. [HSHH07] describe a shortstack that main-
tains only a few topmost (latest) stack entries, and restarts
(kd-tree) traversal from root node with a shortened ray when
the top is exhausted. This policy can lead to a very signifi-
cant amount of redundant work when the missing stack en-
tries are reconstructed. We use a related approach that keeps
the full per-ray traversal stack in memory and accesses it
through a stack top cache, whose logic is optimized for di-
rect DRAM communication. Our implementation uses a ring
buffer with capacity of N entries (the size is dynamic [0,N]),
each of which consists of 4B data and a dirty flag. The ring
buffer is initially empty. Push and pop are implemented as
follows:

• push: Add a new entry to the end of the ring buffer, mark
it as dirty, and increment the stack pointer. In case of over-
flow, evict the first entry. If the evicted entry was marked
as dirty, write all entries belonging to the same atom to
DRAM. Mark them as non-dirty and keep them in cache.

• pop: Remove an entry from the end of the ring buffer and
decrement the stack pointer. In case of underflow, fetch
the required entry as well as all earlier stack entries that
belong to the same DRAM atom, and add them to the ring
buffer as non-dirty. If the number of entries exceeds N,
discard the earliest ones.

We maintain the ring buffer for each thread in the register
file because a tiny stack top of 4 entries typically suffices,
and it would be wasteful to allocate a 128B cacheline for
it when the register file can store it in 16B. The stack top
absorbs almost all traversal stack traffic and consequently
reduces the total traffic by approximately 50% in our tests,
as shown in Table 4. In the rest of the paper we will refer to
the baseline with stack top as improved baseline.

To avoid unnecessary flushes during compaction (Sec-
tion 3.1), we copy the cached stack entries similarly to the
rest of the state. However, if we push a ray to a queue, we

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

T0

T1
T2 T3

T4 T5

internal node

leaf node

treeletTi

Figure 2: Example treelet subdivision of an acceleration
structure.

must flush dirty stack entries, as we have chosen not to store
cached stack entries in the queue. This design gave slightly
lower memory traffic on our system but if the DRAM atom
was any larger, it would be better to store the cached entries
to the queue.

4. Treelets

The primary problem with the baseline method is that rays
explore the scene independently of each other, and thus the
concurrent working set can grow very large. This problem
was approached by Pharr et al. [PKGH97] in the context of
out-of-core ray tracing. They collected rays that enter nodes
of a uniform space subdivision, and later on processed the
rays as batches in order to reduce swapping. More recently,
Navratil et al. [NFLM07] optimized L2↔DRAM traffic of
a sequential ray tracer with a setup that collected rays into
queue points, and then processed all rays in one queue point
together. Each queue point was placed so that the entire sub-
tree under it fits into cache. All data between the root and
queue points was assumed to stay in cache, and thus the
related memory traffic was not tracked. There was also no
stack traffic since whenever a ray exited a queue point, it
was shortened and traversal restarted from the root node. We
extend this work to hierarchical queue points and massive
parallelism.

Figure 2 shows a simple tree that has been partitioned into
six treelets. Nodes are statically assigned to treelets when the
BVH, or any other acceleration structure, is built (Section
4.1). We store this assignment into node indices that encode
both a treelet index and a node index inside the treelet. A ray
starts the traversal from the root and proceeds as usual until
it encounters a treelet boundary. At this point the processing
is suspended and the ray’s state is pushed to a queue that
corresponds to the target treelet. At some point a scheduler
(Section 4.2) decides that it is time to start processing rays
from the target treelet. Hopefully by this time many more

1: // Start with an empty treelet.
2: cut← treeletRoot
3: bytesRemaining← maxTreeletFootprint
4: bestCost[treeletRoot]←∞
5:
6: // Grow the treelet until it is full.
7: loop
8: // Select node from the cut.
9: (bestNode, bestScore)← (∅,−∞)

10: for all n ∈ cut do
11: if footprint[n] ≤ bytesRemaining then
12: gain← area[n] + ε

13: price← min(subtreeFootprint[n], bytesRemaining)
14: score← gain / price
15: if score > bestScore then
16: (bestNode, bestScore)← (n, score)
17: end if
18: end if
19: end for
20: if bestNode = ∅ then break
21:
22: // Add to the treelet and compute cost.
23: cut← (cut \ bestNode) ∪ children[bestNode]
24: bytesRemaining← bytesRemaining - footprint[bestNode]
25: cost← (area[treeletRoot] + ε) + ∑n∈cutbestCost[n]
26: bestCost[treeletRoot]← min(bestCost[treeletRoot], cost)
27: end loop

Figure 3: Pseudocode for treelet assignment using dynamic
programming. This code is executed for each node in reverse
depth-first order.

rays have been collected so that a of number rays will be
requesting the same data (nodes and triangles) and thus the
L1 cache can absorb most of the requests. The tracing of
the rays then continues as usual, and when another treelet
boundary is crossed the rays are queued again.

While a treelet subdivision can be arbitrary, it should gen-
erally serve two goals. We want to improve cache hitrates
and therefore should aim for treelets whose memory foot-
print approximately matches the size of L1. We should also
place the treelet boundaries so that the expected number of
treelet transitions per ray is minimized because each transi-
tion causes memory traffic.

The rest of the paper assumes one-to-one mapping be-
tween treelets and queues, and that a ray can reside in at
most one queue at any given time. While one could specula-
tively push a ray to multiple queues, we have found that this
is not beneficial in practice.

4.1. Treelet assignment

The goal of our treelet assignment algorithm is to min-
imize the expected number of treelets visited by a random
ray. Disregarding occlusion, the probability of a long ran-
dom ray intersecting a treelet is proportional to its surface
area. We therefore chose to optimize the total surface area of

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

the treelet roots, which was also experimentally verified to
have a strong correlation with treelet-related memory traffic.
Our method produces treelets that have a single root node,
although the rest of this paper does not rely on that.

We use dynamic programming, and the algorithm’s ex-
ecution consists of two stages. In the first stage the pseu-
docode in Figure 3 is executed for each BVH node in reverse
depth-first order (starting from leaves) to find the lowest-cost
treelet that starts from the specified node. The expected cost
of a treelet equals its root node’s surface area plus the sum
of costs of all nodes in the cut, i.e. the set of nodes that are
just below the treelet.

The algorithm is greedy because instead of trying all pos-
sible treelet shapes it selects nodes from the cut according to
a simple heuristic (lines 12–14). The heuristic is primarily
based on surface area: if a node has large area, a treelet start-
ing from it would probably be intersected often. Since any
node in the cut can be added to the current treelet without in-
creasing the treelet’s area, we choose the largest. However,
if a node in the cut represents a subtree with tiny memory
footprint, we would like to include it into the current treelet
instead of creating a separate, tiny treelet for it.

In the second stage of the algorithm nodes are assigned
to treelets. We start from the root node, with essentially the
same code, and enlarge the treelet until its cost equals the
value that was stored during the first pass. Once the cost
is met, the loop terminates and the function is called recur-
sively for each node in the cut.

The additional control parameter ε encourages subdivi-
sions with larger average treelet footprint. We prefer larger
(and thus fewer) treelets for two reasons. First, fewer treelets
means fewer queues during simulation. Second, our subse-
quent analysis of the optimal treelet size would be dubious if
the average size was nowhere near the specified maximum.
If the scene footprint (nodes and triangles) is S and maxi-
mum treelet size is T , at least S/T treelets will be needed.
As a crude approximation for the expected surface area of
the smallest treelets we use ε = AreaBV Hroot ∗ T/(S ∗ 10)
to discourage unnecessarily small treelets. This penalty has
a negligible effect on the total surface area while increas-
ing the average treelet memory footprint, e.g., from 3KB to
19KB.

Table 5 provides statistics for our test scenes with treelets
not larger than 48KB. Our method deposited the BVH leaf
nodes adaptively to levels 1–8, whereas prior work had ex-
actly 2 layers of treelets [NFLM07]. As a further validation
of our greedy treelet assignment, we also implemented an
O(NM2) search that tried all possible cuts in the subtree in-
stead of the greedy heuristic. Here, N and M denote the num-
ber of nodes in tree and treelet, respectively.

Scene Num Avg. Stddev Avg. Treelet Area
48KB size size treelets layers vs.
treelets (KB) per ray optimal

VEGETATION 4588 19.3 15.4 11.3 1–5 +20%
HAIRBALL 14949 14.3 16.8 6.1 2–8 +15%
VEYRON 3563 30.0 13.3 9.2 1–8 +5%

Table 5: Treelet assignment statistics with 48KB max size.

4.2. Scheduler

The remaining task is to choose which queues the proces-
sors should fetch rays from. We will analyze two different
scheduling algorithms for this purpose.

LAZY SCHEDULER is as simple as possible: when the
queue a processor is currently bound to gets empty, we bind
the processor to the queue that currently has most rays. This
policy has several consequences. The scheduler tends to as-
sign the same queue to many processors, and most of the
time only a few treelets are being processed concurrently by
the chip. Considering DRAM traffic, this behavior tends to
favor treelets that are roughly the size of L2 cache. Also,
scene traffic is well-optimized because queues are able to
collect maximal number of rays before they are bound.

BALANCED SCHEDULER defines a target size for all
queues (e.g. 16K rays). When a queue exceeds the target
size, it starts requesting progressively more processors to
drain from it. This count grows linearly from zero at the tar-
get size to the total number of processors at 2× target size.
We also track how many processors are currently bound to
a queue, and therefore know how many additional proces-
sors the queue thinks it needs. The primary sorting key of
queues is the additional workforce needed, while the number
of rays in the queue serves as a secondary key. The binding
of a processor is changed if its current queue has too much
workforce while some other queue has too little. The input
queue that initially contains all rays requires special treat-
ment: we clamp the number of processors it requests to four
to prevent the input queue from persistently demanding all
processors to itself. This policy leads to more frequent bind-
ing changes than LAZY scheduler, but different processors
are often bound to different queues and therefore L1-sized
treelets are favored. It also creates additional opportunities
for queue bypassing (Section 4.4).

The graphs in Figure 4 show the total DRAM traffic as
a function of maximum treelet size for both schedulers in
VEGETATION. It can be seen that LAZY scheduler works
best with L2-sized treelets and BALANCED scheduler with
L1-sized treelets, although this simplified view disregards
potential L1↔L2 bottlenecks. In both cases the minimum
traffic is reached with a maximum size that is slightly larger
than the caches. Two possible explanations are that the av-
erage treelet size is always somewhat smaller than the max-
imum, and that rays may not actually access every node and
triangle of a treelet, thus reducing the actual cache footprint.

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

100 102 104 1060

2000

4000

6000

8000

10000

12000

14000
L1 L2

treelet size (KB)

D
R

AM
 tr

af
fic

 (M
B)

100 102 104 1060

2000

4000

6000

8000

10000

12000

14000
L1 L2

treelet size (KB)

D
R

AM
 tr

af
fic

 (M
B) total traffic

scene traffic

auxiliary traffic
(queues, rays,

stacks)

LAZY SCHEDULER BALANCED SCHEDULER

Figure 4: DRAM traffic as a function of treelet size in VEGETATION for both schedulers. Lazy scheduler gives the lowest total
traffic with treelets that are sized according to L2, whereas the BALANCED scheduler works best with L1-sized treelets.

We will provide detailed results in Section 5, but it is al-
ready evident that scene traffic remains clearly higher than
the lower bound for this scene (158MB). The crucial obser-
vation here is that we could expect to process each treelet
once only if all rays visited the nodes in the same order. In
practice, however, some rays traverse the scene left-to-right
and others right-to-left. Taking this further, we can expect to
traverse the scene roughly once for each octant of ray direc-
tion, which would suggest a more realistic expectation of 8×
the lower bound.

Ramani et al. [RGD09] propose an architecture that essen-
tially treats every node as a treelet. As can be extrapolated
from our graphs their design point is bound to exhibit very
significant auxiliary traffic and therefore mandates keeping
the rays and related state in on-chip caches, which is what
Ramani et al. do. One challenge is that we have about 16K
rays in execution at any given time and based on preliminary
experiments, we would need to keep at least 10× as many
rays in on-chip caches to benefit significantly from postpon-
ing. Considering current technology, this is a fairly substan-
tial requirement. The scene traffic might also be higher with
their approach since we can expect to fetch the scene data
approximately 8 times per a batch of rays, and currently our
batch size can be in millions, whereas their approach would
require smaller batches.

4.3. Queue management

We are implicitly assuming that queue operations are very
fast, since otherwise our treelet-based approach might be
limited by processing overhead instead of memory traffic.
This probably requires dedicated hardware for queue opera-
tions, which should be quite realistic considering that plenty
of other uses exist for queues [SFB∗09]. Our queues are im-
plemented as ring buffers with FIFO policy in external mem-
ory, and the traffic goes directly to DRAM because when-
ever we push a ray to a queue, we do not expect to need it

for a while. Caching would therefore be ineffective. Writes
are compacted on-chip before sending the atoms to external
memory; queues could therefore work efficiently with any
DRAM atom size.

We tried two memory allocation schemes for the queues.
The easier option is to dedicate a fixed amount of storage
for each queue at initialization time. This means that queues
can get full, and therefore pre-emption must be supported to
prevent deadlocks. Our pre-emption moves the rays whose
output is blocked back to the input queue, which is guar-
anteed to have enough space. With fixed-size queues, it is
not clear to us whether any realistic scheduler could guar-
antee deadlock-free execution without pre-emption; at least
our current schedulers cannot. BALANCED SCHEDULER can
often avoid pre-emptions but it still needs them occasionally.
However, the real problem with this approach is that a large
amount of memory has to be allocated (e.g. thousands of en-
tries per treelet) and most of this memory will never be used.

We implemented dynamic resizing of queues to use mem-
ory more efficiently and guarantee no deadlocks even with-
out pre-emption. When a queue gets full, we extend it with
another page (fixed-sized chunk of memory, e.g. 256 entries)
from a pool allocator. Queues maintain a list of pages in their
possession. When a page is no longer needed, it is returned
to the pool. If we limit the system to have a certain maxi-
mum number of rays in flight at a time, the memory require-
ments are bounded by this threshold plus one partial page
per treelet as well as one per processor. As long as the pool
allocator has been appointed a sufficient amount of memory,
queues cannot get full and hence deadlocking is impossible.
This is the method actually used in our measurements. We
did not study the possible microarchitecture of this mecha-
nism in detail, but we do not foresee any fundamental prob-
lems with it. Lalonde [Lal09] describes other prominent uses
for pool allocators in graphics pipelines.

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

Scene Scheduler Treelet Treelet Total Scene traffic (cached) Aux. traffic (uncached) Threads Queue
max changes traffic L2↔DR. L2↔DR. L1↔L2 Queues Rays Stacks alive ops
size vs. lower vs. bypassed
(KB) per ray (GB) (GB) bound L2↔DR. (GB) (GB) (GB) (%) (%)

VEGETATION LAZY 768 6.9 3.01 1.12 7.1× 7.7× 0.59 0.64 0.57 62 18
VEGETATION BALANCED 768 6.9 6.76 5.26 33.3× 1.7× 0.44 0.49 0.48 52 41
VEGETATION LAZY 48 11.3 3.97 1.18 7.5× 2.3× 0.89 0.93 0.89 64 23
VEGETATION BALANCED 48 11.3 3.77 1.18 7.5× 1.7× 0.81 0.86 0.83 63 30
HAIRBALL LAZY 768 2.7 1.78 0.94 9.0× 9.0× 0.24 0.29 0.24 62 25
HAIRBALL BALANCED 768 2.7 5.78 5.05 48.5× 1.7× 0.19 0.24 0.21 53 43
HAIRBALL LAZY 48 6.1 2.68 1.10 10.6× 2.4× 0.50 0.55 0.47 64 23
HAIRBALL BALANCED 48 6.1 2.53 1.08 10.4× 1.7× 0.44 0.49 0.43 63 32
VEYRON LAZY 768 5.7 1.73 0.16 3.4× 23.3× 0.48 0.52 0.47 64 21
VEYRON BALANCED 768 5.7 2.94 1.75 37.2× 2.5× 0.34 0.39 0.37 51 47
VEYRON LAZY 48 9.2 2.49 0.19 4.0× 3.3× 0.75 0.79 0.67 67 21
VEYRON BALANCED 48 9.2 2.03 0.20 4.3× 3.6× 0.57 0.61 0.56 60 41

Table 6: Measurements for our treelet-based approach with two schedulers using 48KB and 768KB treelets. Stack top size was
fixed to four and bypassing according to two previous queue bindings was allowed. Additionally, result writes used ∼0.1GB.

4.4. Queue bypassing

We can avoid the round-trip through a queue if the queue
is already bound to another processor. This optimization is
obviously possible only in parallel architectures. Since there
is no need to preserve the ordering of rays, we can forward
the ray along with its ray state and stack top to the another
processor’s launcher. This is basically the same operation as
compaction (Section 3.1) but to a different processor. In our
architecture, as well as in most massively parallel designs,
any two processors can be reached from the shared L2 cache,
and thus the queue bypass operation can be carried out at L2
bandwidth without causing DRAM traffic.

Since the stack top cache talks directly to DRAM, there is
no risk that some of the traversal stack data would be only
in the previous processor’s L1 cache. Therefore coherent L1
caches are not required.

We can optionally allow bypassing decisions according
to e.g. two previous queues in addition to the current one.
The justification is that whenever a processor is bound to a
new queue, it will continue to have rays from the previous
queue/treelet in flight for some time. Also, towards the end
many treelets will have fewer rays than fit into a processor
and therefore rays from more than two treelets will be in
flight simultaneously. Having multiple treelets in flight does
not immediately lead to working set explosion because when
a smaller number rays propagate inside a treelet, only a part
of its data is accessed.

5. Results

Table 6 shows results for RANDOM sorted rays in the three
scenes using both schedulers with L1 and L2-sized treelets.
We do not provide separate results for MORTON sorting be-
cause they were virtually identical with RANDOM; it there-
fore does not matter in which order the rays are submitted

to the simulator. The lowest total traffic was obtained in all
scenes with LAZY scheduler and L2-sized treelets. For this
design point to be realistic L2 should be 7.7− 23.3× faster
than DRAM, which would require a radical departure from
current architectures. The second lowest total traffic was
obtained with BALANCED scheduler and L1-sized treelets,
and this combination places only modest assumptions on L2
speed (1.7− 3.6× DRAM). In the following we will focus
on the latter design point.

Figure 5 shows the total and scene traffic for baseline,
improved baseline (baseline with stack top cache), and
treelets with RANDOM sorted rays. The improved baseline
essentially eliminates the stack traffic, and the total traffic
is roughly halved. The reduction is virtually identical for
MORTON sorted rays (Tables 3 and 4).

Treelets offer an additional 50–75% reduction in total
memory bandwidth on top of the improved baseline, yield-
ing a total reduction of 80-85%. Figure 5 also reveals that
when treelets are used, the scene traffic is greatly dimin-
ished but the auxiliary traffic (rays, stacks, queues) increases
a lot. This is the most significant remaining problem with
the treelet-based approach, and the reason why it can in-
crease memory traffic in simple scenes. With MORTON

sorted rays the reduction on top of the improved baseline
is still around 50% in VEGETATION and HAIRBALL but in
VEYRON treelets actually lose (2.0GB vs 0.9GB).

These results assume that bypassing is allowed to two pre-
vious queues. Table 7 shows that if bypassing is allowed only
to the current queue, the total traffic would increase by about
10%, and disabling bypassing would cost another 10%. In-
creasing the number of previous queues further did not help.

To gauge scalability, we performed additional tests with
64 processors and L1 caches instead of 16, all other param-
eters held constant. With BALANCED scheduler and 48KB
treelets the total memory traffic changed very little (<20%)

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

9.6
improved

4.2
improved

Vegetation

24.9
baseline

12.9
improved

3.8
treelets

18.5
baseline

2.5
treelets

9.2
baseline

2.0
treelets

Hairball Veyron

25

20

15

10

 5

 0

scene
traffic

auxiliary
traffic

Figure 5: Memory traffic with RANDOM sorted rays for
baseline, improved baseline, and treelets (from left to right).

and actually decreased in VEYRON. While the scene traffic
did increase somewhat, there were more bypassing opportu-
nities on a larger chip, which reduced the auxiliary traffic.
This suggests that our approach scales well, and that a rela-
tively small L2 can be sufficient even in massive chips.

So far we have assumed that each processor can drain data
from L1 at least 512 bits at a time (2 adjacent sibling nodes).
This may not be the case on existing architectures; for ex-
ample on NVIDIA Fermi the widest load instruction is 128
bits. This means that four consecutive loads are needed, and
there is a possibility that the data gets evicted from L1 be-
tween these loads. We introduced this constraint to the 16-
processor chip, and it almost doubled the total traffic in the
baseline, whereas our treelet-based approach was barely af-
fected because cache thrashing happens so rarely. In the most
difficult cases, RANDOM sorted rays in VEGETATION and
HAIRBALL, the reduction in total memory traffic compared
to the baseline was now slightly over 90%, whereas the sim-
plest case (VEYRON with MORTON) was unaffected.

6. Possible future improvements

6.1. Batch processing vs. continuous flow of rays

We have concentrated on processing the rays in batches. A
potentially appealing alternative would be to let the tracing
process run continuously so that new rays could be pulled in
whenever the scheduler so decides. Unfortunately our cur-
rent schedulers do not guarantee fairness in the sense that
rays that end up in a rarely visited treelet could stay there
indefinitely long. With batch processing this cannot happen
since all queues/treelets are processed upon the batch’s end.
It should be possible to improve the schedulers so that fair-
ness could be guaranteed. We also suspect, without tangible
evidence, that the schedulers can be improved in other ways
as well. Another complication from continuous flow of rays
is memory allocation for traversal stacks, ray data, and ray
results. In batch processing all of this is trivial, but when

Test Total Scene Aux. traffic By-
traffic L2↔D. Queues Rays Stacks pass
(GB) (GB) (GB) (GB) (GB) (%)

VEGETATION 2 PQ 3.77 1.18 0.81 0.86 0.83 30
VEGETATION 0 PQ 4.07 1.21 0.92 0.97 0.88 20
VEGET. no bypass 4.61 1.23 1.14 1.19 0.97 0
HAIRBALL 2 PQ 2.53 1.08 0.44 0.49 0.43 32
HAIRBALL 0 PQ 2.68 1.09 0.50 0.55 0.46 28
HAIRB. no bypass 3.00 1.10 0.63 0.68 0.51 0
VEYRON 2 PQ 2.03 0.20 0.57 0.61 0.56 41
VEYRON 0 PQ 2.41 0.20 0.71 0.76 0.64 24
VEYRON no bypass 2.94 0.20 0.93 0.98 0.74 0

Table 7: Measurements without bypassing, and without and
with previous queues using BALANCED scheduler and 48KB
treelets. PQ=previous queue bindings.

individual rays come and go, a more sophisticated memory
allocation scheme would be called for.

6.2. Stackless traversal

Stack traffic constitutes 17–28% of overall memory commu-
nication when treelets are used. One way to remove it alto-
gether would be to use fixed-order skiplist traversal [Smi98],
which would also reduce the scene traffic since there is a
well defined global order for processing the treelets. The po-
tentially significant downside of fixed-order traversal is that
rays are not traversed in front-to-back order and in scenes
that have high depth complexity a considerable amount of
redundant work may be performed. That said, in scenes with
low depth complexity (e.g. VEYRON) fixed-order traversal
might indeed be a good idea, and with shadow rays that do
not need to find the closest hit, it may generally win.

6.3. Wide trees

Our preliminary tests suggest that wide trees [DHK08,
WBB08] could allow visiting fewer treelets per ray than bi-
nary trees. Wide trees have other potentially favorable prop-
erties too. One could map the node intersections to N lanes in
an N-wide tree, instead of dedicating one ray per thread. As
a result, the number of concurrently executing rays would be
reduced to 1/N of the original, and the scene-related mem-
ory traffic should also be lower. We consider this a promising
avenue of future work.

6.4. Compression

Both the baseline method and our treelet-based approach
would benefit from a more compact representation of scene
data and rays. The first step could be to drop the planes
from BVH nodes that are shared with the parent node
[Kar07], or possibly use less expressive but more compact
nodes, such as bounding interval hierarchy [WK06]. Alter-
natively some variants of more complex compression meth-
ods [LYM07, KMKY09] might prove useful.

c© The Eurographics Association 2010.

Aila and Karras / Architecture Considerations for Tracing Incoherent Rays

It is not clear to us how rays could be compressed. One
could imagine quantizing the direction, for example, but pre-
sumably that would have to be controllable by the applica-
tion developer. One could also represent, e.g., hemispheres
as a bunch of directions and a shared origin, although in our
design that would in fact increase the bandwidth since one
would need to fetch two DRAM atoms per ray (unique and
shared components). Nevertheless, this is a potentially fruit-
ful topic for future work.

6.5. Keeping rays on-chip

Looking much further to the future, it may be possible that
L3 caches of substantial size (e.g. 100MB) could be either
pressed on top of GPUs as stacked die or placed right next
to GPUs and connected via high-speed interconnect. In such
a scenario it might make sense to keep a few million rays
and perhaps stack tops on chip, thus eliminating the related
memory traffic.

6.6. Shading

We have completely ignored shading in this paper. We pos-
tulate that the queues offer a very efficient way of collecting
shading requests for a certain material, shader, or object, and
then executing them when many have been collected, simi-
larly to the stream filtering of Ramani et al. [RGD09].

7. Conclusions

Our simulations show that stack top caching and the treelet-
based approach can significantly reduce the memory band-
width requirements arising from incoherent rays. We believe
that for many applications the possibility of submitting rays
in an arbitrary order will be a valuable feature.

In terms of getting the required features actually built,
several milestones can be named. Before dedicated support
makes financial sense, ray tracing has to become a important
technology in mainstream computing. We also have to have
important applications whose performance is limited by the
memory bandwidth. Regardless, we believe that most of the
required features, such as hardware-accelerated queues, have
important uses outside this particular application.

Acknowledgements Thanks to Peter Shirley and Lauri Savi-
oja for proofreading. Vegetation and Hairball scenes cour-
tesy of Samuli Laine.

References

[AL09] AILA T., LAINE S.: Understanding the efficiency of ray
traversal on GPUs. In Proc. High-Performance Graphics 2009
(2009), pp. 145–149.

[DHK08] DAMMERTZ H., HANIKA J., KELLER A.: Shallow
bounding volume hierarchies for fast SIMD ray tracing of inco-
herent rays. Comp. Graph. Forum 27, 4 (2008), 1225–1234.

[Hal60] HALTON J.: On the efficiency of certain quasi-random se-
quences of points in evaluating multi-dimensional integrals. Nu-
merische Mathematik 2, 1 (1960), 84–90.

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M., HAN-
RAHAN P.: Interactive k-d tree GPU raytracing. In Proc. Sym-
posium on Interactive 3D graphics and games (2007), ACM,
pp. 167–174.

[Kar07] KARRENBERG R.: Memory aware realtime ray tracing:
The bounding plane hierarchy. Bachelor thesis, Saarland Univer-
sity, 2007.

[KMKY09] KIM T.-J., MOON B., KIM D., YOON S.-E.:
RACBVHs: random-accessible compressed bounding volume hi-
erarchies. In ACM SIGGRAPH ’09: Posters (2009), pp. 1–1.

[Kra07] KRASHINSKY R. M.: Vector-Thread Architecture And
Implementation. PhD thesis, MIT, 2007.

[Lal09] LALONDE P.: Innovating in a software graphics pipeline.
ACM SIGGRAPH 2009 course: Beyond programmable shading,
2009.

[LYM07] LAUTERBACH C., YOON S.-E., MANOCHA D.: Ray-
strips: A compact mesh representation for interactive ray trac-
ing. In Proc. IEEE Symposium on Interactive Ray Tracing 2007
(2007), pp. 19–26.

[NFLM07] NAVRATIL P. A., FUSSELL D. S., LIN C., MARK
W. R.: Dynamic ray scheduling to improve ray coherence and
bandwidth utilization. In Proc. IEEE Symposium on Interactive
Ray Tracing 2007 (2007), pp. 95–104.

[NVI08] NVIDIA: NVIDIA CUDA Programming Guide Version
2.1. 2008.

[NVI10] NVIDIA: Nvidia’s next generation CUDA compute ar-
chitecture: Fermi. Whitepaper, 2010.

[PKGH97] PHARR M., KOLB C., GERSHBEIN R., HANRAHAN
P.: Rendering complex scenes with memory-coherent ray tracing.
In Proc. ACM SIGGRAPH 97 (1997), pp. 101–108.

[RGD09] RAMANI K., GRIBBLE C. P., DAVIS A.: Streamray: a
stream filtering architecture for coherent ray tracing. In ASPLOS
’09: Proc. 14th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (2009),
ACM, pp. 325–336.

[SFB∗09] SUGERMAN J., FATAHALIAN K., BOULOS S., AKE-
LEY K., HANRAHAN P.: Gramps: A programming model for
graphics pipelines. ACM Trans. Graph. 28, 1 (2009), 1–11.

[Smi98] SMITS B.: Efficiency issues for ray tracing. J. Graph.
Tools 3, 2 (1998), 1–14.

[SWS02] SCHMITTLER J., WALD I., SLUSALLEK P.: Saarcor:
a hardware architecture for ray tracing. In Proc. ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(2002), pp. 27–36.

[SWW∗04] SCHMITTLER J., WOOP S., WAGNER D., PAUL
W. J., SLUSALLEK P.: Realtime ray tracing of dynamic scenes
on an FPGA chip. In Proc. ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware (2004), pp. 95–106.

[WBB08] WALD I., BENTHIN C., BOULOS S.: Getting rid
of packets: Efficient SIMD single-ray traversal using multi-
branching BVHs. In Proc. IEEE/Eurographics Symposium on
Interactive Ray Tracing 2008 (2008), pp. 49–57.

[WK06] WÄCHTER C., KELLER A.: Instant ray tracing: The
bounding interval hierarchy. In Proc. Eurographics Symposium
on Rendering 2006 (2006), pp. 139–149.

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.: RPU: a
programmable ray processing unit for realtime ray tracing. ACM
Trans. Graph. 24, 4 (2005), 434–444.

c© The Eurographics Association 2010.

