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Abstract

Binary gradient cameras extract edge and temporal in-
formation directly on the sensor, allowing for low-power,
low-bandwidth, and high-dynamic-range capabilities—all
critical factors for the deployment of embedded computer
vision systems. However, these types of images require spe-
cialized computer vision algorithms and are not easy to in-
terpret by a human observer. In this paper we propose to
recover an intensity image from a single binary spatial gra-
dient image with a deep autoencoder. Extensive experimen-
tal results on both simulated and real data show the effec-
tiveness of the proposed approach.

1. Introduction

Gradient information, either temporal or spatial, has
been widely used for a variety of computer vision algo-
rithms from visual recognition, to feature detection, to opti-
cal flow and stereo reconstruction. Recently proposed com-
putational cameras can calculate the image gradient directly
on-chip, thus saving power and bandwidth as compared to
regular CMOS image sensors. This is valuable for embed-
ded vision applications, which have stringent power and
bandwidth limitations for the image sensing stage. For in-
stance, Google Glass operating a modern face recognition
algorithm has a battery life of less than 40 minutes, with im-
age sensing and computation each consuming roughly 50%
of the power budget [18]; the cost of sending compressed
images or video for off-line processing in the cloud is also
several orders of magnitude higher than on-chip process-
ing [21]. Gradient cameras represent a promising technol-
ogy to overcome these limitations for embedded vision.

A popular type of binary, gradient camera is the dynamic
vision sensor (DVS), which asynchronously outputs pixels
recording a temporal change in intensity [17]. This camera
has been successfully used for several traditional computer
vision tasks.

For static scenes, however, a DVS camera does not cap-
ture any gradient information unless the camera moves. In
this paper, we focus on binary spatial gradients, where only
the pixels in high-contrast regions become active. The re-

Figure 1: Animated figure showing a captured binary spatial gra-
dient video (left), our intensity reconstruction for the video (mid-
dle), and the prototype camera we used for the capture. This figure
contains an embedded animation, which can be viewed in Adobe
Reader by clicking on the figure.

sulting images appear like binary edge images (Figure 1),
and do not require any motion. These images are related to
those produced by the DVS camera: the difference of two
consecutive spatial gradient frames essentially produces a
temporal gradient image.

Spatial binary gradients can be captured with specialized
sensors that allow for a significant reduction of the power
required to acquire, process, and transmit images [7]. How-
ever, the information they extract from the scene is limited.
In this paper, we investigate whether the intensity informa-
tion can be reconstructed from binary spatial gradient im-
ages in post-processing. This would be useful for tasks re-
quiring a human in the loop, such as video surveillance on a
limited power and bandwidth budget: a low-power system
can run continuously, and when an event of interest is de-
tected, a human observer inspects the intensity image. This
data can be gathered by triggering a more power-hungry
sensor [9], but it would be more efficient to extract it di-
rectly from the binary data itself. We argue that, in addi-
tion to reducing the bandwidth requirements, moving power
consumption from sensing to post-processing scales better
with Moore’s law, as digital processing becomes cheaper
and faster.

We show that intensity reconstruction from single-shot,
spatial binary gradients, is indeed possible. An example of
a video captured with a prototype camera, and the corre-
sponding gray-scale video reconstructed with our approach
are shown in Figure 1. To the best of our knowledge we are

1



Figure 2: A traditional image (left) and an example of real
spatial binary gradient data (right). Note that these pictures
were taken with different cameras and lenses and, thus, do
not exactly match.

the first to perform this in part because this is an ill-posed
problem: both the direction and the sign of the gradient are
lost (Section 3.1).

We utilize a deep autoencoder network to recover the
missing intensity information. We perform our formal tests
simulating the output of the sensor on existing datasets, but
we also validate our findings by capturing real data with
the prototype developed by Gottardi et al. [7], which imple-
ments this acquisition scheme. We believe that this paper
presents a compelling reason for using binary spatial gradi-
ent cameras in certain computer vision tasks to reduce the
power and bandwidth consumption for embedded systems.

2. Related Work

We describe the prior art in terms of the gradient cameras
that have been proposed, and then in terms of computer vi-
sion algorithms developed for this type of data.

Gradient cameras can compute spatial gradients ei-
ther in the optical domain [4, 30, 15], or on-board the
image sensor, a technique known as focal plane process-
ing [3, 16, 19, 10]. The gradients can be either calculated
using adjacent pixels [7], or using current-mode image sen-
sors [8]. Some cameras can also compute temporal gradient
images, i.e. images where the active pixels indicate a tem-
poral change in local contrast [7, 17]. Most of these gradient
cameras have side benefits of fast frame rates and reduced
data bandwidth/power due to the sparseness of gradients in
a scene. In fact, the camera by Lichtsteiner et al. can read
individual pixels when they become active [17]. Moreover,
the fact that gradient cameras output a function of the dif-
ference of two or more pixels, rather than the pixel values
themselves, allows them to deal with high-dynamic-range
scenes.

Applications of gradient cameras were first exposited
in the work by Tumblin et al., who described the advantages
of reading pixel differences rather than absolute values [24].
The appealing benefits of gradient cameras spurred the in-
terest of the computer vision community, which adapted a
number of traditional techniques to this new type of data.
For instance Weikersdorfer et al. proposed to use SLAM
with DVS cameras [26], and O’Connor et al. coupled them

with spiking networks for real-time classification [20]. An-
other area that recently received a great interest is that of
intensity reconstruction from sparse gradient data. This
is often coupled with a vision task: Kim et al. proposed
a method to perform simultaneous intensity reconstruction
and object tracking [12], Bardow et al. combined optical
flow and intensity reconstruction [1], Barua et al. did face
detection and intensity reconstruction [2], and Kim et al.
performed simultaneous depth, localization, and intensity
reconstruction [13].

The intensity reconstruction offered by these methods is
impressive, but requires two assumptions. First, the camera,
the scene, or both must be dynamic: the sensor does not out-
put any information otherwise. Second, several consecutive
frames must be available to perform the reconstruction: we
are not aware of any method that can perform intensity re-
construction from a single frame.

In contrast, we focus on spatial binary gradients, which
work for static scenes as well as dynamic ones. Our method
can reconstruct intensity images from a single binary gradi-
ent frame.

3. Method
In this section, we first outline the binary spatial gradi-

ent camera’s operation based on the sensor by Gottardi et
al. [7], which we use as a reference implementation for a
system that captures this type of data. We then describe our
reconstruction approach, and show results on data we gen-
erated with our simulator. Finally we verify our findings on
data captured with a real prototype.

3.1. Background: Operation and Power Estimate

With spatial binary gradients, we refer to cameras for
which a pixel becomes active when a local measure of con-
trast is above threshold. Specifically, for two pixels i and
j, we define the difference �i,j = |Ii � Ij |, where I
is the measured pixel’s brightness. We
also define a neighborhood ⌫ consisting
of pixel P and the pixels to its left, L,
and top, T (see inset). The output at
pixel P will then be:

GS(P) =

(
1 if max

i,j2⌫
�i,j > T

0 otherwise
, (1)

where T is a threshold set at capture time. The output of this
operation is a binary image where changes in local spatial
contrast above threshold yield a 1, else a 0, see Figure 2.

Note that Equation 1 is an approximation of a binary lo-
cal derivative: �T,L alone can trigger an activation for P,
even though the intensity at P is not significantly different
from either of the neighbors’. It can be shown that the con-
sequence of this approximation is a “fattening” of the im-



age edges by a factor of roughly
p
2 when compared to the

magnitude of the a gradient computed with regular finite
differences.

Also, because the sign of the derivative is lost, a dark ob-
ject against a bright background would yield the same exact
binary spatial gradient as a bright object on a dark back-
ground. In the context of reconstructing the intensity image,
this ambiguity prevents the methods of surface integration
from working, even with known boundary conditions.

The advantage of this formulation is that it can be imple-
mented efficiently in hardware, leading to significant power
savings. The power consumption for the sensor by Gottardi
et al. [7] can be approximated by the sum of two compo-
nents. The first, independent of the actual number of ac-
tive pixels, is the power required to scan the sensor and
amounts to 0.0024µW/pixel. The second is the power re-
quired to deliver the addresses of the active pixels, and is
0.0195µW/pixel [6]. While the number of active pixels is a
function of the scene, Gottardi et al. [7] report that for typ-
ical scenes this number is usually below 25% (in the data
we captured, we actually measured that slightly less than
10% of the pixels were active on average). At 30fps, this
power corresponds to 7.3pJ/pixel. A modern image sen-
sor, for comparison, is over 300pJ/pixel [23]. While these
numbers are to be taken as rough estimates, they do offer an
insight on the power savings that one can reasonably expect.

3.2. Recovering Intensity Information from Binary
Spatial Gradients

We take a deep learning approach to intensity reconstruc-
tion and, specifically, we use an autoencoder (AE) architec-
ture, see Figure 3. Autoencoders learn a lower-dimensional
representation of a signal, and thus are particularly well-
suited to learn priors on the distribution of the data and the
noise [25]. This is a very attractive feature that helps with
our problem being intrinsically ill-posed (Section 3.1).

In our experiments, we sought to find a compromise be-
tween the AE’s depth and the accuracy of the results. The
resulting architecture comprises 5 subsampling units for the
encoding stage, each followed by a max-pooling layer. The
decoding stage is symmetric with 5 units, each followed by
upsampling instead of max-pooling. For both the encoding
and the decoding stages, these units consists of 2 convolu-
tional layers and leaky ReLUs. Finally every convolutional
layer consists of 100 filters of kernel size 3⇥ 3.

Because AEs significantly downsample the data, they
sometimes produce blurry results. We addressed this prob-
lem by using skip-connections [11], which propagate high-
frequency information directly to the decoding stage from
the appropriate encoding unit.

The loss function has a strong impact on the quality of
the results [29]. Therefore, we tested several loss functions
including `2, `1 and total variation regularization. For the
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= Conv (3x3) + Leaky ReLU + Max Pooling

= Upsampling + Concatenation (SKIP Connection) + 
Conv (3x3) + Leaky ReLU + Conv (3x3) + Leaky ReLU

Figure 3: The architecture of the autoencoder used to re-
construct intensity information from spatial binary gradient
images.

purpose of our reconstruction, these alternative losses did
not produce better results than those produced by `1, which
is why we chose it as our loss function.

Finally, we used ADAM [14] for optimization with
learning rate � = 0.00001, and found that the learning
schedule did not have a significant impact on convergence.

3.3. Training Data

To generate a sufficiently large amount of data to train
our AE, we wrote a simulator of the camera described in
Section 3.1. We empirically tuned the threshold T to match
the appearance of the simulated and real data, which we
captured with a prototype camera. T typically varied from
0.05 to 0.1 for pixel intensities normalized to one. We were
then able to leverage existing datasets to create pairs of gra-
dient/ground truth images.

We used TensorFlow and Keras to construct our net-
works. All experiments were performed on a cluster of
GPUs with NVIDIA Titan X’s or K80s.

We trained our AE on two datasets for faces, BIWI [5]
and WIDER [27], and also the LSUN [28] dataset for indoor
and outdoor scenes.

BIWI: The BIWI face dataset, contains 15,000 images
of 20 subjects, each accompanied by a depth image, as well
as the head 3D location and orientation [5]. We removed
two subjects completely to be used for testing.

WIDER: We also trained the network on the WIDER
face dataset, a collection of 30,000+ images with 390,000+
faces [27]. The WIDER dataset, does not contain repeated
images of any one person except for a few celebrities which
we remove from our testing set, guaranteeing that no test
face is seen by the network during training. We extracted
face crops by running a face detection algorithm [22], and
resized them to 96x96, by either downsampling or upsam-
pling, unless the original size was too small.

LSUN: The LSUN dataset is an extremely large collec-
tion of images divided in several categories [28]. We used it



to verify the ability of our network architecture to learn data
from a more diverse distribution. We focused on one indoor
(‘bedroom’) and one outdoor (‘church’) category. We use
roughly 100k images for each dataset. Note that the size
of the dataset comes at a cost: there are several outlier im-
ages, and many of the other images have artifacts, such as
watermarks or overlaid text.

4. Experimental Results
We reconstruct intensity images from both simulated

data, and from the actual output of a prototype camera that
implements the algorithm described in Section 3.1.

Regarding the simulated data, a note on the threshold T
used in Equation 1 is in order. Similarly to exposure time
for traditional cameras, T should be adapted to the content
of the image so that the binary gradients are not too sparse,
Figure 6(j), nor too crowded, Figure 7(b). However, instead
of defining an arbitrary algorithm to select T for each image
independently, we opted to empirically set a unique thresh-
old for each one of the datasets. The quality of the recon-
struction degrades when T significantly deviates from its
optimal value, leading us to believe that a per-image thresh-
old would only improve the results. Below we report the
threshold we used for each dataset.

4.1. Simulated Data

Figure 4 shows an embedded animation of the two test-
ing subjects from the BIWI dataset. The threshold T used
was 0.05 for this dataset. As mentioned above, the solu-
tion is not unique given the binarized nature of the gradient
image, and indeed the network fails to estimate the shade
of the first subject’s sweater. Nevertheless, the quality is
sufficient to identify the person in the picture, which is sur-
prising, given the sparseness of the input data.

Figure 5 shows results of the reconstruction for the
WIDER dataset. The threshold T used was 0.09. Note that
the failure cases are those where the quality of the gradients
is not sufficient, Figure 5(i), or the face is occluded, Fig-
ure 5(j). The rest of the faces are reconstructed well, once
again, allowing to identify the person.

Figure 6 shows some reconstructed images for the ‘bed-
room’ category of the LSUN dataset. The threshold T =

0.07 for this dataset. This dataset presents a more signifi-
cant variability in terms of the actual image content, see for
instance Figure 6(j). This weakens the prior on the expected
image content. Nevertheless, our network produces reason-
able reconstructions whether the input portraits a relatively
standard bedroom setup, or when it contains less common
subjects, such as kids (i) or even a cat (j).

Figure 7 shows some reconstructed images for the
‘church’ category of the LSUN dataset. The threshold
T = 0.07 for this dataset. This is probably the most dif-
ficult dataset for the network due to the variability of the

Figure 4: Embedded animation of the intensity recon-
struction (middle pane) on the binary data (left pane) simu-
lated from the BIWI dataset [5]. It can be viewed in Adobe
Reader, or other media-enabled viewers, by clicking on the
images. The ground truth is on the right.

data. Also the assumption that a single threshold can be
used for the whole dataset works more poorly due to the
varying dynamic range of different images, causing several
binary gradient images to be overly-active. This reflects in
a poorer quality of the reconstruction.

4.2. Real Data

We validate our findings by running experiments on bi-
nary gradient images captured with the actual prototype
camera described by Gottardi et al. [7]. The spatial res-
olution of this camera is 128x64 pixels, which limits the
quality of the spatial gradients. We use the widest aperture
setting allowed by the lens to gain the most light, though at
the cost of a shallower depth of field, which we did not find
to affect the quality of the gradient image. To validate our
simulator, we also captured a few grayscale images of the
same scene with a second camera set up to roughly match
the field of views of the two. Figure 2, shows a comparison
between a grayscale image and the (roughly) corresponding
frame from the prototype camera. Barring resolution issues,
we believe our simulations match the real data (compare for
instance the real data in Figure 5 and the simulated data in
the second row of Figure 8).

We trained the network on synthetic data generated from
the WIDER dataset at the resolution of 64x64. We then
performed forward inference on the real data. We did not
perform fine-tuning due to the lack of ground truth data—
the data from an intensity camera captured from a slightly
different position, and with different lenses, did not gener-
alize well. While the quality of the reconstruction is slightly
degraded with respect to that of the synthetic data, the faces
are reconstructed well. Figure 1 shows an animation on a
captured binary gradient video. We are reconstructing in-
tensity information from a single frame: we are not enforc-
ing temporal consistency, nor we use information from mul-
tiple frames to better infer intensity. Figure 8 shows a few
static frames from different subjects. Note that despite the
low resolution (these crops are 1.5 times smaller than those
in Figure 5), the face features are still recognizable.



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 5: Intensity reconstruction (bottom row) on the binary data (middle row) simulated from the WIDER dataset [27]. The
ground truth is in the top row. Note that our neural network is able to recover the fine details needed to identify the subjects.
We observed that failure cases happen when the gradients are simply too poor (i) or the face is occluded (j).

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 6: Intensity reconstruction (bottom row) on the binary data (middle row) simulated from the ‘Bedroom’ category
from the LSUN dataset [28]. The ground truth is in the top row. The dataset is very large, but the images it contains are not
very carefully chosen, thus allowing for spurious subjects, such as the cat in (j). However, even in such cases, our network
produces a reasonable reconstruction so long as the gradients are correctly captured, such as the kids in (i) or cat in (j).

We find that the quality of the reconstruction of any sin-
gle frame varies: some reconstructions from real data allow
the viewer to determine the identity of the subject, others
are more similar to average faces.

5. Discussion and limitations

We believe that our intensity reconstruction results are
good, but they can still be improved. While the ability to
reconstruct intensity from a single image is important, in-
corporating temporal information may be beneficial. This
could be achieved by using a recurrent network that works
on sequences of frames. Note that this is different from
using temporal gradients, though the network can learn to
generate them, because of the issues with static and dy-
namic content. Our reconstruction leverages the fact that
we can learn a prior about the data. This could lead to fail-

ure when the scene is significantly different from what the
network was trained on, although we have observed that the
network still produces reasonable results even in those cir-
cumstances (as seen in Figure 6(i)). Finally, aside from try-
ing to learn the more likely color from the training data, the
network cannot disambiguate the intrinsic ill-posedness of
the binary gradient data.

6. Conclusion

We have proposed to use an autoencoder network to
learn the prior distribution of a specific class of images to
solve the under-constrained problem of recovering inten-
sity information from binary spatial edges. We are able
to achieve visually plausible reconstructions for several
classes of images simulating the binary gradient data on ex-
isting image datasets. We also validate our method on real



(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Figure 7: Intensity reconstruction (bottom row) on the binary data (middle row) simulated from the ‘Church’ category from
the LSUN dataset [28]. The ground truth is in the top row.

Figure 8: Intensity reconstruction result inferred by the net-
work described in Section 3.2 and trained on the WIDER
simulated data. The top row shows 64x64 face crops cap-
tured with the prototype camera, the bottom the correspond-
ing reconstructed images. While the quality is not quite on
par with the intensity reconstructions, it has to be noted that
the resolution of the crops in Figure 5, is 96x96, i.e. 1.5x
larger.

images taken from a prototype camera. Our work shows for
the first time that intensity reconstruction can be performed
even on a single, binary gradient image.
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