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Abstract

We give a short review on the Bayesian approach for neural network learning and demonstrate the advantages
of the approach in three real applications. We discuss the Bayesian approach with emphasis on the role of prior
knowledge in Bayesian models and in classical error minimization approaches. The generalization capability of
a statistical model, classical or Bayesian, is ultimately based on the prior assumptions. The Bayesian approach
permits propagation of uncertainty in quantities which are unknown to other assumptions in the model, which
may be more generally valid or easier to guess in the problem. The case problems studied in this paper include a
regression, a classification, and an inverse problem. In the most thoroughly analyzed regression problem, the best
models were those with less restrictive priors. This emphasizes the major advantage of the Bayesian approach, that
we are not forced to guess attributes that are unknown, such as the number of degrees of freedom in the model,
non-linearity of the model with respect to each input variable, or the exact form for the distribution of the model
residuals.
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1 Introduction

In Bayesian data analysis all uncertain quantities are modeled as probability distributions, and inference is per-
formed by constructing the posterior conditional probabilities for the unobserved variables of interest, given the ob-
served data sample and prior assumptions. Good references for Bayesian data analysis are (Berger, 1985; Bernardo
and Smith, 1994; Gelman et al., 1995).

For neural networks the Bayesian approach was pioneered in (Buntine and Weigend, 1991; MacKay, 1992;
Neal, 1992) and reviewed in (MacKay, 1995; Neal, 1996; Bishop, 1995). With neural networks the main difficulty
in model building is controlling the complexity of the model. It is well known that the optimal number of degrees
of freedom in the model depends on the number of training samples, amount of noise in the samples and the
complexity of the underlying function being estimated. With standard neural networks techniques the means for
both determining the correct model complexity and setting up a network with the desired complexity are rather
crude and often computationally very expensive.

In the Bayesian approach these issues can be handled in a natural and consistent way. The unknown degree
of complexity is handled by defining vague (non-informative) priors for the hyperparameters that determine the
model complexity, and the resulting model is averaged over all model complexities weighted by their posterior
probability given the data sample. The model can be allowed to have different complexity in different parts of
the model by grouping the parameters that are exchangeable (have identical role in the model) to have a common
hyperparameter. If, in addition, it is assumed that the complexities are more probably similar, a hierarchical
hyperprior can be defined for the variance of the hyperparameters between groups.

Another problem of standard neural network methods is the lack of tools for analyzing the results (confidence
intervals for the results, like 10 % and 90 % quantiles, etc.). The Bayesian analysis yields posterior predictive
distributions for any variables of interest, making the computation of confidence intervals possible.

In this contribution we discuss the Bayesian approach in statistical modeling (section 2), with emphasis on the
role of prior knowledge in the modeling process. In section 3 we give a short review of Bayesian MLP models and
MCMC techniques for marginalization. Then we present three real world modeling problems, where we assess
the performance of the Bayesian MLP models and compare the performance to standard neural networks methods
and other statistical methods. The application problems are, I) a regression problem of predicting the quality of
concrete in concrete manufacturing process (section 4), II) approximating an inverse mapping in a tomographic
image reconstruction problem (section 5), and III) a classification problem of recognizing tree trunks in forest
scenes (section 6). Finally we discuss the conclusions of our experiments in relation to other related studies on
Bayesian neural networks.

2 The Bayesian Approach

The key principle of Bayesian approach is to construct the posterior probability distributions for all the unknown
entities in a model, given the data sample. To use the model, marginal distributions are constructed for all those
entities that we are interested in, i.e., the end variables of the study. These can be the parameters in parametric
models, or the predictions in (non-parametric) regression or classification tasks.

Use of the posterior probabilities requires explicit definition of the prior probabilities for the parameters. The
posterior probability for the parameters θ in a model H given the data D is, according to the Bayes’ rule,

p(θ |D,H ) = p(D|θ,H )p(θ |H )

p(D|H )
, (1)

where p(D|θ,H ) is the likelihood of the parameters θ , p(θ |H ) is the prior probability of θ , and p(D|H ) is a
normalizing constant, called evidence of the model H . The term H denotes all the hypotheses and assumptions
that are made in defining the model, like a choice of MLP network, specific noise model etc. All the results are
conditioned on these assumptions, and to make this clear we prefer to have the termH explicitly in the equations.
In this notation the normalization term P(D|H ) is directly understandable as the marginal probability of the data,
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conditional on H , integrated over everything the chosen assumptions H and prior p(θ |H ) comprise

p(D|H ) =
∫

θ

p(D|θ,H )p(θ |H )dθ. (2)

When having several models, p(D|Hi ) is the likelihood of the model i , which can be used in comparing the
probabilities of the models, hence the term evidence of the model. (A widely used Bayesian model choice method
between two models is based on Bayes Factors, p(D|H1)/p(D|H2), see (Kass and Raftery, 1995)). The more
common notation of Bayes formula, with H dropped, more easily causes misinterpreting the denominator P(D)

as some kind of probability of obtaining data D in the studied problem (or prior probability of data before the
modeling).

2.1 Role of Prior Knowlegde in Statistical Models

Describing the prior information explicitly distinguishes the Bayesian approach from the Maximum Likelihood
(ML) methods. It is important to notice, however, that the role of prior knowledge is equally important in any
other approach, including the Maximum Likelihood. Basically, all generalization is based on the prior knowledge,
as discussed in (Lemm, 1996, 1999); the training samples provide information only at those points, and the prior
knowledge provides the necessary link between the training samples and the not yet measured future samples.

Recently, some important no-free-lunch (NFL) theorems have been proven, that help to understand this issue.
In (Wolpert, 1996a,b) Wolpert shows, that if the class of approximating functions is not limited, any learning
algorithm (i.e., procedure for choosing the approximating function) can as readily perform worse or better than
randomly, measured by off-training set (OTS) error, and averaged over loss functions. This theorem implies that
it is not possible to find a learning algorithm that is universally better than random. In other words, if we do not
assume anything a priori, the learning algorithm cannot learn anything from the training data that would generalize
to the off-training set samples.

In (Wolpert and Macready, 1995; Wolpert, 1996b) the cross-validation (CV) method for model selection was
analyzed in more depth and it was shown that the NFL theorem applies to CV also. The basic result in the papers is,
that without priors on functions, choosing the function by CV performs on average as well as a random algorithm,
or anti-CV, where the function that has the largest CV error is chosen. In practice this means that if CV is used to
choose from a very large (actually infinite) set of models, there is no guarantee of any generalization at all. This
is easy to understand intuitively, as in such a situation the chosen algorithm is the one that happens to minimize
the error on the whole training set, and if the set of algorithms is large there is high chance that a well fitting
("overfitted") solution exists in the set. It should be noted, however, that due to computational limitations, CV
can in practice be used to choose between rather few models (typically less than thousands), so that the choice
of the models imposes a very strict prior on the functions. Thus the NFL theorems do not invalidate the use of
CV in practical model selection. The implications are more in principal, emphasizing that the a priori selection
of plausible solutions is necessary when using cross-validation for model selection, and in this respect, the cross-
validation does not provide an alternative, that would not require using prior knowledge in the modeling.

In practice, statistical models like parametric models or neural networks, probably contain more often too strict
priors rather than too little prior knowledge. For example, every discrete choice in the model, such as the Gaussian
noise model, represents an infinite amount of prior information (Lemm, 1996). Any finite amount of information
would not correspond to probability one for, e.g., the Gaussian noise model and probability zero for all the other
alternatives. Also, the functional form of the model may be predetermined (as in polynomial fitting), or the number
of degrees of freedom may be fixed (as in neural networks trained with error minimization without regularization).
Thus there is a large amount of prior information also in the Maximum Likelihood models, even though the model
parameters are determined solely by the data, to maximize the likelihood p(D|w), or to minimize the negative
log-likelihood error function. Actually the goodness of this prior knowledge is what separates "good" and "bad"
ML models.

In the Bayesian approach a certain part of the prior knowledge is specified more explicitly, in the form of prior
distributions for the model parameters, and hyperpriors for the parameters of the prior distributions. In complex
models like neural networks the relation between the actual domain knowledge of the experts and the priors for the
model parameters is not simple, and thus it may be in practice difficult to incorporate very sophisticated background
information into the models via the priors of the parameters.
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However, a considerable advantage of the Bayesian approach is that it gives a principled way to do inference
when some of the prior knowledge is lacking or vague, so that one is not forced to guess values for attributes
that are unknown. This is done by marginalization, or integrating over the posterior distribution of the unknown
variables, as explained in detail in section 3.

A lot of work has been done to find "non-informative" priors that could be used to specify complete lack
of knowledge of a parameter value. Some approaches are uniform priors, Jeffreys’ prior (Jeffreys, 1961), and
reference priors (Berger and Bernardo, 1992). See (Kass and Wasserman, 1996) for a review and (Yang and
Berger, 1997) for a large catalog of different "non-informative" priors for various statistical models.

Among Bayesians the use of "non-informative" priors is often referred as the "objective Bayesian approach",
in contrast to informative (subjective) priors that reflect the subjective opinions of the model builder. However, in
the light of the NFL theorems, this requires that the hypothesis space is already so constrained, that it contains the
sufficient amount of prior information that is needed to be able to learn a generalizing model (Lemm, 1999). By
using "non-informative" priors, the fixed, or guessed, choices can be moved to higher levels of hierarchical models.
In (Goel and Degroot, 1981) it was shown that in hierarchical models the training data contains less information of
hyperparameters which are higher in the hierarchy, so that the prior and posterior for the hyperparameters become
more equal. Thus the models are less sensitive to the choices made in higher levels, implying that higher level
priors are in general less informative, and thus less subjective.

In this way, the hierarchical prior structure can be used to specify partial lack of knowledge in a controllable
way. For example, if it is difficult to choose between a Gaussian and a longer tailed (leptokurtic) noise model, one
can include them both in the prediction model using a non-informative uniform prior for the two noise models,
and the posterior probabilities of the noise models will be determined "objectively" from the match of the noise
distribution and the realized model residuals. In section 4 we present an example of using Student’s t-distribution
with an unknown number of degrees of freedom ν as the noise model (thus comprising near Gaussian and longer
tailed distributions), and integrating over the posterior distribution of ν in predictions. Some advice on the design
of the hierarchical prior structures and robust noise models can be found in (Gelman et al., 1995).

A typical attribute that is difficult to guess in advance in complex statistical models is the correct number of
degrees of freedom, as it depends on the number of the training samples, distribution of noise in the samples
and the complexity of the underlying phenomenon to be modeled. Also in general the complexity of the model
cannot be defined by only one number, the total number of degrees of freedom, but instead the models have
multiple dimension of complexity. In the Bayesian approach one can use a vague prior for the total complexity
(called the effective number of parameters), and use a hierarchical prior structure to allow different complexity
in different parts of the model. For example, the parameters may be assigned to different groups, so that in each
group the parameters are assumed to have the same hyperparameter, while different groups can have different
hyperparameters. Then a hyperprior is defined to explain the distribution of all the hyperparameters. In section 3.3
we discuss in more detail an example of this type, called the Automatic Relevance Determination prior.

2.2 Approximations to the Marginalization Principle

The marginalization principle often leads to complex integrals that cannot be solved in closed form, and thus there
is a multitude of approaches that differ in how the integrals are approximated.

Closest to the ML approach is the Maximum A Posteriori (MAP) approach, where the posterior distribution of
the parameters is not considered, but the parameters are sought to maximize the posterior probability p(w|D) ∝
p(D|w)p(w), or to minimize the negative log-posterior cost function

E = − log p(D|w) − log p(w).

The weight decay regularization is an example of this technique: for Gaussian prior on the weights w the negative
log-prior is γ

∑
i w2

i . The main drawback of this approach is that it gives no tools for setting the hyperparameters
due to lack of marginalization over these "nuisance parameters". In the weight decay example, the variance term
1/γ must be guessed, or set with some external procedure, such as cross-validation.

A further degree of Bayesian principle is utilized in the empirical Bayesian approach, where specific values are
estimated for the hyperparameters. For MLP networks this approach was introduced by MacKay in the evidence
framework (MacKay, 1992) (also called type II Maximum Likelihood approach (Berger, 1985)), which was the
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first practical Bayesian method for neural networks. In the evidence framework, the hyperparameters α are set
to values that maximize the evidence of the model p(D|α), that is, the marginal probability for the data given
the hyperparameters, integrated over the parameters, p(D|α) = ∫

p(D|w)p(w|α)dw. A Gaussian approximation
is used for the posterior of the parameters p(w|D), to facilitate closed form integration, and thus the resulting
posterior for w is specified by the mean of the Gaussian approximation (i.e., one network with posterior mean
weights).

In a full Bayesian approach no fixed values are estimated for any parameters or hyperparameters. Approxima-
tions are then needed for the integrations over the hyperparameters to obtain the posterior for the parameters and
over the parameters to obtain the the predictions of the model, as shown in Eq. 3. The correctness of the inference
depends on the accuracy of the integration method, hence it depends on the problem which approximation method
is appropriate. Methods for approximating the integrations in neural network models include, e.g., Markov Chain
Monte Carlo techniques for numerical integration, discussed in more detail in section 3.4, ensemble learning (Bar-
ber and Bishop, 1998), which aims to approximate the posterior distribution by minimizing the Kullback-Leibler
divergence between the true posterior and a parametric approximating distribution, variational approximations
(Jordan et al., 1998) for approximating the integration by a tractable problem, and mean field approach (Winther,
1998), where the problem is simplified by neglecting certain dependencies between the random variables.

It is worth noticing, that also in full hierarchical Bayesian models there are large amounts of fixed prior knowl-
edge, in the selection of the parametric form for the distributions (priors and noise models), that is based on
uncertain assumptions. In such models, no guesses are made for exact values of the parameters or any smooth-
ness coefficients or other hyperparameters, but guesses are made for the exact forms of their distributions. The
goodness of the model depends on these guesses, which in practical applications makes it necessary to carefully
validate the models, using, e.g, Bayesian posterior analysis (Gelman et al., 1995), or cross-validation (Geisser,
1975; Gelfand, 1996; Vehtari and Lampinen, 2000). This also implies that in practice the Bayesian approach is
often more sensitive to the prior assumptions than more classical methods. This is discussed in more detail in
section 3.5.

3 Bayesian Learning for MLP Networks

In the following we give a short overview of Bayesian approach for neural networks. We concentrate on MLP
networks and Markov Chain Monte Carlo methods for computing the integrations, following the approach intro-
duced in (Neal, 1992). A detailed treatment can be found in (Neal, 1996), which also describes the use of the
Flexible Bayesian Modeling (FBM) software package 1, that was the main tool used in the case problems reviewed
in this paper. The result of Bayesian modeling is the conditional probability distribution of unobserved variables
of interest, given the observed data. In Bayesian MLP the natural end variables are the predictions of the model
for new inputs, while the posterior distribution of the network weights is rarely of much interest.

The posterior predictive distribution of output ynew for the new input xnew given the training data D =
{(x(1), y(1)), . . . , (x(n), y(n))}, is obtained by integrating the predictions of the model with respect to the poste-
rior distribution of the model,

p(ynew|xnew, D) =
∫

p(ynew|xnew, θ)p(θ |D)dθ, (3)

where θ denotes all the model parameters and hyperparameters of the prior structures.
The probability model for the measurements, p(y|x, θ), contains the chosen approximation functions and noise

models. It defines also the likelihood part in the posterior probability term, p(θ |D) ∝ p(D|θ)p(θ). The probability
model in a regression problem with additive error is

y = f (x; θw) + e, (4)

1http://www.cs.toronto.edu/~radford/fbm.software.html

http://www.cs.toronto.edu/~radford/fbm.software.html
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where f () is, e.g, the MLP function

f (x, θw) = b2 + w2 tanh
(

b1 + w1x
)

. (5)

The θw denotes all the parameters w1, b1, w2, b2, which are the hidden layer weights and biases, and the output
layer weights and biases, respectively. The random variable e is the model residual. Multivariate problems (with
several outputs) can be handled by changing the output in Eq. 4 to be a vector (thus having common residual
model for all outputs), or by completely separate models, or as a hierarchical model with some common parts
(i.e., common hidden layer, separate output weights, and common or hierarchical noise model). In two class
classification problems, the probability that a binary-valued target, y, has value 1 can be computed by the logistic
transformation as

p(y = 1|x, θw) = [1 + exp(− f (x, θw))]−1, (6)

and in many class classification problems the probability that a class target, y, has value j can be computed by the
softmax transformation (or cross-entropy) as

p(y = j |x, θw) = exp( f j (x, θw))∑
k exp( fk(x, θw))

. (7)

3.1 Residual Models

In the following we use the notation r ∼ F(a) as shorthand for p(r) = F(r |a) where a denotes the parameters
of the distribution F , and the random variable argument r is not shown explicitly. The commonly used Gaussian
noise model is

e ∼ N (0, σ 2), (8)

where N (µ, σ 2) denotes a normal distribution with mean µ and variance σ 2. In choosing the hyperprior for σ 2

there may be some knowledge to use a somewhat informative prior. For example, the minimum reasonable value
for the noise variance can be estimated from measurement accuracy or from repeated experiments. Whether the
hyperprior is informative or non-informative, it is convenient to choose the form of the distribution in accordance
with the method used to sample from the posterior distribution. Note that the results are in general not very sensitive
to the choices made in the hyperprior level, as discussed in section 2.1 and confirmed in many studies (see e.g.,
(Rasmussen, 1996)). However, this should be checked in serious analysis, especially if the form of the prior needs
to be compromised for reasons of computational convenience. In the framework used in this study (see section 3.4)
the hyperparameters are sampled by Gibbs sampling. Convenient priors are then conjugate distributions, that
produce full conditional posteriors of the same form. For the variance of the Gaussian, a conjugate distribution is
the inverse Gamma, producing the prior

σ 2 ∼ Inv-gamma(σ 2
0 , νσ ), (9)

with parametrization

Inv-gamma(σ 2|σ 2
0 , ν) ∝ (σ 2)−(ν/2+1) exp

(
−1

2
νσ 2

0 σ−2
)

,

which is equal to a scaled inverse chi-square distribution (Gelman et al., 1995, Appendix A). The parameter ν is
the number of degrees of freedom and σ 2

0 is a scale parameter. In this parametrization, the prior is equivalent to
having ν prior measurements with averaged squared deviation σ0. The fixed values for σ0 and νσ can be chosen so
as to produce a vague prior for σ 2, that is reasonably flat over the range of parameter values that could plausibly
arise. We have used σ0 = 0.05 and νσ = 0.5, similar to those used in (Neal, 1996, 1998).

In (Vehtari and Lampinen, 1999) we analyzed a multivariate regression problem where the residuals of the
outputs may be correlated. For a multivariate normal residual model with full covariance matrix, a conjugate
hyperprior is the inverse Wishart distribution, allowing Gibbs sampling for the covariance matrix.

In the noise model in Eq. 8 the same noise variance σ is assumed in each sample. In heteroscedastic regression
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problems each sample (xn, yn) can have different noise variance (σ 2)n , with all the variances governed by a
common prior, corresponding to, e.g, a noise model

yn = f (xn; w1, b1, w2, b2) + en (10)

en ∼ N (0, (σ 2)n) (11)

(σ 2)n ∼ Inv-gamma(σave, νσ ) (12)

σave ∼ Inv-gamma(σ0, νσ,ave), (13)

where the fixed hyperparameters are νσ , σ0 and νσ,ave. Here the prior spread of the variances (σ 2)n around the
average variance σave, determined by νσ , is fixed. In this parametrization the residual model is equal to Student’s
t-distribution with fixed degrees of freedom. To allow for a higher probability for models with similar noise
variances, the hyperparameter νσ can also be given a hyperprior, so that models with similar variances can have
large νσ , corresponding to a tight prior for the spread of variances (σ 2)n , and thus giving high probability for each
realized variance. This is approximately same as the t-distribution noise model with unknown degrees of freedom.
Thus similar treatment results, whether we assume normal residuals with different variances, or a common longer
tailed t-distribution residual model (Geweke, 1993). The latter is preferable, as it leads to simpler noise models,
and will be discussed in more detail below.

In heteroscedastic problems, the noise variance can be functionally dependent on some explanatory variables,
typically on some subset of the model inputs, so that the model for the noise variance might be

(σ 2)n = F(xn; θnoise) + ε (14)

ε ∼ Inv-gamma(σ0, νσ ) (15)

with fixed σ0 and νσ . See (Bishop and Qazaz, 1997) for example of input dependent noise model, where a separate
MLP model is used to estimate the dependence of the noise variance on the inputs.

Often in practical problems the Gaussian residual model is not applicable. There may be error sources that have
non-gaussian density, or the target function may contain peaks, but the training data is not sufficient to estimate
them, or the data is heteroscedastic, with different noise variances in each sample. With a Gaussian residual
model, samples with exceptionally large residuals must be handled as outliers, using pre- and postfiltering and
manual manipulation of data. Another option is to use longer tailed residual model that allows small portion of
samples to have large errors. An often used model is the Laplace (or double exponential) distribution. When the
appropriate form for the residual distribution is not known in advance, the correct Bayesian treatment is to integrate
over all a priori plausible forms.

In this study we have used Student’s t-distribution, where the tails can be controlled by choosing the number of
degrees of freedom ν in the distribution. As this number is difficult to guess in advance, we set a hierarchical prior
for it, and in the prediction we integrate over the posterior distribution given the data. Thus the tails are determined
by the fit of the model to the data. The integration over the degrees of freedom can be done by Gibbs sampling
(see section 3.4) for discretized values of ν, so that the residual model is

e ∼ tν(0, σ 2) (16)

ν = V [i] (17)

i ∼ Ud(1, K ) (18)

V [1 : K ] = [2, 2.3, 2.6, 3, 3.5, 4, 4.5, 5 : 1 : 10, 12 : 2 : 20, 25 : 5 : 50] (19)

σ 2 ∼ Inv-gamma(σ0, νσ ) (20)

where [a : s : b] denotes the set of values from a to b with step s, and Ud(a, b) is a uniform distribution of
integer values between a and b. The discretization is chosen so that an equal prior for each value results in roughly
(truncated) exponential prior on ν (Geweke, 1993; Spiegelhalter et al., 1996). Another simple way to sample for ν,
without discretization, is by the Metropolis-Hastings algorithm (Hastings, 1970), which gave in our experiments
equal results but slightly slower convergence.
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3.2 Priors for the Model Parameters

Typical prior assumptions in regularization theory are related to the smoothness of the approximation. In Tikhonov
regularization (Bishop, 1995), which is a widely used regularization method in, e.g., inverse problems, functions
with large derivatives of chosen order are penalized. With an MLP model, minimizing the curvature (second
derivative) (Bishop, 1993) or training the derivatives to given target values (Lampinen and Selonen, 1997) leads
to rather complex treatise as the partial derivatives of the non-linear models depend on all the other inputs and
weights.

A convenient commonly used prior distribution is Gaussian, which in linear models is directly related to model
derivatives, but has a more complex interpretation in the non-linear MLP case, as discussed in the next section.
The Gaussian priors for the weights are

w1 ∼ N (0, αw1) (21)

b1 ∼ N (0, αb1) (22)

w2 ∼ N (0, αw2) (23)

b2 ∼ N (0, αb2) (24)

where the α’s are the variance hyperparameters. The conjugate inverse Gamma hyperprior is

αj ∼ Inv-gamma(α0, j , να, j ) (25)

similarly as to hyperpriors in the Gaussian noise model. The fixed values for the highest level hyperparameters in
the case studies were similar to those used in (Neal, 1996, 1998). Appropriate hyperpriors depend somewhat on
the network topology. As discussed in (Neal, 1996) the average weights can be assumed to be smaller when there
are more feeding units, e.g, the hyperprior for w1 is scaled according to the number of inputs K . Typical values
were

να,w1 = 0.5

α0,w1 = (0.05/K 1/ν
α,w1 )2.

3.3 Automatic Relevance Determination Prior and Importance of Inputs

In this section we discuss a simple hierarchical prior for the MLP weights, called Automatic Relevance Determi-
nation (ARD) (MacKay, 1994; Neal, 1996, 1998). In ARD each group of weights connected to the same input
k ∈ {1, . . . , K } has common variance hyperparameters, while the weight groups can have different hyperparame-
ters. Example of the ARD prior, used in this study, is

wk j ∼ N (0, αk), (26)

αk ∼ Inv-gamma(αave, να) (27)

αave ∼ Inv-gamma(α0, να,ave), (28)

where the average scale of the αk is determined by the next level hyperparameters, in similar fashion as in the
heteroscedastic noise model example above. The ARD can be used also in the evidence framework, where each αk

is estimated by Maximum Likelihood, without any priors or penalty for large variability. The fixed values used in
the case studies were να = 0.5, α0 = (0.05/K 1/να )2 and να,ave = 1, corresponding to vague hyperpriors that let
the αave and αk be determined by data. Hyperparameter να could also be given a hyperprior in similar fashion as
in the heteroscedastic noise model example.

The ARD prior was proposed as an automatic method for determining the relevance of the inputs (MacKay,
1994; Neal, 1996), as irrelevant inputs should have smaller weights in the connections to the hidden units than
more important weights. With separate hyperparameters the weights from irrelevant inputs can have tighter priors,
which reduces such weights more effectively towards zero than having the common larger variance for all the input
weights.
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Determining the relevance of inputs has great importance in practical modeling problems, in both choosing
the inputs in the models as well as in analyzing the final model. See (Sarle, 1997) for a general discussion on
ways to assess the importance of inputs in non-linear models. The most common notions of importance are
predictive importance (the increase in generalization error if the variable is omitted from the model) and causal
importance (change of model outputs caused by the change of input variable). Note that causal importance is
directly measurable only if the inputs are uncorrelated (so that inputs can be manipulated independently), and that
it is not related to the causality relations in the actual system to be modeled.

In ARD the relevance measure of an input is related to the size of the weights connected to that input. In linear
models these weights define the partial derivatives of the output with respect to the inputs, which is equal to the
predictive importance of the input, and in case of non-correlated inputs, also the causal importance. In non-linear
neural networks the situation is, however, more complex, since small weights in the first layer can be compensated
by large weights in other layers, and the nonlinearity in the hidden units changes the effect of the input in a way
that depends on all the other inputs.

To illustrate the effect of an ARD prior, consider a J − K − 1 MLP with linear output layer,

y =
J∑

j=1

vj S(

K∑
k=1

wk j xk).

The d’th order partial derivative of the mapping is

∂d y

∂(xk)d
=

∑
j

vj (wk j )
d S(d)(

∑
k

wk j xk),

where S(d) is the d’th derivative of S. Thus constraining the first layer weights has largest effect on higher order
derivatives, in the d’th order polynomial term (wk j )

d . This may partly explain the success of weight decay reg-
ularization, as this type of prior is an effective smoothing prior. On the other hand, to produce a linear mapping
with small high order derivatives, the first layer weights would need to be small, so that the sigmoids operate on
the linear part, and the second layer weights correspondingly larger. Thus the first layer weights do not measure
the first derivative, or the linear relation, no matter how important it is. The network may also contain direct input-
to-output weights to account for any linear relation (Neal, 1996), but the ARD coefficients of these weights are not
comparable to the ARD coefficients of the hidden layer weights. Note that adding input-to-output weights makes
the model less identifiable and may slow down the convergence of MCMC considerably (Neal, 1998).

In the following simple example we demonstrate how the non-linearity of the input has the largest effect on
the relevance score of the ARD, instead of the predictive or causal importance. The target function is an additive
function of eight inputs (see Fig. 1), with equal predictive importance for every input. The network weights (using
the evidence approximation (MacKay, 1992)), are shown in Fig. 2, from where it is easy to see how the weights
connected to the inputs with linear transformation are smallest. Fig. 3 shows the predictive importance and the
mean absolute values of the first and second order derivatives of the output with respect to each input, and the
relevance estimates from the ARD (posterior standard deviation of the Gaussian prior distributions for each weight
group). The example illustrates how the inputs with a large but linear effect are given low relevance measures by
ARD. For this reason one should be cautious of using the ARD to choose or remove the inputs in the models, or
to rank the variables according to importance in the analysis of the model. Note however, that ARD is often a very
favorable prior, as demonstrated in the case studies in this contribution, since it loosens the more strict assumption
that all the input weight groups should have the same variance (or non-linearity). So, unless the variance is actually
assumed to be the same, ARD should be used as a less informative but more probably correct prior.

3.4 Markov Chain Monte Carlo Method

Neal has introduced an MCMC implementation of Bayesian learning for MLPs (Neal, 1996). Good introduction
to basic MCMC methods and many applications in statistical data analysis can be found in (Gilks et al., 1996) and
a more theoretical treatment in (Robert and Casella, 1999).

In MCMC the complex integrals in the marginalization are approximated via drawing samples from the joint
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Figure 1: Example of ARD and importance of inputs. The target function is additive function of eight inputs.
The plots show the univariate transformations of the inputs. The predictive importance of every input is equal, in
RMSE terms, as the latent functions are scaled to equal variance over the uniform input distribution U (−3, 3)
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probability distribution of all the model parameters and hyperparameters. For example, with squared error loss
the best guess for model prediction (with additive zero-mean noise model), corresponds to the expectation of the
posterior predictive distribution in Eq.(3)

ŷnew = E[ynew|xnew, D] =
∫

f (xnew, θ)p(θ |D)dθ. (29)

This is approximated using a sample of values θ(t) drawn from the posterior distribution of parameters

ŷnew ≈ 1

N

N∑
t=1

f (xnew, θ(t)). (30)

Note that samples from the posterior distribution are drawn during the “learning phase”, which may be compu-
tationally very expensive, but predictions for the new data can be calculated quickly using the same stored samples
and Eq. (30).

In the MCMC, samples are generated using a Markov chain that has the desired posterior distribution as its
stationary distribution. In the framework introduced by Neal the hybrid Monte Carlo (HMC) algorithm (Duane
et al., 1987) is used for sampling the parameters and Gibbs sampling (Geman and Geman, 1984) for hyperparam-
eters. For other possible sampling schemes see, e.g., (Müller and Rios Insua, 1998; de Freitas et al., 2000). HMC
is an elaborate Monte Carlo method, which makes efficient use of gradient information to reduce random walk
behavior. The gradient indicates in which direction one should go to find states with high probability. The detailed
description of the algorithm is not repeated here, see (Neal, 1996) or the reference list in the web-page of the FBM
software2. In the Gibbs sampling, each parameter in turn is sampled from the full conditional distribution of the
parameter given all the other parameters and data. As an example, the hyperparameter αw1 in Eq. 21 is sampled
from

p(αw1 |D, w1, b1, w2, b2, σ 2, . . . ) = p(αw1 |w1) ∝ p(w1|αw1)p(αw1) (31)

which can be done efficiently if the prior is chosen to be a conjugate distribution. The Gibbs sampling is the main
sampling method in the BUGS system3 by Spiegelhalter et al., which is a Bayesian modeling tool very convenient
in experimenting with the hierarchical Bayesian models.

When the amount of data increases, the evidence from the data causes the probability mass to concentrate in a
smaller area and we need less samples from the posterior distribution. Also fewer samples are needed to evaluate
the mean of the predictive distribution than the tail-quantiles, such as the 10% and 90% quantiles. So depending on
the problem, some hundreds of samples may be enough for practical purposes. Note that due to autocorrelations
in the Markov chain, getting some 100 near-independent samples from a converged chain may require tens of
thousands of samples in the chain, which may require several hours of CPU-time on standard workstation.

For convergence diagnostics we used visual inspection of trends and the potential scale reduction method (Gel-
man, 1996). Alternative convergence diagnostics have been reviewed, e.g., in (Brooks and Roberts, 1999; Robert
and Casella, 1999). See (Vehtari et al., 2000) for discussion on the choice of the starting values and the number of
chains. Choosing the initial values with early-stopping can be used to reduce the burn-in time, when the chain has
not yet reached the equilibrium distribution. In general, the author’s experience suggests that the convergence of
the MCMC methods for MLP is slower than usually assumed, so that in many of the published studies, the MCMC
chains may have still been in the burn-in stage, producing a sort of early-stopping effect to the selection of the
model complexity.

3.5 On Sensitivity of the Bayesian Approach to the Prior Distributions

As explained above, the Bayesian approach is based on averaging probable models, where the probability is com-
puted from the chosen distributions for the noise models, parameters etc. Thus the approach may be more sensitive

2<http://www.cs.toronto.edu/~radford/fbm.software.html
3http://www.mrc-bsu.cam.ac.uk/bugs

<http://www.cs.toronto.edu/~radford/fbm.software.html
http://www.mrc-bsu.cam.ac.uk/bugs
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Figure 4: Test function in demonstrating the sensitivity of Bayesian MLP and early-stopped committee (MLP
ESC) to the wrong noise model. The figure shows one sample of noise realization and the resulting predictions,
with Bayesian MLP in the left and MLP ESC in the right figure. See text for explanation for the error bars.

to bad guesses for these distributions than more classical methods, where the model selection is carried out as an
external procedure, such as cross-validation that is based on fewer assumptions (mainly the assumption that the
training and validation sets are not correlated). In this respect, the Bayesian models can also be overfitted in terms
of classical model fitting, to produce too complex models and too small posterior estimates for the noise variance.
To check the assumptions of the Bayesian models, we always carry out the modeling with simple classical meth-
ods (like linear models, early-stopped committees of MLPs, etc.). If the Bayesian model gives inferior results
(measured from test set or cross-validated), some of the assumptions are questionable.

The following computer simulation illustrates the sensitivity of the Bayesian approach to the correctness of the
noise model, compared to the early-stopped committee (ESC), that is a robust reference method used in all the case
studies. The basic early stopping is statistically rather inefficient, as it is very sensitive to the initial conditions of
the weights and only part of the available data is used to train the model. These limitations can easily be alleviated
by using a committee of early stopping MLPs, with different partitioning of the data to training and stopping sets
for each MLP (Krogh and Vedelsby, 1995). When used with caution early stopping committee is a good baseline
method for MLPs.

The target function and data are shown in Fig. 4. The modeling test was repeated 100 times with different
realizations of Gaussian or Laplacian (double exponential) noise. The model was 1 − 10 − 1 MLP with a Gaussian
noise model. The figure shows one sample of noise and the resulting predictions. The 90% error bars, or confidence
intervals, are for the predicted conditional mean of the output given the input, thus the measurement noise is not
included in the limits. For the ESC the intervals are simply computed separately for each x-value from 100
networks. Computing the confidence limits for early-stopped committees is not straightforward, but this very
simple ad hoc method often gives similar results as the Bayesian MLP treatment. The summary of the experiment
is shown in Table 1. Using paired t-test, the ESC is significantly better than the Bayesian model when the noise
model is wrong. In this simple problem, both methods are equal for the correct noise model. The correct Bayesian
approach of integrating over the noise models, as explained in section 2.1 and shown in practice in a case problem
in section 4, would of course have no trouble in this example.

The implication of this issue in practical applications is that Bayesian approach usually requires more expert
work than the standard approach, either to devise reasonable assumptions for the distributions, or to include dif-
ferent options in the models and integrate over them, but that done, the results are in our experience consistently
better than with other approaches.



Lampinen & Vehtari, Bayesian approach for neural networks – Review and case studies 12

Table 1: Demonstration of the sensitivity of Bayesian MLP and MLP ESC to wrong noise model. For both models
the noise model was Gaussian, and the actual noise Gaussian or Laplacian (double exponential). The statistical
significance of the difference is tested by pairwise t-test, and the shown p-value is the probability of observing
equal or larger error in the means if the two methods are equal. The errors are RMS errors of the prediction from
the true target function.

Bayesian MLP MLP ESC Significance of the
Noise RMSE RMSE difference (two-tailed)
Gaussian 0.2779 0.2784 0.85
Laplacian 0.2828 0.2766 0.012

4 Case I: Regression Task in Concrete Quality Estimation

In this section we report results of using Bayesian MLPs for regression in a concrete quality estimation problem.
The goal of the project was to develop a model for predicting the quality properties of concrete, as a part of a large
quality control program of the industrial partner of the project. The quality variables included, e.g., compression
strengths and densities for 1, 28 and 91 days after casting, and bleeding (water extraction), spread, slump and
air-%, that measure the properties of fresh concrete. These quality measurements depend on the properties of the
stone material (natural or crushed, size and shape distributions of the grains, mineralogical composition), additives,
and the amount of cement and water. In the study we had 27 explanatory variables.

Collecting the samples for statistical modeling is rather expensive in this application, as each sample requires
preparation of the sand mixture, casting the test pieces and waiting for 91 days for the final tests. In the study we
had 215 samples designed to cover the practical range of the variables, collected by the concrete manufacturing
company. In small sample problems, the selection of correct model complexity is more important and needs to
be done with finer resolution than in problems with large amounts of data. This makes hierarchical Bayesian
models a tempting alternative. In the study we used MLP networks containing 10 hidden units (chosen by coarse
experiments, that indicated that this size of network contained a sufficient surplus of degrees of freedom compared
to the actually required number.) As a reference method we used an early stopping committee of 10 MLP networks,
with different division of data into training and stopping sets for each member. The networks were initialized to
near zero weights to guarantee that the mapping is smooth in the beginning.

In the following we report the results for one variable, air-%, which measures the volume percentage of air
in the concrete. As the air-% is positive and has a very skewed distribution (with mean 2.4% and median 1.7%)
we used logarithmic transformation for the variable. This ensures the positiveness and allows use of much simpler
additive noise models than in case of nearly exponentially distributed variable.

The performance of the models was estimated by 10-fold cross-validation. To compare the methods we used
a paired t-test with the CV. This method exhibits a somewhat elevated probability of type I error (to suggest a
difference when no difference exists) and low type II error (to miss a difference when it exists), as analyzed in
(Dietterich, 1998). The reference methods were early-stopped committee (MLP ESC), and a Gaussian Process
model (Neal, 1999), which is a non-parametric regression method, with priors imposed directly on the correlation
function of the resulting approximation. The GP approach is a very viable alternative for MLP models, at least in
problems where the training sample size is not very large.

The estimated prediction errors are presented in the Table 2. In the column Noise model the letter N indicates
normal noise model and tν Student’s t-distribution with unknown degrees of freedom ν, respectively. The MCMC
sampling for the basic models was done with the FBM software, and the sampling of the model with tν noise
distribution was done with Matlab-code derived from the Netlab4 toolbox.

The posterior values for ν, presented in Table 3, correspond to rather long tailed distribution for the model
residuals. With ARD the tails are even longer, as the reduction of some weights very near to zero corresponds to
simpler models and larger residuals for some samples.

4http://www.ncrg.aston.ac.uk/netlab/

http://www.ncrg.aston.ac.uk/netlab/
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Table 2: Performance comparison of various MLP models and a Gaussian Process (GP) model in predicting the
air-% variable in concrete manufacturing. The presented RMSE values show the standardized model residuals
relative to the standard deviation of the data. See Table 4 for pairwise comparison of the models.

Method Noise model ARD RMSE std
1. MLP ESC N 0.30 0.04
2. Bayesian MLP N 0.26 0.04
3. Bayesian MLP tν 0.24 0.03
4. Bayesian MLP N yes 0.21 0.02
5. Bayesian MLP tν yes 0.19 0.02
6. Gaussian Process tν yes 0.19 0.02

Table 3: Posterior analysis of the number of degrees of freedom ν in the t-distribution residual model. The table
shows the posterior mean and 10% and 90% quantiles of ν.

Method Noise model ARD E[ν] 10% 90%
Bayesian MLP tν 3.5 2.3 5.0
Bayesian MLP tν yes 2.8 2.0 3.5

Table 4 shows p-values for pairwise comparisons of the methods, obtained from paired t-tests. Note that
the test quantity in comparing the predictive performance of the models in Tables 2 and 4 is RMS error, even
though the long-tailed residual models allow large errors, that cost much in the RMS error function. This serves
as posterior model checking, since the RMSE is the relevant error measure in the application, and we want to be
sure that the long tails of model residuals has not led to undermodeling. In general, making the residual model
more flexible shifts the posterior mass towards simpler (a priori more probable) models, since high likelihood can
be obtained by matching the residual model and the realized residuals.

Some conclusions from the results are listed in the following.

• The best models, Gaussian Process (GP) model and Bayesian MLP, with ARD and Student’s tν-distribution
with unknown degrees of freedom as noise model, had equal performance.

• The best models were those with most flexible (less informative) priors. Within MLP models the tν noise
model outperformed all the Gaussian noise models on confidence level at least 98% (p < 0.02), and the
MLP with tν without ARD at confidence level 93% (p < 0.07, often considered as marginally significant).

• The early-stopped committee MLP ESC and the basic Bayesian MLP with Gaussian noise model did not
differ significantly. Just adding the Bayesian treatment for the basic model does not help in this application,
if the possibility for using less informative and hierarchical priors is not utilized.

• Adding ARD made the Bayesian model significantly better (p < 0.01) than MLP ESC.

• Using just the longer tail noise model tν without ARD made the Bayesian model better than the ESC MLP
at confidence level 95% (p < 0.05).

Fig. 5 shows the distribution of the ARD coefficients for the model 5. The variable names are not disclosed by
request of the industrial partner of the project. The variable indices printed in bold face correspond to the variables
chosen in the final model. The selection was done manually, aided by backward elimination technique.

The computational burden of the Bayesian approach in this case study was rather heavy. As an example,
sampling of the best model, using ARD and a t-distributed noise model with unknown degrees of freedom, took
about 16 hours of CPU time on a 660 MHz Compaq alpha workstation. The Matlab-implementation was roughly
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Table 4: Pairwise comparisons of various MLP models in predicting the air-% variable. The values in the matrix
are p-values, obtained from paired t-tests. The p-values have been rounded up to nearest whole number in percent
(so the value 1 indicates a p-value less than 0.01). The p-values are reported in the column of the winning method.
Looking row-wise, you see which methods out-performed the method of that row.

Comparison
Reference method Noise model ARD 1. 2. 3. 4. 5. 6.
1. MLP ESC N 15 5 1 1 1
2. Bayesian MLP N · 7 4 1 2
3. Bayesian MLP tν · · 18 7 7
4. Bayesian MLP N yes · · · 2 14
5. Bayesian MLP tν yes · · · · 42
6. Gaussian Process tν yes · · · · ·
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Figure 5: Posterior distribution of the ARD coefficients (standard deviation of the Gaussian prior of the input
weights) for the model 5. The variable indices printed in bold face are those chosen in the final model.
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four times slower than the corresponding native C-implementation in the FBM software, that was used to run the
simpler models.

The main HMC parameters were: the length of individual chains was 100, step size 0.5 with Neal’s heuristic
step size adjustment, persistence parameter 0.9, and window length in windowing 5. The burn-in stage contained
16 000 chains and the actual sampling 80 000 chains, from which 100 samples were stored for the posterior
analysis.

For comparison, the number of iterations corresponds to about 1000 trainings of error-minization models with
1000 iterations in each training. To find values for two hyperparameters by cross-validation, with discretization
of 10 possible values for each hyperparameter, would require about the same amount of CPU time (note that
the 10-fold CV error would require 10 000 iterations). Just in the ARD, there were 27 hyperparameters for the
input weights, for which it would have been practically impossible to search for any regularizers by CV. Even the
simple forward selection of the inputs in the model, with fixed regularization, would have required

∑27
n=2 n = 377

CV-error evaluations, requiring the same order of magnitude of CPU time as the Bayesian model. The Bayesian
approach is undeniably expensive in computational load, but in complex real world problems there are few cheap
alternatives.

In the review above we have presented the results for only one variable in the study. Rather similar results
were obtained for the other variables, showing that a worked out Bayesian model with realistic noise models and
priors was consistently the best model, measured by cross-validation. The Bayesian MLP and the Gaussian Process
model had very similar performance for all the target variables, so that the choice between them in this application
is a matter of convenience. Some hierarchical linear models were also tested in the problem, but the preliminary
results were so clearly inferior to those of basic MLP models (MLP ESC, Bayesian MLP + Normal noise model)
that those models were not analyzed further and are not reported here. Preliminary tests were also performed with
the evidence framework, but the re-estimating algorithm of the hyperparameters (MacKay, 1992) did not converge
on realistic network sizes, which was expected as it is well known that the Gaussian approximation for the posterior
does not hold when the number of samples is small.

5 Case II: Inverse Problem in Electrical Impedance Tomography

In this section we report results on using Bayesian MLPs for solving the ill-posed inverse problem in electrical
impedance tomography (EIT). The full report of the proposed approach is presented in (Lampinen et al., 1999).

The aim in EIT is to recover the internal structure of an object from surface measurements. A number of
electrodes are attached to the surface of the object and current patterns are injected through the electrodes and
the resulting potentials are measured. The inverse problem in EIT, estimating the conductivity distribution from
the surface potentials, is known to be severely ill-posed, thus some regularization methods must be used to obtain
feasible results (Vauhkonen et al., 1997).

Fig. 6 shows a simulated example of the EIT problem. The volume bounded by the circles in the image
represent gas bubble floating in liquid. The conductance of the gas is much lower than that of the liquid, producing
the equipotential curves shown in the figure. Fig. 7 shows the resulting potential signals, from which the image is
to be recovered.

In (Lampinen et al., 1999) we proposed a novel feedforward solution for the reconstruction problem. The ap-
proach is based on computing the principal component decomposition for the potential signals and the eigenimages
of the bubble distribution from the autocorrelation model of the bubbles. The input to the MLP is the projection
of the potential signals to the first principal components, and the MLP gives the coefficients for reconstructing
the image as weighted sum of the eigenimages. The projection of the potentials and the images to the eigenspace
reduces correlations from the input and the output data of the network and detaches the actual inverse problem
from the representation of the potential signals and image data.

The reconstruction was based on 20 principal components of the 128 dimensional potential signal and 30
eigenimages with resolution 41 × 41 pixels. The training data consisted of 500 simulated bubble formations with
one to ten overlapping circular bubbles in each image. To compute the reconstructions MLPs containing 30 hidden
units were used. Models tested were MLP ESC and Bayesian MLP (see section 4). Because of the input projection,
ARD prior should not make much difference in results (this was verified in preliminary tests), and so a model with
ARD prior was not used in full tests.
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Figure 6: Example of the EIT measurement. The sim-
ulated bubble formation is bounded by the circles. The
current is injected from the electrode with the lightest
color and the opposite electrode is grounded. The gray
level and the contour curves show the resulting poten-
tial field.
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Figure 7: Relative changes in potentials compared to
homogeneous background. The eight curves corre-
spond to injections from eight different electrodes.

Table 5: Errors in reconstructing the bubble shape and estimating the void fraction from the reconstructed images.
See text for explanation of the models.

Method Classification error
%

Relative error in VF
%

Relative error in
direct VF, %

TV-inverse 9.7 22.8 -
MLP ESC 6.7 8.7 3.8
Bayesian MLP 5.9 8.1 3.4

The reference method in the study was iterative inversion of the EIT forward model using total variation
regularization (see (Vauhkonen et al., 1997) for further information). In this approach the conductivity distribution
is sought to minimize a cost function, that is defined as the squared difference of the measured potentials and the
potentials computed from the conductivity distribution by the forward model. The minimization was carried out
by Newtons method, requiring about 20 iteration steps. As it was known that the bubbles and the background
had constant conductivities, total variation regularization was used. The regularizer penalty function was the total
sum of absolute differences between adjacent area elements, forcing the solution to be smoother, but not penalizing
abrupt changes (total change in a monotonic curve is equal independent of the steepness, in contrast to, say, squared
differences that pull the solution towards low-gradient solutions).

Fig. 8 shows examples of the image reconstruction results. Table 5 shows the quality of the image reconstruc-
tions, measured by the error in the void fraction and the percentage of erroneous pixels in the segmentation, over
the test set. An important goal in this process tomography application was to estimate the void fraction, which is
the proportion of gas and liquid in the image. With the proposed approach such goal variables can be estimated
directly without explicit reconstruction of the image. The last column in Table 5 shows the relative absolute error
in estimating the void fraction directly from the projections of the potential signals.

In solving real problems with non-linear learning models the ability to assess the confidence of the output is
necessary. Fig. 9 shows the scatter plot of the void fraction versus the estimate by the Bayesian MLP, together with
confidence intervals. The 10% and 90% quantiles are computed directly from the posterior predictive distribution
of the model output. When the void fraction is large, the forward model becomes more non-linear (as the current
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Figure 8: Example of image reconstructions with MLP ESC (upper row), Bayesian MLP (middle row) and TV
inverse (lower row). In the MLP plots the actual bubble is shown by the gray blob and contour of the detected
bubble as the black line. For the TV inverse the estimated bubble is shown as the gray blob, with the same actual
bubbles as in the upper images.

curls around the non-conducting disturbances) and the inverse problem becomes more ill-posed, especially for
disturbances far from the electrodes. This ambiguity is clearly visible in the confidence intervals, so that the CI’s
are wide when the model may make large errors.

Although the model was based on simulated data it has given very promising results in the preliminary experi-
ments with real data.

6 Case III: Classification Task in Forest Scene Analysis

In this section we report results of using Bayesian MLP for classification of forest scenes. The objective of the
project was to assess the accuracy of estimating the volumes of growing trees from digital images. To locate the
tree trunks and to initialize the fitting of the trunk contour model, a classification of the image pixels to tree and
non-tree classes was necessary. The main problem in the task was the large variance in the classes. The appearance
of the tree trunks varies in color and texture due to varying lighting conditions, epiphytes (such as gray or black
lichen on white birch), and species dependent variations (such as the Scotch pine, with bark color ranging from
dark brown to orange). In the non-tree class the diversity is much larger, containing e.g., terrain, tree branches and
sky. This diversity makes it difficult to choose the optimal features for the classification.

In the work reviewed here (Vehtari et al., 1998) we used a large number of potentially useful features. There
was a total of 84 features: 36 Gabor filters (6 orientations × 6 frequencies) that are generic features related to
shape and texture, and 46 common statistical features such as texture filters and color histogram features. Due to
the large number of features, many classifier methods suffer from the curse of dimensionality. The results of this
case demonstrate that the Bayesian MLP is very competitive in this high dimensional problem.

A total of 48 images was collected by using an ordinary digital camera in varying weather conditions. The
labeling of the image data was done by hand via identifying many types of tree and background image blocks with
different textures and lighting conditions. In this study only pines were considered.

To estimate classification errors of different methods we used eight-fold cross-validation error estimate, i.e., 42
of 48 pictures were used for training and the six left out for error evaluation, and this scheme was repeated eight
times.

The MLP models contained 20 hidden units, and logistic output layer. The other tested models were:
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Figure 9: Scatterplot of the void fraction estimate with 10% and 90% quantiles.

Table 6: CV error estimates for forest scene classification. See text for explanation of the different models.
Classification std Comparison

Reference method error % 1. 2. 3. 4. 5.
1. CART 30 2 1 1 1 1
2. KNN LOOCV 20 2 · 1 1 1
3. MLP ESC 13 1 · · 37 27
4. Bayesian MLP 12 1 · · · 25
5. Bayesian MLP + ARD 11 1 · · · ·

• KNN LOOCV, K -nearest-neighbor classification, where K is chosen by leave-one-out cross-validation 5,
and

• CART, Classification And Regression Tree (Breiman et al., 1984).
CV error estimates are collected in Table 6. The differences are not very significant, partly due to having only

8-fold cross-validation, but mostly because the different images had very different error rates. This causes extra
variance to the classification results during the CV, which reduces the significance of the differences, even though
the variance comes from the variations in the task, not variations of the methods. All the MLP models clearly win
over the other methods, while the best method, Bayesian MLP with ARD, is just slightly better than the other MLP
models (p < 0.27).

Fig. 10 shows an example image classified with different methods. Visually, the Bayesian MLP with ARD
gives less spurious detections than the other methods. The ARD reduces the effect of features weakly correlating
with the classification, and thus larger windows and robust features dominate. On the other hand this causes the
classifier to miss some thin trunks and parts of trunks that are not clearly visible.

5http://www.cs.utoronto.ca/~delve/methods/knn-class-1/home.html

http://www.cs.utoronto.ca/~delve/methods/knn-class-1/home.html
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KNN CART MLP ESC Bayes−MLP Bayes−MLP +ARDForest scene

Figure 10: Examples of a classified forest scene. See text for explanation of the different models.

7 Discussion and Conclusions

We have reviewed the Bayesian approach for neural networks, concentrating on the MLP model and MCMC
approximation for computing the marginal distribution of the end variables of the study from the joint posterior of
all unknown variables given the data. In three real applications we have assessed the performance of the Bayesian
approach and compared it to other methods.

The most important advantage of the Bayesian approach in the case studies was the possibility to handle the
situation where some of the prior knowledge is lacking or vague, so that one is not forced to guess values for
attributes that are unknown. The best Bayesian models were mostly those with least restrictive hierarchical priors,
so that even though the Bayesian approach is based on inherently subjective selection of prior probabilities, the
final Bayesian models were much less subjective than the corresponding classical (error minimization) methods.
For example, we did not have to (subjectively) guess in advance the number of degrees of freedom in the models,
the distribution of model residuals, or the degree of complexity (non-linearity) of the model with respect to each
input variable, which are pre-fixed in Maximum Likelihood models. There are ways to handle the selection of total
model complexity, to some degree, in the classical approach (such as the early-stopped committee of MLP models)
but the use of hierarchical models to handle the more difficult issues is characteristic of the Bayesian approach.

An important issue in Bayesian modeling is the sensitivity of the results to the prior assumptions. The goodness
of the model is measured by the probability of the model given the data and the prior assumptions, so that incorrect
assumptions yield wrong models (with respect to reality) having large probabilities. The Bayesian approach is
more sensitive to such bad guesses than the classical approach, if in the latter the choice of the best method is
based on partly different assumptions than the choice of the model parameters (e.g., cross-validation of error-
minimizing models). In practical applications, the Bayesian approach usually requires more expert work than the
standard approach, either to devise reasonable assumptions for the distributions, or to include different options in
the models and integrate over them, which is the "correct" Bayesian approach.

Earlier published studies with conclusions comparable to those of this paper include (MacKay, 1994; Neal,
1996; Thodberg, 1996; Rasmussen, 1996; Vivarelli and Williams, 1997; Husmeier et al., 1998; Neal, 1998; Penny
and Roberts, 1999). Cited studies include both regression and classification cases. In classification, the likelihood
model (usually) contains no hyperparameters, whereas in regression problems the noise model is a crucial part
of the solution. In the cited studies noise model was normal or t-distribution with fixed shape. To the authors
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knowledge, comparable studies regarding the noise models in Bayesian MLP’s has not been published earlier. In
other Bayesian models these issues have been discussed in, e.g., (Gelman et al., 1995; Spiegelhalter et al., 1996).

In (MacKay, 1994) MLP with ARD and normal noise model was used in the evidence framework in real re-
gression problem. Instead of using longer tailed noise model, possible outliers where omitted by hand. Evaluation
of the evidence was problematic and results were improved by using validation set to choose best models to be used
as committee. Without ARD, errors were significantly increased. This model won the ASHRAE’s 1993 prediction
competition by a significant margin.

In (Thodberg, 1996) a slightly modified ARD, where the ranking of the ARD hyperparameters was manually
predetermined, performed well in the evidence framework in a real case problem. Normal noise model was used.

In (Penny and Roberts, 1999) the evidence framework was assessed in artificial and real problems. The per-
formance was comparable to the best alternative methods, which is in accordance to the results in our experiments
(the empirical Bayesian approach used should be somewhat inferior to the full Bayesian approach, and in our
studies the basic model with Gaussian noise was also similar or a bit better than the MLP ESC). The other main
conclusion was that the ARD is rarely useful, and then only in case when there are many irrelevant inputs, which
is in contradiction to our results. It is quite possible that the hierarchical ARD prior performs considerably better
in the full Bayesian approach than in the evidence approach.

In the rest of the cited studies, similar MCMC method for the full Bayesian approach was used as in this paper.
In (Neal, 1996), an MLP model with ARD and t4-distribution noise model performed better than alternative

methods in real regression problem. The performance without ARD or with normal noise model was not com-
pared. In real classification problem there was no significant benefit of using ARD. Convergence problems were
suspected. In artificial problems with irrelevant inputs ARD improved results.

In (Rasmussen, 1996), MLP and GP models with ARD and normal noise model performed better than non-
Bayesian models (linear model, KNN, MARS, and MLP ESC) in real and artifical regression problems.

In (Vivarelli and Williams, 1997) the evidence framework was compared to MCMC method in real classi-
fication problem. The evidence framework performed less well for smaller training sets, but with full data set
performance difference was not significant. Conclusion was that as the number of data points gets smaller than the
number of weights in the MLP, the Gaussian approximation used in the evidence framework is not good. In this
case problem, use of ARD prior did not change classification results significantly.

Several benchmark problems were studied in (Neal, 1998). All the problems were regression tasks, using
normal noise model. The main conclusion was that no proper comparison to alternative method (MLP ESC) could
be made, because of 1) apparent lack of convergence of some runs of MCMC and 2) serious flaw in the noise
model for one of the benchmark tasks. In cases where MCMC had probably converged and noise model was
correct, Bayesian approach performed better than MLP ESC, and the model with ARD prior generally performed
a bit better than corresponding model without ARD.

In (Husmeier et al., 1998) several classification tasks were studied. The main conclusions were that 1) the
results were equal or better to those with alternative (evidence or non-Bayesian) methods, 2) the results were
not sensitive to the exact values of the highest level hyperprior parameters and 3) the performance of ARD was
controversial, as ARD improved the results in three cases and considerably deteriorated the results in two cases.
As a possible reason for this the authors note that the convergence of MCMC chains with ARD is slower than
without, and the results in the paper may be from non-equilibrium states. This is in accordance with our results.
In our work we used MCMC diagnostics to ensure convergence, and ARD never gave worse results, but indeed
increased the burn-in time.

To summarize the conclusions of this paper, the Bayesian approach for MLP networks, using MCMC approxi-
mation for the marginalization, gave better results than alternative non-Bayesian methods in all the case problems.
In general the best models were those with least informative priors, underlining the importance of explicitly spec-
ifying the lack of knowledge, instead of guessing the values for attributes that are unknown.

It must be emphasized, that the results of data analysis depend on the assumptions and approximations made –
thus the Bayesian approach does not automatically give better results than a classical approach. Even though the
Bayesian models do not need validation data to set the model complexity, validation of the final model is essential,
as with any other modeling approach.
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