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Statistical Appendix: Cox survival analysis using Gaussian process priors

In this supplementary file, we describe in a detail how to apply the Gaussian processes (GP) in Cox survival
analyses using the proportional hazards model. This statistical methodology is applied in the paper “Stratification
of the risk for gastrointestinal stromal tumour recurrence after surgery: a combined analysis of ten population-
based cohorts”.

For the individual i, where i = 1, . . . , n, we have observed survival time yi (possibly right censored) with a
censoring indicator δi, where δi = 0 if the ith observation is uncensored and δi = 1 if the observation is right
censored. The traditional approach to analyze continuous time-to-event data is to assume the Cox proportional
hazard function1

hi(t) = h0(t) exp(xT
i β), (1)

where h0 is the unspecified baseline hazard rate, xi is the d× 1 vector of covariates for the ith patient and β is the
vector of regression coefficients. The matrix X = [x1, . . . ,xn]T of size n× d includes all covariate observations.

The Cox model with a linear predictor can be extended to more general form to enable, for example, additive
and non-linear effects of covariates.2,3 We extend the proportional hazards model by

hi(t) = exp(log(h0(t)) + ηi(xi)), (2)

where the linear predictor is replaced with the latent predictor ηi depending on the covariates xi. By assuming a
Gaussian process prior4 over η = (η1, . . . , ηn)T , smooth nonlinear effects of continuous covariates are possible,
and if there are dependencies between covariates, the GP can model these interactions implicitly. A zero-mean GP
prior is set for η, which results in the zero-mean multivariate Gaussian distribution

p(η|X) = N (0, C(X,X)), (3)

where C(X,X) is the n × n covariance matrix whose elements are given by the covariance function of the GP.
The covariance function defines the smoothness and scale properties of the latent function, and we choose a sum
of constant and non-stationary neural network covariance function5
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where σc is the constant covariance part, x̃ = (1, x1, . . . , xd)T is an input vector augmented with 1, and Σ =
diag(σ2

0 ,σ
2
1 , . . . ,σ

2
d) is a diagonal weight prior, where σ2

0 is a variance for the bias parameter controlling the func-
tions offset from the origin and σ2

1 , . . . ,σ
2
d are the variances for the weight parameters. The constant covariance

part models the mean hazard level, and the neural network covariance part models the nonlinear function. A
neural network covariance function was chosen, since it is suitable for modeling saturating effects, and based on
cross-validation, it resulted in a better predictive performance as compared to a squared exponential or Matérn
covariance function. The constant covariance was fixed to σc = 1, and uniform prior on σ0,σ1, . . . ,σd was used
for hierarchical standard deviations as recommended by Gelman6.

A piecewise log-constant baseline hazard7 is assumed by partitioning the time axis into K intervals with equal
lengths: 0 = s0 < s1 < s2 < . . . < sK , where sK > yi for all i = 1, . . . , n. In the interval k, where
k = 1, . . . ,K, hazard is assumed to be constant:

h0(t) = λk for t ∈ (sk−1, sk]. (5)

For the ith individual the hazard rate in the kth time interval is then

hi(t) = exp(fk + ηi(xi)), t ∈ (sk−1, sk], (6)

where fk = log(λk). To assume smooth hazard rate functions, we place another Gaussian process prior for
f = (f1, . . . , fK)T . We define a vector containing the mean locations of K time intervals as τ = (τ1, . . . , τK)T .
The GP prior assumed for the logarithm of the hazard rate results in

p(f |τ ) = N (0, Cτ (τ , τ )), (7)
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where the covariance matrix Cτ is of size K × K. In the study, we fixed K=200. The covariance function for
modelling of the hazard rate was chosen to be the neural network covariance function.

The likelihood contribution for the possibly right censored ith observation (yi, δi) is assumed to be

li = hi(yi)(1−δi) exp
(
−
∫ yi

0
hi(t)dt

)
. (8)

Using the piecewise log-constant assumption for the hazard rate function, the contribution of the observation i for
the likelihood results in

li = [λk exp(ηi)](1−δi) exp
(
−[(yi − sk−1)λk +

k−1∑

g=1
(sg − sg−1)λg] exp(ηi)

)
, (9)

where yi ∈ (sk−1, sk].3,7 By applying the Bayes theorem, the prior information and likelihood contributions are
combined, and the posterior distribution of the latent variables can be computed. Due to the form of the likelihood
function, the resulting posterior becomes non-Gaussian and analytically exact inference is intractable.

We use a Gaussian approximation to integrate over the latents variables η and f . The posterior distribution
is approximated by doing a second order Taylor expansion of the logarithm of the posterior around the posterior
mode, as presented by Rasmussen and Williams.4 We select the hyperparameters of the covariance function using
type II maximum a posterior (MAP) estimation. In the computation of predictive densities, we use Monte Carlo
approximation by drawing 10000 latent samples from the joint Gaussian posterior.

The following transformations were used for the covariates. Square root transformation was applied to reduce
the skewness of tumour size and mitotic count. Square root of tumor size, square root of mitotic count and age
were normalized to have zero mean and unit variance. Tumour rupture status was coded as missing=[0,0], no-
rupture=[1,0] and rupture=[0,1]. The site of ruptured tumour was coded as a binary indicator vector.

The receiver operating characteristics (ROC) curves and the corresponding areas under the curve (AUC) for
the pooled series were computed using ten-fold cross-validation to simulate predictive accuracy in an unseen
population8. The Bayesian confidence intervals and pairwise comparison probabilities (Bayesian p-values) for
the AUC values for the pooled and validation series were computed using Bayesian bootstrap as described in the
reference8.

In the prognostic contour maps (Fig. 5) the probability of tumour recurrence was stratified to make it easier to
read the colour coding. This influenced the predictive accuracy of the model only marginally reducing the AUC-
value by 0·003. When computing the maps, all patients were included in the analysis, and the tumour rupture status
was coded either as missing, present or absent.
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