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Abstract

We consider the input variable selection in complex Bayesian hierarchical models. Our goal is to
find a model with the smallest number of input variables having statistically or practically at least the
same expected utility as the full model with all the available inputs. A good estimate for the expected
utility can be computed using cross-validation predictive densities. In the case of input selection
and a large number of input combinations, the computation of the cross-validation predictive den-
sities for each model easily becomes computationally prohibitive. We propose to use the posterior
probabilities obtained via variable dimension MCMC methods to find out potentially useful input
combinations, for which the final model choice and assessment is done using the expected utilities.
Variable dimension MCMC methods visit the models according to their posterior probabilities. As
models with negligible probability are probably not visited in a finite time, the computational savings
can be considerable compared to going through all possible models. If there is problem of obtaining
enough samples in reasonable time to estimate the probabilities of the models well, we propose to use
the marginal posterior probabilities of the inputs to estimate their relevance. As illustrative examples
we use MLP neural networks and Gaussian processes in one toy problem and in two challenging
real world problems. Results show that using posterior probability estimates computed with variable
dimension MCMC helps finding useful models. Furthermore, benefits of using expected utilities
for input variable selection are that it is less sensitive to prior choices and it provides useful model
assessment.

Keywords: Bayesian model choice; input variable selection; expected utility; cross-validation; vari-
able dimension Markov chain Monte Carlo; MLP neural networks; Gaussian processes; Automatic Rel-
evance Determination
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1 Introduction

In practical problems, it is often possible to measure many variables, but it is not necessarily known
which of them are relevant and required to solve the problem. In Bayesian hierarchical models, it is
usually feasible to use large number of potentially relevant input variables by using suitable priors with
hyperparameters controlling the effect of the inputs in the model (see, e.g., Lampinen & Vehtari, 2001).
Although such models may have good predictive performance, it may be difficult to analyse them, or
costly to make measurements or computations. To make the model more explainable (easier to gain
scientific insights) or to reduce the measurement cost or the computation time, it may be useful to select
a smaller set of input variables. In addition, if the assumptions of the model and prior do not match well
the properties of the data, reducing the number of input variables may even improve the performance of
the model.

In prediction and decision problems, it is natural to assess the predictive ability of the model by esti-
mating the expected utilities, as the principle of rational decisions is based on maximizing the expected
utility (Good, 1952; Bernardo & Smith, 1994) and the maximization of expected likelihood maximizes
the information gained (Bernardo, 1979). In machine learning community expected utility is sometimes
called generalization error. Following simplicity postulate (Jeffreys, 1961), it is useful to start from sim-
pler models and then test if more complex model would give significantly better predictions. Combining
the principle of rational decisions and simplicity postulate, our goal is to find a model with the smallest
number of input variables having statistically or practically at least the same predictive ability as the full
model with all the available inputs. An additional advantage of comparing the expected utilities is that
it takes into account the knowledge of how the model predictions are going to be used and further it
may reveal that even the best model selected from some collection of models may be inadequate or not
practically better than the previously used models.

Vehtari and Lampinen (2002, 2003) present with Bayesian justification how to obtain distributions
of expected utility estimates of complex Bayesian hierarchical models using cross-validation predictive
densities. The distribution of the expected utility estimate describes the uncertainty in the estimate and
can also be used to compare models, for example, by computing the probability of one model having
a better expected utility than some other model. In the case of K inputs, there are 2K input combina-
tions, and computing the expected utilities for each model easily becomes computationally prohibitive.
To use expected utility approach we need to find way to find out smaller number of potentially useful
input combinations. One approach would be using global optimization algorithms to search the input
combination maximizing the expected utility (e.g. Draper & Fouskakis, 2000). Potential problems with
this approach are that it may be slow, requiring hundreds or thousands of cross-validation evaluations,
and results depend on search heuristics

Current trend in Bayesian model selection (including the input variable selection) is to estimate
posterior probabilities of the models using Markov chain Monte Carlo (MCMC) methods and especially
variable dimension MCMC methods (Green, 1995; Stephens, 2000). The variable dimension MCMC
visits models according to their posterior probabilities, and thus models with negligible probability are
probably not visited in finite time. The posterior probabilities of the models are then estimated based on
number of visits for each model and models with highest posterior probabilities are further investigated.

Marginal likelihoods and posterior probabilities of the input combinations have been used directly
for input selection, for example, by Brown, Vannucci, and Fearn (1998), Ntzoufras (1999), Han and
Carlin (2000), Sykacek (2000), Kohn, Smith, and Chan (2001), and Chipman, George, and McCulloch
(2001). Although this kind of approach has produced good results, it may be sensitive to prior choices
as discussed in section 2.4, and it does not necessarily provide model with the best expected utility as
demonstrated in section 3. Furthermore, Spiegelhalter (1995) and Bernardo and Smith (1994) argue that
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when selecting a single model from some family of models instead of integrating over the discrete model
choices (e.g., input combinations), it is better to compare the consequences (e.g., utilities) of the models
instead of their posterior probabilities.

We propose to use posterior and marginal posterior probabilities obtained via variable dimension
MCMC methods to find out potentially useful input combinations and to do the final model choice and
assessment using the expected utilities (with any desired utility) computed by using the cross-validation
predictive densities. Similar approach has been used before at least by Vannucci, Brown, and Fearn
(2001), and Brown, Vannucci, and Fearn (2002), but they considered only general linear models and
squared loss, and they did not estimate the uncertainty in the expected loss estimates.

As illustrative examples, we use MLP networks (MLP) and Gaussian processes (GP) (Neal, 1996,
1999; Lampinen & Vehtari, 2001) in one toy problem and two real world problems: concrete quality
estimation and forest scene classification. MLPs and GPs are non-parametric non-linear models, where
the interactions between the input variables are handled implicitly in the model and thus there is no
need to specify them explicitly. This alleviates the input variable selection, as we only need to select
whether the input variable should be included in the model or not, and if it is included, the model
automatically handles possible interactions. For MLPs and GPs it is common to use hierarchical prior
structures which produce continuous input variable selection, that is, there are hyperparameters which
control how strong effect each input variable may have in the model. Consequently, model averaging
(averaging over different input variable combinations) usually does not produce different results than the
the model with all the input variables (full model), and thus we may use the full model as the baseline,
to which we can compare models with fewer input variables.

We have tried to follow the notation of Gelman, Carlin, Stern, and Rubin (1995) and we assume that
reader has basic knowledge of Bayesian methods (see, e.g., short introduction in Lampinen & Vehtari,
2001) and Bayesian model assessment and comparison based on expected utilities (Vehtari & Lampinen,
2002, 2003). Knowledge of MCMC, MLP or GP methods is helpful but not necessary.

2 Methods

We first discuss relationship of posterior probabilities of models to expected utilities (section 2.1). Then
we discuss variable dimension MCMC methods, which can be used to obtain posterior probability esti-
mates for a large number of models in a time comparable to computing the cross-validation predictive
densities for a single model (section 2.2). Finally we discuss prior issues specific in input selection
(sections 2.3 and 2.4).

2.1 Expected utilities and posterior probabilities

Given models Ml , l = 1, . . . , L we would like to find the model with the smallest number of input
variables having at least the same expected utility as the full model with all the available inputs. One way
would be to estimate expected utility ūMl for each model, but this may be computationally prohibitive.

Distributions of expected utility estimates of complex Bayesian hierarchical models can be obtained
using cross-validation predictive densities (Vehtari & Lampinen, 2002, 2003). Using the distributions
it is easy to compute the the probability of one model having a better expected utility than some other
model p(ūM1−M2 > 0). In real world problems it is useful to use application-specific utilities for model
assessment. For example, Draper and Fouskakis (2000) discuss example in which monetary utility is
used for data collection costs and the accuracy of predicting mortality rate in health policy problem.
However, for model comparison likelihood based utilities are useful as they measure how well the model
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estimates the whole predictive distribution. Expected predictive likelihoods are also related to posterior
probabilities.

The posterior predictive distribution of not yet observed y(n+1) given the training data D = {y(i); i =
1, 2, . . . , n}, where y(i) are i.i.d., is obtained by integrating the predictions of the model with respect to
the posterior distribution of the model

p(y(n+1)|D, Ml, I ) =
∫

p(y(n+1)|θ, D, Ml, I )p(θ |D, Ml, I )dθ, (1)

where θ denotes all the model parameters and hyperparameters and I denotes the assumptions about the
model space discussed in the section 2.3. For convenience we consider expected predictive log-likelihood
which is given by

Ey(n+1)

[
log p(y(n+1)|D, Ml, I )

]
. (2)

Assuming that the distribution of the y(n+1) is same as the distribution of y(i), Equation 2 can be
approximated using the cross-validation predictive densities as

Ei

[
log p(y(i)|D(\i), Ml, I )

]
, (3)

where D(\i) denotes all the elements of D except y(i). Samples from cross-validation predictive densities
are easily obtained with importance-sampling leave-one-out CV or k-fold-CV.

Commonly used Bayesian model selection method is the Bayes factor (Kass & Raftery, 1995)

Bjk = p(D|Mj , I )

p(D|Mk, I )
, (4)

where
p(D|Ml, I ) =

∏
i

p(y(i)|y(si ), Ml, I ), (5)

where the right hand side is obtained using the chain rule, and y(si ) is a set of data points so that y(s1) = ∅,
y(s2) = y(1), and y(si ) = y(1,...,i−1); i = 3, . . . , n. p(D|Ml, I ) is called marginal probability of the data, or
prior predictive likelihood. Taking the logarithm of the right hand side of the Equation (5) and dividing
by n we get

Ei
[
log p(y(i)|y(si ), M)

]
, (6)

which is similar to cross-validation estimate of the expected predictive likelihood (Equation 3). In ex-
pected utility sense this is an average of predictive log-likelihoods with number of data points used for
fitting ranging from 0 to n − 1. As the learning curve is usually steeper with smaller number of data
points, this is less than the expected predictive log-likelihood with n/2 data points. As there are terms
which are conditioned on none or very few data points, Equation 6 is sensitive to prior changes. With
more vague priors and more flexible models few first terms dominate the expectation unless n is very
large.

This comparison shows that the prior predictive likelihood of the model can be used as lower bound
of the expected predictive likelihood (favoring less flexible models). The predictive likelihood is good
utility for model comparison, but naturally the final model choice and assessment can be done using the
application specific utilities. The prior predictive likelihoods can also be combined with prior proba-
bilities of the models getting posterior probabilities of the models (with uniform prior on models prior
predictive likelihoods are proportional to posterior probabilities). It is possible to use the prior predictive
likelihoods or the posterior probabilities depending whether it is believed that using non-uniform prior
on model space helps us to find more useful models. Model space prior affects only which models are
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selected for further study, it does not affect the final model comparison based on expected utilities. In
our examples we have used uniform prior or modest prior favoring smaller models (see discussion on
section 2.3 and examples in section 3).

Computation of the prior predictive likelihood p(D|Ml, I ) for complex hierarchical models is usually
very hard (Kass & Raftery, 1995). In the next section we discuss variable dimension MCMC methods
which can be used to estimate posterior probabilities p(Ml, I |D) and as

p(Ml, I |D) = p(D|Ml, I )p(Ml |I )/p(D|I ) (7)

it is also possible to obtain relative prior predictive likelihood values ignoring p(D|I ) which is constant
for all models Ml given I .

If there are many correlated inputs, it is probable that there are also many high-probability input
combinations and thus it may be hard to estimate the probabilities of input combinations well. In this
case, we propose to use the marginal probabilities of the inputs, which are easier to estimate, to indicate
potentially useful inputs. This is illustrated in sections 3.4 and 3.6.

In addition to input selection, the marginal probabilities of inputs can be used to estimate the rel-
evance of the inputs, which has great importance in analyzing the final model. For MLP networks,
MacKay (1994), and Neal (1996) proposed the “automatic relevance determination” (ARD) prior as an
automatic method for determining the relevance of the inputs in MLP. In section 3.4 we discuss and
illustrate the benefit of the marginal probabilities of inputs over the ARD values for relevance estimation
in MLP.

2.2 Variable dimension Markov chain Monte Carlo

For simple models it may be possible to estimate the prior predictive likelihood p(D|Ml, I ) analytically,
but even in this case if there is large number of models it may be computationally prohibitive to do
it for all models. In case of complex hierarchical models we usually do not have analytic solutions
or good analytical approximations (e.g., variational approximations, Jordan, Ghahramani, Jaakkola, &
Saul, 1998), and we need to resort to stochastic approximations such as the the Monte Carlo methods
(Gilks, Richardson, & Spiegelhalter, 1996; Robert & Casella, 1999; Chen, Shao, & Ibrahim, 2000). In
the MCMC, samples from the posterior distribution are generated using a Markov chain that has the
desired posterior distribution as its stationary distribution.

In the case of input selection, models will generally have different numbers of parameters if they have
different number of inputs. The variable dimension MCMC methods (Green, 1995; Stephens, 2000; Nt-
zoufras, 1999; Han & Carlin, 2000) allow jumps between models with different dimensional parameter
spaces, and thus we can get samples from the posterior distribution of the input combinations. The
variable dimension MCMC methods visits models (one visit is one sample) according to their posterior
probabilities, and thus models with negligible probability are probably not visited in finite time. Conse-
quently, only the most probable models are investigated and computational savings can be considerable
compared to going through all possible models. Speed and accuracy of variable dimension MCMC
methods may in some cases further increased by analytically marginalizing over as many parameters as
possible.

We have used the reversible jump Markov chain Monte Carlo (RJMCMC; Green, 1995) which is is
one of the simplest to implement and one of the fastest on big problems. The RJMCMC is an extension to
the Metropolis-Hastings method allowing jumps between models with different dimensional parameter
spaces. In the case of input selection, models have different number of parameters as they have different
number of inputs. When adding or removing inputs, the corresponding parameters are added or removed,
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respectively. If the current state of the Markov chain is (M1, θM1) the jump to state (M2, θM2) is accepted
with probability

α = min

(
1,

p(D|θM2, M2)p(θM2 |M2)p(M2|I ) j (M2, M1)q(u2|θM2, M2, M1)

p(D|θM1, M1)p(θM1 |M1)p(M1|I ) j (M1, M2)q(u1|θM1, M1, M2)

∣∣∣∣∂hM1,M2(θM1, u1)

∂(θM1, u1)

∣∣∣∣
)

,

(8)
where I denotes the assumptions about the model space, j is the probability of jumping from one model
to another, q is the proposal distribution for u and hM1,M2 is an invertible function defining mapping
(θM2, u2) = hM1,M2(θM1, u1).

In the case of suitable proposal distribution, the acceptance probability term can be greatly simpli-
fied. When adding a new input, we set hM1,M2 as identity, that is (θM2) = (θM1, u1), and then use the
conditional prior of the new parameters as the proposal distribution (see sections 3.1 and 3.2). Now the
Jacobian is 1, the prior terms for the parameters common to both models cancel out and the prior and the
proposal distribution for the new parameters cancel out. Moreover, as we set j (M1, M2) = j (M2, M1),
Equation 8 simplifies to

α = min

(
1,

p(D|θM2, M2)p(M2|I )
p(D|θM1, M1)p(M1|I )

)
. (9)

We use hierarchical priors for the parameters specific to inputs, and so the conditional prior of the new
parameters is natural proposal distribution with a reasonable acceptance rate and mixing behaviour. In
our case studies time needed for obtaining posterior probability estimates for all input combinations
(or marginal probability estimates for inputs) with RJMCMC was relative to time used for computing
expected utilities with k-fold-CV predictive densities for single model.

2.3 Priors on model space

Model space prior can be used to favor certain models or even if we would like to use uniform prior on
models, it may be useful to use non-uniform prior due to computational reasons. As discussed below it is
possible that when using uniform prior on models the implicit prior on number of inputs may cause the
variable dimension MCMC methods to miss some input combinations. Using non-uniform prior we may
be able to improve sampling and to obtain posterior probabilities based on uniform prior, the appropriate
prior correction can be made afterwards.

We are interested in input variable selection for MLPs and GPs, where the interactions between the
input variables are handled automatically in the model, and thus we do not need to consider model space
priors which consider the interactions. For example, Chipman et al. (2001) discuss some choices for
model space priors in the case of explicit interactions in the model.

If we have K input variables, there are L = 2K possible different input combinations (models). A
simple and popular choice is the uniform prior on models

p(Ml) ≡ 1/L , (10)

which is noninformative in the sense of favoring all models equally, but as seen below, will typically not
be noninformative with respect to the model size.

It will be convenient to index each of the 2K possible input combinations with the vector

γ = (γ1, . . . , γK )T , (11)

where γk is 1 or 0 according to whether the input k is included in the model or not, respectively. We get
equal probability for all the input combinations (models) by setting

p(γ ) = (1/2)K . (12)
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From this we can see that the implicit prior for the number of inputs k is the Binomial

p(k) = Bin(K , 1/2), (13)

which clearly is not noninformative, as E[k] = 0.5K and Var[k] = 0.25K . For example, if K=27, then
k lies in the range 7 to 20 with prior probability close to 1, and thus it is possible that variable dimension
MCMC methods will not sample models with less than 7 inputs (see also examples in section 3).

To favor smaller models various priors on the number of inputs (or other components) have been
used; for example, geometric (Rios Insua & Müller, 1998), truncated Poisson (Phillips & Smith, 1996;
Denison et al., 1998; Sykacek, 2000), and truncated Poisson with a vague Gamma hyperprior for λ

(Andrieu, de Freitas, & Doucet, 2000). A problem with these approaches is that the implicit Binomial
prior still is there, producing the combined prior

p(k) = Bin(K , 1/2)h(k), (14)

where h(k) is the additional prior on the number of inputs. Although it is possible to move the mass
of the prior to favor a smaller number of inputs with the additional prior, the Binomial prior effectively
restricts k a priori to lie in a short range.

Instead of an additional prior on the number of inputs, we could set the probability of single input
being in the model, π , to the desired value and get

p(γ ) = π k(1 − π)1−k (15)

and correspondingly
p(k) = Bin(K , π). (16)

In this case, E(k|π) = Kπ and var(k|π) = Kπ(1 − π). Although having more control, this would still
effectively restricts k a priori to lie in a short range

A more flexible approach is to place a hyperprior on π . Following Kohn et al. (2001) and Chipman
et al. (2001), we use a Beta prior

p(π) = Beta(α, β), (17)

which is convenient, as then the prior for k is Beta-binomial

p(k) = Beta-bin(n, α, β). (18)

In this case, E[k|π, α, β] = K α
α+β

and Var[k|π, α, β] = K αβ(α+β+K )

(α+β)2(α+β+1)
, and thus the values for α

and β are easy to solve after setting E[k] and Var[k] to the desired values. As the Beta-binomial is
often nonsymmetric, it may be easier to choose the values for α and β by plotting the distribution with
different values of α and β, as we did in the examples in section 3. If α = 1 and β = 1 then the prior
on k is uniform distribution on (0, K ), but now the models are not equally probable, as the models with
few or many inputs have higher probability than the models with about K/2 inputs. For example, for
models with more than K/2 inputs, the model with one extra input is a priori K times more probable.
Consequently, it is not possible to be uninformative in input selection, and some care should be taken
when choosing priors, as efforts to be uninformative in one respect will force one to be informative in
other respect. Even if there is some prior belief about the number of inputs, it may be hard to present in
mathematical form or there may be computational problems as in the example in section 3.6.

Above we have assumed that each input has equal probability. This assumption could be relaxed by
using, for example, a prior of the form

p(γ ) =
∏

π
γk
k (1 − πk)

1−γk , (19)
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where πk is the probability of input k being in the model. This kind of prior could be further combined
with a hierarchical prior on πk to gain more flexibility. It seems that prior information about the relative
probabilities of the inputs is rarely available, as this kind of priors are seldom used.

In some cases there might be information about dependencies between input combinations that could
be used. For example, dependency priors in the case of related input variables are discussed by Chipman
(1996). Although we know that the inputs in our case problems are not independent, we do not know a
priori what dependencies there might be, so we use the independence prior. Additionally, as one of our
goals is to get more easily explainable models, it is desired that inputs that are as independent as possible
are selected.

2.4 Priors on input specific parameters

As discussed and illustrated, for example, by Richardson and Green (1997), Dellaportas and Forster
(1999), and Ntzoufras (1999), the prior on parameters p(θMl |Ml) greatly affects the prior predictive
likelihood (and thus posterior probability) of the model Ml having extra parameter θ+

Ml
. If the prior

on the extra parameters p(θ+
Ml

|Ml) is too tight, the extra parameters might not reach a useful range in
the posterior, thus making the model less probable. On the other hand, if the prior is too vague, the
probability of any value for the extra parameter gets low, and correspondingly, the probability of the
model gets low.

Often, it is recommended to test different priors, but there is no formal guidance what to do if the
different priors produce different results. Some methods for controlling the effects of the prior in linear
models are discussed by Ntzoufras (1999), but these methods may be difficult to generalize to other
models. Using hierarchical priors seems to alleviate partly the problem, as discussed by Richardson
and Green (1997) and illustrated in section 3. Furthermore, since the effect of the model space prior is
considerable and its selection usually quite arbitrary, there is probably no need to excessively fine tune
the priors of the parameters in question. Naturally, the prior sensitivity is an even lesser problem when
the final model choice is based on the expected utilities.

3 Illustrative examples

As illustrative examples, we use MLP networks and Gaussian processes with Markov Chain Monte
Carlo sampling (Neal, 1996, 1997, 1999; Lampinen & Vehtari, 2001; Vehtari, 2001) in one toy problem
(section 3.4) and two real world problems: concrete quality estimation (section 3.5) and forest scene
classification (section 3.6). We first briefly describe the models and algorithms used (sections 3.1, 3.2,
and 3.3).

3.1 MLP neural networks

We used an one hidden layer MLP with tanh hidden units, which in matrix format can be written as

f (x, θw) = b2 + w2 tanh (b1 + w1x) ,

where θw denotes all the parameters w1, b1, w2, b2, which are the hidden layer weights and biases, and
the output layer weights and biases, respectively. We used Gaussian priors on weights and the Automatic
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Relevance Determination (ARD) prior on input weights

w1,k j ∼ N (0, αw1,k),

αw1,k ∼ Inv-gamma(αw1,ave, νw1,α)

αw1,ave ∼ Inv-gamma(αw1,0, νw1,α,ave)

νw1,α = V [i]
i ∼ Ud(1, K )

V [1 : K ] = [0.4, 0.45, 0.5 : 0.1 : 1.0, 1.2 : 0.2 : 2, 2.3, 2.6, 3, 3.5, 4]
b1 ∼ N (0, αb1)

αb1 ∼ Inv-gamma(αb1,0, να,b1)

w2 ∼ N (0, αw2)

αw2 ∼ Inv-gamma(αw2,0, να,w2)

b2 ∼ N (0, αb2)

where the α’s are the variance hyperparameters (αw1,k’s are also called ARD parameters), ν’s are the
number of degrees of freedom in the inverse-Gamma distribution. To allow easier sampling with Gibbs
method, discretized values of ν were used so that [a : s : b] denotes the set of values from a to b with
step s, and Ud(a, b) is a uniform distribution of integer values between a and b.

Since the ARD prior allows less relevant inputs to have smaller effect in the model, it produces effect
similar to continuous input variable selection, and thus discrete input variable selection is not always
necessary. To be exact, the ARD prior controls the nonlinearity of the input, instead of the predictive
importance or causal importance (Lampinen & Vehtari, 2001), but since “no effect” is linear effect, it
will also allow irrelevant inputs to have smaller effect in the model. This is illustrated in section .

In MLP, the weights w1,k j are connected to input k. For a new input k, the w1,k j and αw1,k were gener-
ated from the proposal distribution (see Equation 8), which was the same as their respective conditional
prior distributions. As a hierarchical prior structure was used, the conditional priors were also adapting
to the data and so useful acceptance rates were obtained. We also tested the conditional maximization
and the auxiliary variable methods (Brooks, Giudici, & Roberts, 2003). Finding the conditional maxi-
mum was too slow and unstable while the auxiliary variable method easily got stuck in, despite of tuning
attempts.

3.2 Gaussian processes

The Gaussian process is a non-parametric regression method, with priors imposed directly on the co-
variance function of the resulting approximation. Given the training inputs x (1), . . . , x (n) and the new
input x (n+1), a covariance function can be used to compute the n + 1 by n + 1 covariance matrix of the
associated targets y(1), . . . , y(n), y(n+1). The predictive distribution for y(n+1) is obtained by conditioning
on the known targets, giving a Gaussian distribution with the mean and the variance given by

Ey[y|x (n+1), θ, D] = kTC−1 y(1,...,n)

Vary[y|x (n+1), θ, D] = V − kTC−1k,

where C is the n by n covariance matrix of the observed targets, y(1,...,n) is the vector of known values for
these targets, k is the vector of covariances between y(n+1) and the known n targets, and V is the prior
variance of y(n+1). For regression, we used a simple covariance function producing smooth functions

Ci j = η2 exp

(
−

p∑
u=1

ρ2
u(x (i)

u − x ( j)
u )2

)
+ δi j J 2 + δi jσ

2
e .



Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities 10

The first term of this covariance function expresses that the cases with nearby inputs should have highly
correlated outputs. The η parameter gives the overall scale of the local correlations. The ρu parameters
are multiplied by the coordinate-wise distances in input space and thus allow for different distance mea-
sures for each input dimension. The second term is the jitter term, where δi j = 1 when i = j . It is used
to improve matrix computations by adding constant term to residual model. The third term is the residual
model.

We used Inverse-Gamma prior on η2 and hierarchical Inverse-Gamma prior (producing ARD like
prior) on ρu .

η2 ∼ Inv-gamma(η2
0, νeta2)

ρu ∼ Inv-gamma(ρave, νρ)

ρave ∼ Inv-gamma(ρ0, ν0)

νρ ∼ Inv-gamma(νρ,0, ννρ,0)

Similar to MLP, in GP the “ARD” parameters ρu measure the nonlinearity of the inputs as ρu defines
the characteristic length of the function for given input direction. However, this prior produces effect
similar to continuous input variable selection, and thus discrete the input variable selection is not always
necessary.

For a new input, the corresponding ρu was generated from its conditional prior. As a hierarchical
prior structure was used, the conditional prior was also adapting and so useful acceptance rates were ob-
tained. The acceptance rates for the GP were naturally higher than for MLP as proposal distribution was
univariate compared to J + 1-dimensional proposal distribution for MLP (J is number of hidden units).
We also tested the auxiliary variable method (Brooks et al., 2003), but it did not improve acceptance
rates, despite of some tuning attempts.

3.3 Algorithms used

For integration over model parameters and hyperparameters the in-model sampling was made using
Metropolis-Hastings sampling, Gibbs sampling, and hybrid Monte Carlo (HMC) as described in Refer-
ences (Neal, 1996, 1997, 1999; Vehtari & Lampinen, 2001; Vehtari, 2001) and for estimation of posterior
probabilities of input combinations the between-model sampling was made using the RJMCMC as de-
scribed in References (Green, 1995; Vehtari, 2001). Between-model jump consisted of proposing adding
or removing single input or switching included input to not-included input, and the proposal distribution
for the new parameters was the conditional prior of the new parameters. As hierarchical priors for the
parameters specific to inputs were used, the conditional priors are adapting to the data and thus the con-
ditional prior is a natural proposal distribution with a reasonable acceptance rate and mixing behavior.
The MCMC sampling was done with the FBM1 software and Matlab-code partly derived from the FBM
and Netlab2 toolbox.

To make convergence diagnostics and estimation of credible intervals (CI) easier, ten independent
RJMCMC chains (with different starting points) were run for each case. For convergence diagnos-
tics, we used visual inspection of trends, the potential scale reduction method (Gelman, 1996) and the
Kolmogorov-Smirnov test (Robert & Casella, 1999). For between-model convergence diagnostics, we
used the chi-squared and Kolmogorov-Smirnov tests proposed by Brooks, Giudici, and Philippe (2002),
which also utilize several independent chains. As the number of visits to each model was typically very

1http://www.cs.toronto.edu/∼radford/fbm.software.html
2http://www.ncrg.aston.ac.uk/netlab/

http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.ncrg.aston.ac.uk/netlab/
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Figure 1: The target function is an additive function of four inputs. The predictive importance of every
input is equal, in RMSE terms, as the latent functions are scaled to equal variance over the uniform input
distribution U (−3, 3).

low, we mainly analysed the visits to each subpopulation having equal number of inputs. Other conver-
gence assessment methods for the RJMCMC are discussed, for example, by Brooks and Giudici (1999),
and Brooks and Giudici (2000). Sequential correlations of MCMC samples were estimated using au-
tocorrelations (Neal, 1993; Chen et al., 2000) and chains were thinned to get less dependent samples.
Depending on case every 400th–1600th meta-iteration sample was saved and total of 4000 samples were
saved from ten independent chains.

The distributions of the expected utilities of the models were estimated using the cross-validation
predictive densities obtained using k-fold-CV as described by Vehtari and Lampinen (2002).

3.4 Toy problem

With suitable priors it is possible to have a large number of input variables in Bayesian models, as less
relevant inputs can have a smaller effect in the model. For example, in MLP it is useful to use so called
“automatic relevance determination” prior (ARD; MacKay, 1994; Neal, 1996). In ARD each group of
weights connected to the same input has common variance hyperparameters, while the weight groups
can have different hyperparameters. In many experiments ARD has been shown to be useful to allow
many input variables in the MLP (Lampinen & Vehtari, 2001). Such models may have good predictive
performance, but it may be difficult to analyse them, or costly to make measurements or computations,
and thus input selection may be desirable.

In this toy problem we compare ARD, posterior probabilities of inputs and expected utility based
approach for input relevance determination. The target function is an additive function of four inputs
(Figure 1), with equal predictive importance for every input. We used 10-hidden-unit MLPs with sim-
ilar priors as described in (Lampinen & Vehtari, 2001; Vehtari, 2001) and uniform prior on all input
combinations

Figure 2 shows the predictive importance, posterior probability, the mean absolute values of the first
and second order derivatives of the output with respect to each input, and the relevance estimates from
the ARD. Note, that the ARD coefficients are closer to the second derivatives than to the first derivatives
(local causal importance) or to the error due to leaving input out (predictive importance).

Figure 3 shows the predictive importance, the relevance estimates from the ARD, and posterior prob-
abilities of inputs 1 (almost linear) and 4 (very nonlinear) when the weighting of the input 4 is varied
from 1 to 1/16. As the inputs are independent, the leave-input-out error measures well the predictive im-
portance. Based on the ARD values, it is not possible to know which one of the inputs is more important.
It is also hard to distinguish the irrelevant input from almost linear input. Marginal probability of the
input indicates well whether the input has any predictive importance.

Figure 4 shows the predictive importance, posterior probabilities, and the relevance estimates from
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Figure 2: Different measures of importance of inputs for the test function in Figure 1. The ARD coeffi-
cients are closer to the second derivatives than to the first derivatives (local causal importance) or to the
error due to leaving input out (predictive importance).
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Figure 3: Top plot shows the leave-input-out error. Middle plot shows that although weight of the input
4 is reduced, ARD value stays at constant level measuring the nonlinearity of the input, until the weight
is so small that the information from the input is swamped by the noise. Bottom plot plot shows that the
probability of the input indicates whether the input has any predictive importance.
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Figure 4: Input 5 is duplicate of input 4. Low leave-input-out error for inputs 4 and 5 does not mean that
both inputs could be left out. Posterior probabilities and ARD values for both inputs 4 and 5 are smaller
than in the model without the input 5 (see Figure 2), but the correlation between inputs can be diagnosed
(see text).

Input 4
0 1

In
pu

t5 0 0.0 0.3 0.3
1 0.3 0.4 0.7

0.3 0.7

(a) Estimated with RJMCMC

Input 4
0 1

In
pu

t5 0 0.1 0.2 0.3
1 0.2 0.5 0.7

0.3 0.7

(b) Assuming independence

Input 4
0 1

In
pu

t5 0 0.0 1.4
1 1.4 0.8

(c) Relative difference

Table 1: Joint and marginal posterior probabilities of inputs 4 and 5. 0 and 1 indicate whether the input is
in the model. Note that at least one of the inputs has to be in the model but preferably only one of them.

the ARD in case where the input 5 is duplicate of input 4. Leave-input-out error indicates that either of
the inputs 4 or 5 could be left out, but in order to know if both could be left out backward elimination
should be used. Marginal posterior probabilities and ARD values for single inputs are lower than in the
case without the 5th input, but now it is possible to examine joint probabilities of inputs and correlations
of ARD values. ARD values of input 4 and 5 have correlation coefficient of −0.68, which indicates
that maybe only one of the inputs is necessary. Tables 1a,b,c illustrate the effect of correlation to the
posterior probabilities and indicate well that it is necessary to have at least one the inputs in the model
and preferably only one of them.

When the inputs are independent, the leave-input-out error measures well the predictive importance.
The ARD does not measure the predictive importance and thus it does not distinguish an irrelevant in-
put from an almost linear input. Marginal probability of the input indicates well whether the input has
any predictive importance. When the inputs are dependent, the leave-input-out does not measure the
dependence between inputs. To handle dependencies it could be replaced with computationally heavy
backward elimination. Although the ARD does not measure the predictive importance, the correlations
between inputs can be discovered by examining the correlations between the ARD values. Joint predic-
tive importances and dependencies of inputs can be easily diagnosed by examining the joint probabilities
of inputs.
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3.5 Real world problem I: Concrete quality estimation

In this section, we present results from the real world problem of predicting the quality properties of con-
crete. The goal of the project was to develop a model for predicting the quality properties of concrete,
as a part of a large quality control program of the industrial partner of the project. The quality variables
included for example compressive strengths and densities for 1, 28 and 91 days after casting, and bleed-
ing (water extraction), flow value, slump and air-%, that measure the properties of fresh concrete. These
quality measurements depend on the properties of the stone material (natural or crushed, size and shape
distributions of the grains, mineralogical composition), additives, and the amount of cement and water.
In the study, we had 27 explanatory variables selected by the concrete expert, (listed, e.g., in Figure 7)
and 215 samples designed to cover the practical range of the variables, collected by the concrete man-
ufacturing company. In the following, we report results for the air-%.Similar results were achieved for
other target variables (Vehtari, 2001). See the details of the problem, the descriptions of the variables
and the conclusions made by the concrete expert in Reference (Järvenpää, 2001).

The aim of the study was to identify which properties of the stone material are important, and ad-
ditionally, examine the effects that properties of the stone material have on concrete. It was desirable
to get both the estimate of relevance of all available input variables and select a minimal set required
to get a model with statistically the same predictive capability as with the full model. A smaller model
is easier to analyze and there is no need to make possibly costly or toxic measurements in the future
for properties having negligible effect. Note that as the cost of the toxic measurements was difficult to
estimate, we did not include the cost directly to the utility function. Instead we just tested which toxic
measurements could be left out without statistically significant drop in prediction accuracy. The problem
is complicated because there are strong cross-effects, and the inputs measuring similar properties have
strong dependencies.

For models used in (Järvenpää, 2001), we had made the input selection using the deviance infor-
mation criterion (DIC) (Spiegelhalter, Best, Carlin, & van der Linde, 2002) and heuristic backward
selection. DIC estimates the expected utility using plug-in predictive distribution and asymptotic ap-
proximation (Vehtari, 2002; Vehtari & Lampinen, 2003). Although this approach produced reasonable
results, it required a full model fitting for each model investigated, contained some ad hoc choices to
speed up the heuristic backward selection, and lacked estimate of the associated uncertainty and clear
results for the relevance of the different inputs.

Below we present results using the RJMCMC and the expected utilities computed by using the cross-
validation predictive densities. With this approach, we were able to get more insight about the problem,
smaller models, and improved reliability of the results. We used Gaussian process models with quadratic
covariance function and ARD type hierarchical prior for input specific parameters. The residual model
used was input dependent Student’s tν with unknown degrees of freedom ν. As the size of the residual
variance varied depending on three inputs, which were zero/one variables indicating the use of additives,
the parameters of the Student’s tν were made dependent on these three inputs with a common hyperprior.

From about 108 possible input combinations, the 4000 saved states included about 3500 and 2500
different input combinations with uniform and Beta priors, respectively. Few most probable models were
visited by all ten independent chains and for example, ten most probable models were visited by at least
eight chains. Thus, useful credible intervals could be computed for the model probabilities.

Figures 5 and 6 show the posterior probabilities of the number of inputs with an equal prior proba-
bility for all the models and with Beta-bin(27, 5, 10) prior on the number of inputs, respectively. With
equal prior probability for all models, the prior probability for the number of inputs being less than eight
is so low that it is unlikely that the RJMCMC will visit such models. Parameters for the Beta-binomial
prior were selected to better reflect our prior information, that is, we thought it might be possible to have
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Figure 5: Concrete quality estimation example, predicting the air-% with GP: The posterior probabilities of the
number of inputs with “uninformative” prior, i.e., equal prior probability for all models.
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Figure 6: Concrete quality estimation example, predicting the air-% with GP: The posterior probabilities of the
number of inputs with Beta-bin(27, 5, 10) prior on the number of inputs.

a low number of inputs, most probably about 6-12 inputs and not excluding the possibility for a larger
number of inputs. Note that the Beta-binomial prior used is in fact more vague about the number of inputs
than the “uninformative” prior. The posterior distribution of the number of inputs is quite widespread,
which is natural as the inputs are dependent and the ARD type prior allows use of many inputs.

Figure 7 shows the marginal posterior probabilities of the inputs with a Beta-bin(27,5,10) prior on
the number of inputs. The nine most probable inputs are clearly more probable than the others and the
other inputs have posterior probability approximately equal to or less than the mean prior probability of
an input (1/3).

Figure 8 shows the ARD values of the inputs for the full model. Eight of the nine most probable
inputs have also a larger ARD value than the other inputs, but they cannot be clearly distinguished from
the other inputs. Moreover, input “BET” (measuring the specific surface area of the fines) is ranked
much lower by the ARD than by the probability (compare to Figure 7). Further investigation revealed
that “BET” was relevant, but had near linear effect. Figure 9 shows the posterior probabilities of the ten
most probable input combinations with a Beta-bin(27,5,10) prior on the number of inputs. All the ten
models are very similar, only minor changes are present in few inputs, and, the changed inputs are known
to correlate strongly. In this case, two models are significantly more probable than others, but between
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Figure 7: Concrete quality estimation example, predicting the air-% with GP: The marginal posterior probabilities
of the inputs with a Beta-bin(27,5,10) prior on the number of inputs. The inputs in the most probable model are in
boldface (see Figure 9).
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Figure 8: Concrete quality estimation example, predicting the air-% with GP: The ARD values of the inputs of
the full model. The nine most probable inputs are in boldface. Compare to Figure 7.
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Figure 9: Concrete quality estimation example, predicting the air-% with GP: The probabilities of the ten most
probable models with a Beta-bin(27,5,10) prior on the number of inputs. The top part shows the probabilities of
the models, the middle part shows which inputs are in the model, and the bottom part shows the number of inputs
in the model.

them, there is no clear difference. As the other probable models are similar to the two most probable
models, it is likely that the probability mass has been spread to many equally good models.

For the final model choice, we computed the distributions of the expected utilities for the most prob-
able models. Differences between the most probable models and the full model were small, and so there
was no big danger of choosing a bad model. To verify that by conditioning on single model we do not un-
derestimate the uncertainty about the structure of model (see, e.g., Draper, 1995; Kass & Raftery, 1995),
we also computed the expected utility for the model, in which we integrated over all the possible input
combinations. Such integration can readily be approximated using the previously obtained RJMCMC
samples. There was no significant difference in the expected predictive likelihoods.

To illustrate the differences between the posterior probabilities and the expected predictive likeli-
hoods, Figure 10 shows the expected utilities computed using the cross-validation predictive densities
for the full model and the models having the k (k = 5, . . . , 15) most probable inputs. Note that the
expected predictive likelihoods are similar for models having at least about eight most probable inputs,
while posterior probabilities are very different for models with different number of inputs. For example,
the posterior probability of the full model is vanishingly small compared to the most probable models,
but the expected predictive likelihood is similar to the most probable models. The performance of the full
model is similar to smaller models, as the ARD type prior allows many inputs without reduced predictive
performance. Note that if the point estimate (e.g., mean) of the expected utility would be used for model
selection, larger models would be selected than when selecting the smallest model with statistically the
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Figure 10: Concrete quality estimation example, predicting the air-% with GP: The expected utilities (mean
predictive likelihoods) of the models having the k most probable inputs (see Figure 7). After about nine inputs,
adding more inputs does not improve the model performance significantly. To give an impression of the differences
in pairwise comparison, there is for example about 90% probability that the nine input model has a higher predictive
likelihood than the eight input model.
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Figure 11: Concrete quality estimation example, predicting the air-% with MLP: The posterior probabilities of
the number of inputs with a Beta-bin(27,5,10) prior on the number of inputs. Compare to the results for the GP
in Figure 6.

same utility as the best model.
To illustrate the effect of the prior on approximating functions, we also report results for input se-

lection with MLP. The results for the MLP were not sensitive to changes in the hyperparameter values,
so the difference in the results is probably caused mainly by the difference in the form of the covariance
function realized by the GP and MLP models.

Figure 11 shows the posterior probabilities of the number of the inputs with a Beta-bin(27,5,10) prior
on the number of inputs. In the case of MLP, larger number of inputs is more probable than in the case
of GP (compare to Figure 6). Figure 12 shows the marginal posterior probabilities of the inputs with a
Beta-bin(27,5,10) prior on the number of inputs. Most of the inputs have higher posterior probabilities
than the mean prior probability (1/3). There is no clear division between more probable inputs and less
probable inputs. The nine most probable inputs are same as in the GP case (compare to Figure 7), except
that “SC - pore area >300Å” has replaced very similar input “SC - pore area >300-900Å”. Figure 13
shows the ARD values of the inputs for the full model. The order of the inputs based on the ARD



Bayesian Input Variable Selection Using Posterior Probabilities and Expected Utilities 19

0 0.25 0.5 0.75 1

SEM
AE
WR
F − Cu
SC − pore area 60−300Å
SC − Angularity
SC − Qnty 0.8/1.0
BET
SC − pore area >300Å
SC − Elng 1.6/2.0
SC − tot. pore size
F − Mica
SC − Qnty 3.15/4.0
SC − pore area 300−900Å
SC − Elng 3.15/4.0
SC − Flkn 1.6/2.0
SC − Surface texture
SC − pore area >900Å
SC − Flkn 0.8/1.0
SC − Flkn 3.15/4.0
SC − Qnty 1.6/2.0
F − Zeta pot.
SC − Elng 0.8/1.0
SC − avg. pore size
F − Hf
SC − density
F − density

Probability of input (90% CI)

Figure 12: Concrete quality estimation example, predicting the air-% with MLP: The marginal posterior proba-
bilities of inputs with a Beta-bin(27,5,10) prior on the number of inputs. The nine most probable inputs in the GP
case are in boldface (see Figure 7).
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Figure 13: Concrete quality estimation example, predicting the air-% with MLP: The ARD values of the inputs
of the full model. Compare to Figure 12.
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Figure 14: Concrete quality estimation example, predicting the air-% with MLP: The probabilities of the ten most
probable models with a Beta-bin(27,5,10) prior on the number of inputs. The top part shows the probabilities of
the models, the middle part shows which inputs are in the model, and the bottom part shows the number of inputs
in the model. Compare to the results for the GP in Figure 9.

values is clearly different from the order of the inputs based on marginal posterior probabilities (compare
to Figure 12). fig:bet_mlp_b_air_pm shows the posterior probabilities of the ten most probable input
combinations with a Beta-bin(27,5,10) prior on the number of inputs. There is more variation in the
input combinations than in the case of GP and no model is significantly more probable than the others
(compare to Figure 9).

Although different inputs would be selected in the case of MLP from the case of GP, the predic-
tive performance (measured with the expected predictive likelihood) was similar for both model types.
Figure 15 shows the expected utilities for the full model and the models having the k (k = 5, . . . , 15)
most probable inputs. The expected predictive likelihoods are similar for the models having at least
about eight most probable inputs and similar to the expected predictive likelihoods of the GP models
(Figure 10).

For the bleeding, Figure 16 shows the marginal posterior probabilities of the number of inputs and
Figure 17 shows the posterior probabilities of the ten most probable models. About half of the inputs
have higher posterior probability than the mean prior probability (1/3). The probability mass has been
spread to many inputs and many similar models, due to many correlating inputs. It is less clear than
in the case of air-%, which are the most probable inputs and input combinations. However, the most
probable models had indistinguishable expected utilities, and thus there were no danger of selecting a
bad model. Note how the input “SC-Qnty 0.8/1.0” which is included in the most probable model, has
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Figure 15: Concrete quality estimation example, predicting the air-% with MLP: The expected utilities of the
models having the k most probable inputs (see Figure 12). Compare to results for the GP in Figure 10.
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Figure 16: Concrete quality estimation example, predicting bleeding with GP: The marginal posterior probabili-
ties of inputs with Beta-Bin(27, 5, 10) prior on the number of inputs. The inputs in the most probable model are in
boldface (see Figure 17).

lower marginal probability than the five other inputs not in that model. This is not peculiar as the five
particular inputs correlate strongly with the inputs in the most probable model.

In addition to using the expected predictive likelihoods for model selection, we also computed the
expected 90%-quantiles of absolute errors. These were used to confirm that there was no practical differ-
ence in prediction accuracy between the few most probable models. Naturally, it was also very important
to report to the concrete expert the goodness of the models using easily understandable terms.
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Figure 17: Concrete quality estimation example, predicting bleeding with GP: Probabilities of the ten most prob-
able models with Beta-Bin(27, 5, 10) prior on the number of inputs.

3.6 Real world problem II: Forest scene classification

In this section, we illustrate that in more complex problems it may be necessary to aid input selection by
using the marginal probabilities of the inputs.

The case problem is the classification of forest scenes with MLP (Vehtari, Heikkonen, Lampinen, &
Juujärvi, 1998). The final objective of the project was to assess the accuracy of estimating the volumes
of growing trees from digital images. To locate the tree trunks and to initialize the fitting of the trunk
contour model, a classification of the image pixels to tree and non-tree classes was necessary.

The appearance of the tree trunks varies in color and texture due to varying lighting conditions,
epiphytes (such as gray or black lichen on white birch), and species dependent variations (such as the
Scotch pine, with bark color ranging from dark brown to orange). In the non-tree class the diversity is
much larger, containing for example terrain, tree branches and sky. This diversity makes it difficult to
choose the optimal features for the classification. We extracted a total of 84 potentially useful features:
48 Gabor filters (with different orientations and frequencies) that are generic features related to shape and
texture, and 36 common statistical features (mean, variance and skewness with different window sizes).
Fortyeight images were collected by using an ordinary digital camera in varying weather conditions.
The labeling of the image data was done by hand via identifying many types of tree and background
image blocks with different textures and lighting conditions. In this study, only pines were considered.
The primary goal was to check if these features contained enough information to produce reasonable
classification results (Vehtari et al., 1998). The secondary goal was to reduce the computational burden
by reducing the number of features used for the classification.
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Figure 18: Forest scene classification example: The posterior probabilities of the number of inputs with a uniform
prior on the models. The posterior probabilities are similar to prior probabilities and the probability mass is
concentrated between 30 and 54 inputs.
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Figure 19: Forest scene classification example: The posterior probabilities of the number of inputs with a Beta-
Bin(84,5,15) prior on the number of inputs. The poor between-model convergence can also be noticed from the
large uncertainties in the probability estimates seen in this figure (compare to Figure 18).

We used a 20-hidden-unit MLP with the logistic likelihood model. From about 2 ·1025 possible input
combinations, the 4000 saved states included about 3700 and 2500 different input combinations with
uniform and Beta priors, respectively. None of the ten independent chains visited any input combination
visited by the other chains. Consequently, it was impossible to make good estimates of the probabilities
of the input combinations. Instead of trying to obtain an enormous amount of samples, it was possible to
choose potentially useful input combinations by using the marginal posterior probabilities of inputs.

Figure 18 shows the posterior probabilities of the number of inputs with equal prior probability for all
models. Due to the implicit Binomial prior on the number of inputs (see section 2.3), the probability mass
is concentrated between 30 to 54 inputs. Figure 19 shows the posterior probabilities of the number of
inputs with a Beta-bin(84,5,15) prior on the number of inputs favoring smaller models. The RJMCMC
did not generate samples from models having fewer than 24 inputs (compare to the expected utility
results in Figure 21), but this may have been caused by poor between-model convergence when the
number of inputs was less than 30. The poor between-model convergence was identified by convergence
diagnostics, and it seemed very unlikely that better results could have been obtained in reasonable time.
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Figure 20: Forest scene classification example: The marginal posterior probabilities of the inputs with a uniform
prior on models. These probabilities can be used to estimate the relevance of the inputs.

As the results with a uniform prior on the models had reasonable convergence, it was possible to
estimate the relative importance of the inputs using the marginal posterior probabilities of the inputs
from that run (Figure 20). Figure 21 shows the comparison of the expected utilities of the models having
the k most probable inputs (k between 10 and 40). Reasonable results were achieved also with models
having fewer inputs than the smallest model in the RJMCMC. Based on classification accuracy results,
just 12 inputs would be sufficient in the planned application. Note that the difference in the performance
between the 12 input model and full model is statistically but not practically significant.
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Figure 21: Forest scene classification example: The expected utilities of the models having the k most probable
inputs (see Figure 20). The top plot shows the mean predictive likelihood and the bottom plot shows the classi-
fication accuracy. The performance starts decreasing when there are fewer than about 20 inputs (compare to the
RJMCMC results in Figure 19).

4 Discussion and Conclusion

We have discussed the problem of input variable selection of a complex hierarchical Bayesian model.
Our goal was to select a smaller set of input variables in order to make the model more explainable and
to reduce the cost of making measurements and the cost of computation. Reducing the number of inputs
in the model clearly reduces the cost of making measurements and the cost of computation. If different
measurements have different costs we could additionally add these costs to utility function and prefer
inputs with low cost of measurement. It is harder to check whether fewer input variables provides model
which is easier to analyse.

We motivated our approach using simplicity postulate, which has been criticized because it is not
always clear what is simple. For example, using coordinate transforms it may be possible to change
non-linear problem to linear problem which may be considered simpler. Also it is not easy to compare
how simple different hierarchical Bayesian models are. For example, many random effect models are
easy to describe although they contain many parameters and also the effective number of parameters
may be very different from the available number of parameters. If the primary goal is to get good
predictions and the selection is based on expected utilities, we may get collection of models which have
statistically equal predictive power. Then we may choose any one of these without fear of getting poor
predictions, and thus we can select the model which we or the application expert feel is simple. In this
paper we have considered that models with less input variables are simpler, although the models can still
be quite complex as we are using MLP and GP models which are non-linear models capable of handling
interactions between inputs. In the concrete problem the application expert successfully used graphical
tools to visualize the effects and interactions of the inputs (Järvenpää, 2001).

When considering explainability of the model it is important to remember that we are measuring
a probabilistic relationship between inputs and outputs and not a causal one related to the causality
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relations in the actual system to be modeled. Thus we can’t be sure that all selected variables are causal
reason for output. Determination of causal relations is a harder problem (Pearl, 2000). Although causal
relation usually implies probabilistic relation, the approach may also exclude input variables which in
fact have causal relation to output if data has not enough information about that relation or if our model
assumptions are poor.

We proposed to use posterior probabilities obtained via variable dimension MCMC methods to find
out potentially useful input combinations and to do the final model choice and assessment using the
expected utilities (with any desired utility) computed by using the cross-validation predictive densities.
As illustrative examples we used MLP and GP models in one toy problem and in two challenging real
world problems. Results show that using posterior probability estimates computed with variable dimen-
sion MCMC helps finding useful models in reasonable time and provides insight to models by providing
input relevance estimates. Using expected utilities for final input selection reduces the prior sensitivity
of the posterior probabilities. By comparing expected utilities of different input combinations we can
also make sensitivity checks. Furthermore, expected utility approach provides useful model assessment
for the final selected model.
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