
Delay Streams for Graphics Hardware
Timo Aila∗

Helsinki University of Technology and
Hybrid Graphics, Ltd.

Ville Miettinen†

Hybrid Graphics, Ltd. and
University of Helsinki

Petri Nordlund‡

Bitboys Oy

Abstract

In causal processes decisions do not depend on future data. Many
well-known problems, such as occlusion culling, order-independent
transparency and edge antialiasing cannot be properly solved using
the traditional causal rendering architectures, because future data
may change the interpretation of current events.

We propose adding a delay stream between the vertex and pixel
processing units. While a triangle resides in the delay stream, sub-
sequent triangles generate occlusion information. As a result, the
triangle may be culled by primitives that were submitted after it.
We show two- to fourfold efficiency improvements in pixel pro-
cessing and video memory bandwidth usage in common bench-
mark scenes. We also demonstrate how the memory requirements
of order-independent transparency can be substantially reduced by
using delay streams. Finally, we describe how discontinuity edges
can be detected in hardware. Previously used heuristics for collaps-
ing samples in adaptive supersampling are thus replaced by connec-
tivity information.

CR Categories: I.3.1 [COMPUTER GRAPHICS]: Hard-
ware Architecture—Graphics Processors; I.3.3 [COMPUTER
GRAPHICS]: Picture/Image Generation—Display algorithms;
I.3.7 [COMPUTER GRAPHICS]: Three-Dimensional Graphics
and Realism—Hidden line/surface removal

Keywords: 3D graphics hardware, occlusion culling, order-
independent transparency, antialiasing, stream processing

1 Introduction

Modern consumer-level graphics cards have video memory band-
widths of almost 20GB/s. Still the bottleneck in real-time rendering
applications, such as state-of-the-art computer games, is the avail-
able fill rate rather than the geometry processing power. Both the
number of pixels and the cost of rendering individual pixels have
risen dramatically. Screen resolutions of 1600x1200 pixels are not
uncommon and frame buffers have high dynamic ranges. Interac-
tive 3D applications are beginning to compute the illumination us-
ing complex pixel shader programs. Shadows improve the visual
realism but increase the fill rate requirements even further. Realistic
scenes may have millions of triangles and a high depth complexity,

∗timo@tml.hut.fi
†wili@hybrid.fi
‡petri.nordlund@bitboys.com

Tessellator

Vertex shader

Pixel shader

Blending

V
 i d

 e
 o

 m
 e

 m
 o

 r y
 c

 o
 n

 t r
 o
 l l
 e

 r

visible

Higher-order

primitives

Vertex attributes

Causal occlusion test & write

Delay stream FIFO
Compressed

vertices and

render states

Delayed occlusion test

N

Rasterizer

visible

Y

Alpha, stencil and depth test

Clipping and back-face culling

Discontinuity edge detection

Compressed vertices, render states, pixel masks

T
 e

 x
 t u

 r e
 ,

 f r
 a
 m

 e
 a

 n
 d

 d
 e

 p
 t h

b

 u
 f f

 e
 r

 c
a

 c
 h

 e
 s

Rendering commands from host

Min/max Z

for full 8x8

pixel tiles

Order-independent transparency?

Occlusion

information

O
 r d

 e
 r -

 i n
 d

 e
 p

 e
 n

 d
 e

 n
 t

t r
 a

 n
 s

 p
 a

 r e
 n

 c
 y
 s

 t r
 e

 a
 m

 F
 I F

 O

Tile depth values

Figure 1: Architecture of a modern, DirectX9-level graphics hardware. We
introduce several relatively minor modifications (marked in gray) into the
hardware design for reducing the bandwidth requirements and improving
the overall performance. The most important addition is the delay stream
where triangles are placed after geometry processing.

i.e., the average number of times each pixel is drawn. Detailed ge-
ometry consumes more memory and is prone to aliasing. Demands
for antialiasing in turn increase the number of samples used for each
pixel.

A number of approaches are used for reducing the memory band-
width and pixel processing work. Triangle data is stored in the
video memory or generated on-the-fly from displacement maps and
higher-order primitives. Textures are stored in compressed for-
mats. Color and depth values of pixels are cached on-chip and com-
pressed prior to transmission to video memory. Antialiasing can be
limited to the edges of triangles. Separate occlusion culling units
have been introduced for avoiding rasterization of hidden primi-
tives and pixels. These units also supply visibility information back
to the application so that objects that are entirely hidden do not have
to be sent to the hardware.

Established rendering semantics dictate that triangles must be
rasterized in the order they are submitted. As the hardware has no
global information about the scene, the effectiveness of certain im-
portant algorithms is limited. Transparent triangles must be sorted
in order to render them correctly. However, hardware-generated tri-
angles cannot be sorted by the application. Also, occlusion culling
would have a greater impact if triangles that are going to be in front
could be used to occlude triangles submitted before them.

Contributions This paper concentrates on optimizing the pixel
processing performance and bandwidth requirements of certain key
areas in consumer graphics hardware. Our main contribution is us-
ing the concept of delay streams for increasing rendering perfor-
mance (see Figure 1). By introducing a delay between the geometry
processing and rasterization stages of a graphics pipeline, we en-
hance load-balancing and gather knowledge about the global scene
structure. This information is used for improving the performance
of several algorithms:

1. We introduce an additional occlusion culling test after the de-
lay to further reduce depth complexity. Compared to exist-
ing hardware implementations [Morein 2000] our approach
renders 1.8–4 times fewer pixels in our test scenes. In fill
rate bounded applications this translates almost directly to the
frame rate (Section 3).

2. We improve existing work [Wittenbrink 2001] for rendering
order-independent transparency. In our test scenes the storage
requirements are an order of magnitude smaller than in the
previous method (Section 4).

3. We demonstrate a new hardware algorithm that can identify
silhouette edges of objects using geometric hashing. This in-
formation is used to reduce the number of pixels that are an-
tialiased. For our test models this approach supersamples only
0.3–2.1% of the screen pixels (Section 5).

We have implemented the delay stream and occlusion culling
units in VHDL. The other components have been simulated us-
ing behavioral models. We present results for all three algorithms
along with bandwidth measurements and compare them to existing
approaches in several publicly available test scenes and industry-
standard benchmark applications.

2 Related Work

Occlusion culling Greene and Kass [1993] avoid most per-
pixel depth comparisons by organizing the depth buffer into a hi-
erarchy. The scene is represented as an octree that provides an ap-
proximate front-to-back traversal. For each octree node the occlu-
sion query ‘Would this node contribute to the final image if ren-
dered?’ is asked. If not, all triangles inside the node and its chil-
dren can be skipped. Occlusion queries were first supported in
Denali GB graphics hardware [Greene and Kass 1993]. Extend-
ing OpenGL to handle occlusion queries is discussed by Bartz et
al. [1998]. The queries are now implemented in consumer graph-
ics hardware, e.g., NVIDIA GeForce3. Meißner et al. [2001] ex-
tend the queries by storing visibility masks of bounding volumes
for subsequent culling of individual triangles and blocks of pixels.
The use of hardware occlusion queries has been recently examined
by Klosowski and Silva [2001] and Hillesland et al. [2002].

Maintaining a full depth buffer hierarchy is a challenging
problem and several approaches have been proposed. Xie and
Shantz [1999] update the hierarchy only a few times per frame ac-
cording to a heuristic. ATI’s HyperZ incorporates a two-level depth
pyramid that provides fast depth buffer clears and adds an occlu-
sion test stage into the traditional rendering pipeline [Morein 2000].
Their early depth rejection works best when the input primitives ar-
rive in approximate front-to-back order. Pixel shading work can be
reduced by rendering the scene twice: the first pass constructs the
depth buffer and the second applies shading for the visible pixels.
Our approach performs implicitly such deferred shading [Deering
et al. 1988].

PowerVR [2000] captures the geometry of the entire frame and
uses tile-based rendering with internal buffers. Occlusion culling
is implemented by using on-chip sorting and thus the culling effi-
ciency is not affected by the order of the input primitives. The ma-

jority of bandwidth problems are avoided but the limited amount of
video memory makes capturing large scenes impractical.

Several experimental architectures have been proposed. Saar-
COR [Schmittler et al. 2002] uses ray casting [Appel 1968] for de-
termining the visible surfaces and performs occlusion culling im-
plicitly. A few architectures consist of multiple rasterization nodes
and create the final image by using composition [Fuchs et al. 1989;
Molnar et al. 1992; Torborg and Kajiya 1996; Deering and Naegle
2002]. The sort-last nature of these architectures makes the issue of
occlusion culling difficult to address efficiently.

Zhang et al. [1997] note that an occlusion query can be split into
two sub-tests: one for coverage and one for depth. The result is
conservatively correct, as long as the coverage test is performed us-
ing full accuracy. Their lower resolution depth test uses a depth
estimation buffer (DEB) which conserves memory by storing a sin-
gle conservative depth value for a block of pixels. We utilize DEB
in our occlusion culling unit.

Durand [1999] provides a comprehensive survey on visibility
determination. Akenine-Möller and Haines [2002] cover modern
hardware occlusion culling algorithms as well as application-level
culling techniques.

Order-independent transparency In order to correctly han-
dle all OpenGL [1999] and DirectX [2002] blending modes, the
visible transparent surfaces have to be blended in a back-to-front
order. Techniques such as volume splatting [Westover 1990] and
surface splatting [Zwicker et al. 2001] use transparent surfaces ex-
tensively.

The Z-buffer algorithm cannot handle transparent surfaces cor-
rectly [Catmull 1974]. To overcome this limitation the A-buffer
algorithm stores a linked list of fragments for each pixel [Carpenter
1984]. The A-buffer also incorporates subpixel coverage masks for
antialiasing of triangle edges. The final color of a pixel is computed
by first sorting the fragments according to increasing depth and then
recursively blending the fragments from back to front using accu-
mulated coverage masks. Molnar et al. [1992] discuss difficulties of
implementing an A-buffer in hardware. Nevertheless, a few imple-
mentations exist [Chauvin 1994; Lee and Kim 2000]. The handling
of interpenetrating surfaces is improved by Schilling et al. [1993]
and Jouppi and Chang [1999]. The latter describe an architecture
that maintains as few as three active fragments per pixel and cre-
ates convincing images with a reasonable storage cost. However,
combinations of different blending modes are not considered.

Mammen [1989] and more recently Everitt [2001] describe a
multi-pass algorithm that peels transparent layers one at a time and
blends them to the frame buffer. Two depth buffers are used concur-
rently for determining the farthest unprocessed transparent surface
for each pixel. The process is repeated until all transparent sur-
faces have been blended. Order-independent transparency is com-
puted correctly since the per-pixel sorting is performed implicitly
using selection sort. Transparent surfaces need to be buffered by
the application. Also the rendering time is bounded by the depth
complexity of the transparent surfaces regardless of their visibility.
Winner et al. [1997] describe a peeling variant of A-buffer using
custom hardware.

Wittenbrink [2001] proposes performing the peeling operation
fully in hardware. For each pixel the closest opaque fragment
is placed into the frame buffer and all transparent fragments that
could not be culled are stored into a separate recirculating fragment
buffer (R-buffer). The peeling operation resembles that of Mam-
men. Wittenbrink draws the scene from front to back and option-
ally supports A-buffer antialiasing. Different blending modes are
not considered. Unlike Mammen’s algorithm, only a single geome-
try pass is required and the peeling operation is faster since only the
unprocessed pixels are retained in the R-buffer. Mark and Proud-
foot [2001] propose a fragment stream buffer similar to R-buffer for

practical multi-pass rendering. Our approach builds on the work of
Wittenbrink but stores a geometric representation instead of shaded
fragments.

Antialiasing The four major sources that contribute to aliasing
in rendered images are discontinuity edges, shader undersampling,
intersecting surfaces and objects falling between sample points
[Crow 1977; Sander et al. 2001]. Although all aliasing artifacts can
be reduced by sampling more densely, supersampling every pixel
of an image can be uneconomical.

The sampling quality can be improved by using jittered sample
positions [Cook et al. 1984] or by sparse supersampling [Akeley
1993]. An alternative solution that requires less memory but has an
increased geometry processing cost is to render the scene multiple
times with slight jittering and to accumulate the color buffer con-
tents of each pass into a separate accumulation buffer [Haeberli and
Akeley 1990]. Deering and Naegle [2002] describe a scalable high-
end graphics architecture producing high-quality antialiasing. In
commodity hardware, performance improvements can be achieved
by adaptive supersampling, i.e., concentrating most efforts to pix-
els that are likely to alias [Crow 1977; Carpenter 1984; Lau 1995].
This approach has been used in Matrox Parhelia [2002] and 3Dlabs
Wildcat 4110 [2002] graphics cards as well as in our method.

Discontinuity edges are classified into silhouette edges at the
boundaries and creases of objects, and sharp edges that separate
connected triangles with different materials or vertex attributes. De-
tecting discontinuity edges was proposed by Crow [1977]. His
method requires a full scene capture and storing additional edge
connectivity information. Sauer et al. [1999] perform antialiasing
as a post-process by blending adjacent pixels at discontinuity edges.
Sander et al. [2001] find discontinuity edges by using a hierarchi-
cal search structure and render them in a back-to-front order with
antialiased lines. The approach is challenging to implement fully
in hardware and cannot efficiently support deformable models. Our
implementation detects discontinuity edges in hardware and per-
forms supersampling only for pixels intersected by them.

The effects of undersampling in textures are usually reduced
by filtering methods such as mip-mapping [Williams 1983] and
anisotropic filtering. Detecting intersecting surfaces is difficult and
requires that additional information, such as triangle plane equa-
tions, is stored in the depth buffer [Carpenter 1984; Jouppi and
Chang 1999]. For static models a preprocessing pass is commonly
used for clipping the intersecting triangles. The problem of subpixel
size objects can be somewhat reduced by level-of-detail mecha-
nisms or by explicitly detecting them by using bounding volume in-
formation and increasing the sampling rate locally [Whitted 1980].

3 Delayed Occlusion Culling

In this section we explain how a delay stream can be used for im-
proving the efficiency of occlusion culling hardware.

3.1 Causality and Delay

The white blocks in Figure 1 outline a common architecture em-
ployed in current consumer graphics hardware. Occlusion infor-
mation is generated and occlusion tests are performed for the input
primitives in the order they arrive from the geometry-processing
unit. In these causal architectures optimal performance is achieved
when the input triangles are sorted by the application (Figure 2).
Our finding, based on discussions with the middleware and games
development community, as well as traces made from commercial
applications, is that spatial sorting is generally extremely coarse if
done at all. Most applications order primitives and objects to mini-
mize the amount of state changes of shaders and textures. This goal

A B C D

Figure 2: A simple scene consisting of four opaque primitives (ABCD).
The optimal solution is to render only A. Without occlusion culling all four
primitives are rendered. In causal occlusion culling architectures, no mat-
ter how accurate, only the primitives that have already been processed can
hide the current primitive. With the input order ABCD only A is rendered
whereas with the order DCBA all four have to be rendered. With our archi-
tecture the input order affects the efficiency only weakly. In this example
only A is rasterized regardless of the input order.

partially conflicts with the requirements for spatial sorting. The
ideal approach would be to let the application perform coarse spa-
tial sorting and optimize the input data based on state changes. The
hardware then resolves the local ordering issues.

In our delayed occlusion culling a triangle that is visible after
the first occlusion test is not immediately rendered. Instead, it is
used for generating occlusion information and appended into a de-
lay stream FIFO. While the primitive resides in the delay stream,
more primitives generate occlusion information. When the trian-
gle emerges from the delay stream, the occlusion test is performed
again. Since substantially more occlusion information about the
scene has been collected during the delay, there is a much greater
chance for a hidden primitive to be culled. The rendering order of
the triangles is not altered by this method.

In practice the per-pixel depth tests are often performed before
the pixel shader to reduce the amount of generated texture band-
width and pixel shader work. If the primitives of Figure 2 are sub-
mitted in back-to-front order, the Z-buffer algorithm will have to
execute the pixel shader four times for each pixel even if causal oc-
clusion tests are used. Delayed occlusion culling on the other hand
is able to reject pixels that will be hidden in the future and would
thus execute the pixel shader only for the closest primitive.

The delay stream does not capture the entire scene. Our tests
suggest that a sliding window of 50K–150K triangles is sufficient
to reduce the depth complexity close to the theoretical optimum.
The culling efficiency degrades gracefully when only a part of the
geometry fits into the delay stream. In this case the ordering of the
input affects weakly the resulting depth complexity.

The use of a delay may slightly increase the latency of render-
ing a frame. The pixel units start processing the stream after it
is 40% full or a flush command is received. The remaining 60%
acts as an efficient load-balancing mechanism between the geome-
try and the pixel processing units in fill rate bounded scenes. The
performance of both units is improved, as congestion in one of them
does not immediately reflect to the other. The amount of buffering
provided by a delay stream is several orders of magnitude larger
than that of typical on-chip FIFOs. The delay stream does not re-
quire double-buffering as an end-of-frame marker is injected into
the stream. However, to allow continuous processing between two
frames, any occlusion information has to be double-buffered.

3.2 Delay Stream Implementation

Our delay stream contains compressed vertices and render state
changes, i.e., everything that is needed for rasterizing the geometry
correctly. The size of the stream is configurable and the physical
implementation is a circular buffer (FIFO) in video memory.

Before a vertex is inserted into the delay stream, it is compressed
by using a simple algorithm based on history data. Four distinct pre-
vious values are maintained for each vertex attribute, e.g., screen-
space position, in vertex-wide registers. If an attribute of the current

V
 i d

 e
 o

 m
 e

 m
 o
 r y

 c
 o

 n
 t r

 o
 l l e

 r

16-bit minimum depth value

16-bit maximum depth value

Low-resolution Z-buffer Tile cache (16x12 entries)

. .
 .

. .
 .

8x8 16-bit per-pixel depth values

and tile (x,y)-coordinates

...

...

Figure 3: Our occlusion culling unit subdivides the screen into 8x8 pixel
tiles. The closest and farthest depth value of each tile are stored into a low-
resolution Z-buffer. A separate tile cache contains per-pixel depth informa-
tion for 192 recently accessed tiles. All occlusion writes are performed into
the tile cache. When a cached tile needs to be replaced, its minimum and
maximum depth values are scanned and the LRZ-buffer is updated.

vertex is found from the history buffer, a two-bit index is stored in-
stead of the raw data. Also, if the entire vertex is found from a
certain slot, only a single index is stored. Usually only a small
fraction of the vertex attributes are active at a time and need to be
stored into the delay stream. Most of the time two 2D texture co-
ordinate sets are sufficient as the same sets are reused to access
multiple textures. When per-pixel lighting is used, vertex normals
are stored instead of the diffuse and specular vertex colors. Also,
widely adopted techniques such as normal maps move data from
vertices into textures [Peercy et al. 1997].

In our test scenes the compressed triangles consume 25–65 bytes
each. Ordering the input data coherently improves the compression
rate [Hoppe 1999]. Using a longer history buffer or sophisticated
compression schemes would further reduce the amount of data at
the expense of more complex hardware.

3.3 Occlusion Tests

Occlusion tests are commonly used for removing entirely hidden
triangles or hidden parts of them prior to the per-pixel depth tests.
This test is often implemented by using a low-resolution Z-buffer
(LRZ-buffer) that subdivides the screen into tiles of fixed size. Each
tile corresponds to a region in the depth buffer and contains the
farthest depth value of that region. Conservative occlusion tests can
be made by processing triangles in tile-sized chunks and comparing
the closest depth value of the chunk against the depth value stored
in the corresponding tile. If the triangle chunk is hidden, none of its
pixels need to be processed [Akenine-Möller and Haines 2002].

The set of tiles is either fully or partially stored in on-chip mem-
ory. As large parts of the scene can be conservatively culled us-
ing this information, fewer accesses need to be made to the depth
buffer stored in video memory. In most implementations the depth
information for the tiles is generated as a side-product of actual
rasterization. When a pixel in the depth buffer is modified, the cor-
responding tile is updated.

Occlusion information cannot be generated for primitives that
use per-pixel rejection tests, e.g., alpha or stencil tests, until these
tests have been executed. Furthermore, occlusion tests cannot be
applied for primitives that modify their depth values in the pixel
shader or update the stencil buffer when the depth test fails.

3.4 Occlusion Unit Implementation Details

Most consumer graphics hardware include an occlusion culling unit
but no exact details have been published. Therefore we briefly de-
scribe the implementation used in our tests to make the tests repro-
ducible. Our implementation (Figure 3) differs somewhat from ex-
isting ones, as delayed culling requires that occlusion information
is generated before the delay. However, the concept of improving
occlusion culling by using a delay stream is not limited to any spe-
cific hardware implementation.

Low-resolution Z-buffer Our LRZ-buffer uses 8x8 pixel tiles.
Each tile requires 32 bits of video memory as the minimum and
maximum depth values are stored as 16-bit1 floating point num-
bers. Both of the values are needed to allow changing the depth
comparison mode during the frame. The LRZ-buffer is stored in
video memory and accessed through a single-ported 32KB on-chip
cache, split into eight banks to facilitate multiple simultaneous ac-
cesses. Paging to video memory is performed with a granularity of
256 bytes. Each depth buffer has its own separate LRZ-buffer.

Tile cache We also maintain an on-chip 16-way set associative
tile cache that contains per-pixel depth values for 192 recently ac-
cessed tiles. All occlusion writes are performed into these tiles. The
cached tiles are not paged into video memory. Instead, when a tile
needs to be replaced, its minimum and maximum depth values are
scanned and applied to the LRZ-buffer. Although collapsing the
tiles causes some occlusion loss, our tests indicate that in over 95%
of the cases a tile to be replaced is fully covered, i.e., the far plane
is not visible. Replacing these entries causes a negligible increase
in conservativity. If the cache set has only partially covered tiles,
the spatially (XY) most distant one of the 16 tiles is replaced.

Occlusion tests The causal occlusion test after the vertex
shader is executed in two parts. If the input block is visible ac-
cording to the LRZ-buffer, a more accurate per-pixel test is made
by using the tile cache while the occlusion write is performed. The
delayed occlusion test consults only the LRZ-buffer.

Optimizations The culling efficiency of the LRZ-buffer is fur-
ther improved by augmenting its depth information by the per-pixel
values of the actual depth buffer. This provides additional coverage
from triangles that could not be initially written into the LRZ-buffer
such as alpha matte objects. This feature is used in the processing of
order-independent transparency (Section 4). When supersampling
is used, we employ a depth estimation buffer [Zhang et al. 1997]
for storing the sub-pixel depth values compactly. In this case tiles
are allocated from the tile cache three at a time: one for storing the
per-pixel minimum depth values and one for the maximum values.
The third tile is used for storing a 16-bit coverage mask for each
pixel. The depth values are considered valid only if the correspond-
ing coverage mask is full.

3.5 Results

We have implemented cycle-accurate VHDL models of the delay
stream compression and decompression units and the occlusion test
units. In total they consume 56KB of SRAM and 300K gates, which
results roughly in a 4% size increase in modern graphics chips.

We have tested the performance of delayed occlusion culling
using several industry-standard benchmark applications and test
scenes (Table 1). The delay stream size was set to 2MB, which
was able to hold 33K–80K triangles. Transparent surfaces were

1Our Z16 satisfies Z16 ≤ Z32 < (Z16 + 1 unit in the last place).

Car Chase Dragothic Alpha Squadron VillageMark PowerPlant
Culling method causal delayed causal delayed causal delayed causal delayed causal delayed
Triangles in view frustum 82K 38K 36K 1K 420K
Depth complexity (DC) 2.9 3.5 3.1 6.0 14.2
DC after occlusion cull 2.21 1.26 2.62 1.25 2.38 1.34 4.20 1.18 5.24 1.31
Ratio in pixel processing 1.8:1 2.1:1 1.8:1 3.6:1 4.0:1
Z-buffer bandwidth 20.3 11.8 24.8 11.6 22.2 12.4 41.5 11.5 47.0 12.2
Frame buffer bandwidth 9.1 5.4 11.6 5.4 9.6 5.7 20.3 5.6 21.1 5.6
Texture bandwidth 18.0 10.0 21.2 10.0 19.0 10.9 42.2 11.8 0 0
Delay stream bandwidth - 3.1 - 1.2 - 0.42 - 0.05 - 1.0
Compressed triangle size - 63B - 51B - 63B - 39B - 25B
Total bandwidth 47.3 30.3 57.5 28.2 51.5 29.4 104.0 23.4 68.1 18.8
Ratio in bandwidth 1.6:1 2.0:1 1.8:1 4.4:1 3.6:1

Table 1: The resulting average depth complexity after occlusion culling with causal and delayed architectures and the measured bandwidth (MB/frame)
requirements at 1280x1024x32bpp without supersampling and with 32bpp depth. Texture bandwidth was estimated according to an 80% texture cache hit rate.
The initial Z-buffer clear was excluded from the measurements. Car Chase and Dragothic from 3DMark2001 SE and Alpha Squadron from 3DMark2003,
courtesy of FutureMark Corporation. VillageMark courtesy of PowerVR, a division of Imagination Technologies. PowerPlant courtesy of the Walkthrough
Group at the University of North Carolina at Chapel Hill (www.cs.unc.edu/˜walk).

excluded from all scenes in order to make the optimal depth com-
plexity exactly 1.0. The 3DMark scenes have a relatively low depth
complexity compared to games currently in development. To find
out how the algorithm scales in presence of more overdraw, we in-
cluded two scenes with a higher depth complexity. To validate that
the average size of triangles does not affect the culling rate, we also
tested the same environments with tessellation applied to all trian-
gles. Even when 16 times more triangles were rendered per frame,
the resulting depth complexity remained unchanged.

Compared to causal occlusion culling, the number of pixels that
require execution of a pixel shader was reduced on average by a
factor of three. The delayed occlusion culling overestimated the
number of visible pixels only by 18–34% in all of the test scenes.
Only the compressed output of the causal occlusion culling was
written into the delay stream, consuming 0.1–3.1MB of video mem-
ory bandwidth per frame. The total video memory bandwidth was
reduced two to four times. Assuming the overall performance was
not bounded by geometry processing, savings in pixel processing
and memory bandwidth should almost directly result in a propor-
tionally increased frame rate. Consequently, the Car Chase and
Dragothic benchmarks from 3DMark2001 SE should render almost
twice as fast and the VillageMark test almost four times faster.

4 Order-Independent Transparency

The fundamental nature of order-independent transparency is that
all visible data must be collected before the processing can begin.
This is exactly what a sufficiently long delay stream does. In this
section we show how the hardware units used for delay stream man-
agement can be used for reducing the memory and bandwidth re-
quirements of order-independent transparency (OIT) in many cases.

Not all transparent surfaces need special treatment. For example,
head-up displays and alpha matte objects can easily be rendered
correctly by using the standard Z-buffer. Therefore the use of an
OIT solver should be controllable by render states.

Rasterizer
Pixel shader,

alpha, stencil and depth tests

If a triangle has unprocessed pixels, compressed vertices and
coordinates of the unprocessed pixels are stored

Coordinates of

unprocessed

pixels,
triangle ID

Vertices,
triangle ID

Killed by
stencil test }

Unprocessed }

Order-independent transparency stream FIFO

Figure 4: Storing information to the order-independent transparency
stream. Only the triangles having unprocessed pixels after the pixel shader
and per-pixel tests are stored into the stream.

4.1 Transparency Stream Construction

After the second occlusion test the triangles requiring OIT are col-
lected into the OIT stream FIFO (Figure 1). The main difference
compared to the R-buffer [Wittenbrink 2001] is that R-buffer stores
shaded fragments (ARGBZ, blend mode, coordinates), whereas we
store all render state changes as well as compressed vertices and co-
ordinates of unprocessed pixels (Figure 4). We exploit image-space
coherence and store coordinates only for 8x8 pixel chunks. In addi-
tion to the chunk coordinates, a bit mask indicating the coordinates
of the remaining pixels inside the chunk is stored.

Color, depth and other attributes are computed from the vertices
and render states during peeling by using the existing hardware
units that would otherwise be idle. This effectively implements de-
ferred shading for visible transparent surfaces. Few hidden primi-
tives are stored due to the efficient occlusion culling.

In order to preserve the established rendering semantics, all per-
pixel operations that modify or depend on the stencil buffer contents
must be executed in the correct order. We propose duplicating the
pixel shader programs in the device driver. The first program is

Venus Naked Empire
Triangles in frustum 90K 123K
Depth complexity 6.4 10.2
Z-buffer bandwidth 50 331
Color bandwidth 9.6 90
OIT storage type Fragments Geometry Fragments Geometry
OIT bandwidth 127 36 1800 172
OIT size 14.9 2.1 137 8.4

Table 2: The required storage (MB) and bandwidth (MB/frame) of the pro-
cessing of order-independent transparency. The results are shown for both
the R-buffer fragment stream and our geometry stream. The resolution was
1280x1024x32bpp with 32bpp depth without supersampling. Our variant
used roughly an order of magnitude less memory. Venus de Milo courtesy
of Viewpoint Digital was rendered using surface splatting. All primitives
are transparent in surface splatting. Naked Empire courtesy of Ned Greene
and Gavin Miller, Apple Computer.

executed before the OIT stream and the second one computes depth
and color during depth peeling. Dead code elimination [Muchnick
1997] is performed so that the first shader has only the instructions
that can affect the stencil and the second one has all that cannot.

The potentially unbounded number of visible transparent sur-
faces is a fundamental issue in order-independent transparency. The
size of the OIT stream is configurable but an overflow is possible.
In that case we follow the approach used in R-buffer and page the
excess surfaces into system memory.

4.2 Transparency Stream Peeling

The depth peeling procedure using one frame buffer and one depth
buffer proceeds as follows:

1. Scan the OIT stream and mark all hidden pixels as processed.
Remove fully processed triangles from the stream.

2. At this point, the remaining surfaces are visible. Peel (a-b)
until the OIT stream is empty:

(a) Clear the depth buffer, scan the OIT stream and store
the most distant depth value for each pixel.

(b) Scan the OIT stream again and for each pixel blend the
surface with a depth value equaling the stored depth
value. Mark processed pixels and remove fully pro-
cessed triangles.

The number of passes over the OIT stream can be reduced by
using multiple depth buffers simultaneously [Wittenbrink 2001].

The OIT stream contains render state changes that may have be-
come obsolete due to the peeling process, e.g., setting the alpha
blend mode twice without triangles in between. Due to the com-
pact size of render state changes it may not be necessary to remove
the obsolete ones. If needed, these occurences could be marked to
another stream, which has one validity bit for each currently stored
render state change. Obsolete changes would thus be removed from
the OIT stream during the next peeling pass.

4.3 Results

We have measured the memory consumption and required band-
width by using both our approach and a variant that stores frag-
ments. Both of the approaches create the same final image. Algo-

Figure 5: The picture on the left shows a rendering of the torusknot model.
The center image is a back-face culled wireframe view of the model and the
one on the right shows the discontinuity edges after hidden surface removal.
Antialiasing pixels intersected by discontinuity edges is significantly less
expensive than antialiasing all edge pixels. For highly tessellated models
the difference is even more pronounced.

rithms that use fragment storage include A-buffer [Carpenter 1984]
and R-buffer [Wittenbrink 2001]. Depth peeling was performed us-
ing one frame buffer and one depth buffer.

Because the Z-buffer cannot handle order-independent trans-
parency, no industry-standard test scenes exist. We tested the ap-
proaches with two very different models (Table 2). A transparent
version of a part of the Naked Empire consists of relatively large
triangles and has an average depth complexity exceeding ten. The
Venus model was rendered with the surface splatting algorithm of
Zwicker et al. [2001] using 45K splats. The average depth com-
plexity of drawn pixels is 6.4, a figure typical for surface splatting.
The Z-buffer bandwidth is smaller than one might expect due to
hierarchical rejection provided by the occlusion test unit.

In our test scenes the geometry stream uses considerably less
memory than the fragment stream. With the Naked Empire, the ra-
tio is 16.3:1 and with the Venus model 7.0:1. Storing geometry in-
stead of fragments is appealing as higher screen resolutions and an-
tialiasing further widen the gap in storage requirements. Optimally,
the two approaches could be combined by converting the triangles
into shaded fragments when they have only a few unprocessed pix-
els left. Further reductions could be achieved by compressing also
the fragment data.

5 Discontinuity Edges

Concentrating supersampling efforts only to the discontinuity edges
of objects has several benefits. First of all, the number of silhou-
ette edges in many models is only O(

√
N) of the total edge count

[Sander et al. 2001]. The number of pixels intersected by silhou-
ette edges stays almost constant when an object is tessellated and
the relative frequency of discontinuity edge pixels decreases when
screen resolutions grow (Figure 5).

Supersampling only the discontinuity edges produces results
with a good image quality at a reasonably low cost. The approach
has also limitations: shader undersampling, geometric aliasing and
interpenetrating surfaces are not handled properly. All kinds of
edge supersampling may emphasize the edges under certain cir-
cumstances such as low-frequency lighting. However, the use of
texture-mapping often masks these artifacts.

5.1 Detecting Discontinuity Edges

In this section we describe an algorithm for detecting discontinuity
edges in hardware. The implementation uses only logical opera-
tions and on-chip memory. The detection is performed after the
vertex shader and can thus support arbitrarily deformed meshes.
Also, the working set is limited to the triangles surviving the clip-
ping and culling stages. This detection could not be done without
using a delay of some kind.

Edge mask

stream

Edge hash (4KB)
64x8 entries

Edge masks and hash keys

for the previous triangle

. . .

one triangle at a time

Edge mask write
cache (2KB)

Delay stream

edge masks triangles

Hash entry (64 bits)
51-bit edge hash key

13-bit index to write cache

...

Edge matching

three edges

three vertices

Figure 6: The edges of an input triangle are classified as shared or discon-
tinuity edges using geometric hashing. If a matching edge is found from the
edge hash table, the edge is marked to be shared by both of the triangles.

Our approach is to conservatively assume that all triangle edges
are discontinuity edges and to use a simple geometric hashing algo-
rithm for detecting shared non-sharp edges (Figure 6).

Each triangle in the delay stream has an associated six-bit edge
mask that classifies its edges either as discontinuity or shared edges.
For the latter case we further indicate whether this is the first or the
second occurence of an edge; we call these opening and closing
edges respectively. The edge masks of the previous 2730 triangles
are stored in a circular 2KB on-chip edge mask write cache. Hence,
the final classification of edges is delayed by almost 3K triangles,
which is possible since the triangles are retained in the delay stream.
For most models this delay is enough to detect all shared edges.

When a triangle is stored into the delay stream, its edges are
tested by using an edge hash table. If a matching shared edge is
found from the hash table, the cached edge masks of the two trian-
gles are updated and the entry is removed from the hash. Otherwise,
a new entry for the opening edge is placed into the hash.

The implementation of the edge hash is an eight-way set asso-
ciative LRU cache with 64 sets. The hash keys are 64-bit values,
where 13 bits are used for indexing the triangle that opened the
edge. The edge hash keys use 57 bits but the lowest six bits are
used for addressing the edge hash and are thus not stored explicitly.
The edge hash key is formed from a bit indicating whether the tri-
angle is front- or back-facing and two vertex hash keys constructed
by combining the bits of all active vertex attributes produced by the
vertex shader, e.g., positions, normals and texture coordinates.

To further reduce the conflict misses the three edge hash keys
of the previous triangle are stored separately. If the input triangles
are ordered coherently as triangle strips or fans, two consecutive
triangles are likely to share an edge. By processing these edges
prior to the hash lookup it is often possible to reduce the number of
entries placed into the hash by 20–33%. Since a material boundary
is always a discontinuity edge, the edge hash is cleared whenever
the rendering state changes.

Due to the finite size of the caches and the use of hash values for
matching the edges, the algorithm may occasionally misclassify an
edge. A discontinuity edge is missed only if two unrelated edges
generate the same hash key. This has not occurred in our tests as
the probability 2 is negligible in practice. Classifying an edge incor-
rectly to be a discontinuity edge is more common and happens due
to a conflict or capacity miss in the hash. In the test scenes this mis-
classification increases the number of detected discontinuity edges
by less than 1%. The probability can be reduced by increasing the
capacities of the edge hash and the edge mask write cache. Another
option is to use additional connectivity information provided by the
tessellator or the application, e.g., OpenGL edge flags.

2P (same key) = 1− (1− 2−57)8∗64 ≈ 2.81 ∗ 10−14 per edge.

Beethoven Venus
Triangles in frustum 21016 5668
Antialiasing type E DE E DE
Memory use increase 57.8% 10.0% 24.6% 2.7%
Bandwidth increase 251.2% 74.0% 156.2% 49.9%
Pixels antialiased 17.4% 2.1% 8.0% 0.3%
Pixel Ratio 8.3:1 25.9:1

Table 3: A comparison between our antialiasing algorithm when supersam-
pling is performed at the edges of triangles (E) and only at the discontinuity
edges (DE). The models were rendered in 1024x1024 resolution and 16x16
sparse supersampling was used for the antialiased pixels. The 32-bit frame
and depth buffers require 4MB each when no supersampling is used. Both
models courtesy of Viewpoint Digital.

5.2 Application to Adaptive Supersampling

The edge classification produced by the discontinuity edge detec-
tion can be used by various antialiasing algorithms. For example,
the visible pixels intersected by the discontinuity edges could be
tagged and subsequently filtered in a post-processing pass. Our ap-
proach is to increase the sampling rate only for the pixels inter-
sected by discontinuity edges, as shown in Figure 7. For all other
pixels the color and depth are computed once per intersecting tri-
angle. Having geometric information about shared edges replaces
commonly used heuristics of coverage, color, depth and object iden-
tifiers with connectivity information.

To determine the pixels covered by connected triangles having
shared edges, a 4-bit pixel edge counter is maintained for each pixel
intersected by an edge. As explained in Section 5.1, shared edges
have been classified into opening and closing edges. Opening edges
intersecting a pixel increment the counter by one and closing edges
decrement it. The counter is sticky, i.e., once it reaches its maxi-
mum value of 15, its value cannot be modified. Visible disconti-
nuity edges intersecting a pixel always set the counter to the max-
imum. When the counter reaches zero it is known that the pixel is
covered by a continuous surface. Then the pixel is collapsed and
the subsample at the center of the pixel is written into the frame
buffer. Depth and stencil buffers are updated similarly. Edge pixels
are also collapsed if a non-edge pixel completely covers all of the
samples.

Storing the edge counter and 16 samples for each pixel would
require enormous amounts of memory and bandwidth. Therefore
we use an edge pixel cache for storing the recently-accessed edge
pixels. In higher screen resolutions almost all edge pixels are in-
tersected only by two triangles. Such pixels can be represented
compactly using lossless block truncation coding (BTC) [Delp and
Mitchell 1979]: each pixel requires only two samples and a 16-bit
mask for indicating which samples are covered by which triangle.
Our 16KB edge pixel cache can hold 512 BTC-encoded pixels and
32 pixels for which all 16 samples are stored. When a cache entry
needs to be replaced, fully covered and collapsed pixels are writ-
ten directly to the frame buffer whereas pixels with non-zero edge
counters are paged into video memory. At the end of the frame
the contents of the cache and the supersampled pixels in the video
memory are filtered and stored into the frame buffer.

Figure 7: From left to right: a) Closeup of the Venus model rendered in 128x128 resolution with one sample per pixel b) the image rendered with 16 samples
per pixel c) same image where 16 samples have been used only for the discontinuity edge pixels and d) pixels intersected by discontinuity edges.

5.3 Results

The relative performance of antialiasing all edges and only the dis-
continuity edges is illustrated in Table 3. In our test scenes the
ratio between the number of all edges and discontinuity edges var-
ied between 7.1:1 and 30.1:1. In 1024x1024 screen resolution the
percentage of pixels intersected by discontinuity edges and thus an-
tialiased was 0.3–2.1%. Although these pixels required 3–16 times
more memory than the single-sampled ones, there were relatively
few of them. As a consequence, the amount of video memory used
was increased by less than 10% compared to no antialiasing. The
memory bandwidth requirements were increased by 50–75%.

6 Conclusions and Future Work

We have shown that delay streams can be used for improving the
performance of occlusion culling hardware and edge antialiasing.
Load-balancing between geometry and pixel units has been en-
hanced as a side-product. We have also demonstrated how the
memory and bandwidth requirements for order-independent trans-
parency can be substantially reduced in many cases.

As the use of delay streams allows hardware implementation of
semi-global algorithms commonly used in software rendering sys-
tems, we believe that they will have many more potential applica-
tions. An interesting possibility would be using the discontinuity
edge detection algorithm for generating optimized shadow volumes
in hardware. Moreover the silhouette edges could be made available
to pixel shader programs for non-photorealistic rendering styles.

Performing occlusion culling based on the bounding volumes of
input objects would reduce the workload of the tessellator and ver-
tex shader units. Although OpenGL and DirectX support user-made
occlusion queries, they do not currently provide a method for spec-
ifying bounding volumes for an automatic culling of objects. This
has long been a feature of RenderMan [Upstill 1990].

Both the R-buffer and our approach for sorting transparent pix-
els place a heavy burden on the depth buffer bandwidth. The situa-
tion could be improved by using tiled rendering for the OIT passes
[Fuchs et al. 1989; Upstill 1990; Molnar et al. 1992].

Acknowledgments We would like to express our gratitude for
the support provided by the R&D teams of Hybrid Graphics and
Bitboys. We would also like to thank the anonymous reviewers and
Janne Kontkanen, Jaakko Lehtinen, Kari Pulli, Jussi Räsänen and
Lauri Savioja for their valuable feedback.

References
3DLABS, 2002. Wildcat: SuperScene antialiasing white paper. http://www.-

3dlabs.com/product/technology/superscene antialiasing.htm.

AKELEY, K. 1993. RealityEngine graphics. In Proceedings of ACM SIG-
GRAPH 93, ACM Press, 109–116.

AKENINE-MÖLLER, T., AND HAINES, E. 2002. Real-Time Rendering,
2nd edition. A.K. Peters Ltd.

APPEL, A. 1968. Some techniques for shading machine renderings of
solids. In AFIPS Conference Proceedings, vol. 32, 37–45.

BARTZ, D., MEISSNER, M., AND HÜTTNER, T. 1998. Extending graph-
ics hardware for occlusion queries in OpenGL. In Proceedings of the
1998 EUROGRAPHICS/SIGGRAPH workshop on Graphics hardware,
97–104.

CARPENTER, L. 1984. The A-buffer, an antialiased hidden surface method.
In Computer Graphics (Proceedings of ACM SIGGRAPH 84), ACM,
vol. 18, 103–108.

CATMULL, E. 1974. A Subdivision Algorithm for Computer Display of
Curved Surfaces. PhD thesis, University of Utah.

CHAUVIN, J. C. 1994. An advanced Z-buffer technology. In Proceedings
of the Image VII Conference, 77–85.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Distributed ray
tracing. In Computer Graphics (Proceedings of ACM SIGGRAPH 84),
ACM, vol. 18, 137–145.

CROW, F. C. 1977. The aliasing problem in computer-generated shaded
images. Communications of the ACM 20, 11, 799–805.

DEERING, M., AND NAEGLE, D. 2002. The SAGE graphics architecture.
ACM Transactions on Graphics 21, 3, 683–692.

DEERING, M., WINNER, S., SCHEDIWY, B., DUFFY, C., AND HUNT, N.
1988. The triangle processor and normal vector shader: a VLSI system
for high performance graphics. In Computer Graphics (Proceedings of
ACM SIGGRAPH 88), ACM, vol. 22, 21–30.

DELP, E., AND MITCHELL, O. 1979. Image coding using block trunca-
tion coding. IEEE Transactions on Communications 27, 9 (September),
1335–1342.

DIRECTX, 2002. Microsoft DirectX SDK Documentation.
http://www.microsoft.com/directx.

DURAND, F. 1999. 3D Visibility: Analytical Study and Applications. PhD
thesis, Université Grenoble I - Joseph Fourier Sciences et Géographie.

EVERITT, C. 2001. Interactive order-independent transparency.
http://www.developer.nvidia.com.

FUCHS, H., POULTON, J., EYLES, J., GREER, T., GOLDFEATHER, J.,
ELLSWORTH, D., MOLNAR, S., TURK, G., TEBBS, B., AND ISRAEL,
L. 1989. Pixel-planes 5: a heterogeneous multiprocessor graphics sys-
tem using processor-enhanced memories. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 89), ACM, vol. 23, 79–88.

GREENE, N., AND KASS, M. 1993. Hierarchical Z-buffer visibility. In
Proceedings of ACM SIGGRAPH 93, ACM Press, 231–240.

HAEBERLI, P., AND AKELEY, K. 1990. The accumulation buffer: hard-
ware support for high-quality rendering. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 90), ACM, vol. 24, 309–318.

HILLESLAND, K., SALOMON, B., LASTRA, A., AND MANOCHA, D.
2002. Fast and simple occlusion culling using hardware-based depth
queries. Tech. Rep. TR02-039, UNC Chapel Hill.

HOPPE, H. 1999. Optimization of mesh locality for transparent vertex
caching. In Proceedings of ACM SIGGRAPH, ACM Press, 269–276.

JOUPPI, N., AND CHANG, C.-F. 1999. Z3: an economical hardware
technique for high-quality antialiasing and transparency. In Proceedings
of the 1999 Eurographics/SIGGRAPH workshop on Graphics hardware,
ACM Press, 85–93.

KLOSOWSKI, J. T., AND SILVA, C. T. 2001. Efficient conservative vis-
ibility culling using the priorized-layered projection algorithm. IEEE
Transactions on Visualization and Computer Graphics 7, 4 (October-
December), 365–379.

LAU, R. W. H. 1995. An adaptive supersampling method. In International
Computer Science Conference (ICSC), 205–214.

LEE, J.-A., AND KIM, L.-S. 2000. Single-pass full-screen hard-
ware accelerated antialiasing. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, 67–75.

MAMMEN, A. 1989. Transparency and antialiasing algorithms imple-
mented with the virtual pixel maps technique. IEEE Computer Graphics
and Applications 9, 4 (July), 43–55.

MARK, W., AND PROUDFOOT, K. 2001. The F-buffer: a rasterization-
order FIFO buffer for multi-pass rendering. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on on Graphics hard-
ware, ACM Press, 57–64.

MATROX, 2002. 16x Fragment Antialiasing. http://www.matrox.com/mga/-
products/ tech info/pdfs/parhelia/faa 16x.pdf.

MEISSNER, M., BARTZ, D., GÜNTHER, R., AND STRASSER, W. 2001.
Visibility driven rasterization. Computer Graphics Forum 20, 4, 283–
294.

MOLNAR, S., EYLES, J., AND POULTON, J. 1992. PixelFlow: high-speed
rendering using image composition. In Computer Graphics (Proceedings
of ACM SIGGRAPH 92), ACM, vol. 26, 231–240.

MOREIN, S., 2000. ATI Radeon - HyperZ Technology. ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, Hot3D
session.

MUCHNICK, S. S. 1997. Advanced compiler design and implementation.
Morgan Kaufmann Publishers Inc.

OPENGL ARCHITECTURE REVIEW BOARD, D. S. 1999. OpenGL Refer-
ence Manual: The Official Reference Document to OpenGL, Version 1.2.
Addison-Wesley.

PEERCY, M., AIREY, J., AND CABRAL, B. 1997. Efficient bump mapping
hardware. In Proceedings of ACM SIGGRAPH 97, ACM Press, 303–306.

POWERVR, 2000. PowerVR white paper: 3D graphical processing.
http://www.powervr.com/pdf/TBR3D.pdf.

SANDER, P., HOPPE, H., SNYDER, J., AND GORTLER, S. 2001. Dis-
continuity edge overdraw. In 2001 ACM Symposium on Interactive 3D
Graphics, ACM Press, 167–174.

SAUER, F., MASCLEF, O., ROBERT, Y., AND DELTOUR, P. 1999. Out-
cast: Programming towards a design aesthetic. In Proceedings of Game
Developers Conference, 811–827.

SCHILLING, A. G., AND STRASSER, W. 1993. EXACT: Algorithm and
hardware architecture for an improved A-buffer. In Proceedings of ACM
SIGGRAPH 93, ACM Press, 85–92.

SCHMITTLER, J., WALD, I., AND SLUSALLEK, P. 2002. SaarCOR: A
hardware achitecture for ray tracing. In Proceedings of the conference
on Graphics hardware 2002, ACM Press, 27–36.

TORBORG, J., AND KAJIYA, J. T. 1996. Talisman: commodity realtime
3D graphics for the PC. In Proceedings of ACM SIGGRAPH 96, ACM
Press, 353–363.

UPSTILL, S. 1990. The Renderman Companion. Addison Wesley.

WESTOVER, L. 1990. Footprint evaluation for volume rendering. In Com-
puter Graphics (Proceedings of ACM SIGGRAPH 90), ACM, vol. 24,
367–376.

WHITTED, T. 1980. An improved illumination model for shaded display.
Communications of the ACM 23, 6, 343–349.

WILLIAMS, L. 1983. Pyramidal parametrics. In Computer Graphics (Pro-
ceedings of ACM SIGGRAPH 83), ACM, vol. 17, 1–11.

WINNER, S., KELLEY, M., PEASE, B., RIVARD, B., AND YEN, A. 1997.
Hardware accelerated rendering of antialiasing using a modified A-buffer
algorithm. In Proceedings of ACM SIGGRAPH 97, ACM Press, 307–
316.

WITTENBRINK, C. M. 2001. R-buffer: a pointerless A-buffer hardware
architecture. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, ACM Press, 73–80.

XIE, F., AND SHANTZ, M. 1999. Adaptive hierarchical visibility in a
tiled architecture. In Proceedings of the 1999 Eurographics/SIGGRAPH
workshop on Graphics hardware, 75–84.

ZHANG, H., MANOCHA, D., HUDSON, T., AND HOFF, K. E. 1997. Visi-
bility culling using hierarchical occlusion maps. In Proceedings of ACM
SIGGRAPH 97, ACM Press, 77–88.

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. 2001. Sur-
face splatting. In Proceedings of ACM SIGGRAPH 2001, ACM Press,
371–378.

