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Relevance of this talk

e Practical diagnostic tool

- Monte Carlo, MCMC, quasi MC, importance sampling,
particle filtering

- stochastic optimization, stochastic variational inference
- estimating divergences
- assessing distributional approximations
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(Markov chain) Monte Carlo

~ p(0)
Ep[h(0)] = = Z 6))

(%))

¢ Consistent and unbiased (MCMC asymptotically)
e [f variance is finite — central limit theorem (CLT)

Var[E(h(8))] ~ Var[h(0)]/S
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(Markov chain) Monte Carlo

~ p(0)
S
Z R

Ep[h(0)

0) \

¢ Consistent and unbiased (MCMC asymptotically)
e [f variance is finite — central limit theorem (CLT)

Var[E(h(8))] ~ Var[h(0)]/S

In case of MCMC effective sample size (ESS) takes into
account the within and between chain dependencies
(see, e.g. Vehtari et al., 2021)
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(Self-normalized) Importance sampling

69 ~ g(0)
1§~ g5 () (s) _ P(O)
Ep[h(e)]QEZh(e yw'®) where w = 5(6®)
s=1

e |S estimate is consistent and unbiased
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(Self-normalized) Importance sampling

69 ~ g(0)
1§~ g5 () (s) _ P(O)
Ep[h(e)]QEZh(e yw'®) where w = 5(6®)
s=1

e |S estimate is consistent and unbiased

Self-normalized

32 h(0©)wlS)

Boh(0)] ~ =g

e Self-normalized IS estimate is consistent with bias O(1/5)
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(Self-normalized) Importance sampling
0 ~ g(0)

s
_ P9
> h(eEw), where w(®) = o(0®)

e |S estimate is consistent and unbiased

Self-normalized

32 h(0©)wlS)

Boh(0)] ~ =g

e Self-normalized IS estimate is consistent with bias O(1/5)

e If h(A)w and w have finite variance — CLT
- variance goes down as 1/S
- ESS takes into account the variability in the weights
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Some uses of importance sampling

Fast leave-one-out cross-validation
Fast bootstrapping
Fast prior and likelihood sensitivity analysis

Particle filtering
Improving distributional approximation (e.g VI)
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Estimating divergences

e f-divergences can be presented as expectations of the
density ratio w(#)
S
1
L(p 11 9) = Eonglf(w(9))] ~ g > (W)

s=1
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Estimating divergences

e f-divergences can be presented as expectations of the
density ratio w(0)
S
1
L(p 11 9) = Eonglf(w(9))] ~ g > (W)

Objective f(w)

Exclusive KL  log(w)

Inclusive KL wlog(w)

2 (W2 — w)/2
a-divergence  (w* — w)/(a(a —1))
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Estimating divergences

e f-divergences can be presented as expectations of the
density ratio w(0)
S
1
L(p 11 9) = Eonglf(w(9))] ~ g > (W)

s=1

Objective f(w)

Exclusive KL  log(w)

Inclusive KL wlog(w)

2 (W2 — w)/2
a-divergence  (w* — w)/(a(a —1))

e Basis of stochastic variational inference
- w(0) connects IS and SVI
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Central limit theorem

e We would like to have finite variance and CLT

- sometimes these can be guaranteed by construction,
e.g., by choosing g(#) so that w(¢) is bounded
- generally not trivial
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Central limit theorem

e We would like to have finite variance and CLT

- sometimes these can be guaranteed by construction,
e.g., by choosing g(#) so that w(¢) is bounded
- generally not trivial

e [f variance is infinite, but mean is finite
— generalized CLT and asymptotic consistency
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Central limit theorem

e We would like to have finite variance and CLT

- sometimes these can be guaranteed by construction,
e.g., by choosing g(#) so that w(¢) is bounded
- generally not trivial

e [f variance is infinite, but mean is finite
— generalized CLT and asymptotic consistency

* Pre-asymptotic and asymptotic behavior can be really
different!
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Simple example: x ~ N, f4, b, t, tp

e N has all moments finite
e {, has less than v fractional moments
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Simple example: x ~ N
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Simple example: x ~ t;, b, &
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Simple example: x ~ t;, b, &
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Simple example: x ~ t;, b, &
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Simple example:
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Pareto-k diagnostic

Pickands (1975): many distributions have tail (x > u) that is well
approximated with Generalized Pareto distribution (GPD)

0.0 25U 5.0 75 10.0
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Pareto-k diagnostic

Pickands (1975): many distributions have tail (x > u) that is well
approximated with Generalized Pareto distribution (GPD)

4 6 8 10

Aki.Vehtari@aalto.fi — @avehtari

ChHl-F-—=—=== === = = = = =



Pareto-k diagnostic

Pickands (1975): many distributions have tail (x > u) that is well
approximated with Generalized Pareto distribution (GPD)

Tail

ty
Generalized Pareto k=1/4

4 6 8 10
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Pareto-k diagnostic

Pickands (1975): many distributions have tail (x > u) that is well
approximated with Generalized Pareto distribution (GPD)
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Pareto-k diagnostic

GPD has a shape parameter k,
and 1/k finite fractional moments

0.0 25U 50 75 10.0
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Pareto-k diagnostic: x ~ N

0.0

"~ —0.51
< -1.01
-1.51

1'07 T T T T T

N

E[x?]
= DN
[N @]é)]

<

Pareto—k
|_\

Aki.Vehtari@aalto.fi — @avehtari



Pareto-k diagnostic: x ~ t
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Pareto-k diagnostic: x ~ t
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Pareto-k diagnostic: x ~ t;
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Pareto-k diagnostic: x ~ t
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Pareto-k diagnostic is pre-asymptotic diagnostic

We can make estimates only based on what we have observed
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Pareto-k diagnostic: thick-tailed bounded distribution
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Thick-tailed bounded distributions in practice

e Thick-tailed distributions are common in importance
sampling and divergence estimation

- if g( ) has thinner tails than p(#)
) is likely to have thick tails

w(0
- if g( ) has thicker tails than p(¢)
w(0) is bounded, but that bound can be far
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High-dimensional spaces are scary
p(8) = N, g(8) = t; which has thicker tails than normal, and thus ratios
w(0) are bounded. S = 10°. D varies. Estimating the normalization.
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High-dimensional spaces are scary

p(8) = N, g(8) = t; which has thicker tails than normal, and thus ratios

w(0) are bounded. S = 10°. D varies. Estimating the normalization.
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High-dimensional spaces are scary
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High-dimensional spaces are scary
p(0) = N, g(#) = t; which has thicker tails than normal, and thus ratios

w(0) are bounded. S = 10°. D varies. Estimating the normalization.
-10°
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Concentration of measure and typical sets
Example continued: p(8) = N (blue), g(8) = t; (red) with equal
variance and thicker tails, and thus importance ratios are bounded.
S=10% D=512.
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Concentration of measure and typical sets
Example continued: p(8) = N (blue), g(8) = t; (red) with equal
variance and thicker tails, and thus importance ratios are bounded.
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Concentration of measure and typical sets
Example continued: p(8) = N (blue), g(8) = t; (red) with equal
variance and thicker tails, and thus importance ratios are bounded.
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High-dimensional spaces are scary

p(0) = N, g(#) = t; which has thicker tails than normal, and thus ratios

w(0) are bounded. S = 10°. D varies.
-10°
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Pareto-k and convergence rate

e CLT says that to half the MCSE, need 4 times bigger S
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Pareto-k and convergence rate

e CLT says that to half the MCSE, need 4 times bigger S
e |f Pareto-k ~ 0.7, to half the MCSE, need 10 times bigger S
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Pareto-k and convergence rate

e CLT says that to half the MCSE, need 4 times bigger S
e |f Pareto-k ~ 0.7, to half the MCSE, need 10 times bigger S
e If Pareto-k > 1, to half the MCSE, nothing helps
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Pareto smoothed importance sampling (PSIS)

* Replace the largest observed ratios with expected ordered
statistics of the fitted Pareto distribution

e corresponds to modeling of the tail, and as usual, modeling
reduces the noise
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How many fractional moments are needed?
For finite variance

Objective f(w) Moments of w needed
IS normalization w 2
Exclusive KL log(w) o
Inclusive KL w log(w) 2+90
X2 (w? —w)/2 4
a-divergence (w® —w)/(a(ax— 1)) 2a
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How many fractional moments are needed?
For finite variance

Objective f(w) Moments of w needed
IS normalization w 2
Exclusive KL log(w) o
Inclusive KL w log(w) 2+90
X2 (w? —w)/2 4
a-divergence (w® —w)/(a(ax— 1)) 2a

For small error with practical sample sizes and Pareto smoothing

Objective f(w) Moments of w needed
IS normalization w 1.4
Exclusive KL log(w) )
Inclusive KL w log(w) 1.4+6
X2 (w? —w)/2 2.8
a-divergence (w® —w)/(acx — 1)) 1.4
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Estimating Pareto-k

e Fast empirical profile Bayes quadrature estimate by Zhang
and Stephens (2009)

- excellent accuracy compared to exact Bayesian
inference

- see more in Vehtari, Simpson, Gelman, Yao & Gabry
(2019)
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https://arxiv.org/abs/1507.02646
https://arxiv.org/abs/1507.02646

Pareto-k diagnostic use cases

e Importance sampling

- leave-one-out cross-validation (Vehtari et al., 2016,
2017; Burkner at al, 2020)

- Bayesian stacking (Yao et al., 2018, 2021, 2022)

- leave-future-out cross-validation (Blrkner et al., 2020)

- Bayesian bootstrap (Paananen et al, 2021, online
appendix)

- prior and likelihood sensitivity analysis (Kallioinen et al.,
2021)

- improving distributional approximations (Yao et al.,
2018; Zhang et al., 2021; Dhaka et al., 2021)

- implicitly adaptive importance sampling (Paananen et
al., 2021)

e Stochastic optimization (Dhaka et al., 2020)
¢ Divergences and gradients in VI (Dhaka et al., 2021)
e MCMC (Paananen et al., 2021)

Aki.Vehtari@aalto.fi — @avehtari



Co-authors and references

The main reference

® Vehtari, Simpson, Gelman, Yao, and Gabry (2019). Pareto smoothed importance

sampling. arXiv:1507.02646Vv6.

Use cases

Birkner, Gabry & Vehtari (2020).
Approximate leave-future-out
cross-validation for time series models. J
Stat Comp and Simul, 90(14):2499-2523.

Dhaka, Catalina, Andersen, Magnusson,
Huggins & Vehtari (2020). Robust, accurate
stochastic optimization for variational
inference. NeurlPS 2020, 33:10961-10973.

Dhaka, Catalina, Welandawe, Andersen,
Huggins & Vehtari (2021). Challenges and
opportunities in high-dimensional variational
inference. NeurlPS 2021, to appear.

Kallionen, Paananen, Blrkner & Vehtari
(2021). Detecting and diagnosing prior and
likelihood sensitivity with power-scaling.
arXiv preprint arXiv:2107.14054

Paananen, Piironen, Burkner, and Vehtari
(2021). Implicitly adaptive importance
sampling. Statistics and Computing, 31, 16.

Aki i@aalto.fi — @avehtari

Vehtari, Gelman, and Gabry (2017).
Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC.
Statistics and Computing, 27(5):1413-1432.

Yao, Vehtari, Simpson, and Gelman (2018).

Yes, but Did It Work?: Evaluating Variational
Inference. 35th ICML, PMLR, 80:5577-5586.

® Yao, Vehtari, Simpson & Gelman (2018).

Using stacking to average Bayesian
predictive distributions (with discussion).
Bayesian Analysis, 13(3):917-1003,

Yao, Pir§, Vehtari & Gelman (2021).
Bayesian hierarchical stacking: Some
models are (somewhere) useful. Bayesian
Analysis, doi:10.1214/21-BA1287.

Yao, Vehtari & Gelman (2022). Stacking for
non-mixing Bayesian computations: The
curse and blessing of multimodal posteriors.
JMLR, accepted for publication.



Pareto smoothed importance sampling (PSIS)

Empirical comparison to the theory

PSIS
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Pareto-k and convergence rate

Variance of the estimate goes down as S~¢, where «a is
convergence rate
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