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Abstract

In this paper we propose a method on how to incorporate the effect of non-
spatial covariates into the spatial second-order analysis of replicated point
patterns. The variance stabilizing transformation of Ripley’s K function is
used to summarize the spatial arrangement of points, and the relationship
between this summary function and covariates is modelled by hierarchical
Gaussian process regression. In particular, we investigate how disease status
and some other covariates affect the level and scale of clustering of epidermal
nerve fibers. The data are point patterns with replicates extracted from skin
blister samples taken from 47 subjects.

Keywords: Epidermal nerve fiber, functional data analysis, Gaussian
process, K function, replicated point pattern, spatial point process

1. Introduction

There is a wide range of methods for analysing and modelling spatial
point patterns (see e.g. Cressie [1, Chapter 8], Diggle [2] and Illian et al. [3]).
However, the majority of the methods are designed to analyze a single point
pattern, while more and more replicated point pattern data are collected
and need to be analyzed. In this paper, we suggest a flexible non-parametric
approach to study the relationship between non-spatial covariates and spatial
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second-order structure based on replicated data. The motivation comes from
neurological studies, where samples are taken from subjects for whom some
covariate information is available.

Some tools for analyzing replicated point patterns are already available.
Diggle et al. [4] and Baddeley et al. [5] introduced how some summary statis-
tics can be estimated from replicated point patterns, and further applied
these pooled summary statistics to test whether spatial patterns are differ-
ent in different groups. Such methods were further used e.g. in Schladitz
et al. [6] and Redenbach et al. [7]. Hahn [8], moreover, proposed a non-
parametric test for direct comparison of two or more point patterns. Some
model-based inference for replicated point patterns can be found in Diggle
et al. [9], Eckel et al. [10], Bell and Grunwald [11], Illian and Hendrichsen
[12], and Illian et al. [13]. In the first four papers Gibbs point process models
were fitted to replicated data using the pseudo-likelihood method, whereas
Illian et al. [13] used log Gaussian Cox process models in a Bayesian setting.
In the three latter papers some spatial covariates were added in the model
for the first-order intensity.

In this paper, we suggest an approach to model the dependence of the
second-order structure of a point pattern on some non-spatial covariates,
when the data are replicated point patterns. The spatial arrangement of
points is summarized using the variance stabilizing transformation of Ripley’s
K function [14]. Then, hierarchical Gaussian process regression is used to
study the relationship between the covariates and the summary function.
This model is a flexible non-parametric model, where we do not need to
assume a priori linear or any other particular form of dependence between
the summary function and the covariates. Myllymäki et al. [15] studied the
effect of non-spatial covariates on the same summary function. However, the
mixed model approach they proposed allows only limited flexibility.

Gaussian processes have been widely used in spatial statistics, especially
in geostatistics, where they are often called Gaussian random fields or Gaus-
sian functions, see e.g. Matheron [16], Cressie [1], Chilés and Delfiner [17],
Diggle and Ribeiro [18] and Gelfand et al. [19], and in spatial epidemiology,
see e.g. Banerjee et al. [20]. For point processes, log Gaussian Cox processes
have been considered, see e.g. Møller et al. [21] and Rue et al. [22]. The
term “Gaussian process model” is used in the machine learning literature,
see Rasmussen and Williams [23] where the machine learning perspective is
comprehensively summarized. O’Hagan [24] was one of the first ones to con-
sider Gaussian processes in a general probabilistic modelling context similar
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to the one we use in the current paper. Following the guidelines in Rasmussen
and Williams [23] and Neal [25], we employ hierarchical Gaussian models in
a Bayesian framework, where a Gaussian process serves as a prior for a latent
function.

Our particular aim is to study the spatial structure of epidermal nerve
fibers (ENFs), which are thin nerve fibers in the epidermis, the outmost liv-
ing layer of the skin. We will use the hierarchical Gaussian regression model
to study covariate effects on the spatial pattern of locations of ENF entry
and end points. The entry points are the locations where the trunks of the
nerves enter the epidermis, and the end points are the terminal nodes of
the nerve fibers in the epidermis. The data are samples from both healthy
and diseased subjects, where the latter suffer from mild or moderate diabetic
neuropathy. The interest in the second-order property of the patterns stems
from neurological studies [26, 27]. While Kennedy et al. [26] reported dimin-
ished numbers of ENFs per surface area as well as reduced summed length of
all ENFs per volume (or area) in subjects suffering from diabetic neuropathy,
Kennedy et al. [27] observed that nerve fiber loss due to diabetic neuropa-
thy seems to result in more clustered pattern of ENFs. This observation of
clustering was quantified by Waller et al. [28] based on second-order analysis
of ENF entry points extracted from suction-induced skin blister images [27]
from the thighs of four subjects. They analyzed one sample from a healthy
subject, and two samples from each of the three diseased subjects, one of
which suffered from mild, one from moderate and one from severe diabetic
neuropathy. Our aim is to quantify the observation of increased clustering
due to diabetic neuropathy based on much larger data, accounting for effects
of other covariates and intra-subject and inter-subject variation.

The rest of the paper is organized as follows. The data are described in
Section 2. Section 3 introduces the statistical methods, which are specified
for the ENF data in Section 4. The results for the ENF data are presented
in 5 and Section 6 is for further discussion.

2. Data

Two skin blister specimens were obtained from the right calf of 47 subjects
using the suction skin blister method, see Wendelschafer-Crabb et al. [29] and
Panoutsopoulou et al. [30]. Among these subjects 32 were healthy and had
no symptoms or history of peripheral neuropathy, and 15 suffered from mild
or moderate diabethic neuropathy. Age, gender and body mass index (BMI)
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of each subject were also recorded. (Body mass index is defined as the weight
(kg) divided by the squared height (m).)

From three to six images (usually four) with a surface area of approx-
imately 432 × 330 microns were taken from the two blisters, typically two
images from each blister. For each image, ENFs were immunostained, im-
aged confocally, and traced to determine ENFs in the epidermis, see more
details of the technique in Panoutsopoulou et al. [30] and also in Waller et al.
[28]. In our analysis, we combine all the images from one subject ignoring
the fact that they originate from two blisters since there should be no blister
effect present (personal communication with William R. Kennedy; Panout-
sopoulou et al. [30]). Moreover, our own inspection of the data confirmed
that samples taken from the same blister did not appear to be more similar
to each other than samples taken from two different blisters from the same
subject.

We study the locations of ENF entry and end points traced from the
images. The original data are three dimensional with small variation in
the z-direction, but we focus on the spatial pattern of the ENF coverage
across the skin and analyze the two dimensional projection of the patterns
as Waller et al. [28], Myllymäki et al. [15] and Olsbo et al. [31]. Figure 1
shows examples (two healthy and two diseased) of the ENF entry and end
point patterns. Samples having less than ten entry points were excluded from
the spatial analysis of entry points. In the remaining patterns the number of
entry points varied between 10 and 53 (mean 22.6), and the number of end
points between 16 and 160 (mean 63.3).

Subject 171 Subject 172 Subject 259 Subject 276

Figure 1: Four point patterns of ENF entry (circles) and end (small black dots) points
taken from the right calf of Subjects 171, 172 (healthy), 259 and 276 (diseased). The
window size is 432× 330 microns.
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3. Methods

This section introduces the methods for the second-order analysis of repli-
cated point patterns, first the summary function and then the hierarchical
Gaussian process model. We further present the covariance functions em-
ployed in the ENF application in Section 4. We assume throughout the
paper that we have N subjects (s = 1, . . . , N) for which Js point pattern
samples (j = 1, . . . , Js) and covariate information are available.

3.1. Summary statistic

We regard ENF entry and end point patterns (see Figure 1) as realizations
of stationary and isotropic spatial point processes Φ = {zi}, where zi ∈
R2, and use Ripley’s K function [32] to summarize the spatial second-order
structure. Let λ denote the intensity (mean number of points per unit area)
of the stationary point process. Then λK(r) gives the mean number of
additional points of the process within distance r > 0 from a typical process
point. As an estimator for the K function, we use

K̂(r) =
|W |2

N2
Φ

NΦ∑
k=1

NΦ∑
l=1,l 6=k

1(‖zk − zl‖ ≤ r)

|Wzk ∩Wzl |
, (1)

where NΦ is the number of observed points of the process Φ in the window
W ⊆ R2, and ‖zk−zl‖ denotes the distance between zk and zl. Furthermore,
|Wzk ∩Wzl | is the translational edge correction term, the area of the intersec-
tion of Wzk and Wzl , where Wz is the translated window Wz = {s+z : s ∈ W}
(see e.g. Illian et al. [3]).

When we have replicates, we may want to estimate the overall average
of the K functions of all samples of all subjects. The estimator (1) can be
used to obtain the K function for each sample resulting in K̂sj(r). Then, the

sample specific functions K̂sj(r) can be pooled together to construct subject
specific K functions, and these can further be combined to the overall pooled
K function for the data, namely

K̂pooled(r) =
1

N∑
s=1

n2
s

N∑
s=1

n2
s


Js∑
j=1

n2
sj

Js∑
l=1

n2
sl

K̂sj(r)

 , (2)
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where the number of points in the sample j of subject s, nsj, and ns =∑Js
j=1 nsj define weights for K̂sj(r) [9, 6].
Besag [33] suggests the following variance stabilizing transformation of

the K function,
L(r) =

√
K(r)/π. (3)

The L function allows a more readily interpretable diagnostic tool than the
K function, since the centred L function, L(r) − r, can be plotted against
r, and the resulting curve can be compared to zero (expected value under
complete spatial randomness). That is, under clustering, L(r) − r tends to
be larger than zero, whereas under regularity, typically L(r)− r is less than
zero. An estimator for the L function is obtained by applying the square root
transformation (3) to the empirical K function (1). Similarly, the estimated
pooled centred L function is obtained as

L̂pooled(r)− r =

√
K̂pooled(r)/π − r, (4)

where K̂pooled(r) is given in (2).

3.2. Hierarchical Gaussian process regression

In the following, using the terminology in Rasmussen and Williams [23],
we propose a hierarchical Gaussian process model for the L functions and
describe the inference in the general case, where we have data from several
subjects, replicates from each subject and covariate information. We also
introduce methods for investigation of the covariate effects: the posterior
predictive L functions indicate how the L function is affected by the co-
variates, and the average predictive comparison, which we specify for the L
functions, serves as a formal investigation of the significance of the covariate
effects.

3.2.1. Model

Assume that the centred L function has been estimated through (1) for
each sample. Let y = (y1, . . . , yn)T be the vector of observations (target
values) containing the estimated centred L function values for the chosen
distances r1, . . . , rR for all samples of all subjects. Denote the corresponding
inputs by X = {xi = (xi,1, . . . , xi,D)T}ni=1, where xi ∈ RD. The input xi
contains the information on the covariates and specifies also the distance r,
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the subject and the sample for the observation yi. We use the shorthand
notation

x = (x1, . . . ,xD)T = (r, covariate1, . . . , covariateC , s, j)
T

(similarly for x′), where C is the number of covariates, D = C+3, and s and
j are the identity codes for the subject and the sample, respectively. The
covariate values and s are of course the same for all yi from the same subject.

Dependence between the observations and inputs is modeled by a (non-
parametric) latent function f(x) which has the value fi = f(xi) at xi. A
set of latent variables at x1, . . . ,xn is denoted by f = (f1, . . . , fn)T . The
latent function f(x) represents an unknown functional description of the
dependence between the observations and inputs, where the observations
are noisy realizations of this underlying function. Due to the hierarchical
structure in the data (several subjects and replicates from each subject), it is
natural to assume that the centred L function consists of four components:
a general level f (1) for a subject with specific covariates, a subject specific
effect f (2) modelling the subject’s individual contribution (due to other effects
than the observed covariates), a correlated noise component f (3) modelling
the variation due to the sample within the subject, and an uncorrelated noise
component. The first three components form a hierarchical latent Gaussian
process

f(x) = f (1)(x) + f (2)(x) + f (3)(x)

= f (1)(r, covariates) + f (2)(r, s) + f (3)(r, s, j), (5)

where the second row describes inputs on which the components depend.
Each function f (t), t = 1, 2, 3, is a priori assumed to be a real-valued Gaus-
sian process (GP), which is characterized by its mean mt(x) and covariance
function kt(x,x

′|θt) with parameter vector θt. Consequently, the sum (5) is
also a Gaussian process, namely

f(x)|θ ∼ GP (m1(x) +m2(x) +m3(x),

k1(x,x′|θ1) + k2(x,x′|θ2) + k3(x,x′|θ3)), (6)

where θ = (θ1, θ2, θ3).
The finite-dimensional distributions of a Gaussian process are all Gaus-

sian and, thus,
f |θ ∼ N(m(X),Σθ), (7)
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where m(X) = (m(x1), . . . ,m(xn))T is the known mean vector (obtained as
the sum of the three mean vectors) and Σθ is the covariance matrix whose
entries are determined by the corresponding covariance functions.

The fourth model component, the uncorrelated noise, corresponds to the
observation model

p(y|f, σ2) =
n∏
i=1

N(yi|fi, σ2). (8)

That is, given the latent function f in (6), the yi’s are assumed to be con-
ditionally independent and normally distributed with mean fi and variance
σ2.

Gaussian process regression aims at reconstructing the latent function
f . That is, the interest is in the posterior predictive distribution of f , after
observing the data. For Bayesian inference, we need to specify priors for
the means and the covariance functions of f (t), t = 1, 2, 3, and for the error
variance σ2 in (8).

We assume known prior means. For the components f (2) and f (3) zero-
mean is a reasonable assumption, whereas the prior mean of f (1) should
be chosen depending on the application: the covariate effects are inspected
as deviations from this mean level. Note that having a known prior mean
corresponds to modelling normalized data (data minus the mean) by a zero-
mean Gaussian process.

For the covariance functions, we use parametrized models kt(x,x
′|θt),

since they are parsimonious and our data are not likely to provide enough in-
formation to estimate covariance functions non-parametrically from the data.
The choice of the parametric forms for the covariance functions kt, t = 1, 2, 3,
in (6) depends on the application, but some general rules can be given for
them: Since the first component f (1) represents the highest level of hierar-
chy giving the mean L function for subjects with specific covariates, it can
be assumed to be quite smooth. The Gaussian (or squared exponential) co-
variance function, which belongs to the Matérn family and is infinitely many
times differentiable [20, 1, 23], is often a reasonable choice. The second model
component f (2) may also be assumed to be quite smooth, since it represents
the mean L function of a subject. However, since empirical L functions are
never really smooth, it is reasonable to assume that the third component
f (3), being at the lowest level of the hierarchy, is less smooth. Each of these
components are considered below in detail for the ENF application.

Note that in our application, we allow dependencies between all covariates
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and r. Thus, all covariates appear in the same model component f (1) and
their effects are incorporated into the covariance function k1(x,x′|θ1). The
correlation is then allowed to decrease in a different way for distance r and
for each of the covariates by letting each of them have its own (length-scale)
parameter controlling the range of correlation. If joint effects of covariates
were excluded from the model, the first component would reduce to the sum

f (1)(r, covariates) = f (1,1)(r, covariate1) + · · ·+ f (1,C)(r, covariateC),

where f (i,c), c = 1, . . . , C, are Gaussian processes.
Once the covariance functions have been chosen, hyperpriors are to be

specified for their parameters. The parametric model (typically) determines
the smoothness of the Gaussian process, whereas its parameters control the
range of correlation and variance.

3.2.2. Inference and posterior predictive L functions

Because both the prior (7) and the likelihood (8) are Gaussian, we can
integrate out the latent function analytically and perform numerical integra-
tion for the hyperparameters only. The log marginal likelihood given the
hyperparameters equals

log p(y|X, θ, σ2) = −n
2

log(2π)− 1

2
log |Σθ + σ2I| −

1

2
(yT −m(X))(Σθ + σ2I)−1(y −m(X)), (9)

where θ collects all the parameters of f , and Σθ is the covariance matrix
in (7). Combining the prior distributions with (9) we can then obtain the
marginal posterior distribution p(θ, σ2|y,X) for the hyperparameters.

The main interest is in the posterior distribution of the latent function f
(and of f (t), t = 1, 2, 3), namely

p(f |y,X) =

∫
p(f |y,X, θ, σ2)p(θ, σ2|y,X) dθ dσ2, (10)

with any input values (not necessarily the observed ones) X. The mean of
the posterior distribution of f (1) for a virtual subject with specific covariate
values gives the mean behavior of the centred L function and, for example,
the 5% and 95% r-wise quantiles of the posterior distribution can be used
to characterize the uncertainty. Effects of the covariates on the L function

9



can then be inspected by varying the values of the covariates. By calculating
(10) for f (1), f (1) + f (2) and f (1) + f (2) + f (3) for the subjects in our data,
we can inspect different components of the model and compare them to the
curves estimated from the data.

The posterior distribution (10) can be calculated by Monte Carlo integra-
tion over the hyperparameters. One possibility would be to find a maximum
a posteriori estimate of the hyperparameters [23], but this optimization does
not account for the uncertainty in the hyperparameters. Rue et al. [22] used
the grid and central composite design sampling methods, but these work
well only for a low number of hyperparameters. Since in our application we
have many hyperparameters and also subject-specific parameters, we use a
Markov Chain Monte Carlo (MCMC) method to sample from p(θ, σ2|y,X)
and to obtain the posterior distribution (10).

3.2.3. Average predictive comparisons

In order to investigate the significance of the covariate effects on the
L function, we propose to use average predictive comparisons introduced by
Gelman and Pardoe [34]. This approach works only for a single outcome, and
we need to choose a summary statistic that reduces the information contained
in the L function (on a given interval) to a single number. Examples of such
summary statistics are the maximum summary statistic

dmax = max
r∈[rmin,rmax]

(L(r)− r) (11)

and the integral summary statistic

dint =

∫ rmax

rmin

(L(r)− r) dr, (12)

where rmin and rmax define the range of distances under consideration.
Let dstat be the chosen statistic, e.g. dmax or dint. Letting u be the value

of one of the covariates and v represent all the other covariates, the average
predicted comparison gives the expected difference in the outcome associated
with a unit difference in u. Note that the covariate effects are incorporated
into the model component f (1) and, therefore, we are interested in the out-
come dstat calculated from the L function given by this component. For an
increasing transition from u(1) to u(2), we focus on the expected change in
dstat and our average predictive comparison looks at the mean value (and
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distribution) of

δu(u
(1) → u(2), v, θM) =

g(dstat|u(2), v, θM)− g(dstat|u(1), v, θM)

u(2) − u(1)

over the distribution of the covariates and the estimated model parameters
θM . Here, g(dstat|u, v, θM) is a value of dstat for a centred L function given u,
v and θM .

Let θ1
M , . . . , θ

B
M be a sample from the posterior distribution of the model

parameters θM , and let (us, vs), s = 1, . . . , N , denote the values of all covari-
ates for all subjects s. As an estimator for the average expected change in
our outcome, following Gelman and Pardoe [34], we use

∆̂u =
1

B

B∑
b=1

∆̂u(θ
b
M) (13)

with

∆̂u(θ
b
M) =

∑N
s1=1

∑N
s2=1ws1,s2

(
g(dstat|us2 , vs1 , θbM)− g(dstat|us1 , vs1 , θbM)

)
sign(us2 − us1)∑N

s1=1

∑N
s2=1ws1,s2(us2 − us1)sign(us2 − us1)

,

(14)
where ws1,s2 ’s are weights, multiplying by sign(us2 − us1) guarantees that
only increasing transitions of u are considered (sign(us2 − us1)=1 if us2 −
us1 > 0 and -1 if us2 − us1 < 0) and g(dstat|us1 , vs1 , θbM) is the statistic
dstat calculated from a sample drawn from the distribution of f (1) given the
covariate values and the parameter vector θbM . We use the weights ws1,s2 =
1/(1 + (vs1 − vs2)TΣ−1

v (vs1 − vs2)), where Σv is the covariance matrix of v,
suggested by Gelman and Pardoe [34] to give more weight to those changes
in the covariates that are in the support of the joint distribution of the
data. Using the Mahalanobis weights corresponds to the use of a simplified
Gaussian approximation to the joint distribution of the covariates v.

For each covariate u, we have chosen to present the distribution of (14),
i.e. the distribution of the difference in dstat with a positive unit difference in
the covariate u. Alternatively, means and standard errors could be presented
[34].

3.2.4. Subject specific predictive comparison

In addition, we define subject specific predictive comparisons as those that
focus on the change in the outcome dstat with v being fixed to the observed
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covariate values of the subject. The distribution of the expected change in
dstat in subject s is estimated by the distribution of

∆̂u,s(θ
b
M) =

∑N
s2=1 ws,s2

(
g(dstat|us2 , vs, θb)− g(dstat|us, vs, θb)

)
sign(us2 − us)∑N

s2=1 ws,s2(us2 − us)sign(us2 − us)
.

(15)
The distribution of (15) for each subject can be illustrated e.g. by plotting
its mean value and error bars showing some quantiles of the distribution.

3.3. Piecewise polynomial covariance functions with compact support

For the ENF application, we employ compactly supported covariance
functions (see e.g. Rasmussen and Williams [23]), which have the advan-
tage that the covariance between x and x′ becomes zero when the distance
between them exceeds a certain threshold. As a consequence, the covari-
ance matrix will become sparse by construction leading to computational
advantages.

We will employ covariance functions that are in the class of piecewise poly-
nomial covariance functions kppD,q(h|θ) of order q, which are positive definite
in RD. These covariance functions are 2q-times continuously differentiable
and the corresponding processes are q-times continuously mean-square differ-
entiable [23]. The order q plays a similar role as the smoothness parameter
of the well-known Matérn covariance functions; the larger the order q is, the
smoother are the realisations of the process.

We have chosen to use the first and third order piecewise polynomial
covariance functions which are defined as

kppD,1(h; θ) = σ2
pp max(0, 1− h)j+1((j + 1)h+ 1) (16)

and

kppD,3(h; θ) = σ2
pp max(0, 1− h)j+3

(
(j3 + 9j2 + 23j + 15)h3

+(6j2 + 36j + 45)h2 + (15j + 45)h+ 15
)
/15, (17)

respectively, for j = bD
2
c + q + 1. The parameter vector θ consists of the

variance parameter σ2
pp and the length-scale (or range) parameters φd, d =

1, . . . , D, which enter the covariance function through h, namely

h = h(x,x′) =

√√√√ D∑
d=1

(xd − x′d)2

φ2
d

. (18)
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The length-scale parameter φd controls how fast correlation decreases in the
input direction d.

4. Analysis of the ENF data

We investigate which of the covariates, age, gender, BMI and disease
status, if any, affect the second-order structure of the ENF entry and end
point patterns in samples taken from right calves of the subjects. The solid
lines in Figures 2 and 3 show the estimated centred L functions for the ENF
entry and end point patterns, respectively, for four subjects. The functions
indicate that both entry and end point patterns are clustered. The entry
points typically also have some small-scale inhibition (dip at short distances
in the centred L functions). The pooled L(r) − r functions (dashed lines)
estimated from the entry and end point patterns using (4) are also shown.
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Figure 2: The estimated centred L functions (solid lines) of each ENF entry point pattern
of Subjects 171, 172 (healthy), 259 and 276 (diseased), and the overall pooled function
(4) estimated from all the entry point patterns of all subjects (thick dashed line). The
horizontal zero line represents complete spatial randomness.

4.1. Specification of the model and priors

We employ the Gaussian process model introduced in Section 3.2. The
model consists of four components: covariate effect, subject specific effect,
correlated noise (sample specific effect) and uncorrelated noise. Below we
specify the three first components of the model. The uncorrelated noise
term was discussed in Section 3.2.
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Figure 3: The estimated centred L functions (solid lines) of each ENF end point pattern
of Subjects 171, 172 (healthy), 259 and 276 (diseased), and the overall pooled function
(4) estimated from all the end point patterns of all subjects (thick dashed line). The
horizontal zero line represents complete spatial randomness.

Disease status and gender have been coded as 0 (normal, male) and 1
(diseased, female), and all inputs are normalized to have zero mean and unit
variance.

4.1.1. The first component

The first Gaussian process f (1) models the effect of age, gender, BMI and
disease status together with the distance r. This component has the pooled
L(r) − r function estimated from all the samples, see (4), as its prior mean
and we are interested in deviances from this average level. Note that the
posterior distribution of f (1) is not restricted to the average level and will
depend on the values of the covariates.

The effects of the covariates are incorporated in the covariance function
k1(x,x′|θ1), where x = (r, age, gender,BMI, status)T . We assume that f (1) is
quite smooth and use the compactly supported piecewise polynomial function
(17) (q = 3) with h defined in (18). Note that since D = 5 and q = 3, we have
j = 6. We denote the variance parameter of (17) by σ2

1 and the length-scale
parameters of r and the four covariates by φ1d, d = 1, . . . , 5, respectively.
Thus,

θ1 = (φ1, σ
2
1) = (φ11, φ12, φ13, φ14, φ15, σ

2
1).

This prior covariance structure is illustrated in Figure 4 (left) showing
that the values of f (1) within a subject are correlated. There is also correla-
tion between subjects due to similar covariate values. Within a sample the
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values are most correlated for nearby r values.

Subject 1 Subject 2 Subject 3 Subject 4

Subject 1

Subject 2

Subject 3

Subject 4

Subject 1 Subject 2 Subject 3 Subject 4

Subject 1

Subject 2

Subject 3

Subject 4

Subject 1 Subject 2 Subject 3 Subject 4

Subject 1

Subject 2

Subject 3

Subject 4

Figure 4: Illustration of the prior covariance structures of (from left) f (1), f (2), and f (3).
Each figure shows a part of the prior covariance matrix for four subjects where the data
are organized subject wise, within subject sample wise and within sample from smallest to
largest value of r. Lighter color means higher correlation, and black means no correlation.

4.1.2. The second component

The Gaussian process f (2) models the subject specific effect and is also
assumed to be quite smooth. Its prior mean is zero and its values are corre-
lated between different values of r within a subject. Formally, the correlation
structure is specified as a product of the chosen covariance function and the
indicator function that equals 1 if the two observations are from the same
subject and 0 otherwise. This guarantees that there is no correlation be-
tween subjects. As the covariance function we take the function (17) with
the variance parameter σ2

2 and

h = h(r, r′) = |r − r′|/φ2,

where φ2 is the length-scale parameter. Having D = 1 and q = 3 leads to
j = 4. We denote θ2 = (φ2, σ

2
2).

Note that the prior distribution for this component is the same for each
subject, but after observing the data, a posteriori, the latent function is
subject specific. Figure 4 (middle) illustrates the prior covariance structure
of this component.

4.1.3. The third component

The process f (3) is the correlated noise component which is assumed to
be less smooth than the first two components. Its prior mean is zero and
its values are correlated between different values of r within a sample. Since
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the variability of the L functions taken from the samples of a subject seems
to differ from subject to subject, see Figures 2 and 3, we allow a different
variance parameter of f (3) for each subject s = 1, . . . , N .

The covariance between different values of r within sample j of subject
s is determined by the covariance function (16) with q = 1, the variance
parameter σ2

3s and
h = h(r, r′) = |r − r′|/φ3,

where φ3 is the length-scale parameter. Since D = 1 and q = 1, j becomes
2. Formally, the correlation between different samples is set to zero by mul-
tiplying the covariance function (16) by the indicator function that equals 1
if (s, j) = (s′, j′) and 0 otherwise. Figure 4 (right) illustrates this correlation
structure.

The parameter vector for f (3) is θ3 = (φ3, σ
2
3s, s = 1, . . . , N). The variance

parameters are controlled by assuming them to origin from a joint prior
distribution.

4.1.4. Hyperpriors

Our model consists of the Gaussian observation model (8), the latent
Gaussian process (6) discussed in detail above, and specification of the priors
for the parameters of the observation and latent models. The hyperprior
structure of the model can be summarized as

hyperpriors: σ2 ∼ p(σ2),

θ1 = (φ1, σ
2
1) ∼ p(φ1)p(σ2

1),

θ2 = (φ2, σ
2
2) ∼ p(φ2)p(σ2

2),

θ3 = {φ3, σ
2
3s, s = 1, . . . , N} ∼ p(φ3)

N∏
s=1

p(σ2
3s|s2

σ)

hyper-hyperprior: s2
σ ∼ p(s2

σ)

where p(·) denotes a distribution.
Following the recommendation by Gelman et al. [35], we use the half-

Student-t distribution with four degrees of freedom for all the length-scale
parameters and for the square root of the variance parameters σ2

1 and σ2
2.

The scale parameter of the half-Student-t distribution is set to one for σ1

and σ2 to have close to uniform mass on the interval from 0 to 1. (Since the
data are normalized for the analysis, the sum of the variances of different
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components is approximately 1.) For the length-scale parameters, the scale
is set to hundred to allow both small and large length scales.

For the subject-specific hyperparameters σ2
3s, s = 1, . . . , N , of f (3), we

chose the scaled-inverse-χ2 distribution with scale parameter s2
σ and four de-

grees of freedom, and to s2
σ we assign the scaled-inverse-χ2 prior distribution

with scale parameter 1 and one degree of freedom. Finally, for the error
variance σ2, we use the scaled-inverse-χ2 prior distribution with scale 0.01
and one degree of freedom.

4.2. Inference

The marginal posterior distribution is

p(θ, σ2|y,X) ∝ p(σ2)p(φ1)p(σ2
1)p(φ2)p(σ2

2)p(φ3)p(s2
σ)

N∏
s=1

[
p(σ2

3s|s2
σ)
]
p(y|X, θ, σ2),

where the marginal likelihood p(y|X, θ, σ2) given in (9) may be written as

p(y|X, φ1, σ
2
1, φ2, σ

2
2, φ3, {σ2

3s, s = 1, . . . , N}, σ2).

That is, the marginal likelihood does not depend on s2
σ given {σ2

3s, s =
1, . . . , N}.

To obtain a sample from the posterior distribution of the hyperparam-
eters, we run an MCMC simulation updating in turns the hyper-hyper-
parameter s2

σ and the rest of the parameters. To update s2
σ, we use slice

sampling [36] with ten iterations at each step (saving only the last one of the
ten), since this step is very fast and using many iterations leads to better
mixing. The conditional posterior distribution of s2

σ, from which we sample,
is

p(s2
σ|θhyper,y,X) ∝ p(θ, σ2|y,X) ∝ p(s2

σ)
N∏
s=1

p(σ2
3s|s2

σ),

where all the distributions are scaled inverse-χ2 distributions and θhyper de-
notes the hyperparameters of the model (including σ2). Therefore,

log(p(s2
σ|θhyper,y,X)) ∝ log pχ2(s2

σ; 0.1, 4) +
N∑
s=1

log pχ2(σ2
3s; s

2
σ, 4),

17



where pχ2(· ; s2, ν) is the density of the scaled inverse-χ2 distribution with
scale parameter s2 and ν degrees of freedom. We actually sample from the
distribution of log(s2

σ), using the univariate slice sampling method.
The conditional distribution for the remaining parameters, θhyper, given

s2
σ is

p(θhyper|s2
σ,y,X) ∝ p(σ2)p(φ1)p(σ2

1)p(φ2)p(σ2
2)p(φ3)

N∏
s=1

[
p(σ2

3s|s2
σ)
]
p(y|X, θ, σ2),

(19)
which can be sampled using standard MCMC methods for the Gaussian
process models [25]. In updating the hyperparameters, we use No-U-Turn
Hamiltonian Monte Carlo sampling (HMC-NUTS) [37]. Our implementation
utilizes sparse matrix computations and methods implemented earlier in the
GPstuff toolbox [38].

4.3. Computational details and sensitivity analysis

For the analysis of the L function data, one needs to choose the values
of the distance r where the summary function is estimated. The denser the
spacing between the values is, the more accurately the summary function
is presented. A too dense spacing, on the other hand, leads to computa-
tional burden. Therefore, we plotted the estimated summary characteristic
for different choices of r-values to evaluate for which sparseness the essen-
tial features of the characteristic were still present. This led us to r-values
0, 8, 16, . . . , 56 with step size dr = 8 between consecutive values of r for the
ENF entry point data, and r-values 0, 12, 24, . . . , 96 with dr = 12 for the end
point data. The maximum r-values were chosen as the distances, where the
L functions level down.

Using the end point data and dr = 12, we studied the effect of our prior
choices. Varying the hyperpriors had only small influence on the size of
the covariate effects: If a smaller length-scale parameter was used in the
Student-t prior distribution of the length-scale parameters of the model, i.e.
the hyperprior was less vague, the covariate effects of age, gender and BMI
became slightly larger (length-scale parameters slightly smaller). The effect
of disease status stayed approximately the same.

In addition to the choices dr = 8 (entry) and dr = 12 (end), we performed
the same analysis using the values dr = 4 (entry) and dr = 8 (end). The
conclusions made based on the two different choises of dr were very similar.
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A disadvantage of the rather complicated model adopted to the structure
of the data is that the simulation from the posterior distribution is compu-
tationally heavy, taking days to run. We run 3000 updates in the MCMC
procedure for dr = 12 (end), and for dr = 8 (end), dr = 8 (entry) and dr = 4
(entry), the number of updates was 1500. We investigated the convergence
of the chains visually and made convergence diagnostics by calculating po-
tential scale reduction factors (PSRF) for all parameters, see Brooks and
Gelman [39]. By throwing away the burn-in, where the step-size parameter
ε of the HMC-NUTS algorithm was adapted [37], and thinning the chain,
we finally used 500 updates in calculating the posterior distribution (10) and
investigations of covariate effects.

To see if the computational load could be reduced, we fit also the sim-
pler model where the variability of the L functions was assumed to be the
same within each subject, i.e. σ2

3s = σ2
3. The square root of this variance

was assigned the same Student-t prior distribution as σ1 and σ2, 600 updates
were run from the posterior distribution using HMC-NUTS and 100 updates
thrown away as the burn-in. The results were obtained faster. The conclu-
sions on the covariate effects were similar in the two models. The difference
of the two models was how they assigned the variability due to individual
samples to the second and third component of the model. The simpler model
resulted in larger subject specific effects than the more complex model, which
assigned almost all variation to the third component.

We compared the two models for the end point data by estimating the
expected predictive performance for a hypothetical subject [40]. Since the
full leave-one-subject-out cross-validation, which may be considered as the
standard approach for assessing the predictive performance, would be com-
putationally costly, we approximated it by the method called ghosting [41]
or mixed predictive checking [42]: we used the full data posterior of the hy-
perparameters to calculate the (log) predictive distribution (10) of f for each
of the 47 hypothetical subjects which shared the covariate values of subjects
in our data. Since, the original model had higher predictive performance
than the simpler model, the results in the following section are based on the
original model.

5. Results for the ENF data

We constructed posterior mean predicted centred L functions for virtual
subjects with different covariate values and made average predictive compar-
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isons (see Section 3.2.3) to study how the covariates affect the second-order
structure of ENF entry and end point patterns. Since we did not observe any
effect of the covariates (not even disease status) in the entry point analysis,
we only show the results for the end point data below.

5.1. Predictions for L functions for end points

Figures 5 and 6 show the mean L functions for the end point patterns
together with 5% and 95% r-wise posterior quantiles for male and female,
and healthy and diseased subjects of different age and BMI. All end point
patterns are clustered. The cluster radius (r value corresponding to the
maximum value of the centred L function) in diseased patterns is about 35-
40 microns, which is slightly larger than the cluster radius 25-30 microns in
healthy patterns. Furthermore, the clusters in the diseased patterns have
more end points relative to the total number of points than the clusters in
healthy patterns (diseased curve is above the healthy curve).

The centred L functions in Figures 5 and 6 reveal that the difference
between healthy and diseased patterns is clearer for women than for men.
Furthermore, the difference is more easily seen for younger subjects and
subjects with high BMI than for older subjects and subjects with low BMI.

The posterior mean predicted curves f (1) (general level), f (1) + f (2) (sub-
ject specific level) and f (1) + f (2) + f (3) (sample specific level) are shown
in Figure 7 for four subjects. We can see that all the components together
(thin black solid lines) capture well the form of the data curves (thick grey
solid lines). The correlated noise-component f (3) seems to take most varia-
tion in itself, which is apparently associated with the large variation between
the curves within subjects. After covariate effects have been taken into ac-
count, the subject specific effect is estimated to be quite small, which is in
accordance with our previous studies [15].

5.2. Average predictive comparisons for end points

We next performed the average predictive comparisons in order to investi-
gate the significance of the differences observed in the predicted L functions.
Initially, we experimented with the two deviation statistics (11) and (12),
but since the results for our data were very similar independently of which
one was used, we decided to use the simpler measure (11).

Violinplots in Figure 8 show the results from the average predictive com-
parisons for each of the covariates for the ENF end point data. We observe
that the diseased pattern is clearly more clustered than the healthy pattern
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(the mass of the distribution of (14) lies clearly above zero). Note, however,
that since the plots are based on dmax, not on the entire L function, we can
only say that the relative number of points per cluster has changed.

The effects of age, gender and BMI are not evident. To see whether these
covariates have significant effects in the diseased case, we also performed
average predictive comparisons only for the diseased subjects. As Figure 9
shows, the effect of BMI is slightly higher among the diseased subjects than
among all the subjects (compare to Figure 8).

We further investigated how the probability of increased clustering (mea-
sured by dmax) when changing from a healthy subject to diseased subject
depends on the age, gender and BMI of the subject. We made subject
specific predictive comparisons for the disease status and summarized the
distribution of ∆u,s(θ

b
M) in (15) by its probability mass lying above zero,

namely

p̂u,s =
1

B

B∑
b=1

1(∆u,s(θ
b
M) > 0). (20)

These probabilities are plotted in Figure 10. There is a tendency that the
probability is slightly smaller for subjects with high age and for subjects
with low BMI. This confirms the observation made based on the predicted
L functions that the difference between healthy and diseased patterns seems
to be harder to detect in old subjects and in subjects with low BMI than in
subjects with other covariate values.

6. Discussion

We suggest hierarchical Gaussian process regression as a flexible non-
parametric method for studying the effect of non-spatial covariates on the
second-order structure of spatial point patterns. The spatial structure is
summarized by Ripley’s K function which is modelled by Gaussian process
regression based on replicated data. The work has been motivated by the
desire to find out whether epidermal nerve fiber patterns, more precisely
entry and end point patterns, are more clustered in subjects suffering from
diabetic neuropathy than in healthy subjects. In addition to disease status
(healthy, diabetic neuropathy), age, gender, and BMI are included in the
analysis as covariates.

The neurologists believe that the nerve fiber loss due to diabetic neuropa-
thy does not result in random removal of nerves, rather the remaining nerves
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Figure 5: Mean prediction curves (solid lines) and 5% and 95% r-wise posterior quantiles
(dashed lines) for the ENF end point data for comparison of disease status (black =
healthy; grey = diseased) for female (first row) and male (second row) subjects. Columns
from left to right: Age 30, 45, 60. BMI is fixed to 25.

seem to be arranged in more clustered patterns than the patterns before the
nerve loss. This would suggest that both the entry and the end point pat-
terns would be more clustered in diseased subjects than in healthy subjects.
However, we did not see that the disease status would affect clustering of
the entry points in samples taken from calves but the diseased end point
patterns were clearly more clustered. More precisely, the diseased end point
patterns had more points in clusters relative to the total number of points
than the healthy patterns and, moreover, there is slight indication that their
cluster radius would be somewhat larger than that of the healthy patterns.
The latter observation may be explained by the remaining ENFs tending to
grow longer in order to compensate for the loss of nerves.

Thus, according to our study, the ENF end points carry more information
about clustering of ENFs, and have therefore better diagnostic capabilities
than the entry points. This may be due to the number of end points being
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Figure 6: Mean prediction curves (solid lines) and 5% and 95% r-wise posterior quantiles
(dashed lines) for the ENF end point data for comparison of disease status (black =
healthy; grey = diseased) for female (first row) and male (second row) subjects. Columns
from left to right: BMI 20, 25, 30. Age is fixed to 45.

larger than the number of entry points. In the thigh data studied by Waller
et al. [28], where some evidence for the diseased entry point patterns being
more clustered than the healthy patterns was found, the number of entry
points was higher than in the calf data analysed here.

We have assumed that the entry and end point patterns are realizations of
stationary point processes, and used the homogeneous K function to describe
the second-order structure of the patterns. As pointed out by Waller et al.
[28], the underlying physiology may affect the locations of the ENF entry
points causing heterogeneities due to the so-called dermal papillae which
makes the bottom of the epidermis uneven. Therefore, the inhomogeneous
K function [43] could be used instead. However, as in Waller et al. [28], the
data sets in this study are relatively small and do not reveal any obvious
heterogeneities.

In addition to the K functions for entry points and end points, the bi-
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Figure 7: The estimated sample specific centred L functions (thick grey solid lines) of the
ENF end points of Subjects 171, 172 (healthy), 259 and 276 (diseased). The posterior
mean of the model components: general level f1 (thick solid line), subject specific level
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Vertical dashed lines show the distances used for inference.
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Figure 8: Average predictive comparisons. Violinplots characterize the distributions of
(14) for the covariates for ENF end point data. The distributions for gender and disease
status are for the changes from male to female and from healthy to diseased. The horizontal
lines in the “violins” give the estimated 5%, 50% and 95% quantiles of the distributions.

variate K function (entry points-end points) could be estimated and modeled
by the same hierarchical model (a priori) as the univariate functions. If the
complete fiber pattern is of interest, a similar hierarchical model could also

24



−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Age

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

BMI

−8

−6

−4

−2

0

2

4

6

8

Gender

Figure 9: Average predictive comparisons. Violinplots characterize the distributions of
(14) for the covariates for diseased subjects for the ENF end point data. The distribution
for gender is for the change from male to female. The horizontal lines in the “violins” give
the estimated 5%, 50% and 95% quantiles of the distributions.

be applied to the fiber K function.
We modelled the L functions using the Gaussian process regression. Gaus-

sian Markov random fields (GMRFs), which have computational advantages
over the Gaussian processes if the dimensions of inputs are low and there
are no high level interactions, have been used in similar regression studies
[22]. However, our model included interactions between all the covariates,
which was accomplished easily in the Gaussian process approach. If the joint
effects of the covariates were excluded from the model a priori, then a GMRF
approach would be a competitive alternative for fast inference. Yue and Loh
[44] used such a latent non-parametric GMRF model in estimation of the
pair correlation function (derivative of the K function). Note that, since
our observation model is Gaussian, we can calculate the marginal likelihood
of the hyperparameters exactly and, thus, there is no need for analytical
approximations, neither in the Gaussian process nor in the GMRF approach.

The hierarchical modelling approach we propose was motivated by the
ENF data, but because of the flexibility and non-parametric nature of the
Gaussian process model, basically the same model (a priori) can be used in
other applications. For example in social networks, the question of interest
may be whether closeness and relationship (relative or friend) have effect on
clustering (in time) of communication between people.
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Figure 10: Subject specific predictive comparisons for the ENF end point data for disease
status. (a) Histrogram of subject specific probabilities in (20) for positive change in the
outcome dmax with a change from healthy to diseased. (b) The probabilities plotted
against age. (c) The probabilities plotted against BMI. (d) Violinplots of the probabilities
for female and male subjects.

In this paper, the second-order structure of spatial point patterns based
on replicated data with non-spatial covariate information was modeled. The
second-order analysis only looks at a specific feature of the data, which was in
our case motivated by the neurologists’ hypothesis. The point patterns may,
however, have other interesting features and therefore, next steps will include
developing suitable point process models based on replicated data where also
non-spatial covariates are available. Point process models presented in Olsbo
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et al. [31] provide a basis for developing such models for ENF patterns.
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[7] C. Redenbach, A. Särkkä, J. Freitag, K. Schladitz, Anisotropy analysis
of pressed point processes, Advances in Statistical Analysis 93 (2009)
237–261.

[8] U. Hahn, A studentized permutation test for the comparison of spatial
point patterns, Journal of the American Statistical Association 107
(2012) 754–764.

[9] P. J. Diggle, J. Mateu, H. E. Clough, A comparison between parametric
and non-parametric approaches to the analysis of replicated spatial point
patterns, Advances in Applied Probability 32 (2000) 331–343.

[10] S. Eckel, F. Fleischer, P. Grabarnik, M. Kazda, A. Särkkä, V. Schmidt,
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