
Introduction and practical arrangements

Tommi Junttila and Jussi Rintanen

Aalto University
School of Science

Department of Computer Science

CS-E3220 Declarative Programming
Autumn 2020

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 1 / 18



Declarative and constraint programming
Imperative programming: how something is done

Declarative programming: declare what a program should accomplish, not how this is done

Declarative programming is an “umbrella term” covering many paradigms

We’ll focus on constraint programming, where the problem at hand is described with variables
and constraints so that any assignment to the variables that respects the constraint is a
solution to the problem1

The figure below shows a typical flow in constraint programming:
I The problem instance is encoded to a constraint problem instance,
I which is then solved by some highly-optimised constraint solver, and
I a solution to the problem instance is decoded from the solver output

problem
instance

encode
constraint
problem
instance

constraint
solver

constraint
problem
solution

decode solution

1The course could (and perhaps should) be called “constraint programming” but this term historically refers more
strongly to one approach (CSPs, round 3) than to some others (SAT, SMT) that we also cover
Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 2 / 18

https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Constraint_programming


Constraint solvers

Constraint programming is usually applied to intractable, NP-hard or harder, problems

Such problems could be solved with backtracking search as, too ...

but using constraint solvers makes the task easier as one only needs to declare the
constraints (and it is the solver’s responsibilitu to do the search)
Basically, a constraint solver is a tool that

I takes a problem instance as input,
I finds whether the constraints have a solution, and
I outputs such a solution if one exists or “no solutions” if the constraints cannot be satisfied

Constraint problem:
var int: x;
var int: y;
constraint x < 2y+7;
...

constraint
solver

a concrete solution
or

“no solutions”

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 3 / 18



This course

Constraint problem types to be covered in this course
I Propositional satisfiability (SAT)
I Constraint satisfaction problems (CSP)
I Satisfiability modulo theories (SMT)

Practice: solving problems with these

Theory: (a glimpse of) how the solvers for these
formalisms work

Applications: Where is all this applied

theory
practice

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 4 / 18



Application 1: Integrated circuits correctness, testing, diagnosis

T. Larrabee: Test pattern generation using Boolean satisfiability,
1992.

A. Biere et al.: Symbolic model checking without BDDs, 1999.

E. I. Goldberg, M. R. Prasad and R.K. Brayton, Using SAT for
combinational equivalence checking, 1997.

J. R. Burch, E. H. Clarke, K. L. McMillan and D. L. Dill,
Sequential circuit verification using symbolic model checking,
1991.

A. Smith, A. Veneris, M. F. Ali, and A. Viglas, Fault diagnosis and
logic debugging using Boolean satisfiability, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
2005.

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 5 / 18

https://ieeexplore.ieee.org/abstract/document/108614
https://link.springer.com/content/pdf/10.1007/3-540-49059-0_14.pdf
https://ieeexplore.ieee.org/abstract/document/915010
https://ieeexplore.ieee.org/abstract/document/915010
https://dl.acm.org/citation.cfm?id=123223
https://ieeexplore.ieee.org/abstract/document/1512377
https://ieeexplore.ieee.org/abstract/document/1512377


Application 2: Product/Software Configuration

Configuration: Choose components based on
requirements and inter-component dependencies
(A requires B; C and D are incompatible)

Product configuration: cars, all kinds of
machinery, ...

Software package configuration (operating
systems)

T. Soininen and I. Niemelä: Developing a Declarative Rule Language for Applications in Product
Configuration, 1999.
F. Mancinelli, J. Boender, R. Di Cosmo, J. Vouillon, B. Durak, X. Leroy, R. Treinen, Managing the
Complexity of Large Free and Open Source Package-Based Software Distributions, 2006.
P. Trezentos, I. Lynce, A. L. Oliveira, Apt-pbo: solving the software dependency problem using
pseudo-boolean optimization, 2010.

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 6 / 18

https://doi.org/10.1007/3-540-49201-1_21
https://doi.org/10.1007/3-540-49201-1_21
https://ieeexplore.ieee.org/abstract/document/4019575
https://ieeexplore.ieee.org/abstract/document/4019575
https://dl.acm.org/citation.cfm?id=1859087
https://dl.acm.org/citation.cfm?id=1859087


Application 3: Planning, Scheduling, Timetabling

Scheduling of courses/classes for schools,
universities

Project scheduling

Production scheduling (manufacturing)

Timetables/schedules for vehicles (trains,
buses, airplanes)

Staff/crew scheduling (airlines, trains, buses)

P. Baptiste, Philippe, C. Le Pape and W. Nuijten, Wim. “Constraint-based scheduling: applying
constraint programming to scheduling problems”, 2012.

Companies and products: Quintiq, IBM ILOG CP Optimizer

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 7 / 18



Application 4: Software Model-Checking

Test if program satisfies a given property

Safety-critical applications

Concurrency problems in multi-threaded
programs

R. Jhala, R. Majumdar, Software model checking, ACM Computing Surveys (CSUR), 2009.
L. Cordeiro, B. Fischer, and J. Marques-Silva, SMT-Based Bounded Model Checking for
Embedded ANSI-C Software, 2011.
F. Merz, S. Falke, C. Sinz, LLBMC: Bounded Model Checking of C and C++ Programs Using a
Compiler IR, 2012.

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 8 / 18

https://dl.acm.org/citation.cfm?id=1592438
https://ieeexplore.ieee.org/abstract/document/5928354
https://ieeexplore.ieee.org/abstract/document/5928354
https://link.springer.com/chapter/10.1007/978-3-642-27705-4_12
https://link.springer.com/chapter/10.1007/978-3-642-27705-4_12


Application 5: Software Synthesis

Project at Aalto U since 2016 (AISS research group)

Synthesis of full-stack program code from declarative specifications of software functionalities

Domain: web apps, information systems, and other UI and DB intensive SW
Specification for a change in the state of an application

I User inputs x1,x2, . . . ,xn (any data types)
I Condition Φ(x1,x2, . . . ,xn,y1, . . . ,yn) on the inputs and data y1, . . . ,yn in DB
I Program code to change DB according to the inputs

Constraint satisfaction problem: x1, . . . ,xn must satisfy Φ(x1,x2, . . . ,xn,y1, . . . ,yn)

Automated synthesis of full stack code (DB, app logic, UI functionality) for whole application

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 9 / 18



Application 6: Solving mathematical problems

Boolean Pythagorean Triples problem

Is there an n such that in every partitioning of {1,2, ...,n} into two parts, either part
contains three numbers a, b, and c such that a2 + b2 = c2?

In 2017, Heule and Kullmann showed that such n exists: 7825

A 200 TB machine checkable proof of this was also produced

Heule, Kullmann, and Marek: Solving and Verifying the Boolean Pythagorean Triples Problem
via Cube-and-Conquer, 2016

Also see Heule and Kullmann: The science of brute force, 2017

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 10 / 18

https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1007/978-3-319-40970-2_15
https://doi.org/10.1145/3107239


Practical arrangements

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 11 / 18



First things first...

Exercises, changes in schedule, announcements etc are in MyCourses

https://mycourses.aalto.fi/course/view.php?id=28176

In order to see all these, please

register to the course in Oodi

immediately if you plan to take the course

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 12 / 18

https://mycourses.aalto.fi/course/view.php?id=28176


Contents

Ten rounds (the order is still tentative):
1 Propositional logic Tommi
2 Fundamentals of SAT solvers Tommi
3 Constraint satisfaction problems (CSP) Tommi
4 Binary decision diagrams Jussi
5 Symbolic state space search with BDDs Jussi
6 State-space search through satisfiability Jussi
7 Specification languages, modal and temporal logics Jussi
8 Model checking in verification Jussi
9 Satisfiability modulo theories (SMT), part I Tommi
10 Satisfiability modulo theories (SMT), part II Tommi

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 13 / 18



Personnel

Responsible teachers:
I Professor Jussi Rintanen
I Senior university lecturer Tommi Junttila

Teaching assistant: Saurabh Fadnis

Email: firstname dot lastname at aalto dot fi
(No email consultations: please attend the exercise sessions)

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 14 / 18



Prerequisites

This is a Master’s level course in Computer Science
The prerequisites are:

I Programming skills in some procedural language such as Python, Java, Scala or C++
We use Python in some exercises and you should be able to learn the syntax of Python quickly if
you don’t know it already

I Fundamental data structures and algorithms, e.g., CS-A1140 Data Structures and Algorithms
I Basics on discrete mathematics
I Basics of propositional logic covered, e.g., CS-E4800 Artificial Intelligence

A sufficient recap will be provided in Round 1

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 15 / 18



Passing and grading of the course
To pass the course, one has to pass

I obligatory online exercises (see MyCourses)
I exam (one on Dec 14, 2020; another one on Feb 23, 2021)

The total grade is obtained by the following scheme:
exam grade

0 1 2 3 4 5

ex
er

ci
se

po
in

ts

0–199 0 0 0 0 0 0
200–349 0 1 2 2 3 3
350–499 0 2 2 3 3 4
500–649 0 2 3 3 4 4
650–799 0 3 3 4 4 5

800–1000 0 3 4 4 5 5
For instance, if one gets 600 points from the online exercises and grade 4 from the exam, the
total grade will be 4

As usual, total grade 0 means “not passed” or “failed”

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 16 / 18



Online exercises
See MyCourses
Both “theory” and “practice”

I Theory: check that the topics, algorithms etc are understood.
No programming.

I Practice: solving problems with some actual state-of-the-art tools.
Some programming required but emphasis is on modelling.

Ten rounds, 100 points available on each ⇒ max. 1000 points
I roughly half of the points from no-programming theory exercises
I roughly half of the points from programming practice exercises
I some points for feedback

Exercise sessions:
I Online
I See MyCourses for instructions and schedule

Exercise points obtained in Autumn 2020 will be valid in all exams before the next course in
Autumn 2021 (but not after that)
Exercise points from Autumn 2019 and earlier are not valid anymore
The exercises are personal work!

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 17 / 18



Questions?
Please post them in our discussion forum.

Tommi Junttila and Jussi Rintanen (Aalto University) Introduction and practical arrangements CS-E3220 DP / Autumn 2020 18 / 18


	Practical arrangements

