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1. Introduction

The sparse representation model has been used in a variety of applications of
signal and image processing, machine learning, and computer vision [1–4]. This
model approximates a signal using a linear combination of only a small number
of columns (referred to as atoms) of a matrix (called dictionary). The sparse
approximation problem (also referred to as the sparse coding problem) can be
formulated as

minimize
x

∥x∥0 s.t. ∥Dx− s∥2
2 ≤ ϵ, (1.1)

where ∥·∥2 represents the Euclidean norm and ∥·∥0 is an operator that counts the
number of nonzero entries of a vector. Moreover, D ∈RN×K , x ∈RK , s ∈RN , and ϵ
represent, respectively, the dictionary, sparse representation vector, signal, and
the upper bound on the approximation error. Problem (1.1) is non-convex and
NP-hard. However, it can be addressed using (sub-optimal) greedy methods [5,6]
or based on convex relaxation [7–9].

In many applications, the use of the sparse representation model along with
a learned overcomplete dictionary has led to remarkably improved results. A
learned dictionary is expected to lead to more accurate and sparser represen-
tations of its domain signals. The dictionary learning problem is commonly
addressed using alternating optimization with respect to the sparse represen-
tations and the dictionary based on a training dataset [10,11]. The dictionary
optimization problem can be formulated as follows

minimize
D

P∑︂

p=1

∥Dxp − sp∥2
2 s.t. ∥D(·,k)∥2 = 1, k = 1, . . . ,K , (1.2)

where {sp}P
p=1 is the training dataset, and the unit-norm constraint on the atoms

is used to avoid scaling ambiguities. The dictionary learning problem can also be
addressed using an online approach, where the dictionary is optimized incremen-
tally after observing each training signal and finding its sparse representations.
This approach is referred to as online dictionary learning [12].

Dictionary learning and sparse approximation are typically used for extraction
and estimation of local patterns and features in high-dimensional signals (e.g.,

1



Introduction

images). This usually requires a prior decomposition of the original signals
into vectorized overlapping blocks (e.g., patch extraction in image processing).
However, ignoring the relationships between the neighboring blocks results
in multi-valued sparse representations and learning dictionaries containing
similar (shifted) atoms.

Convolutional sparse coding1 (CSC) provides a single-valued and shift-
invariant model that can describe the entire high-dimensional signal. In this
model, matrix-vector product Dx used in the standard sparse approximation is
replaced by a sum of convolutions of dictionary filters and convolutional sparse
representations (also called sparse feature maps) [13–17]. Several studies have
shown that the convolutional sparse representation model significantly improves
on its standard counterpart in describing natural signals such as audio and
images [18–23]. However, most existing CSC and convolutional dictionary learn-
ing (CDL) algorithms have high computational costs, limiting their use to tasks
including only low-dimensional signals and small datasets.

Learned dictionary atoms are commonly used as representational (e.g., visual)
features to address problems that entail signal reconstruction. For example,
pairs of atoms in coupled learned dictionaries are used to capture the correlated
visual features in multi-measure and multimodal images. This is specifically
useful for addressing different image fusion tasks. Image fusion refers to the
problem of merging the information from multi-measure images or multiple
images captured using different imaging sensors into a single high-quality and
more informative image [24].

Over the past few years, deep learning methods have shown impressive results
in various signal processing tasks, including image and speech recognition,
natural language processing, and audio signal processing. These methods use
large-scale neural networks to learn highly complex signal patterns, delivering
state-of-the-art performance in many applications. Deep learning methods
usually rely on large collections of training data. Nevertheless, although deep
learning methods have become increasingly popular, sparsity-based models, such
as sparse representations and dictionary learning, still have an essential role in
signal processing, particularly in scenarios with limited access to the domain
data or where interpretability and explainability are critical. In this thesis, we
deal with such problems (image fusion) where the use of sparsity-based models is
justified by the need for interpretability, limited availability of training samples
(especially, in medical imaging), and also by performance superiority.

1The term convolutional sparse coding has been used to describe both convolutional
sparse approximation and convolutional dictionary learning problems in some literature.
In this thesis, we use this term only to refer to the convolutional sparse approximation
problem.
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1.1 Objectives

The main objective of this thesis is to develop effective and computationally
efficient algorithms based on sparse representations and dictionary learning
for extracting correlated features in multi-measure and multimodal images
(high-dimensional signals with grid-like structures, in general). We also focus
on developing effective image fusion methods based on the extracted correlated
features in the images by using them to generate a unified reinforced represen-
tation. Furthermore, this thesis aims at developing computationally efficient
CSC and CDL algorithms that can be applied to large-scale signal and image
processing problems.

1.2 Contributions

• In Publication I, a simple but effective and computationally efficient method
for coupled dictionary learning based on joint sparse approximation has been
developed. In coupled dictionary learning, the relations between two correlated
datasets (for example, representations of the same signals in different modal-
ities or with different qualities) are captured using pairs of corresponding
atoms in a set of dictionaries.

• In Publication II, a multifocus image fusion method based on our coupled
dictionary learning algorithm has been presented. In particular, coupled
dictionary learning is used to learn the mappings between focused and blurred
image patches. Then, the learned focused-blurred coupled dictionaries are
used to classify the relations between pairs of patches taken from the same
locations in multifocus images.

• In Publication III, a computationally efficient method for the convolutional
least-squares (LS) regression problem has been presented. Based on the
proposed method, efficient ADMM-based CSC and CDL algorithms have been
developed. In addition, we have developed an efficient algorithm for CSC in
the Fourier domain with a constraint on the approximation error.

• In Publication IV, the coupled dictionary learning problem has been extended
to coupled feature learning (CFL) in multimodal images. CFL decomposes
the multimodal images into their correlated and uncorrelated components.
The correlated components are estimated using a modified coupled dictionary
learning method based on simultaneous sparse approximation (SSA). In SSA,
the correlated signals are approximated using sparse representations with
identical supports. This CFL model is more consistent with the characteristics
of the multimodal images since the same objects can appear with varying
levels of visibility in images taken using different imaging modalities. The
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uncorrelated components are estimated using a constraint based on the Pear-
son correlation coefficient. A CFL-based multimodal image fusion method
has been proposed based on the most significant representations of correlated
components as well as the uncorrelated components from both input images.
We have applied this method to multimodal medical and infrared-visible image
fusion problems.

• In Publication V, a convolutional CFL method has been proposed where
the correlated components are captured using a pair of coupled convolutional
dictionaries and joint convolutional sparse representations, while the modality-
specific components are estimated using a common dictionary and separate
(unique) convolutional sparse representations. The resulting optimization
problem has been addressed using the alternating direction method of mul-
tipliers (ADMM). The proposed convolutional CFL method has been applied
to multimodal medical, and infrared (IR) and visible light (VL) image fusion
problems.

• In Publication VI, we have presented a convolutional CFL method based on
convolutional SSA with applications to the near-infrared (NIR) and visible-
light image fusion problem.

• In Publication VII, an efficient ADMM-based online CDL (OCDL) algorithm
based on approximate sparse components (ASCs) has been developed. The
computational cost of the proposed method is dramatically lower than that
of the other available CDL methods, making it ideal for tasks requiring CDL
over large-scale data.

• In Publication VIII, we have provided a comprehensive presentation of the
OCDL method in Publication VII, including detailed derivations, new algo-
rithms, and more extensive experimental results.

• The codes for all algorithms developed in this thesis are available online at
https://users.aalto.fi/~ghorbaf1/.

1.3 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 briefly reviews
the existing CSC and CDL algorithms and presents the methods proposed in
Publications III and VII. In Chapter 3, we discuss the CFL algorithms proposed
in Publications I, V, IV and VI. Chapter 4 provides an overview of the image
fusion literature and presents our CFL-based image fusion methods proposed in
Publications IV, V and VI. Chapter 5 concludes this thesis by summarizing the

4
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main results.
In each chapter, representative experimental results for the proposed methods

are presented and compared to state-of-the-art algorithms. All algorithms are
implemented using MATLAB. All experiments are conducted on a PC equipped
with an Intel(R) Core(TM) i5-8365U 1.60GHz CPU and 16GB memory.
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2. Convolutional Sparse Coding (CSC)

The CSC model describes the entire signal s ∈RN using a sum of convolutions
of the dictionary filters {dk ∈Rm}K

k=1 and convolutional sparse representations
{xk ∈RN }K

k=1, i. e.,

s≃
K∑︂

k=1

dk ∗ xk, (2.1)

where ∗ stands for the convolution operator. The use of the convolution operator
for a shift-invariant sparse model was originally proposed by Lewicki and Se-
jnowski in [25] for encoding 1D time-series. Later, Mørup et al. [26] extended
the CSC model to 2D images and music data. Numerous studies have sought
to find efficient solutions to CSC and CDL problems since then [14–17,27–35].
The CSC model has been used in a variety of signal processing and machine
learning applications, including, signal restoration tasks [19, 22, 23, 36, 37],
classification [38–41], image decomposition [42], fault detection [43], anomaly
detection [44], source separation [19], and image reconstruction [20].

The CSC problem has been addressed based on local-block (patch-wise) sparse
approximation using the existing standard sparse approximation algorithms
coupled with a global signal reconstruction constraint [17,28,45]. Algorithms
for solving variations of the CSC problem with local sparsity penalties based on
mixed-norms have been proposed in [33]. Using local sparsity constraints, local
priors (such as binary masks and weight maps) can be directly incorporated
in the reconstruction of high-dimensional signals. Other solutions to the CSC
problem in the spatial domain include the adoption of fast iterative shrinkage-
thresholding algorithm (FISTA) [32] as well as convolutional extensions of
existing greedy sparse approximation methods [46–48].

A majority of computationally efficient CSC algorithms are based on the
ADMM algorithm and partly perform in the frequency (Fourier) domain [14–16,
49–51]. The main difference between these algorithms lies in the way they solve
a convolutional LS regression subproblem. In this chapter, we present a novel
solution to this subproblem that considerably reduces the computational costs
of the most efficient existing CSC and CDL algorithms. The proposed solution
to the convolutional LS regression problem is also used to develop an efficient

7
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method that addresses the CSC problem with a constraint on the approximation
error. Furthermore, in this chapter, we present an efficient OCDL method that
substantially reduces the memory requirements of the existing CDL algorithms
and can be used in tasks that require dictionary learning over large images.

2.1 CSC in Fourier Domain

The convolutional form of the standard sparse approximation problem (1.1) can
be written as

minimize
{xk}K

k=1

K∑︂

k=1

∥xk∥1 s.t.
⃦⃦
⃦

K∑︂

k=1

dk ∗ xk − s
⃦⃦
⃦

2

2
≤ ϵ. (2.2)

Typically, problem (2.2) is addressed by solving its unconstrained equivalent

minimize
{xk}K

k=1

1
2

⃦⃦
⃦

K∑︂

k=1

dk ∗ xk − s
⃦⃦
⃦

2

2
+λ

K∑︂

k=1

∥xk∥1, (2.3)

where λ> 0 is the sparsity regularization parameter. ADMM breaks the CSC
problem into two main sub-problems. One of these sub-problems is a sparse
approximation problem which can be straightforwardly addressed using a shrink-
age operator. The challenging step is the following LS fitting problem,

minimize
{zk}K

k=1

1
2

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ zk − s

⃦⃦
⃦⃦
⃦

2

2

+ ρ

2

K∑︂

k=1

∥zk −wk∥2
2, (2.4)

where ρ > 0 is the ADMM penalty parameter. Based on the convolution theorem,
an equivalent formulation of problem (2.4) in the Fourier domain can be written
as

minimize
{ẑk}K

k=1

1
2

⃦⃦
⃦⃦
⃦

K∑︂

k=1

d̂k ⊙ ẑk − ŝ

⃦⃦
⃦⃦
⃦

2

2

+ ρ

2

K∑︂

k=1

∥ẑk − ŵk∥2
2, (2.5)

where (·̂) represents the discrete Fourier transform of a signal and ⊙ denotes the
element-wise multiplication operator. Denoting

δn ≜ [d̂1(n), · · · , d̂k(n)]T ,

ζi ≜ [ẑ1(n), · · · , ẑk(n)]T ,

ωi ≜ [ŵ1(n), · · · , ŵk(n)]T ,

(2.6)

where (·)T is the (non-conjugate) transpose operator, problem (2.5) can be seen
as N independent problems

minimize
ζn

1
2

(︁
δT

nζn − ŝn
)︁2 + ρ

2
∥ζn −ωn∥2

2. (2.7)
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Equating the derivative of the objective in (2.7) with respect to ζn to zero gives

0=δ∗n(δT
nζn − ŝn

)︁+ρζn −ρωn

= (δ∗nδ
T
n +ρI)ζn − ŝnδ

∗
n −ρωn

= (δ∗nδ
T
n +ρI)ζn − (ŝnδ

∗
n −δ∗nδT

nωn)− (δ∗nδ
T
n +ρI)ωn,

(2.8)

where (·)∗ is the complex-conjugate of a complex number.
In Publication III, we used the third line of (2.8) and showed that (2.5) can be

solved efficiently using

ζ⋆n =ωn + (ŝn −δT
nωn)(δ∗nδ

T
n +ρI)−1δ∗n

=ωn + (ŝn −δT
nωi)(∥δn∥2

2 +ρ)−1δ∗n,
(2.9)

where (·)⋆ denotes the solution to an optimization problem.
The other existing ADMM-based CSC method solves problem (2.5) using

ζ⋆n = (δ∗nδ
T
n +ρI)−1(ŝnδ

∗
n +ρωn) (2.10)

obtained from the second line of (2.8). An efficient method for computing (2.10)
based on the Sherman-Morrison formula is given in [16].

In particular, solving problem (2.5) for a batch of P training samples (signals)
using the proposed method requires ((4K +1)P +3K +1)n flops, while it takes
(7KP +3K +1)n flops for solving (2.5) using the method of [16]1, indicating a
considerable improvement (leading to the state-of-the-art performance) provided
by our method [16].

2.2 CSC with a Constraint on the Approximation Error

It is known that for every ϵ, there exists a unique λ. Nevertheless, the appro-
priate value of λ is dependent on the signal and the dictionary. As a result,
despite the fact that the unconstrained CSC problem is more convenient to solve,
it is more favorable to address the CSC problem in the constrained form. The
standard sparse approximation problem with a constraint on the approxima-
tion error has been addressed based on root-finding [52] and the augmented
Lagrangian method [53].

In Publication III, we developed an efficient algorithm for solving the CSC
problem with a constraint on the approximation error. Specifically, the appropri-
ate λ values are found via root-finding by solving a single-variable optimization
problem. The main steps of our algorithm are explained as follows.

The constrained CSC problem can be rewritten as

minimize
{xk}K

k=1

f
(︁
{xk}K

k=1
)︁+

K∑︂

k=1

∥xk∥1, (2.11)

1In this thesis, the comparisons are based on the most computationally efficient im-
plementation of the SM method, which entails pre-computing and reusing specific
quantities [16].
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where f (·) is the indicator function of the constraint set in (2.3), that is,

f
(︁
{xk}K

k=1
)︁=
{︄

0, if e
(︁
{xk}K

k=1

)︁≤ ϵ
∞, otherwise

, (2.12)

with

e
(︁
{xk}K

k=1
)︁=
⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xk − s

⃦⃦
⃦⃦
⃦

2

2

. (2.13)

Addressing (2.11) using ADMM leads to the following optimization problem

minimize
{xk}K

k=1

f
(︁
{zk}K

k=1
)︁+ ρ

2

K∑︂

k=1

∥zk −wk∥2
2. (2.14)

Depending on {wk}K
k=1, the solution to problem (2.14) is either trivial or can be

found by solving an equality-constrained optimization problem. This can be
written as

{z⋆k }K
k=1=

⎧
⎪⎨
⎪⎩

{wk}K
k=1, if e

(︁
{wk}K

k=1

)︁≤ ϵ,

argmin
{zk}Kk=1

K∑︁
k=1

∥zk −wk∥2
2 s.t. e

(︁
{zk}Kk=1

)︁= ϵ, otherwise.
(2.15)

Using a suitable ν, the problem in the second term of (2.15) can be reformulated
as

minimize
{zk}K

k=1

e
(︁
{zk}K

k=1
)︁+ν

K∑︂

k=1

∥zk −wk∥2
2, (2.16)

which is similar to the optimization problem in (2.4). Plugging the solution of
(2.16) (which can be found using our unconstrained CSC method) into (2.13)
gives

e
(︁
{z⋆k }K

k=1
)︁= ν2

N

⃦⃦
⃦⃦r̂⊘(︁ν+

K∑︂

k=1

d̂∗
k ⊙ d̂k

)︁⃦⃦⃦⃦
2

2
, (2.17)

where ⊘ stands for the element-wise division operator and the division by N
is required by Parseval’s theorem. Thus, problem (2.14) is reduced to a single-
variable optimization problem for finding the penalty parameter ν⋆ that satisfies

ν⋆ =
{︂
ν | e

(︁
{z⋆k }K

k=1
)︁= ϵ

}︂
. (2.18)

This can be addressed, for example, using the bisection method.
The complexity of our constrained CSC algorithm is the same as that of the

proposed unconstrained CSC algorithm (both are of O (K)). However, the con-
strained CSC algorithms results in slightly longer runtimes, which accounts for
solving the single-variable optimization problem for finding ν⋆ in each iteration.
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2.3 Convolutional Dictionary Learning (CDL)

A common formulation of the CDL problem is written as

minimize
{{xp

k }K
k=1}P

p=1,{dk}K
k=1

1
P

P∑︂

p=1

(︃
1
2

⃦⃦
⃦

K∑︂

k=1

dk ∗ xp
k − sp

⃦⃦
⃦

2

2
+λ

K∑︂

k=1

∥xp
k∥1

)︃

s.t. ∥dk∥2 ≤ 1, k = 1, . . . ,K .

(2.19)

The CDL problem is usually addressed using a batch CDL approach where
the sparse representations and the dictionary filters are alternatingly optimized
using a training dataset [14–16,29]. The dictionary optimization problem can
be formulated as

minimize
{dk}K

k=1

1
2P

P∑︂

n=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xp
k − sp

⃦⃦
⃦⃦
⃦

2

2

+
K∑︂

k=1

Ω (dk) , (2.20)

where Ω(·) is the indicator function of the constraint in (2.19), that is,

Ω (d)=
{︄

0, if ∥d∥2 ≤ 1

∞, otherwise
.

2.4 CDL Based on Consensus ADMM

An efficient solution to the batch CDL problem based on the convolutional
theorem and the consensus ADMM framework is provided in [50]. In this
method, the dictionary optimization over the entire dataset is addressed in
a distributed manner. Specifically, in one of the two main steps of ADMM
algorithm, the dictionary is separately optimized with respect to each of the data
samples by solving P independent optimization problems. In the second step,
the global (fused) dictionary is found by projecting the average of independently
optimized dictionaries onto the constraint set.

The independent optimization problems in the consensus ADMM-based CDL
are convolutional LS regression problems similar to (2.4). Thus, they can be ad-
dressed more efficiently using the convolutional LS regression method proposed
in Publication III.

Experimental evaluations based on image data, performed in Publication III,
have shown that incorporating the proposed convolutional LS regression method
in the consensus ADMM-based batch CDL algorithm leads to a significantly
improved computational efficiency compared to the state-of-the-art available
algorithms.
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2.5 Online CDL in Fourier Domain

In batch CDL, the convolutional sparse representations for the entire dataset
need to be accessed at once. This requires memory of the order of NPK , which is
computationally expensive when using large training datasets. OCDL improves
the computational efficiency of batch CDL by compactly storing the information
in the training samples and their sparse representations using a pair of history
arrays. An OCDL reformulation of problem (2.20) in the Fourier domain is
written as

minimize
{dk}K

k=1

1
2

N∑︂

n=1

δH
n AP

nδn −
P∑︂

p=1

δT
n bP

n +
K∑︂

k=1

Ω (dk) , (2.21)

where (·)H denotes the Hermitian transpose, and the history arrays AP
n ∈RK×K

and bP
n ∈RK , n = 1, . . . , N, are defined as

AP
n ≜ 1

NP

P∑︂

p=1

(ζp
n)∗(ζp

n)T , bP
n ≜ 1

NP

P∑︂

p=1

ŝp(n)∗ζp
n, (2.22)

with δp
n and ζp

n being the same as in (2.6). The history arrays are updated after
observing each training sample and finding its sparse representations. The
updates are performed using

AP
n = 1

NP
(ζP

n )∗(ζP
n )T + P −1

P
AP−1

n , n = 1, . . . , N,

bP
n = 1

NP
ŝP (n)∗ζP

n + P −1
P

bP−1
n , n = 1, . . . , N,

(2.23)

where A0
n and b0

n are initialized with all-zero arrays. The dictionary is optimized
by solving problem (2.21) once the updated history arrays are available. Efficient
solutions to the OCDL problem in the Fourier domain have been proposed based
on ADMM [27], the projected stochastic gradient descent (SGD) method and
FISTA [27,34].

2.5.1 Approximate Online CDL

The use of the available OCDL algorithms for learning large dictionaries
over high-dimensional signals can still be prohibitively computationally costly.
In Publication VII, we have proposed a novel OCDL method that dramatically
reduces the computational cost of the existing algorithms.

In the proposed OCDL method the training signals are approximated in a
distributed manner using P distinct dictionaries {cp

k ∈Rm}K
k=1. A fusion of the

separately optimized dictionaries based on the respective convolutional sparse
representations is used to calculate the dictionary {dk}K

k=1. Specifically, the
quadratic term in CDL problem (2.20) is approximated using the following
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upper-bound estimate

P∑︂

p=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xp
k − sp

⃦⃦
⃦⃦
⃦

2

2

=
P∑︂

p=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xp
k −

K∑︂

k=1

cp
k ∗ xp

k +
K∑︂

k=1

cp
k ∗ xp

k − sn

⃦⃦
⃦⃦
⃦

2

2

≤
P∑︂

p=1

K∑︂

k=1

⃦⃦
dk ∗ xp

k − cp
k ∗ xp

k

⃦⃦2
2 +

P∑︂

p=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

cp
k ∗ xp

k − sp

⃦⃦
⃦⃦
⃦

2

2

, (2.24)

where the inequality is due to the triangle inequality. Accordingly, the proposed
approximate CDL problem is formulated as

minimize
{dk}K

k=1,
{{cp

k }K
k=1}P

p=1

1
2P

P∑︂

p=1

K∑︂

k=1

⃦⃦
dk ∗ xp

k − cp
k ∗ xp

k

⃦⃦2
2 +

K∑︂

k=1

Ω (dk)

+ 1
2P

P∑︂

p=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

cp
k ∗ xp

k − sp

⃦⃦
⃦⃦
⃦

2

2

+
P∑︂

p=1

K∑︂

k=1

Ω
(︁
cp

k

)︁
. (2.25)

In Publication VIII, two ADMM-based online methods for addressing (2.25)
have been presented. The first algorithm uses a standard approach for optimiza-
tion of {dk}K

k=1 and {cP
k }K

k=1, while the second algorithm incorporates pragmatic
modifications to the first algorithm to improve the effectiveness of the proposed
approximation method and lower computational costs.

Approximate OCDL Algorithm 1
Optimization problem (2.25) is jointly convex with respect to {dk}K

k=1 and
{{cp

k }K
k=1}P

p=1. Thus, using the OCDL framework, problem (2.25) can be addressed
by jointly optimizing the variables {cP

k ,dk}K
k=1 after observing the Pth training

signal sP and obtaining its convolutional sparse representations {xP
k }K

k=1. Com-
pact history arrays are used to store sufficient statistics of {{cp

k }K
k=1}P−1

p=1 and
{{xp

k }K
k=1}P−1

p=1 .
The following ADMM formulation is used to solve (2.25) for {cP

k ,dk}K
k=1

minimize
{cP

k ,dk}K
k=1,

{f P
k ,gk}K

k=1

1
2P

p∑︂

p=1

K∑︂

k=1

⃦⃦
gk ∗ xp

k − f p
k ∗ xp

k

⃦⃦2
2 +

K∑︂

k=1

Ω (dk)

+ 1
2P

P∑︂

p=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

f p
k ∗ xp

k − sp

⃦⃦
⃦⃦
⃦

2

2

+
P∑︂

p=1

K∑︂

k=1

Ω
(︁
cp

k

)︁

s.t. gk = dk, f P
k = cP

k , k = 1, . . . ,K , (2.26)

where {f P
k , gk}K

k=1 are the (joint) ADMM auxiliary variables. The main ADMM
iterations consist of the {f P

k , gk}K
k=1-update step (a convolutional least-squares
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fitting problem) and the {cP
k ,dk}K

k=1-update step (projection on the constraint
set).

The {f , g}-update step entails solving the following optimization problems

minimize
{f P

k }K
k=1

1
2P

K∑︂

k=1

⃦⃦
⃦ f̂ P

k ⊙ x̂P
k − ẑP

k

⃦⃦
⃦

2

2
+ 1

2P

⃦⃦
⃦⃦
⃦

K∑︂

k=1

f̂ P
k ⊙ x̂P

k − ŝP

⃦⃦
⃦⃦
⃦

2

2

+ρ
2

K∑︂

k=1

⃦⃦
⃦ f̂ P

k − q̂k

⃦⃦
⃦

2

2
,

(2.27)

minimize
{gk}K

k=1

1
2P

P∑︂

n=1

K∑︂

k=1

⃦⃦
gkˆ ⊙ x̂p

k − t̂p
k

⃦⃦2
2 +

ρ

2

K∑︂

k=1

⃦⃦
ĝk − ŵk

⃦⃦2
2 , (2.28)

where zP
k ≜ gk ∗ xP

k and tp
k ≜ f p

k ∗ xp
k .

By equating the derivative of the objective in (2.27) to zero and using the
Sherman-Morrison (SM) formula, the solution to the f -update step can be found
as

(︂
f̂ P

k (n)
)︂⋆

=
(︄

ak
n +

(ak
n)2|x̂P

k(n)|2
1+∑︁K

k=1 ak
n|x̂P

k (n)|2

)︄
(︁
(x̂P

k (n))∗
(︁
ẑP

k (n)+ ŝP (n)
)︁+Pρ q̂k(n)

)︁
,

(2.29)
where ak

n ≜ (|x̂P
k (n)|2 +Pρ)−1.

Using precalculated values of
∑︁K

k=1ak
n|x̂P

k(n)|2, the f -update step can be car-
ried out with the complexity of O (K N) using (2.29).

The solution to (2.28) (the g-update step) can be found as

(︁
ĝk(n)

)︁⋆ = βP
k (n)+ ŵk(n)
αP

k +ρ , n = 1, . . . , N, k = 1, . . . ,K , (2.30)

where history arrays αP
k ∈RN and βP

k ∈RN , k = 1, . . . ,K , are defined as

αP
k ≜ 1

P

P∑︂

p=1

(x̂p
k )∗⊙ x̂p

k , βP
k ≜ 1

P

P∑︂

p=1

(x̂p
k )∗⊙ t̂p

k . (2.31)

The history arrays are incrementally updated using

αP
k = P −1

P
αP−1

k + 1
P

(x̂P
k )∗⊙ x̂P

k , (2.32)

βP
k = P −1

P
βP−1

k + 1
P

(x̂P
k )∗⊙ t̂P

k . (2.33)

Approximate OCDL Algorithm 2
To improve the performance of the proposed OCDL algorithm, dictionary op-
timization can be performed exactly for the latest observed signal sP , while
the proposed approximation method is used for {sp}P−1

p=1 . Thus, the modified
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approximate CDL problem is now formulated as

minimize
{dk}K

k=1,
{{cp

k }K
k=1}P

p=1

1
2P

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xP
k − sP

⃦⃦
⃦⃦
⃦

2

2

+ 1
2P

P−1∑︂

n=1

K∑︂

k=1

⃦⃦
dk ∗ xp

k − cp
k ∗ xp

k

⃦⃦2
2+

K∑︂

k=1

Ω (dk)

+ 1
2P

P−1∑︂

p=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

cp
k ∗ xp

k − sp

⃦⃦
⃦⃦
⃦

2

2

+
N∑︂

p=1

K∑︂

k=1

Ω
(︁
cp

k

)︁
. (2.34)

Problem (2.34) can be solved using alternating optimization with respect to
{dk}K

k=1 and {cP
k }K

k=1.
Problem (2.34) can be addressed with respect to {dk}K

k=1 using the following
ADMM formulation

minimize
{dk}K

k=1,{gk}K
k=1

1
2P

⃦⃦
⃦⃦
⃦

K∑︂

k=1

gk ∗ xP
k − sP

⃦⃦
⃦⃦
⃦

2

2

+ 1
2P

P−1∑︂

p=1

K∑︂

k=1

⃦⃦
gk ∗ xp

k − rp
k

⃦⃦2
2 +

K∑︂

k=1

Ω (dk)

s.t. gk = dk, k = 1, . . . ,K . (2.35)

where rp
k ≜ cp

k ∗ xp
k .

The g-update step requires solving the optimization problem in the form of

minimize
{gk}K

k=1

1
2P

⃦⃦
⃦⃦
⃦

K∑︂

k=1

gkˆ ⊙ x̂P
k − ŝP

⃦⃦
⃦⃦
⃦

2

2

+ 1
2P

P−1∑︂

p=1

K∑︂

k=1

⃦⃦
gkˆ ⊙ x̂p

k − r̂p
k

⃦⃦2
2+

ρ

2

K∑︂

k=1

⃦⃦
ĝk − êk

⃦⃦2
2 .

(2.36)
Equating the derivative to zero and using the SM formula, optimization problem
(2.36) can be solved as

(︁
ĝP

k (n)
)︁⋆ =

(︄
bk

n +
(bk

n)2|x̂P
k (n)|2

P +∑︁K
k=1 bk

n|x̂P
k (n)|2

)︄(︂ 1
P

(x̂P
k (n))∗ ŝP (n)+ β̃P−1

k (n)+ρ êk(n)
)︂

,

(2.37)
with bk

n ≜ (α̃P−1
k (n)+ ρ)−1, where history arrays α̃P

k ∈ RN and β̃
P
k ∈ RN , k =

1, . . . ,K , are defined as

α̃P
k ≜ 1

P +1

P∑︂

p=1

(x̂p
k )∗⊙ x̂p

k ,

β̃
P
k ≜ 1

P +1

P∑︂

p=1

(x̂p
k )∗⊙ r̂p

k

. (2.38)

The incremental update rules for α̃P
k and β̃

P
k can be found as

α̃P
k = P

P +1
α̃P−1

k + 1
P +1

(x̂P
k )∗⊙ x̂P

k , (2.39)

β̃
P
k = P

P +1
β̃

P−1
k + 1

P +1
(x̂P

k )∗⊙ r̂P
k . (2.40)
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The g-update (2.37) can be performed with the complexity of O (K N) using
precalculated values of

∑︁K
k=1 bk

n|x̂P
k (n)|2.

In the modified algorithm, dictionary {cP
k }K

k=1 is optimized only to provide
a more accurate approximation of sP (in comparison with the approximation
provided using {dk}K

k=1). It means that the second quadratic term in (2.34) is
ignored in the step of {cP

k }K
k=1 optimization. Here we rely on the fact that {xP

k }K
k=1

are direct products of {dk}K
k=1. As a result, considering that the approximation is

based on {xP
k }K

k=1, the resulting {cP
k }K

k=1 cannot unfavorably deviate from {dk}K
k=1.

Problem (2.34), which needs to be solved now for {cP
k }K

k=1 only, is then reduced to
the following optimization problem

minimize
{cP

k }K
k=1

1
2P

⃦⃦
⃦⃦
⃦

K∑︂

k=1

cP
k ∗ xP

k − sP

⃦⃦
⃦⃦
⃦

2

2

+
K∑︂

k=1

Ω
(︁
cP

k
)︁

, (2.41)

which is a CDL problem involving a single training signal, and can be addressed
using the existing CDL methods (e.g., [51]).

Computational Efficiency
The largest arrays used in the proposed approximate OCDL methods are of
size K N, dramatically smaller than those used by the state-of-the-art batch
CDL algorithms and OCDL algorithms, that are, K NP and K2N, respectively.
In addition, the proposed OCDL algorithms has a time complexity of O (K NP),
which is equal to that of the most efficient batch CDL algorithm and significantly
less than that of the state-of-the-art OCDL algorithm (O (K2NP)).

2.6 Experimental Results

In this section, the proposed CSC and CDL methods are compared to the state-
of-the-art algorithms. The CSC experiments are performed using a 512×512
Lena image. The CDL experiments are conducted using the following image
datasets:

1. SIPI: 40 greyscale images of size 256×256 taken from the USC-SIPI database
(http://sipi.usc.edu/database/).

2. Flowers: 210 greyscale images of flowers of size 200×200 taken from Oxford
Flower Datasets (https://www.robots.ox.ac.uk/~vgg/data/flowers/).

The original images are resized and converted to greyscale. The pixel values
are normalized to be between 0 and 1 (the original 8-bit values are divided by
255). Since the CSR model is not able to effectively represent the low-frequency
component of the signals, it is conventional that the images used for CDL are
high-pass filtered [16,31,34]. Here, the low-frequency components of all images
are removed using the lowpass function of the SPORCO toolbox [54] with a
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regularization parameter of 5.
All CDL experiments are performed using λ = 0.1λmax, where λmax is the

smallest regularization parameter value that leads to all-zero sparse represen-
tations and can be obtained using ℓ∞-norm of the gradient of the objective of
CSC problem (2.3) at {xk}K

k=1 = 0. We use ADMM penalty parameter ρ = 10 and
dictionary filters of size 8×8 in all experiments.

2.6.1 CSC Results

Fig. 2.1 compares the functional values over time for 50 iterations of the pro-
posed CSC algorithms (Publication III) and the CSC method based on Sherman-
Morrison formula [16] using different values of λ tested, the Lena image as
the input signal, and a learned dictionary composed of 64 filters. Note that
the iterations of the two unconstrained CSC methods, the proposed method
discussed in Section 2.1 (red curve) and the method of [16] (blue curve), are
equally effective. Thus, the use of a fixed number of iterations illustrates the
difference in computational efficiency. As can be seen, the proposed algorithm is
considerably more efficient for all λ values.

λ= 0.01λmax λ= 0.05λmax

λ= 0.1λmax

Figure 2.1. Functional values over time for the proposed CSC methods [51] and the method
based on the Sherman-Morrison formula (SM) [16].

The ϵ values (the values of the quadratic functional term) obtained by execut-
ing the unconstrained CSC algorithms with different λ values are used to run
the proposed constrained CSC algorithm (see dashed black curves in Fig. 2.1).
It can be seen that the constrained CSC algorithm converges to the same func-
tional values with a slightly longer runtime compared to that of the proposed
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unconstrained CSC algorithm, which accounts for single variable optimization
in each iteration.

2.6.2 CDL Results

Fig. 2.2 compares the functional values over time for 300 iterations of ADMM-
consensus-based CDL methods based on the convolutional LS regression method
proposed in Publication III (blue curve) and the Sherman-Morrison formula [31]
(red curve) using different dictionary sizes K and different number of training
images P (subsets of the SIPI dataset). The iterations of the two CDL methods
compared are equally effective. However, as can be seen, the proposed method is
substantially more computationally efficient.

K = 64, P = 20 K = 128, P = 10

Figure 2.2. Functional values over time for ADMM-consensus-based CDL algorithms based on
the proposed convolutional LS regression method [51] and the Sherman-Morrison
formula (SM) [31] using subsets of the SIPI dataset.

2.6.3 OCDL Results

We compare the proposed OCDL method (Algorithm 2 in Publication VIII) to the
OCDL method based on FISTA (with gradient calculated using the Fourier trans-
form) proposed in [34]. For the proposed method, we use 200 ADMM iterations
(maximum) with absolute and relative tolerance values of 10−4. The comparisons
are conducted based on the objective functional values (fval) of (2.19) for each
datatset. We use 4 images taken from the SIPI dataset and 10 images taken
from the Flowers dataset (different from images used for CDL) as test datasets.
For the SIPI dataset, the results for both training and test datasets are reported.
For the larger dataset Flowers, since it is infeasible to store all training sparse
representations, the test results only are reported.

Tables 2.1 reports the objective functional values obtained using the methods
tested for the SIPI (K = 64 and P = 32) and the Flowers (K = 100 and P = 200)
datasets, respectively. As can be observed, the proposed method leads to a
significant reduction in training time. In addition, the proposed method yields
competitive results, while substantially reducing memory requirements.

Dictionaries learned using the methods compared are illustrated in Figs. 2.3
and 2.4.
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Table 2.1. The results obtained using the SIPI dataset with K = 64 and P = 32 and the Flowers
dataset with K = 100 and P = 200. (K is the number of dictionary filters and P is the
number of images in the training dataset.)

SIPI Flowers

Methods train fval test fval train time (s) test fval train time (s)

Initial dictionary - 70.0661 - 83.5131 -

FISTA [34] 38.5268 45.1158 2211 46.8404 49244

proposed 36.6363 46.2067 796 48.9559 4614

FISTA [34] proposed

Figure 2.3. Dictionaries learned using the SIPI dataset with parameters K = 64 and P = 32.

FISTA [34] proposed

Figure 2.4. Dictionaries learned using the Flowers dataset with parameters K = 100 and P = 200.
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3. Coupled Feature Learning (CFL)

Many real-world image processing and computer vision applications require
joint analysis of multiple images, for example, acquired using different imaging
modalities. Examples of these applications are multimodal image denoising and
image fusion [24,55]. CFL aims to capture the correlated features in multimodal
images by decomposing them into their correlated and uncorrelated components
based on structured sparse approximation and dictionary learning. In this thesis,
the extracted correlated features are used to generate unified and reinforced
(fused) multimodal images. This chapter presents CFL after briefly reviewing
the related concepts and relevant literature.

3.1 Related Works

3.1.1 Simultaneous Sparse Approximation (SSA)

SSA approximates a set of multi-measure signals using different linear combi-
nations of the same subset of atoms in a dictionary, i.e., sparse representations
with identical supports [56,57]. The SSA problem can be formulated as

minimize
{xl }L

l=1

L∑︂

l=1

(︂1
2
∥Dxl − sl∥2

2 +λ∥xl∥0

)︂

s.t. Supp
(︁
xl
)︁=Supp

(︁
xl′
)︁
, l, l

′ = 1, . . . ,L.

(3.1)

The SSA model has been employed in various signal and image processing tasks
to represent multiple dependent signals. For example, multi measurement
vectors (MMV) problems [58,59], source separation [60], anomaly detection [61]
and image fusion [62].

The SSA problem can be addressed using greedy methods such as simultaneous
orthogonal matching pursuit (SOMP) [56] or based on convex relaxation using
mixed-norms [57,63]. For a matrix A ∈RR×C, the mixed ℓp,q-norm, p, q ≥ 1, is
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defined as

∥A∥p,q ≜
(︄

R∑︂

r=1

∥A(r, ·)∥q
p

)︄ 1
q

.

For instance, the works in [64] and [57] have used the ℓ2,1- and the ℓ∞,1-norms
for addressing the SSA problem, respectively. A convex relaxation of (3.1) based
on the ℓ2,1-norm can be written as

minimize
{xl }L

l=1

1
2

L∑︂

l=1

∥Dxl − sn∥2
2 +λ∥X∥2,1 , (3.2)

where X ≜ [x1 · · ·xL]. Solving (3.2) entails minimizing the sum of the ℓ2-norms
of the rows of X . This leads to a row-sparse X , which is mostly zeros with only a
small number of nonzero and dense rows. A convolutional extension of (3.2) has
been addressed in [65]. A row-sparse structure with sparse rows can be enforced
by adding an ℓ1-norm regularization term to the objective function of (3.2) [63].
This can be written as

minimize
{xl }L

l=1

1
2

L∑︂

l=1

∥Dxl − sl∥2
2 +λ1 ∥X∥2,1 +λ2 ∥X∥1,1 , (3.3)

where λ1 ≥ 0 and λ2 ≥ 0 are the row-sparsity and element-sparsity regularization
parameters, respectively.

3.1.2 Multimodal Dictionary Learning

Here, we briefly review models based on sparse representations and dictionary
learning used for representing multimodal images.

The work of [66] proposed to model L multimodal signals {sl}L
l=1 (e.g., multi-

modal images patches) using dictionary D = [Dz De] and sparse representations
xl = [(xz)T (xe

l )
T ]T . In this model, the multimodal signals are assumed to con-

tain common (identical) components represented by z = Dzxz, where Dz and xz

are the dictionary of common features and the common sparse representations,
respectively. The modality-specific components are described using el = Dexz

l ,
l = 1, . . . ,L, where De is the dictionary of unique features and {xe

l }N
l=1 are the

unique sparse representations (the only modality-dependent variable of the
model).

In [67], the correlated components of multimodal images are captured using L
coupled dictionaries {Dz

l }
L
l=1 and common sparse representations xz, i.e., using

zl = Dz
l xz. Moreover, the unique components are estimated using a set of

unique dictionaries and unique sparse representations (el = De
l xe

l ). Thus, the
multimodal signals are represented using sl = Dz

l xz +De
l xe

l , l = 1, . . . ,L. An
extension of this model to convolutional sparse representations is provided
in [55].
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3.2 Coupled Dictionary Learning

Coupled dictionary learning seeks to capture the nonlinear mappings between
multi-measure signals (e.g., high- and low-resolution images) using a pair of
dictionaries by enforcing common sparse representations. This can be formulated
as the following optimization problem

minimize
D1, D2, {xp}P

p=1

P∑︂

p=1

(︂⃦⃦
D1xp − sp

1

⃦⃦2
2 +
⃦⃦

D2xp − sp
2

⃦⃦2
2

)︂

s.t.
⃦⃦

xp⃦⃦
0 ≤ θ, ∥D1(·,k)∥2 = 1, ∥D2(·,k)∥2 = 1, ∀p,k,

(3.4)

where {sp
1 }P

p=1 and {sp
2 }P

p=1 are the multi-measure signals (e.g., vectorized over-
lapping patches extracted from multi-measure images), D1 and D2 are the
coupled dictionaries, and θ is the maximum number of nonzero entries in com-
mon sparse representations {xp}P

p=1. Coupled dictionary learning has been
used in various applications, including image super-resolution [2,68,69], image
reconstruction [70,71], change detection [72], and image fusion [73,74].

The coupled dictionary learning problem has been addressed based on sin-
gle dictionary learning using a concatenated dictionary D = [DT

1 DT
2 ]T and a

concatenated signal sp = [(sp
1 )T (sp

2 )T ]T , p = 1, . . . ,P [2]. However, learning a
joint concatenated dictionary is not equivalent to learning separate and coupled
dictionaries. A coupled dictionary learning method based on bilevel optimization
and the SGD method has been proposed in [68]. This method entails alternat-
ing optimization of D1 and D2, where {xp}P

p=1 is the sparse representations of
{sp

1 }P
p=1 over D1. A semi-coupled dictionary learning method has been proposed

in [75], where linear transformations of the same sparse representation, xp
1

and xp
2 =Wxp

1 , p = 1, . . . ,P, are used to describe the input signals (W is a linear
mapping matrix). Considering that the coupled dictionaries D1 and D

′
2 = D2W

and common sparse representations are used to approximate the multi-measure
signals, it can be seen that this method addresses the coupled dictionary prob-
lem (3.4). Nevertheless, the main disadvantage of the aforementioned methods
is the high computational cost.

In Publication I, we have shown that the coupled dictionary problem can be ad-
dressed significantly more efficiently using alternating optimization with respect
to the common sparse representations and the dictionaries. Specifically, in the
proposed method, we have shown that the jointly optimal sparse representations
can still be obtained based on the concatenated dictionaries and the concate-
nated signals using the existing sparse approximation algorithms. Moreover, the
coupled dictionaries can be optimized disjointly (in parallel) based on a compu-
tationally efficient variation of the KSVD algorithm [11]. In particular, similar
to KSVD, the atoms of the dictionaries are updated one by one to minimize the
approximation error. However, instead of using a singular value decomposition
(SVD), the atoms are optimized by solving an LS regression problem followed by
a projection on the constraint set (unit sphere). This approach can be directly
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extended to learning coupled dictionaries with atoms of varying sizes (different
numbers of rows) and over multiple correlated input training data.

A comparison of the proposed coupled dictionary learning method with the
existing algorithms based on their performances in an image super-resolution
task presented in Publication I has demonstrated that our approach leads to
promising results while significantly improving computational efficiencies.

3.3 CFL

CFL extracts the correlated features in the multimodal images and decom-
poses them into their correlated and uncorrelated components. This can be
instrumental in applications such as multimodal image denoising, deblurring
and fusion [24, 55]. The CFL’s decomposition model takes into account two
characteristics of the multimodal images:

1. The multimodal images depict the same object, tissue, scene, etc. Thus, they
can contain overlapping (correlated) information.

2. As the images are captured using different imaging sensors, they can contain
modality-specific (uncorrelated) information.

The CFL method proposed in Publication IV employs coupled dictionary learn-
ing to extract the correlated features as pairs of corresponding atoms in the
dictionaries, while the uncorrelated components are captured using a Pearson
correlation-based criterion. Since different imaging modalities can display the
same underlying structures with varying levels of visibility, a modified coupled
dictionary learning method is used where sparse representations with identical
supports are used to describe the multimodal images (instead of using common
sparse representation).

The CFL problem is formulated as

minimize
{D l ,{x

p
l ,ep

l }P
p=1}2

l=1

P∑︂

p=1

(︄
2∑︂

l=1

⃦⃦
D l x

p
l + ep

l − sp
l

⃦⃦2
2 +

N∑︂

n=1

φ
(︁
ep

1 (n), ep
2 (n)

)︁
)︄

s.t. Supp{xp
1 }=Supp{xp

2 },
⃦⃦

xp
l

⃦⃦
0 ≤ θ, ∥D l(·,k)∥2 = 1, ∀p, k, l,

(3.5)

where {{sp
l }P

p=1}2l=1 are vectorized overlapping patches extracted from pairs of
multimodal images, and {{zp

l = D l x
p
l }P

p=1}2l=1 and {{ep
l }P

p=1}2l=1 represent their
correlated and uncorrelated components, respectively. Moreover, φ(·, ·) is a cost
function based on the squared Pearson correlation coefficient, defined as

φ
(︁
ep

1 (n), ep
2 (n)

)︁=
(︃

(ep
1 (n)−µp

1 )(ep
2 (n)−µp

2 )
σ

p
1σ

p
2

)︃2

,

where µp
l and σ

p
l are mean and standard deviation of ep

l , respectively.
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Problem (3.5) is addressed using alternating optimization with respect to two
blocks of variables: (i) the uncorrelated components {{ep

l }P
p=1}l=1,2, and (ii) the

coupled dictionaries and the sparse representations {D l , {xp
l }P

p=1}l=1,2 (this is
equivalent to optimization with respect to the correlated components).

The updated uncorrelated components are obtained using

(︁
ep

1 (n)
)︁+ =

ρtp
1 (n)+ (ep

2 (n)−µp
2 )2

(σp
1 )2(σp

2 )2 µ
p
1

ρ+ (ep
2 (n)−µp

2 )2

(σp
1 )2(σp

2 )2

,
(︁
ep

2 (n)
)︁+ =

ρtp
2 (n)+ (ep

1 (n)−µp
1 )2

(σp
1 )2(σp

2 )2 µ
p
2

ρ+ (ep
1 (n)−µp

1 )2

(σp
1 )2(σp

2 )2

, (3.6)

where tp
l = sp

l −D l x
p
l , p = 1, . . . ,P, l = 1,2, and the mean (µp

l ) and standard
deviation (σp

l ) values are obtained based on the current values of uncorrelated
components (this can be seen as using an Expectation-Maximization (EM) ap-
proach for the estimation of {{ep

l }P
p=1}l=1,2 that are dependent on the unobserved

latent variables {{µp
l }P

p=1}l=1,2 and {{σp
l }P

p=1}l=1,2).
Optimization with respect to the coupled dictionaries and the simultaneous

sparse representations is addressed using a modified coupled dictionary learning
method which is presented in the following section.

3.3.1 Simultaneous Coupled Dictionary Learning

Optimization with respect to {D l , {xp
l }P

p=1}2l=1 is equivalent to solving the follow-
ing optimization problem

minimize
D1, D2, {{xp

l , ep
l }2

l=1}P
p=1

P∑︂

p=1

(︂⃦⃦
D1xp

1 −wp
1

⃦⃦2
2 +
⃦⃦

D2xp
2 −wp

2

⃦⃦2
2

)︂

s.t. Supp{xp
1 }=Supp{xp

2 },
⃦⃦

xp
l

⃦⃦
0 ≤ θ, ∥D l(·,k)∥2 = 1, ∀p, k, l,

(3.7)

where wp
l = sp

l − ep
l , p = 1, . . . ,P, l = 1,2. Similar to coupled dictionary learning,

problem (3.7) can be addressed using alternating optimization with respect to the
dictionaries and the sparse representations. Here, when sparse representations
with identical supports {{xp

l }P
p=1}l=1,2 are available, the coupled dictionaries and

the nonzero entries in the sparse representations can be updated disjointly, e.g.,
using the KSVD algorithm (unlike in coupled dictionary learning).

Optimization with respect to the sparse representations is addressed by modify-
ing the SOMP algorithm [56] to incorporate the coupled dictionaries. Specifically,
the atom selection rule of SOMP is modified so that the approximations are
performed using the coupled dictionaries instead of sharing a single one. In each
iteration, this modified SOMP selects a pair of coupled atoms {D1(·,k⋆),D2(·,k⋆)}
that minimizes the sum of the squared errors. This is formulated as

k⋆ = argmin
k

⃦⃦
xp

1 (k)D1(·,k)− rp
1

⃦⃦2
2 +
⃦⃦

xp
2 (k)D2(·,k)− rp

2

⃦⃦2
2, (3.8)

where r1 and r2 represent the approximation residuals (i.e., rp
1 ≜ sp

1 −D1xp
1 and

rp
2 ≜ sp

2 −D2xp
2 ). Problem (3.8) is typically solved via its equivalent maximiza-
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tion problem, that is

k⋆ = argmax
k

(︁
(rp

1 )T D1(·,k)
)︁2 +(︁(rp

2 )T D2(·,k)
)︁2

. (3.9)

3.4 Convolutional CFL

An extension of CFL to the CSC model has been proposed in Publication V,
where L multimodal images {sl}L

l=1 are decomposed into their correlated and
uncorrelated components. The correlated components are estimated using L
coupled dictionaries with J convolutional filters ({{dz(l)

j }J
j=1}L

l=1) and common
convolutional sparse representations {xz

j}
J
j=1. Here, the differences in the visibil-

ity levels of coupled features in different modalities are captured in the norm of
the coupled convolutional filters. The uncorrelated components are estimated
using a common dictionary with K convolutional filters ({de

k}K
k=1) and L separate

convolutional sparse representations {{xe(l)
k }K

k=1}L
l=1. This is formulated as the

following optimization problem

minimize
{{dz(l)

j }J
j=1}L

l=1,{de
k}K

k=1,

{xz
j}

J
j=1,{{xe(l)

k }K
k=1}L

l=1

1
2

L∑︂

l=1

⃦⃦
⃦⃦
⃦

J∑︂

j=1

dz(l)
j ∗ xz

j +
K∑︂

k=1

de
k ∗ xz(l)

k − sl

⃦⃦
⃦⃦
⃦

2

2

+λ1

J∑︂

j=1

∥xz
j∥1

+λ2

L∑︂

l=1

K∑︂

k=1

∥xe(l)
k ∥1 s.t. ∥dz(l)

j ∥ ≤ 1, ∥de
k∥ ≤ 1, ∀ j,k, l. (3.10)

The third term in the objective function of (3.10) enforces an element-wise
sparsity in {{xe(l)

k }K
k=1}L

l=1. That means {{xe(l)
k }K

k=1}L
l=1 are sparse also along dif-

ferent modalities (i.e., arrays [xe(1)
k (p), . . . , xe(L)

k (p)], k = 1, . . . ,K , p = 1, . . . ,P, are
sparse). When [xe(1)

k (p), . . . , xe(L)
k (p)] has only one nonzero entry, it means that

filter de
k is used to represent a feature only in one of the multimodal images (at

pixel p), indicating a modality-specific feature. The overlapping nonzero entries
indicate a shared feature.

In Publication V, problem (3.10) has been addressed based on consensus
ADMM.

3.4.1 Convolutional SSA

In Publication VI, we proposed a convolutional SSA method that can be used
to complement the convolutional CFL problem in (3.10) by replacing joint CSC
(using common sparse representations). The convolutional SSA problem is
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written as follows

minimize
{{xl

k}K
k=1}L

l=1

1
2

L∑︂

l=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xl
k − sl

⃦⃦
⃦⃦
⃦

2

2

+λ
L∑︂

l=1

K∑︂

k=1

⃦⃦
xl

k
⃦⃦

0

s.t. Supp
(︁
xl

k
)︁=Supp

(︁
xl

′

k
)︁
, l, l

′ = 1, . . . ,L, k = 1, . . . ,K .

(3.11)

A convex relaxation of problem (3.11) based on the ℓ2,1-norm can be written as

minimize
{{xl

k}K
k=1}L

l=1

1
2

L∑︂

l=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xl
k − sl

⃦⃦
⃦⃦
⃦

2

2

+λ
K∑︂

k=1

∥X k∥2,1 , (3.12)

where X k(n, ·) ≜ [x1
k(n) · · · xL

k (n)], n = 1, . . . , N. Using ADMM, problem (3.12)
can be broken into two simpler subproblems: a convolutional regression prob-
lem which can be addressed using [51], and the following structured sparse
approximation problem

minimize
{{xl

k}K
k=1}L

l=1

ρ

2

L∑︂

l=1

K∑︂

k=1

⃦⃦
xl

k −wl
k
⃦⃦2

2 +λ
K∑︂

k=1

∥X k∥2,1 . (3.13)

Since the ℓ2,1-norm is a sum of the Euclidean norms of the rows, the solution
to (3.13) can be found using

(︁
[x1

k(n) · · · xL
k (n)]

)︁⋆ = prox λ
ρ
∥·∥2

(︁
[w1

k(n) · · · wL
k (n)]

)︁
,

k = 1, . . . ,K , n = 1, . . . , N, (3.14)

where

proxτ∥·∥2

(︁
a
)︁=
(︃

1− τ

max(∥a∥2,τ)

)︃
a. (3.15)

The use of the ℓ2,1-norm regularization enforces a row-sparse structure which
can be alternatively achieved using the ℓ∞,1-norm regularization. The resulting
optimization problem can be addressed using a similar ADMM approach where
the proximal operator for the ℓ∞ norm is used instead of proxτ∥·∥2

(︁ ·)︁.
A row-sparse and element-sparse structure can be enforced by adding an

element-wise sparsity regularization term to the objective function of (3.11)

minimize
{{xl

k}K
k=1}L

l=1

1
2

L∑︂

l=1

⃦⃦
⃦⃦
⃦

K∑︂

k=1

dk ∗ xl
k − sl

⃦⃦
⃦⃦
⃦

2

2

+λ1

K∑︂

k=1

∥X k∥2,1 +λ2

K∑︂

k=1

∥X k∥1,1 . (3.16)

Problem (3.16) can be solved by replacing prox λ
ρ
∥·∥2

(·) with prox λ1
ρ
∥·∥2+ λ1

ρ
∥·∥1

(·)
in (3.14).

The convolutional SSA method proposed in Publication VI can be straightfor-
wardly extended to the case of coupled dictionaries, and further to convolutional
CFL using existing CDL algorithms (the coupled dictionaries can be optimized
independently using their corresponding signals and their sparse representa-
tions).
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3.5 Experimental Results

In this section, we provide representative experimental results for the pro-
posed coupled dictionary learning (Publication I) and CFL (Publications IV-VI)
methods.

3.5.1 Coupled Dictionary Learning Results

We evaluate the proposed coupled dictionary learning method by incorporating
it in the image super-resolution algorithm of [68] and comparing the results to
those obtained using the original method. The image super-resolution method
of [68] uses coupled dictionaries learned over gradient features extracted from
low- and high-resolution 5×5 image patches to recover the high-resolution image
from the observed low-resolution input. A coupled dictionary learning method
based on bilevel optimization and the SGD algorithm is proposed in [68]. We
use a dataset of 10,000 image patches to train coupled dictionaries with 512
atoms using both methods. Sparse approximation is performed using convex
relaxation with ℓ1-norm regularization parameter λ= 0.05.

Fig. 3.1 shows image super-resolution results obtained based on the two cou-
pled dictionary methods compared. Upsized images obtained using bicubic
interpolation [76] are also presented as a reference for performance gain com-
parison. As can be seen, the coupled dictionary learning methods yield similar
results. However, the proposed method significantly reduces the computational
cost. Particularly, the proposed method and the method of [68] spent 8.3 and
120.2 seconds to perform coupled dictionary learning over the training dataset,
respectively.

3.5.2 CFL Results

We investigate the effectiveness of the proposed CFL (Publication IV) and convo-
lutional CFL (Publication V) methods using multimodal computed tomography
(CT) and magnetic resonance (MR) images collected from The Whole Brain Atlas
database [77]. The proposed CFL method based on convolutional SSA (Publi-
cation VII) is applied to RGB-NIR images taken from EPFL RGB-NIR Scene
Dataset [78] (the characteristics of the imaging modalities will be discussed in
the next chapter). Dictionary atoms are of size 8×8 in all experiments.

Figs. 3.2-3.4 illustrate coupled dictionaries learned using the proposed CFL
methods, where correlation between the corresponding atoms (representing the
correlated multimodal features) can be clearly observed.
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(a) (b)

(c) (d)

(e)

Figure 3.1. Image super-resolution results: (a) original 512×512 image; (b) down-scaled 128×
128 image; (c) upscaled image using bicubic interpolation [76]; (d) the method
of [68]; (e) the method of [68] using the coupled dictionary learning method proposed
in Publication I.
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MR CT

Figure 3.2. Coupled dictionaries composed of K = 64 atoms obtained for multimodal MR-CT
images using the CFL method proposed in Publication IV.

MR CT Common dictionary

Figure 3.3. Coupled convolutional dictionaries (K = 36) and common dictionary of (L = 36 filters
used to describe modality-specific features) obtained for multimodal MR-CT images
using the convolutional CFL method proposed in Publication V.

RGB NIR

Figure 3.4. Coupled dictionaries composed of K = 48 convolutional filters obtained for NIR-RGB
images using the method proposed in Publication VI.
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Examples of multimodal images in the experiments and their decomposition
components (correlated and uncorrelated) obtained using the proposed CFL
methods are presented in Figs. 3.5-3.7. Since the CSC model cannot effectively
describe the low-resolution components (i.e., the base layer) of the signals,
the CSC-based CFL methods in Publications V and VI are applied to the high-
resolution components only.

MR CT

MR-correlated CT-correlated

MR-uncorrelated CT-uncorrelated

Figure 3.5. Decomposition components obtained for multimodal MR-CT images using the CFL
method proposed in Publication IV.
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MR CT

MR-base (lowpass filtered) CT-base (lowpass filtered)

MR-correlated CT-correlated

MR-uncorrelated CT-uncorrelated

Figure 3.6. Decomposition components obtained for multimodal MR-CT images using the convo-
lutional CFL method proposed in Publication V.
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RGB NIR

RGB-base (lowpass filtered) NIR-base (lowpass filtered)

RGB-correlated NIR-correlated

RGB-uncorrelated NIR-uncorrelated

Figure 3.7. Decomposition components obtained for multimodal RGB-NIR images using the
convolutional SSA-based CFL method proposed in Publication VI.
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4. Multimodal Image Fusion

Multimodal image fusion seeks to integrate relevant information from images
acquired with different imaging sensors into a single image without introducing
noise or artifacts. Applications of multimodal image fusion include surveil-
lance [79–81], remote sensing [82–84] and medical imaging [85–87]. In surveil-
lance applications, a fusion of infrared and visible light images is used to enhance
object detection and improve night vision [79,88]. NIR images are used to im-
prove the contrast-resolution of RGB images, for example, taken from vegetation
scenes or in low-visibility atmospheric conditions such as fog or haze [89]. In
satellite imaging, panchromatic images with high spatial resolutions and multi-
spectral images with high spectral resolutions are combined to produce more
informative and enhanced fused images [84, 90]. Multimodal medical image
fusion combines the information acquired using various sensors. Anatomical
imaging techniques, for example, CT and MR imaging, provide high-resolution
images of internal organs and tissues. Functional imaging mechanisms such as
single-photon emission computed tomography (SPECT) and positron emission
tomography (PET) measure the biological activity of specific areas inside the
body. This variety of information can be fused into a single image for joint
analysis and easier visualization [85–87].

A typical approach for addressing the multimodal image fusion problem con-
sists of extraction of multiscale or morphologically distinct features in the
input images and then using them for generating a joint reinforced represen-
tation based on a fusion rule. Feature extraction is commonly performed using
deterministic mathematical models such as multiscale transforms (wavelets,
curvelets, shearlets, etc.) [91–94]. Other techniques employed for the same
purpose include subspace learning [95], sparse representations and dictionary
learning [96–100], and CNN [101,102].

A general assumption incorporated in all aforementioned methods is that
features with similar structural characteristics (e.g., resolution scale) convey
correlated information. However, due to the varying (and often complementary)
characteristics of multimodal images, this assumption may not be valid in many
cases. For instance, in MR imaging, soft tissues (e.g., fat and liquid) are cap-
tured with a higher resolution, while the details of hard tissues (e.g., bones and

35



Multimodal Image Fusion

implants) are reflected more effectively in CT images. In infrared-visible images,
the details in each image depict fundamentally different types of information.
Thus, applying a fusion rule (e.g., based on binary selection or weighted averag-
ing) to features representing distinct objects or characteristics (but with similar
structural properties) can lead to degradation or loss of information.

The multimodal image fusion methods proposed in Publications IV-VI em-
ploy the CFL model for extracting correlated features in multimodal images
instead of using conventional deterministic feature-extraction techniques. The
fusion is performed using only the correlated components of the multimodal
images, while the modality-specific (unique) components are preserved in the
final fused images. In the following sections, we present the proposed CFL-based
multimodal fusion methods.

4.1 Multimodal Image Fusion via CFL

The multimodal image fusion method in Publication IV first decomposes vec-
torized overlapping patches {sp

1 }P
p=1 and {sp

2 }P
p=1 (extracted from the multimodal

input images) into their correlated and uncorrelated components by obtaining
coupled dictionaries D1 and D2, sparse representations with identical supports
{xp

1 }P
p=1 and {xp

2 }P
p=1, and uncorrelated components {ep

1 }P
p=1 and {ep

2 }P
p=1 using

the proposed CFL algorithm.
The sparse representations are combined using the coefficients with the largest

absolute values. This ensures that correlated features (the corresponding atoms
in the coupled dictionaries) with the highest visibility levels are used in the
fused image. Fused correlated components {zp

F}P
p=1 are obtained using

zp
F = D1xp

1(F) +D2xp
2(F), p = 1, . . . ,P, (4.1)

where fused sparse representations {xp
1(F)}

P
p=1 and {xp

2(F)}
P
p=1 are found as

xp
1(F)(n)=

{︄
xp

1 (n), if |xp
1 (n)| ≥ |xp

2 (n)|
0, otherwise

, ∀p,n,

xp
2(F)(n)=

{︄
xp

2 (n), if |xp
2 (n)| > |xp

1 (n)|
0, otherwise

, ∀p,n.

(4.2)

The uncorrelated components, {ep
1 }P

p=1 and {ep
2 }P

p=1, are transferred to the final
fused image unaltered (to preserve the modality-specific information). The fused
patches are then found using sp

F = zp
F + ep

1 + ep
2 , p = 1, . . . ,P. Finally, the fused

image is reconstructed using the fused patches.
Publication IV presents extensive experimental evaluation results using multi-

ple multimodal image datatsets, including four different combinations of medical
imaging techniques, as well as infrared and visible images. The presented exper-
imental results demonstrated that the proposed method leads to improved fusion
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of local intensities and texture information compared to other state-of-the-art
methods.

4.1.1 Fusion of Greyscale and Color Images

Multimodal image fusion can involve fusion of a color image with a greyscale
one. For instance, functional medical images (e.g., PET) are usually presented
in a color code, while anatomical medical images are available in greyscale. A
standard approach for dealing with the fusion of color images is to convert them
to the YCbCr (or YUV) color-space. In this new color-space, component Y (i.e.,
luminance) represents the grey-scale version of the image, which is used for
fusion. As the color information is derived from the functional images only,
the color components (Cb and Cr) are directly incorporated into the final fused
image. Fig. 4.1 illustrates the block diagram of the greyscale and color image
fusion method.

I1 (grey)

I2 (color)
RGB
to

YCbCr
Cb

Y

Cr

fusion

YCbCr
to

RGB
IF

Figure 4.1. Block-diagram of the grey-scale and color image fusion method.

4.1.2 Multimodal Image Fusion via Convolutional CFL

In Publication V, a convolutional extension of the CFL-based fusion method
proposed in Publication IV has been presented. In this method, input images
{sl}L

l=1 are first decomposed into low-resolution (base) layers {sb
l }L

l=1 and high-
resolution (details) layers {sd

l }L
l=1 using low-pass filtering. The details-layers are

decomposed into correlated and uncorrelated components using the proposed con-
volutional CFL algorithm (obtaining coupled dictionaries {{dz(l)

j }J
j=1}L

l=1, common
dictionary {de

k}K
k=1, joint sparse representations {zz

j}
J
j=1 and separate (unique)

sparse representations {{xe(l)
k }K

k=1}L
l=1).

Dictionary of fused coupled features {dF
j }J

j=1 is formed based on the convolu-

tional filters in {{dz(l)
j }J

j=1}L
l=1 with largest variances (used as a measure of visual

significance).
The fused sparse representations {xF

k }K
k=1 are found by combining redundant

sparse representations {{xe(l)
k }K

k=1}L
l=1 using maximum-absolute-value rule (simi-

lar to (4.2)). This ensures that the uncorrelated features and the shared features
with the most significant representations are incorporated in the fused image.
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The fused details-layer sd
F is then reconstructed using

sd
F =

J∑︂

j=1

dF
k ∗ xz

j +
K∑︂

k=1

de
k ∗ xF

k .

The fused base-layer (sb
F) is obtained based on a compromise between maintain-

ing the contrast resolutions of the fused details-layer and allowing the highest
local intensities (since the pixel values in the standard images are limited to
take values between 0 and 1, a plain addition of the fused components can result
in saturation and loss of information). The final fused image sF is found using

sF = sd
F + sb

F. (4.3)

The experimental evaluations using medical and infrared-visible image
datasets, presented in Publication V, demonstrated improved fusion perfor-
mances regarding preserving the details and local intensities compared to state-
of-the-art multimodal image fusion algorithms.

4.2 NIR-RGB Image Fusion based on Convolutional SSA

NIR imaging can provide higher contrast resolutions, for example, in low-
visibility atmospheric conditions such as fog or haze. Therefore, NIR-RGB
image fusion has been used for outdoor image enhancement [21, 89]. In the
following, we present the NIR-RGB image fusion method proposed in Publication
VI, which is based on convolutional SSA and CDL.

The NIR images (denoted as snir) are available in greyscale. Thus, they can
be fused with the greyscale version of the RGB images (denoted as srgb). Hence,
the RGB images are first converted to a color space (e.g., YCbCr), where the
greyscale component (sgrey) is separated from the color components. The images
are then decomposed into their base-layers sb

nir and sb
grey, and details-layers sd

nir
and sd

grey using lowpass filtering. The fusion is performed over the details-layers
(high-resolution components).

Using the proposed convolutional SSA method and coupled dictionaries
{dnir

k }K
k=1 and {dgrey

k }K
k=1, the sparse representations {xnir

k }K
k=1 and {xgrey

k }K
k=1 are

obtained for sd
nir and sd

grey, respectively. Coupled dictionaries for NIR and
greyscale images {dnir

k }K
k=1 and {dgrey

k }K
k=1 are learned beforehand using a train-

ing dataset of NIR-RGB images. The fused sparse representations {xnir(F)
k }K

k=1
and {xgrey(F)

k }K
k=1 are obtained using the max-absolute-value fusion rule (allow-

ing only the most significant coefficients at each entry). The fused greyscale
details-layer sd(F)

grey is then reconstructed using

sd(F)
grey =

K∑︂

k=1

xnir(F)
k ∗dnir

k +
K∑︂

k=1

xgrey(F)
k ∗dgrey

k . (4.4)
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The fused greyscale image sF
grey is formed using sd(F)

grey and the base-layer of the
greyscale image

sF
grey = sb

grey + sd(F)
grey. (4.5)

Finally, the YCbCR image with sF
grey as the intensity layer and the color compo-

nents of the RGB image is converted back to RGB format to generate the final
fused image.

4.3 Experimental Results

In this section, we compare the CFL-based multimodal image fusion methods
proposed in Publications IV-VI with state-of-the-art algorithms. The experi-
ments are conducted using the following datasets:

1. Multimodal medical image fusion: multimodal CT-MR and MR-PET images
taken from The Whole Brain Atlas database [77].

2. IR-VL image fusion: a pair of IR-VL images taken from https://github.com/

hli1221/imagefusion_resnet50/tree/master/IV_images.

3. RGB-NIR image fusion: outdoor images taken from EPFL RGB-NIR Scene
Dataset [78].

The comparisons are conducted using two medical image fusion methods: a
method based on the convolutional neural networks and Laplacian pyramids
(CNN) [103] and a method based on Laplacian redecomposition (LRD) [93].
We also use two IR-VL image fusion methods: a method that incorporates a
hierarchical Bayesian model (Bayes) [88] and a method based on deep learning
(Resnet) [101]. We compare the proposed RGB-NIR image fusion method to a
method based on the top-hat transform (Top-Hat) [89]. For all methods, we use
the default parameters tuned by the authors of the corresponding papers.

4.3.1 Multimodal Medical Image Fusion Results

Figs. 4.2 and 4.3 show results for CT-MR and MR-PET image fusion using the
compared medical image fusion methods. As can be seen, the CNN-based fusion
method results in a significant loss of local intensities in both experiments.
The LRD method leads to a loss of high-resolution details and results in color
distortions (see Fig. 4.3). Both proposed fusion methods provide improved results
in terms of preserving the local intensities and high-resolution details.
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MR CT

CNN [103] LRD [93]

CFL Convolutional CFL

Figure 4.2. MR-CT image fusion results obtained using different methods.

4.3.2 Visible-Light and Infrared Image Fusion Results

A pair of multimodal VL-IR images and their fusion results obtained using
different methods are shown in Fig. 4.4. As can be seen, similar to the case of
multimodal medical image fusion, the proposed fusion methods lead to enhanced
contrast resolution and overall visibility.

4.3.3 RGB-NIR Image Fusion Results

Figs. 4.5 and 4.6 show examples of NIR and RGB images and their fusion results
obtained using the method proposed in Publication IV and the method of [89].
Improvements obtained by using the proposed method can be clearly observed.
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MR CT

CNN [103] LRD [93]

CFL Convolutional CFL

Figure 4.3. MR-PET image fusion results obtained using different methods.
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VL IR

Resnet [101] Bayes [88]

CFL Convolutional CFL

Figure 4.4. VL-IR image fusion results obtained using different methods.
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NIR RGB

Top-Hat transform [89] Convolutional SSA

Figure 4.5. NIR-RGB image fusion results.

NIR RGB

Top-Hat transform [89] Convolutional SSA

Figure 4.6. NIR-RGB image fusion results.
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5. Conclusions

In this thesis, we have developed computationally efficient CSC and CDL algo-
rithms that can be used in large-scale signal and image processing applications.
Specifically, we have proposed a novel convolutional LS regression method that
improves the efficiency of existing ADMM-based CSC and CDL algorithms.
Additionally, we have proposed an efficient approximate ADMM-based OCDL
method suitable for applications that require learning large dictionaries over
high-dimensional signals.

Furthermore, we have presented new methods and developed computation-
ally efficient algorithms for learning correlated features in multi-measure and
multimodal signals based on sparse approximation and dictionary learning
frameworks. We have also developed extensions and variations of the proposed
CFL method based on the CSC model. The presented CFL methods can be
potentially used in various signal and image processing applications that re-
quire a joint analysis of multiple correlated data. Specifically, we have proposed
multimodal image fusion methods based on the proposed CFL algorithms. We
used the learned coupled features to generate unified and reinforced (fused)
images. We have addressed multimodal medical, IR-IV, and NIR-RGB image
fusion problems.

Image fusion is a task where dictionary learning and sparse representations
remain superior to deep learning-based methods. This is largely due to the
absence of naturally fused images available for end-to-end supervised learning.
Instead, fused images are synthesized by combining the information in multiple
input images. Moreover, access to training data can be limited in many cases,
for example, in medical image fusion.

In contrast, dictionary learning allows visual features to be learned as atoms
of the dictionaries using very small datasets or even a single image. Based
on the sparse representation and dictionary learning model, these learned
visual features can be used as building blocks for constructing the fused image.
Additionally, the magnitude of the sparse coefficients can be interpreted as a
measure of the significance or visibility level of the visual features. By relying
on these interpretations of the sparse model, the image fusion task can be
addressed more effectively and efficiently with a smaller training dataset, fewer
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parameters, shorter training time, etc.
Representative experimental results obtained using the proposed algorithms

have been provided at the end of each chapter. The effectiveness of the pro-
posed methods has been evaluated based on comparisons with state-of-the-art
algorithms.

5.1 Potential Future Works

The CFL methods proposed in this thesis are specifically applicable to signals
with grid-like structures, such as images and time series. It could be interesting
to consider extending the CFL model to graph signals, for example, based on the
existing graph dictionary learning algorithms [104,105].

We proposed general image fusion methods with an emphasis on algorithmic
simplicity to demonstrate the effectiveness of the proposed CFL algorithm. More
comprehensive CFL-based image fusion methods incorporating the imaging
modalities’ characteristics can enhance image fusion performance.
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In the first paragraph of Section III, it is stated “this helps to bypass the non-

convexity of dictionary update problem”, which is not accurate; the dictionary

update problem is convex. Simultaneously updating the dictionary atoms and

the nonzero entries in the sparse representations is non-convex.
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An Efficient Coupled Dictionary Learning Method
Farshad G. Veshki and Sergiy A. Vorobyov , Fellow, IEEE

Abstract—In this letter, we present a generic and computation-
ally efficient method for coupled dictionary learning (CDL). The
proposed method enforces relations between the corresponding
atoms of dictionaries learned to represent two related (but not
necessarily of the same dimensionality) feature spaces, aiming that
each pair of related signals from the two feature spaces has the
same sparse representation with respect to their corresponding
learned dictionaries. Coupled learned dictionaries have various
applications in many sparse representation-based recognition and
reconstruction problems, where the two related feature spaces are
representing the same signal of different modalities or different
qualities. The presented experimental comparisons show that the
results obtained using our proposed CDL method are competitive
to those of the state-of-the-art CDL methods in performance, while
the proposed method has a significantly lower computational cost.
Furthermore, the proposed method can be straightforwardly used
for learning coupled dictionaries from more than two related fea-
ture spaces.

Index Terms—Coupled dictionary learning, feature space learn-
ing, sparse representation.

I. INTRODUCTION

S PARSITY and overcompleteness has been successfully
used for diverse applications in signal processing over the

last decade [1]–[4]. The fact exploited is that the signal x can
be described as a linear combination of few atoms over an over-
complete dictionary D, and the problem of seeking such sparse
representation can be formulated as minα‖α‖0 s.t. x ≈ Dα,
where α is the sparse vector of coefficients for atoms in the
dictionary D and ‖ · ‖0 denotes the operator that counts the
number of non-zero entries in a vector.

Many applications have benefited remarkably from using the
above approach with learned overcomplete dictionary [5]–[8].
Representative examples of dictionary learning algorithms in-
clude the K-SVD method [9], the method of optimal direc-
tions (MOD) [10], and the online dictionary learning (OLD)
method [11]. “Good” dictionaries are expected to be highly
adaptive to the observed signals and to lead to accurate sparse
representations.

While the single dictionary model has been extensively stud-
ied, there exists also a coupled dictionary viewpoint to sparsity
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and overcompleteness, where a coupled dictionary is needed
to represent the double feature space, e.g., low-resolution (LR)
and high-resolution (HR) images in image processing [2]. The
combination of learned coupled dictionaries and sparse approx-
imation is shown to be superior for representing double feature
spaces [12]–[19]. Signal reconstruction problems [12]–[14],
recognition tasks [16], [17], and multi-focus image fusion [18]
are examples of applications of coupled dictionaries.

A majority of existing CDL algorithms aim to learn two
related feature spaces through burdensome complex procedures,
while the computationally demanding nature of dictionary learn-
ing algorithms becomes more restrictive when we need to learn
two dictionaries simultaneously. In this letter, we propose a
fast and easy to implement CDL scheme based on joint sparse
coding and computationally cheap atom update rules, which
dramatically reduces the computational cost compared to the
existing CDL methods without sacrificing the performance even
slightly.

II. PROBLEM STATEMENT

The CDL aims to find a pair of dictionaries {D1 ∈
Rm1×n, D2 ∈ Rm2×n} best representing two subsets of
p training signals X1 = [[x1]1, . . . , [x1]p] and X2 =
[[x2]1, . . . , [x2]p] in such a way that if a linear combination
of atoms of D1 models a signal in X1, the same linear
combination of atoms of D2 also models the corresponding
signal in X2. Notice that the dimensionalities of X1 and X2

are not necessarily the same. Then the CDL problem can be
formulated as the following optimization problem [12]

min
D1,D2,Γ

ω ‖X1 − D1Γ‖2F + (1 − ω) ‖X2 − D2Γ‖2F

s.t. ‖γc
i‖0 � T0, ‖[d1]t‖2 = 1, ‖[d2]t‖2 = 1, ∀t, i (1)

where [d1]t and [d2]t are the t-th dictionary atoms (columns) of
D1 and D2, respectively, T0 is the constraint value on sparsity,
γc

i denotes the i-th column of Γ (“c” is for “column”), ω (0 ≤
ω ≤ 1) controls the two approximation errors associated to D1

and D2, ‖ · ‖2 is the Euclidean norm of a vector, and ‖ · ‖F is
the Frobenius norm of a matrix.

A commonly used approximation for (1) is based on refor-
mulating (1) as a joint dictionary learning problem (2)

min
D,Γ

‖X − DΓ‖2F s.t. ‖γc
i‖0 � T0, ∀i (2)

where X �
[ √

ωX1√
1 − ωX2

]
and D �

[ √
ωD1√

1 − ωD2

]
. Problem (2) can

be addressed using any single dictionary learning method. How-
ever, problems (1) and (2) are not equivalent with respect to D1

and D2. Thus, the jointly learned dictionaries are not guaranteed
to be individually adaptive to X1 and X2, respectively.

1070-9908 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Block-diagram of the proposed CDL method.

A bilevel optimization scheme which directly addresses (1)
has been also proposed in [12]. It alternatively optimizes D1

and D2, where Γ is the sparse represenation of X1 over D1.
It is the state-of-the-art CDL method for our developments.
Moreover, instead of enforcing an identical sparse representa-
tion, the method in [15] learns D1 and D2 which yeild Γ1 and
Γ2 = WΓ1 representing X1 and X2, respectively. Here W is
a linear mapping from Γ1 to Γ2. This method also solves the
CDL problem (1) in the sense that the product of the dictionaries
D1 and D̂2 = D2W and the common sparse representation Γ1

will reconstruct X1 and X2, respectively. The main problem
with the existing CDL methods is their high computational
complexities.1

III. PROPOSED METHOD

In this letter, we propose to exploit the fact that CDL problem
(1) is equivalent to the joint dictionary learning problem (2) with
respect to Γ. Performing the sparse coding jointly, apart from
simplying the algorithm, improves the effectivness of the CDL
update cycles.2 We also show that the atoms of D1 and D2

can be learned disjointly from each other, only with respect
to their corresponding rows in Γ. This helps to bypass the
non-convexity of dictionary update problem, that arises from
the sparsity constraint on Γ, and to learn the optimal atoms
using computationally cheap update rules only with respect to
the nonzero entries of Γ.

Thus, we split the optimization variables in problem (1) into
two subsets: {Γ} and {D1, D2}. Then (1) can be addressed in
alternating manner by iterating between two phases, where in
the first phase Γ is optimized under the constraint ‖γc

i‖0 � T0

– a joint sparse coding problem, and in the second phase D1

and D2 are optimized under the constraints ‖[d1]t‖2 = 1 and
‖[d2]t‖2 = 1, respectively, – a coupled dictionary update prob-
lem. The general procedure for our CDL method is then sum-
marized in the block-diagram presented in Fig. 1. The dashed
arrow in the block diagram indicates that in order to preserve
the same sparse representation for both D1 and D2, the updates
of Γ need to be performed in a coupled manner also during
the dictionary update phase. The dictionaries can be initialized
by any fixed basis overcomplete dictionary, e.g., discrete cosine
transform (DCT) dictionary or a Gaussian random matrix of
appropriate size with (l2-norm) normalized columns. Moreover,
we show that our method can be easily extended to learning
coupled dictionaries from multiple feature spaces.

1See Section IV for detailed studies of complexity.
2We explain this in details later in SubSection IV-B.

A. Joint Sparse Coding

Problems (1) and (2) are equivalent with respect to only Γ.
Thus, the optimal Γ for CDL scenario is equal to the sparse
approximation of joint training data with respect to the joint
dictionary, i.e., X and D (defined after (2)), respectively. Such
a sparse coding problem can be solved using many available
sparse coding algorithms, for example, orthogonal matching
pursuit (OMP) [20], focal underdetermined system solver (FO-
CUSS) [21], and least angle regression (LARS) [22], [23].

B. Coupled Dictionary Update

For the common sparse representation Γ, problem (1) needs
to be solved then over the coupled dictionaries D1 and D2. The
corresponding optimization problem is given as

min
D1,D2

ω

∥∥∥∥∥X1 −
∑

t

[d1]tγ
r
t

∥∥∥∥∥

2

F

+ (1 − ω)

∥∥∥∥∥X2 −
∑

t

[d2]tγ
r
t

∥∥∥∥∥

2

F

(3)

subject to the constraints in (1). Here, γr
i is the i-th row of Γ (“r”

is for “row”), and we rewrite the products D1Γ and D2Γ as the
sums of vector outer products [d1]tγ

r
t and [d2]tγ

r
t, respectively.

Then each pair of corresponding atoms can be updated disjointly
from the others and independent from ω. Thus, to update the
t-th pair of atoms, we fix the remaining atoms, and rewrite the
optimization problem (3) as

[di]t = argmin
[di]t

∥∥∥[Ei]t − [di]t [γr
t]∫t

∥∥∥
2

F
, i = 1, 2 (4)

where [Ei]t represents the approximation residuals excluding
the contribution of t-th atom, and it is defined as

[Ei]t �

⎡
⎣Xi −

∑

s �=t

[di]sγ
r
t

⎤
⎦

∫t

, ∫t = {i|[γr
t]i �= 0}.

Here ∫t is the set of indices of nonzero entries of γr
t. In a

single dictionary update problem, K-SVD [9] addresses (4)
by finding the rank-1 approximation of [Ei]t using singular
value decomposition (SVD) and simultaneously updates [di]t
and [γr

t]∫t
. However, this approach is not applicable to the cou-

pled dictionary update case, since [γr
t]∫t

needs to be preserved
identical for both dictionaries. Instead, we address (4) by solving
two seperate least squares (LS) problems. The solutions can be
easily found as [di]t = [Ei]t[γ

r
t]

T
∫t

/‖[γr
t]∫t

‖22, i = 1, 2. Since
we need to normalize the l2-norm of each atom to one anyway,
the normalization term ‖[γr

t]∫t
‖22 can be dropped. Then the atom

update rule is

[di]t = [Ei]t[γ
r
t]

T
∫t

, i = 1, 2. (5)

After updating [di]t, i = 1, 2, we need to update [γr
t]∫t

. Since
[di]t is a unit vector, the solution of (3), this time over [γr

t]∫t
,

can be efficiently found as

[γr
t]∫t

= dT
t Et (6)

where dt �
[ √

ω[d1]t√
1 − ω[d2]t

]
and Et �

[ √
ω[E1]t√

1 − ω[E2]t

]
.

When ∫t is empty, i.e., when [d1]t and [d2]t are not used in the
approximation of any training sample, they can be substituted
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Algorithm 1: Coupled Dictionary Learning.
Input: X1 and X2, and D0 = DCT dictionary.

1: Initialization: Set D1 := D0, D2 := D0.
Number of update cycles := N .

2: for N cycles do
3: Joint sparse coding:

Find Γ over X , D (2);
4: for t = 1 · · · number of atoms do
5: Find ∫ t = {i|[γr

t]i �= 0};
6: if ∫ t �= ∅
7: Update [d1]t and [d2]t using (5);
8: Normalize the atoms:

[d1]t = [d1]t
‖[d1]t‖2 and [d2]t = [d2]t

‖[d2]t‖2 ;
9: Update γr

t using (6);
10: else
11: Update [d1]t and [d2]t using (7);
12: end if
13: end for
14: end for
Output: The pairwise correlated dictionaries D1 and D2.

with the pair of inputs [x1]j and [x2]j that jointly have the largest
approximation residuals. This can be formulated as

[di]t =
[xi]j

‖[xi]j‖2
, j = argmax

j
‖xj − Dγc

j‖22, i = 1, 2. (7)

C. Summary of the Algorithm

The overall algorithm for CDL can be then summarized as in
Algorithm 1.

D. Complexity Analysis

Let sci , sri be the number of nonzero entries in i-th column and
row of Γ, respectively, and S be the total number of nonzeros
elements. For sparse coding, we recommend LARS/Homotopy
l1-minimization algorithm [23]. The computational complexity
of k-step Homotopy algorithms for a general m × n dictionary
is bounded by sm2 + smn flops [27], where s is the number
of nonzero coefficients. Then the complexity of sparse coding
for our method is bounded by

∑p
i=1 sci (m1 + m2)

2 + sci (m1 +
m2)n = S((m1 + m2)

2 + (m1 + m2)n) flops per each learn-
ing cycle. Also, the complexity of atom update phase (equations
(5) and (6)) is

∑n
i=1 2sri(m1 + m2) = 2S(m1 + m2) flops per

learning cycle.

E. CDL for More Than Two Feature Spaces

The proposed method can be directly applied to the case
where M coupled dictionaries need to be learned from M related
feature spaces. This is the case, e.g., in distributed compressed
sensing where three dictionaries need to be learned (for common
and two innovation components) [28], [29]. For such case, the
objective function in (1) can be rewritten as

min
D1,...,DM ,Γ

M∑

j=1

λj ‖Xj − DjΓ‖2F

where λj (
∑M

j=1 λj = 1, λj ≥ 0) controls the tradeoff among
approximation errors. Then, for the joint sparse coding phase,
X and D are formed as

X =
[√

λ1X
T
1 , . . . ,

√
λMXT

M

]T
,

D =
[√

λ1D
T
1 , . . . ,

√
λMDT

M

]T
.

The atom update rule (5) is the same for multiple dictionary
learning case. The only difference is that i = 1, . . . , M this time.
Then, the rows of Γ can be updated using (6) with

dt =
[√

λ1[d1]
T
t , . . . ,

√
λM [dM ]Tt

]T
,

Et =
[√

λ1[E1]
T
t , . . . ,

√
λM [EM ]Tt

]T
.

IV. EXPERIMENTAL RESULTS

In this section, we compare our CDL method with the method
of [12] in terms of the performance in an image super-resolution
(SR) problem, convergence speed, and algorithm complexity.
We employ the CDL based signle-image SR algorithm used in
[12]. The experiments are performed on a PC running an Intel(R)
Xeon(R) 3.40 GHz CPU.

A. CDL for Image Super Resolution

The image SR algorithm of [12] employs two dictionaries
learned over two datasets of corresponding LR and HR im-
ages to recover the SR image patches from their LR versions.
Instead of the original LR signals, features containing their
median frequency band, which are known to contain the most
relevant information [2], are extracted using four 1-D filters.
The dimensionality of the obtained feature vectors are then
four times higher than the original signals. We train three pairs
of dictionaries (where n = 512 always) using our method, the
method of [12], and K-SVD [9] (for joint dictionary learning
as in (2)). The parameter ω is always equal to 0.5. Both CDL
algorithms are initialized using Gaussian random dictionaries.
The training data3 includes 10,000 vectorized HR intensity
patches (X2 ∈ R25×n), and their corresponding LR feature
vectors (X1 ∈ R100×n). Using each pair of learned dictionaries,
while the rest of parameters are kept unchanged, we apply the
SR algorithm of [12] to a four times downsized version of Lena
image, then compare the results in Fig. 2. The results are also
compared with the upsized image using bicubic interpolation
[24].

The results in Fig. 2 show that the SR images obtained using
the coupled learned dictionaries are significantly better than that
of bicubic interpolation, which is excessively blurred, and the
SR image obtained using jointly learned dictionaries which has
non-smooth edges and contains artefacts. There is almost no
difference between the results obtained using the dictionaries
learned by our method and that of [12]. We apply the SR algo-
rithm to two more images, Child and Peppers and summarize the
root mean squared error (RMSE) values4 in Table I, which show
that the coupled dictionaries learned by [12] and the proposed

3The training data is taken from the demo software of [2] made available
online by the authors of [25].

4RMSE values are calculated as
√

1
p

∑p

i=1
(xi − Dγc

i )
2.
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Fig. 2. (a) Input (128 × 128), (b) original image (512 × 512), (c) upsized
image using bicubic interpolation [24]; the reconstructed images using (d) jointly
learned dictionaries, (e) Yang et al. CDL method [12], and (f) the proposed CDL
method.

TABLE I
RMSE RESULTS FOR SR RECONSTRUCTION OF THREE TEST IMAGES USING

BICUBIC INTERPOLATION, AND SR METHOD OF [12] FOR THREE PAIRS OF

LEARNED DICTIONARIES, LEARNED BY: K-SVD, CDL METHOD OF [12],
AND THE PROPOSED METHOD

method have similar performance, and both of them perform
better than jointly learned dictionaries.

B. Convergence Speed

To compare the convergence speed of the two CDL algo-
rithms, we visualize the density of Γ (see Fig. 3(a)) and RMSE
values associated with X1 and X2 (see Fig. 3(b,c)), during 15
CDL cycles. In the first few cycles, the density of Γ is higher
for our method, because we perform the sparse coding jointly,
while in [12] it is performed only for X1. The latter also results in
lower RMSE for [12] in approximation of X1, however, it leads
to higher RMSE for that of X2. In each dictionary update phase,
the lower bounds of error for the approximations D1Γ � X1

and D2Γ � X2 are directly dependent on the overlaps between
the row-space of Γ and those of X1 and X2, respectively. The

Fig. 3. Comparing the proposed CDL method – 2 and the method of [12] –
1, in terms of: a) density of Γ (the ratio between the number of nonzeros and
total number of entries), b) RMSE of approximaion of X1, and c) RMSE of
approximaion of X2, over 15 CDL cycles.

row-space of a jointly optimal Γ approximately spans that of X
(DΓ � X) which means that it also approximately spans the
row-spaces of X1 and X2 (since X has the rows of X1 and
X2). However, the latter is not guaranteed if Γ is obtained only
for X1 as in [12].

The density of Γ in both experiments converges to around
0.003 (in average 1.53 nonzero entries per column). In Fig. 3,
the superiority of the proposed method in terms of convergence
speed is clearly visible. The convergence takes nearly 25 and
90 seconds for our method and that of [12], respectively.

C. Complexity Comparison

The computational complexity of the CDL algorithm is not
given in [12]. Thus, we calculate it and compare to that of
our proposed method. We use LARS/Homotopy algorithm [23]
also for [12]. The complexity of sparse coding and updating
D1 for [12] is at least SN(2m2

1 + 2m1n + 5m1 + 3m2) flops.
Learning D2 using Lagrange dual method proposed in [26]
(as recommended in [12]) also needs p(N + 2M)(n2 + nm2)
flops where M is the number of iterations of the conjugate
gradient descent method that [26] uses for finding the optimal
dual variables. Considering that m2, m1 � n � p < S, it is
easy to see that the total computational cost of our CDL method
is significantly lower than that of the method of [12].

V. CONCLUSION

A novel computationally efficient CDL algorithm that en-
forces common sparse representations for double feature spaces
and can be straightforwardly extended to learn coupled dictio-
naries from more than two feature spaces has been proposed. The
performance and convergence speed of the proposed method
have been compared to the state-of-the-art CDL method. The
comparison results show that the proposed method reduces dra-
matically the computational costs, which is crucially important
for computationally costly tasks such as CDL.
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Abstract—The image fusion problem consists in combining
complementary parts of multiple images captured, for example,
with different focal settings into one image of higher quality.
This requires the identification of the sharpest areas in sets of
input images. Recently, it was shown that coupled dictionary
learning can successfully capture the relationships between high-
and low-resolution patches in the context of single image super-
resolution. In this work, to identify the sharp image patches, we
propose an improved discriminative coupled dictionary learning
approach using joint sparse representations in blurred and
focused dictionaries. In addition, a pixel-wise processing of the
boundaries (i.e., patches containing blurred and focused pixels)
is proposed. The experimental results using two natural image
datasets, as well as a sequence of in vivo microscopy images, show
the competitiveness of the proposed method compared to state-
of-the-art algorithms in terms of accuracy and computational
time.

Index Terms—Image fusion, coupled dictionary learning, joint
sparse representations.

I. INTRODUCTION

IMage fusion is a post-processing technique that combines
the relevant information from multiple images captured

with different tools or parameters in a single image. Image
fusion techniques seek to preserve image quality without
resorting to often costly specialized optic sensors [1]–[3]. Due
to the potential for a considerable cost reduction, image fusion
has attracted increased attention in various fields, including
remote sensing or medical imaging [4]–[7].

State-of-the-art image fusion methods can be grouped into
two main categories: spatial and transform domain methods.
The first approach relies on measures such as spatial fre-
quency [8] and phase congruency [9] that allow the signifi-
cance level of pixels (or image patches) to be evaluated. A
fused image is then obtained by assigning the elements with
the highest significance levels to their corresponding locations
in the final image. In the second approach, the input images
are transformed, and fusion is performed over the transform
coefficients before generating the all-in-focus image by using
inverse transform. Typical transform domain approaches use
frequency-based transforms, such as wavelets [10].

One emerging image fusion approach utilizes sparse repre-
sentations in dictionaries learned from the data itself [11]–[14].
These methods exploit the fact that patches of natural images
can be compactly represented by a linear combination of only
few atoms of an over-complete dictionary. Sparsity is then
used either as a quality measure [11], or in order to learn the
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desired features from the labelled training data [12]. However,
these methods commonly employ a single (usually focused)
dictionary. The main drawback of the single dictionary ap-
proach is that it fails to take advantage of the features in the
degraded and noisy images. Specifically, the inability of prop-
erly describing degraded patches can noticeably reduce the
accuracy of the sparse representation. To bypass this issue, a
simultaneous learning of blurred and focused dictionaries was
proposed in [14]. However, this method does not exploit the
core advantage of coupled dictionary learning (CDL), which
is based on a common sparse representation that expresses the
correlation between blurred and focused features. Specifically,
separate sparse codes are used for each dictionary, which are
then averaged in order to perform fusion [14].

The CDL technique has led to state-of-the-art performance
in various image processing applications [15]–[18]. CDL is
designed to learn a pair of dictionaries for capturing the
relationships between two correlated input data. In particular,
the dictionaries are coupled, in the sense that they use common
sparsity coefficients to reconstruct the data. For example, cou-
pled dictionaries have been successfully used for describing
the connection between high- and low-resolution features in
image super-resolution [17]. Similarly, one can use CDL to
capture blurred and focused image features [14]. In the context
of multi-focus image fusion, CDL can be formulated as the
following minimization problem:

min
DF ,DB ,A

‖XFt −DFA‖2F + ‖XBt −DBA‖2F

s.t. ‖αi‖0 6 K, ‖[dFt]j‖2 = 1, ‖[dBt]j‖2 = 1,∀j, i
(1)

whereDF ∈ Rn×q andDB ∈ Rn×q represent the focused and
blurred dictionaries, respectively, with [dF]j , [dB]j referring
to their j-th columns (i.e., atoms). The focused and blurred
training data are denoted as XFt and XBt, respectively. The
i-th column of the common sparse representation matrix A
is denoted as αi. Finally, ‖ · ‖0 is the operator counting
the number of non-zero coefficients in a vector, K is the
maximum number of such coefficients, and ‖ · ‖F denotes the
Frobenius norm. In image fusion, CDL can be interpreted as an
approximation of the underlying blurring function in the form
of a linear transformation between any two tight column-wise
corresponding subspaces of DF and DB. Once the coupled
dictionaries are learned, the joint sparse representation of two
input image patches can be used for reconstruction or for
building a fusion rule, as will be explained later in this paper.

In this work, we introduce a novel CDL-based image fusion
method. The proposed approach consists of two main stages.
First, CDL is used to capture the relationships between blurred
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and focused features by learning coupled dictionaries from la-
belled training data. In order to improve the discriminability of
the dictionaries, a CDL method using structured incoherency is
proposed. In a second stage, the reconstruction errors (obtained
after a sparse coding phase) of a pair of input patches are
used to identify the focused patch. In contrast to the method
of [14], we do not separate the sparse representations in each
dictionary, but rather promote the correlation between blurred
and focused images by enforcing joint sparsity. Furthermore,
we employ the reconstruction errors instead of the sparsity-
level as a discriminative rule. Finally, an all-in-focus image is
obtained by averaging the selected focused patches. The effect
of blocking artefacts is mitigated by applying a sliding window
approach. Since the patches located between blurred and
focused areas contain varying focus levels, we propose a pixel-
wise strategy for handling boundary regions. Experimental
results using two natural image datasets and a sequence of
in vivo microscopy images are presented in Section III. The
results show the proposed method to be more effective than
several existing fusion approaches.

II. IMAGE FUSION USING CDL

A. Problem formulation

We consider the fusion problem where, for simplicity but
without loss of generality, two images I1 ∈ RN×M and I2 ∈
RN×M with varying focus levels are fused into an all-in-focus
image Y ∈ RN×M . We propose to use a patch-wise approach
where np patches of size n are extracted from I1 and I2,
then concatenated into two matrices X1 ∈ Rn×np and X2 ∈
Rn×np , respectively. The corresponding single input patches
are denoted by x1 ∈ Rn or x2 ∈ Rn. After selecting the
focused patches xF from the pair (x1,x2) and concatenating
them into a matrix XF ∈ Rn×np , the final all-in-focus image
is obtained by weighted averaging as follows

Y = P∗(XF ), (2)

where P(·) : RN×N 7→ Rn×np is a linear operator that
extracts np overlapping patches of size n from an image, and
P∗(·) is its adjoint operation, which places each patch into its
location in the image and performs averaging depending on
the amount of overlap between patches, i.e., P∗[P(I)] = I .
The following subsections first provide some details on the
CDL approach used for learning the dictionaries DF and DB.
Then the sparse representation-based selection rule allowing
the patches xF to be selected is presented.

B. CDL with structured incoherency

Prior to fusion, two coupled dictionaries DF (focused) and
DB (blurred) are learned using labelled training data. The
dictionaries are obtained by solving (1), as explained in Sec-
tion I. In this work, we choose to solve (1) using the algorithm
proposed in [22]. More specifically, the method of [22] is
based on an iterative minimization approach, that alternates
between minimizations with respect to the dictionaries DF

and DB, and the sparse codes in A. The sparse coding
step is solved using the orthogonal matching pursuit (OMP)

[19], while the dictionary update is obtained by solving the
following minimization problem:

[dc]j = argmin
[dc]j

∥∥∥[Ec]j − [dc]j
[
αT

j

]
∫j

∥∥∥2
F
, c ∈ {F,B}, (3)

such that

[Ec]j ,

Xc −
∑
s6=j

[dc]sα
T
j


∫j

and ∫j={i|[αT
j ]i 6=0},

where αT
j is the jth row of A, ∫j is an indicator function that

selects the non-zero entries in αT
j , and the subscript c stands

for the labels F (for focused) or B (for blurred training data).
Since the dictionaries are used to classify the patches as either
belonging to class F or B (see Subsection II-C), it is desirable
that the dictionaries provide the best discriminative power.
In this work, a discriminative constraint based on structured
incoherency is added to (3). Note that this approach has been
successfully used in [21] for the discriminative dictionary
learning. The key idea is to add a constraint that enforces
each dictionary to be weak at representing other classes. The
incoherency term takes the form C(DF,DB) = ‖DT

FDB‖2F .
The dictionary update problem becomes

[dc]j = argmin
[dc]j

∥∥∥[Ec]j − [dc]j
[
αT

j

]
∫j

∥∥∥2
F
+ λ‖DT

h [dc]j‖22

c ∈ {F,B}, h = {F,B} − c,
(4)

where λ > 0 controls the trade-off between the reconstructive
and discriminative properties of the dictionaries DF and DB.
Note that in (4), the incoherency term is formulated atom-
wise. The corresponding atom update rule is then formulated
as follows:

[dc]j =
(
λDhD

T
h + ‖αT

j ‖22Id
)−1

[Ec]j [α
T
j ]

T
∫j
, c ∈ {F,B}

(5)
where Id denotes the identity matrix. For a more detailed
description of the remaining steps of the CDL algorithm, the
reader is referred to [22].

C. Fusion using sparse representation
A classical way of classifying input signals using sparse

representation is by evaluating their reconstruction errors [20].
The key idea is that each element should be assigned to the
class providing the smallest reconstruction error, i.e., the best
sparse representation. However, since multi-focus images are
highly correlated, standard dictionary learning methods lead
to a considerable overlap between the dictionaries DF and
DB, making classification impractical. The CDL framework
described in Subsection II-B allows to overcome this issue
by insuring that the learnt dictionaries are sufficiently inde-
pendent and discriminative. In particular, classification can be
performed using a concatenation of the coupled dictionaries[
DT

F D
T
B

]T
and

[
DT

B D
T
F

]T
. These matrices can be used as

means of describing the function between two patches x1 and
x2, i.e., blurring and deblurring, respectively. Note that since
identifying focused patches is a binary classification problem,

it is sufficient to use one dictionary D ,
[
DT

F D
T
B

]T
.
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1) Selection rule: In this work, the focused patches xF are
selected using the reconstruction error-based approach. More
specifically, let e1 and e2 be the reconstruction errors associ-
ated with the blurring and deblurring functions, respectively.
This can be formulated as e1 = ‖

[
xT
1 x

T
2

]T −Dα‖22
e2 = ‖

[
xT
2 x

T
1

]T −Dα‖22, (6)

where α contains the associated sparse codes. The selection
rule is then based on the fact that a relatively smaller value of
e1 indicates that x1 has undergone blurring (resulting in x2).
For the purpose of processing the boundary region (explained
below), a pixel-wise sparse representation error is also defined
as follows: e′1 = (x1 −DFα)

2 + (x2 −DBα)
2

e′2 = (x1 −DBα)
2 + (x2 −DFα)

2,
(7)

The selection rule for the pair of patches x1 and x2 can then
be expressed as xF = x1, if e1 < e2

xF = x2, otherwise
(8)

Note that in (8) the equality condition is not taken into account
since e1 and e2 cannot be equal.

2) Fusion and processing of boundary regions: Once the
selection rule is applied to all the patches in the images, a
patch-wise decision mask Mp is straightforwardly obtained
(such that the patches in Mp contain values c ∈ {1, 2}). The
pixel-wise decision mask is reconstructed using

M = P∗(Mp), (9)

where M now contains values c′ ∈ [1, 2]. One could directly
use M to form the final image Y by assigning pixels accord-
ing to their labels at each location. However, this approach
can lead to errors around the boundaries between blurred and
focused regions, caused by the weighted averaging of patches
containing both blurred and focused pixels. In order to bypass
this issue, a pixel-wise labelling is proposed for these regions.
More specifically, the mask M is used to first detect the
boundary region, which contains all the pixels with labels in
the interval ]1, 2[. In the second step, the pixel-wise sparse
coding errors (7) are used to assign new labels to the pixels
within the boundary region.1 Finally, the all-in-focus image Y
is obtained by assigning pixels according to their labels in M
to each location (k, l), as follows:

Y kl=(2−Mkl)I1,kl + (Mkl−1)I2,kl (10)

The different steps of the proposed image fusion algorithm are
summarized in Algorithm 1.

III. EXPERIMENTS

In this section, the proposed method is compared with four
recent fusion methods including state-of-the-art. Specifically,

1Figure 2-c shows an example of a mask obtained using the proposed
approach.

Algorithm 1 Image Fusion using CDL

Input: Input images I1 and I2, and learnt coupled dictionary
D = [DT

F ,D
T
B]

T .
1: Patch extraction: X1 = P(I1) and X2 = P(I2);
2: Subtract the mean of each patch: x1 = x1 − mean(x1)

and x2 = x2 −mean(x2);
3: for each patch:
4: Find α using OMP;
5: Compute the errors e1 and e2 in (6);
6: Find xF by applying the selection rule (8);
7: end for
8: Reconstruct the decision mask using (9);
9: Process decision boundaries using the errors in (7);

10: Form the final all-in-focus image Y using the decision
mask.

Output: The all-in-focus image Y .

these methods include one transform domain approach us-
ing Laplacian pyramids (LP) [28], a spatial domain method
using phase congruency (PC) [9], a sparse representation-
based approach using convolutional dictionaries (CSR) [29],
and a method for microscopic medical image fusion using
mean-shift segmentation [32]. For the data without avail-
able ground-truth, the evaluation is based on the normalized
mutual information (NMI) [26], the objective image fusion
performance measure (QAB/F ) [25] and Tone mapped index
(TMQI) [27]. When ground-truth is available, we also use
the mean-squared-error (MSE). First, experiments are con-
ducted on two widely used multi-focus datasets referred to as
Lytro [23] and Grayscale [24]. Note that the Grayscale dataset
provides ground-truth all-in-focus images, which can be used
to compute the MSE. In a second experiment, a sequence of
real medical images is used to validate the proposed method.
Specifically, a sequence of 15 partially blurred and noisy mi-
croscopy images is used [31]. All experiments are performed
on a PC running an Intel(R) Xeon(R) 3.40GHz CPU.

The coupled dictionariesDF andDB are learnt using 40000
pairs of blurred and focused patches extracted from 4 images

(a) (b)

(c) (d)

Fig. 1: Examples of multi-focus images from the Lytro dataset
(a,b) and the microscopic medical image sequence (c,d).
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of the Lytro dataset (the rest of the images are used for testing).
The dictionary learning parameters are set empirically with a
sparsity parameter K = 10, a redundancy of 4 and a patch size
of 16× 16. The resulting dictionaries are of size 256× 1024.
Finally, the maximum number of iterations of the CDL step
is set to 20.

A. Fusion results using Lytro and Grayscale images

The fusion results are quantitatively compared in terms
of average NMI, QAB/F , and MSE for the two considered
datasets. The results reported in Table. I show that the best
overall performance is provided by the proposed and PC meth-
ods for both datasets. More specifically, the PC and proposed
approaches lead to similar NMI and QAB/F values, while
the proposed method results in significantly lower MSE. One
can also see that the proposed method provides competitive
execution times.

Fig. 2 shows the resulting all-in-focus images obtained for
the input images in Fig. 1-(a,b) using the proposed and PC
methods. Note that the mask is first computed for the grayscale
version of the images before applying it to the RGB layers.
A visual inspection of the resulting all-in-focus images shows
that the proposed method allows the edges to be preserved. In
particular, the boundaries between blurred and focused regions
are sharper, as can be clearly observed in the magnified regions
in Fig. 2-d and Fig. 2-e.

Dataset QAB/F NMI TMQI MSE Execution
time (s)

LP
Gray 0.7434 1.0406 0.9347 6.0308 0.0056

Lytro 0.7524 1.0306 0.6628 – 0.0107

PC
Gray 0.7535 1.2216 0.9321 6.8984 0.5104

Lytro 0.7397 1.2089 0.6648 – 1.0557

CSR
Gray 0.7198 1.0296 0.9292 4.6927 54.8437

Lytro 0.7304 1.0340 0.6619 – 99.1661

Us
Gray 0.7512 1.1772 0.9331 3.3453 1.4180

Lytro 0.7561 1.1913 0.6628 – 2.5627

TABLE I: The average results of NMI, QAB/F , TMQI, MSE
and execution time for the Lytro and Grayscale datesets.

(a) (b) (c)

(d) (e)

Fig. 2: Fusion results by (a) PC and (b) the proposed method,
the corresponding magnified regions (d,e), and (c) the mask
obtained using the proposed method.

B. Fusion of in vivo Pap Smear images

Papanicolaou test (Pap smear) images are used for the
automated diagnosis of cervical cancer. However, these images
are characterized by the presence of different focus levels
due to the limited depth of field of the microscope. In
order to bypass this limitation, multiple images with different
focal settings are acquired and fused into one all-in-focus
image [30]. In this work, we use a sequence of 15 multi-focus
Pap smear images (of size 480 × 640 pixels). The sequence
is processed using a single-elimination approach. This means
that the fusion is conducted sequentially and pair-wise, i.e., the
fusion result from each pair of images is in turn fused with
the next input image. The quantitative evaluation of the results
obtained using the proposed method, PC, and the method
of [32] are summarized in Table. II. The resulting fused images
are displayed in Fig. 3.

The results reported in Table. II show that the proposed
method provides higher QAB/F and NMI values, correspond-
ing to more edge information and a higher fidelity of pixel
intensities. Fig. 3 confirms these findings, as one can see that
the proposed method provides sharper edges (green arrows)
and preserves details (red arrows) that are missing in the image
obtained by the method of [32].

QAB/F NMI TMQI

The method of [32] 0.6063 5.9135 0.7949

PC 0.6212 6.9133 0.7739

The proposed method 0.6257 7.1941 0.7755

TABLE II: Fusion performance for the Pap smear images.

(a) (b)

Fig. 3: Magnified region in the fused image obtained by (a)
the method of [32], and (b) the proposed method.

IV. CONCLUSION

This paper has introduced an image fusion algorithm using
coupled dictionary learning and joint sparse representation.
First, a coupled dictionary learning approach with an addi-
tional incoherency constraint has been used to learn blurred
and focused dictionaries. Secondly, the patch-wise sparse
representation errors have been used to construct a fusion
rule for input patches with unknown focus levels. In addition,
a pixel-wise processing of the boundary regions has been
proposed. Experiments have been conducted using two natural
image datasets and a sequence of in vivo microscopic images
(Pap smear). A comparison with state-of-the-art approaches
has shown the competitiveness of the proposed method in
terms of various image fusion metrics.
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Abstract—Convolutional sparse coding improves on the stan-
dard sparse approximation by incorporating a global shift-
invariant model. The most efficient convolutional sparse coding
methods are based on the alternating direction method of mul-
tipliers and the convolution theorem. The only major difference
between these methods is how they approach a convolutional least-
squares fitting subproblem. In this letter, we present a novel solution
for this subproblem, which improves the computational efficiency
of the existing algorithms. The same approach is also used to
develop an efficient dictionary learning method. In addition, we
propose a novel algorithm for convolutional sparse coding with
a constraint on the approximation error. Source codes for the
proposed algorithms are available online.

Index Terms—Convolutional sparse coding, constrained sparse
approximation, dictionary learning, alternating direction method
of multipliers.

I. INTRODUCTION

S PARSE representations are widely used in various appli-
cations of signal and image processing [1]–[6]. The sparse

synthesis model admits that natural signals can be approximated
using a linear combination of only a small number of atoms
(columns) of a dictionary (matrix). A common formulation of
the sparse coding problem is given as

minimize
x

‖x‖1 s.t. ‖Dx − s‖2
2 ≤ ε, (1)

where D is the dictionary, x ∈ Rm is the sparse representation
vector, s ∈ Rn is the signal, and ε represents the upper bound on
the approximation error. Moreover, ‖ · ‖1 and ‖ · ‖2 denote the
�1−norm and the Euclidean norm, respectively. The problem
of finding sparsity promoting dictionaries is called dictionary
learning [7], [8].

The applications of sparse representations and dictionary
learning usually involve either or both extraction and estimation
of local features. Typically, this is handled by a prior decompo-
sition of the original signal into vectorized overlapping blocks
(e.g., patches in image processing). However, this strategy re-
sults in multi-valued representations. Moreover, since the rela-
tionships among neighboring blocks are ignored, dictionaries
learned using this approach contain shifted versions of the same
features.
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Convolutional sparse coding (CSC) incorporates a single-
valued and shift-invariant model that represents the entire signal.
In this model, the product Dx in the standard sparse coding
problem is replaced by a sum of convolutions. The convolutional
form of the standard sparse coding problem (1) can be written
as follows

minimize
{xk}K

k=1

K∑

k=1

‖xk‖1 s.t.
∥∥∥

K∑

k=1

dk ∗ xk − s
∥∥∥

2

2
≤ ε, (2)

where ∗ denotes the convolution operator (usually, with “same”
padding) and xk ∈ Rn and dk ∈ Rm, k = 1, . . . , K, are the
sparse coefficient maps and the dictionary filters, respectively.
Several applications have shown that CSC outperforms its stan-
dard version in modeling natural signals, such as audio and
images [9]–[20].

A majority of available CSC algorithms, including [21]–[29],
are based on the alternating direction method of multipliers
(ADMM) [30]. ADMM breaks the CSC problem into two main
sub-problems, one of which is a sparse approximation problem
which can be efficiently addressed using a shrinkage operator,
and the other entails a convolutional least-squares regression. An
efficient solution to the second sub-problem based on the con-
volution theorem and the Sherman-Morrison formula is given
in [23]. CSC problem (2) is typically addressed by solving its
unconstrained equivalent

minimize
{xk}K

k=1

1

2

∥∥∥
K∑

k=1

dk ∗ xk − s
∥∥∥

2

2
+ λ

K∑

k=1

‖xk‖1, (3)

where λ > 0 is a regularization parameter. It is known that there
is a unique λ for each ε. However, the appropriate value of λ
also depends on s and {dk}K

k=1. Thus, despite being more con-
venient to solve, the unconstrained reformulation (3) introduces
undesirable data dependency to the CSC algorithm.

A common approach for convolutional dictionary learning
(CDL) entails optimizing the filters and the sparse coefficient
maps using a batch of P training signals [22]–[25]. This problem
can be formulated as

minimize
{xp

k}K
k=1,{dk}K

k=1

P∑

p=1

(
1

2

∥∥∥
K∑

k=1

dk ∗ xp
k − sp

∥∥∥
2

2
+ λ

K∑

k=1

‖xp
k‖1

)

s.t. {dk}K
k=1 ∈ D, (4)

where D = {dk | ‖dk‖2 ≤ 1, k = 1, . . . , K}. The CDL prob-
lem is usually addressed by alternating optimization with respect
to {xp

k}K
k=1 and {dk}K

k=1 [21]–[23]. Several works have shown
that (4) can be solved for {dk}K

k=1 effectively and efficiently
using ADMM in frequency domain [31].

The contributions of this letter are summarized as follows: (i)
we present an efficient approach for solving the convolutional

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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least-squares fitting which leads to a constant improvement on
the complexity of the existing CSC algorithms; (ii) we use the
proposed solution to improve the efficiency of existing CDL
methods; (iii) we propose a novel algorithm for solving the
CSC problem with a constraint on the approximation error based
on our solution to the unconstrained CSC problem. MATLAB
implementations of the proposed algorithms are available at
GitHub repository [32].

II. PROPOSED ALGORITHMS

A. Unconstrained CSC

The ADMM formulation of the unconstrained CSC problem
(3) can be written in the form

minimize
{xk}K

k=1,{zk}K
k=1

1

2

∥∥∥
K∑

k=1

dk ∗ zk − s
∥∥∥

2

2
+ λ

K∑

k=1

‖xk‖1

s.t. zk = xk, k = 1, . . . , K.

The ADMM iterations are

{zt+1
k }K

k=1=argmin
{zk}K

k=1

1

2

∥∥∥
K∑

k=1

dk∗zk−s
∥∥∥

2

2
+

ρ

2

K∑

k=1

‖zk−xt
k+ut

k‖2
2

{xt+1
k }K

k=1=argmin
{xk}K

k=1

λ

K∑

k=1

‖xk‖1 +
ρ

2

K∑

k=1

‖zt+1
k − xk + ut

k‖2
2

ut+1
k = ut

k + zt+1
k − xt+1

k , k = 1, . . . , K,

where ρ > 0 is the penalty parameter and {uk}K
k=1 are the

scaled Lagrangian multipliers. The second subproblem (x-
update step) can be addressed in an element-wise manner using
the shrinkage operator

xt+1
k = Sλ/ρ

(
zk

t+1 + ut
k

)
, k = 1, . . . , K.

For completeness, it is reminded the shrinkage operator is
defined as Sκ(a) = sign(a)max(0, |a| − κ).

The challenging step is solving the first subproblem (z-
update), which entails solving the optimization problem

minimize
{zk}K

k=1

1

2

∥∥∥∥∥
K∑

k=1

dk ∗ zk − s

∥∥∥∥∥

2

2

+
ρ

2

K∑

k=1

‖zk − wk‖2
2. (5)

Using the convolution theorem, problem (5) in Fourier domain
can be written as

minimize
{ẑk}K

k=1

1

2

∥∥∥∥∥
K∑

k=1

d̂k � ẑk − ŝ

∥∥∥∥∥

2

2

+
ρ

2

K∑

k=1

‖ẑk − ŵk‖2
2, (6)

where (̂·) denotes the discrete Fourier transform of a signal and�
stands for the element-wise multiplication operator. Note that the
filters {dk}K

k=1 are zero-padded to the size of {zk}K
k=1 before

performing the discrete Fourier transform.
Denoting δi = [d̂1(i), . . . , d̂k(i)]T , ζi = [ẑ1(i), . . . ,

ẑk(i)]T , ωi = [ŵ1(i), . . . , ŵk(i)]T , i = 1, . . . , n, where
(·)T is the (non-conjugate) transpose operator, we can see that
problem (6) can be addressed as n independent problems

minimize
ζi

1

2

(
δT

i ζi − ŝi

)2
+

ρ

2
‖ζi − ωi‖2

2.

Equating the derivative with respect to ζi to zero, we have

0 = δ̄i

(
δT

i ζi − ŝi

)
+ ρζi − ρωi

= (δ̄iδ
T
i + ρI)ζi − ŝiδ̄i − ρωi

= (δ̄iδ
T
i + ρI)ζi − (ŝiδ̄i − δ̄iδ

T
i ωi) − (δ̄iδ

T
i + ρI)ωi,

(7)

which gives

ζ�
i = ωi + (ŝi − δT

i ωi)(δ̄iδ
T
i + ρI)−1δ̄i

= ωi + (ŝi − δT
i ωi)(‖δi‖2

2 + ρ)−1δ̄i, (8)

where (·)� denotes the solution to an optimization problem and
(̄·) is the complex-conjugate of a complex number.

Denoting

ĉρ
k =

¯̂
dk�

(
ρ+

K∑

k=1

¯̂
dk � d̂k

)
, r̂= ŝ−

K∑

k=1

d̂k � ŵk (9)

(here � stands for the element-wise division operator), the
solution to the z-update step based on (8) can be found as

ẑ�
k = ŵk + ĉρ

k � r̂. (10)

Computational Complexity: The available ADMM-based
CSC algorithms usually address the z-update step as

ζ�
i = (δ̄iδ

T
i + ρI)−1(ŝiδ̄i + ρωi), (11)

which can be inferred from the second line of (7). Computing
(11) using matrix inversion results in a complexity of O(K3)
[21]. However, the work of [23] demonstrated that this can
be reduced to O(K) using the Sherman-Morrison formula.
The complexity of the proposed method is also of O(K).
However, using further simplifications, the proposed approach
eliminates the need for explicit matrix inversion and requires
fewer computations. In particular, performing the z-update step
on a batch of P images using the proposed method requires
((4K + 1)P + 3K + 1)n flops, while it takes (7KP + 3K +
1)n flops using the method of [23], indicating a considerable
improvement provided by our method.

B. CSC With a Constraint on the Approximation Error

The ADMM reformulation of problem (2) is given as

minimize
{xk}K

k=1,{zk}K
k=1

f
(
{zk}K

k=1

)
+

K∑

k=1

‖xk‖1 s.t. zk = xk, ∀k,

where f(·) is an indicator function of the constraint set in (3),
that is,

f
(
{zk}K

k=1

)
=

{
0, if e

(
{zk}K

k=1

)
≤ ε

∞, otherwise
,

with

e
(
{zk}K

k=1

)
=

∥∥∥∥∥
K∑

k=1

dk ∗ zk − s

∥∥∥∥∥

2

2

. (12)

The ADMM iterations are

{zt+1
k }K

k=1 =argmin
{zk}K

k=1

f
(
{zk}K

k=1

)
+

ρ

2

K∑

k=1

‖zk − xt
k+ut

k‖2
2

{xt+1
k }K

k=1 =argmin
{xk}K

k=1

K∑

k=1

‖xk‖1 +
ρ

2

K∑

k=1

‖zt+1
k − xk + ut

k‖2
2

ut+1
k = ut

k+zt+1
k − xt+1

k , k = 1, . . . , K.
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The z-update step requires solving the following optimization
problem

minimize
{zk}K

k=1

f
(
{zk}K

k=1

)
+

ρ

2

K∑

k=1

‖zk − wk‖2
2. (13)

Depending on {wk}K
k=1, problem (13) either has a trivial solu-

tion or it is equivalent to an equality-constrained optimization
problem. This can be expressed as

{z�
k}K

k=1 =
⎧
⎪⎨
⎪⎩

{wk}K
k=1, if e

(
{wk}K

k=1

)
≤ ε

argmin
{zk}K

k=1

K∑
k=1

‖zk−wk‖2
2 s.t. e

(
{zk}K

k=1

)
=ε, otherwise .

(14)

Using a suitable regularization parameter ν, the problem in the
second term of (14) can be reformulated as

minimize
{zk}K

k=1

e
(
{zk}K

k=1

)
+ ν

K∑

k=1

‖zk − wk‖2
2, (15)

which has the same form as problem (5). Finding the solution
of (15) using (10) and plugging it into (12) leads to

e
(
{z�

k}K
k=1

)
=

ν2

n

∥∥∥∥∥r̂ �
(

ν +

K∑

k=1

¯̂
dk � d̂k

)∥∥∥∥∥

2

2

,

where the division by n is required by Parseval’s theorem. Thus,
problem (13) is simplified to a single-variable optimization
problem for finding the optimal parameter ν�, which satisfies
ν� =

{
ν | e

(
{z�

k}K
k=1

)
= ε
}

. Considering that e({z�
k}K

k=1)
is strictly monotonically increasing in ν > 0, this problem
can be efficiently addressed, for example, using the secant
method. Once ν� is known, the z-update can be performed
as ẑ�

k = ŵk + ĉν�

k � r̂, k = 1, . . . , K, where ĉν�

k and r̂ are
calculated using (9).

C. Dictionary Update

Addressing CDL problem (4) over {dk}K
k=1 is equivalent to

solving the optimization problem

minimize
{dk}K

k=1

1

2

P∑

p=1

∥∥∥
K∑

k=1

dk ∗ xp
k − sp

∥∥∥
2

2
+ Ω

(
{dk}K

k=1

)
, (16)

where Ω
(
dk

)
is an indicator function associated with the con-

straint set in (4). Problem (16) can be efficiently addressed using
the consensus ADMM method [31]. The consensus ADMM
formulation of (16) is given as

minimize
{dk}K

k=1

1

2

P∑

p=1

∥∥∥
K∑

k=1

gp
k ∗ xp

k − sp
∥∥∥

2

2
+ Ω

(
{dk}K

k=1

)

s.t. gp
k = dk, k = 1, . . . , K, p = 1, . . . , P

with the ADMM iterations

{gp,t+1
k }K

k=1

=argmin
{gp

k}K
k=1

⎛
⎝1

2

∥∥∥∥∥
K∑

k=1

gp
k∗xp

k−sp

∥∥∥∥∥

2

2

+
σ

2

K∑

k=1

‖gp
k−dt

k+vp,t
k ‖2

2

⎞
⎠

{dt+1
k }K

k=1

=argmin
{dk}K

k=1

(
Ω
(
{dk}K

k=1

)
+

σ

2

K∑

k=1

‖dk− 1

P

P∑

p=1

(gp,t+1
k +vp,t

k )‖2
2

)

vp,t+1
k = vp,t

k + gp,t+1
k − dt+1

k , k = 1, . . . , K, p = 1, . . . , P.

The first subproblem (g-update) is similar to problem (5).
Thus, it can be efficiently addressed using the proposed approach
in Section II-A. The use of the Fourier domain-based approach
requires {gp

k}K
k=1 to be the same size as {xp

k}K
k=1. Hence, the

filters {dk}K
k=1 are zero-padded to the size of {xp

k}K
k=1 to be

conformable with {gp
k}K

k=1. Subproblem d-update can be solved
by projecting 1

P

∑P
p=1(g

p,t+1
k + vp,t

k ) onto the constraint set.
This can be done simply by mapping the entries outside the
constraint support to zero before normalizing the �2−norm. This
approach can be also used for learning multiscale dictionaries,
i.e., filters with different sizes.

D. CDL Algorithm

CDL problem given by (4) is addressed using alternation
approach (by alternating between CSC (see Section II-A) and
dictionary update (see Section II-C) subproblems) to find a local
optimum. We use a single iteration for each subproblem (the
updated ADMM variables are used to initiate the succeeding
iterations). This approach has been shown to be effective while
simplifying the algorithm [23], [31]. We also use the variable
coupling approach suggested in [33] which is shown to provide
a better numerical stability [23], [31]. Specifically, the sparse
(shrunk) variable {xp

k}K
k=1 and the constrained filters {dk}K

k=1
are passed to the next subproblem. The dictionary can be initial-
ized using norm-normalized Gaussian random filters. All other
ADMM variables are initialized using zero arrays of appropriate
sizes.

The performances of the proposed algorithms can be sub-
stantially improved using ADMM extensions such as over-
relaxation [30, Section 3.4.3] and varying penalty parame-
ter [30, Section 3.4.1]. The work of [23] provides detailed
explanations of how these extensions can be incorporated into
ADMM-based CSC and CDL algorithms.

III. EXPERIMENTAL RESULTS

In this section, we first compare the proposed unconstrained
CSC algorithm with the state-of-the-art method, which uses
the Sherman-Morrison formula in convolutional fitting step
(the SM method) [23]. Then, we compare our unconstrained
and constrained CSC methods in terms of convergence speed.
Finally, we compare the proposed CDL algorithm with three
available methods. All methods are based on the same alternating
approach explained in Section II-D and use ADMM in both
phases (CSC and dictionary update). All compared methods
use the SM method in CSC phase. The compared dictionary
learning methods are based on the conjugate gradient method
(CG) [23], the iterative Sherman-Morrison method (ISM) [23]
and a method based on the consensus ADMM framework and
the Sherman-Morrison formula (SM-cns) [31].

A 512 × 512 greyscale Lena image is used in the CSC exper-
iments. The CDL experiments are performed using a dataset of
20 images taken from the USC-SIPI database [34]. All images in
the dataset are converted to greyscale and resized to 256 × 256
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Fig. 1. Functional values over time for the proposed unconstrained CSC
method (pro) and the SM method using (a) different values of ρ for λ = 0.05,
and (b) different values of λ for ρ = 10. A dictionary of 16 filters of size 8 × 8
is used in both cases.

Fig. 2. The quadratic and �1−norm functional values for the proposed uncon-
strained and constrained CSC methods using λ = 0.05 (ε = 88.1886), ρ = 10.
A dictionary of 16 filters of size 8 × 8 is used.

pixels. All methods are implemented using MATLAB. All ex-
periments are conducted on a PC equipped with an Intel(R)
Core(TM) i5-8365 U 1.60 GHz CPU.

A. CSC Results

Fig. 1 shows the functional values over time for 25 iterations
of the proposed unconstrained CSC method and the SM method
using different values of ρ and λ tested. We use a fixed number of
iterations to display the deference in efficiencies (the iterations
of the two methods are equally effective). As it can be seen,
the proposed method is significantly more efficient for all λ and
ρ values. The algorithm complexities have been compared in
Section II-A.

The proposed constrained and unconstrained CSC methods
are compared in Fig. 2. Specifically, we executed the uncon-
strained CSC method using λ = 0.05, then we used the observed
quadratic functional value (ε = 88.1886) to run our constrained
CSC method, while keeping the rest of the parameters un-
changed. As it can be seen, the quadratic and the �1−norm
functionals converge to the same values in both CSC methods.
The constrained method results in a longer runtime, which
accounts for optimization with respect to ν in each iteration.

B. CDL Results

In Fig. 3, the functional values over time for 50 iterations of
all CDL methods using different dataset sizes P are compared.
The complexity of the ISM method is of O(KP 2), which makes
it inefficient when P is large. CG improves scalability, but slows

Fig. 3. Functional values over time using different values of P , ρ = 10,
λ = 0.05, K = 16 filters of size 8 × 8.

Fig. 4. Functional values over time using different K values, P = 10, ρ = 10,
λ = 0.05 and filters of size 8 × 8.

down the convergence. The complexities of the proposed method
and SM-cns are both of O(KP ), and their iterations are equally
effective. However, as it can be seen, the proposed method
is substantially faster. This is achieved by using the method
explained in Section II-A instead of the Sherman-Morrison
formula, in both the z-update step (CSC phase) and the g-update
step (dictionary update phase).

In Fig. 4, the convergence speeds of the proposed CDL method
and SM-cns using different dictionary sizes K are compared.
The improved computational efficiency of the proposed method
can be clearly observed.

IV. CONCLUSION

An efficient solution for the convolutional least-squares fitting
problem has been presented. The proposed method has been used
to substantially improve the efficiency of the state-of-the-art con-
volutional sparse coding and dictionary learning algorithms. In
addition, a novel method for convolutional sparse approximation
with a constraint on the approximation error has been proposed.
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a b s t r a c t 

This paper presents a multimodal image fusion method using a novel decomposition model based on 

coupled dictionary learning. The proposed method is general and can be used for a variety of imaging 

modalities. In particular, the images to be fused are decomposed into correlated and uncorrelated compo- 

nents using sparse representations with identical supports and a Pearson correlation constraint, respec- 

tively. The resulting optimization problem is solved by an alternating minimization algorithm. Contrary to 

other learning-based fusion methods, the proposed approach does not require any training data, and the 

correlated features are extracted online from the data itself. By preserving the uncorrelated components 

in the fused images, the proposed fusion method significantly improves on current fusion approaches in 

terms of maintaining the texture details and modality-specific information. The maximum-absolute-value 

rule is used for the fusion of correlated components only. This leads to an enhanced contrast-resolution 

without causing intensity attenuation or loss of important information. Experimental results show that 

the proposed method achieves superior performance in terms of both visual and objective evaluations 

compared to state-of-the-art image fusion methods. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Multimodal image fusion aims at combining relevant informa- 

tion from images acquired with different sensors into a single im- 

age. The fused images are expected to preserve all important infor- 

mation in the source images without introducing distortions or ar- 

tifacts. Multimodal image fusion has been used in a variety of ap- 

plications, including surveillance [1–3] , remote sensing [4–6] and 

medical imaging [7–9] . In various surveillance applications, fusion 

of infrared and visible images is used to aggregate the visual de- 

tails of the optical images with thermal information captured in 

the infrared images, for example, to improve night vision [1,10] . In 

satellite imaging, the high spatial resolution of panchromatic im- 

ages and the high spectral resolution of multispectral images are 

merged to generate more informative and high-quality fused im- 

ages [6] . Multimodal medical image fusion combines the informa- 

tion captured using various medical imaging techniques. Anatom- 

ical imaging techniques, such as computed tomography (CT) and 

magnetic resonance (MR) imaging, provide high-resolution images 

of internal organs. Functional imaging techniques measure the bio- 
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logical activity of specific regions inside the organs. Single-photon 

emission computed tomography (SPECT) and positron emission to- 

mography (PET) are typical examples of this type of techniques. 

Combining this variety of (often complementary) information into 

a single image, in addition to easing the visualization of multiple 

images, can potentially enable a joint analysis providing relevant 

and new information about the patient [7–9] . 

Multimodal image fusion methods mostly rely on the extrac- 

tion of different types of features in the images before selecting 

or combining the most relevant ones. One way of achieving this is 

by transforming the images into a domain where the relevant fea- 

tures would arise naturally. A common approach employs multi- 

scale transformation (MST) techniques to extract features from dif- 

ferent levels of resolution and select them using an appropriate fu- 

sion rule in a subsequent step [11–18] . The final fused image is ob- 

tained by applying the inverse MST to the combined multi-scale 

features. For example, a recent MST-based fusion method using 

a non-subsampled shearlet transform (NSST) has been proposed 

in [13] . The fusion rule is based on a pulse coupled neural net- 

work (PCNN), weighted local energy, and a modified Laplacian. In 

a different study, the MST is based on local Laplacian filtering (LLF), 

and the fusion rule relies on the information of interest (IOI) crite- 

rion [15] . 

Another approach seeks to learn the relevant features from the 

images. The methods that follow this approach often use sparse 

https://doi.org/10.1016/j.sigpro.2022.108637 
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representations (SR) and dictionary learning [19–23] . Subspace 

learning techniques have also been used for this purpose [24,25] . 

In this category of methods, different strategies have been pro- 

posed to deal with the presence of drastically different com- 

ponents in the images. For example, the images are separated 

into low-resolution (base) and high-resolution (detail) components 

prior to the dictionary learning phase in [19,23] . In [20,21] , mor- 

phological characteristics, such as cartoon and texture components, 

are used. Deep neural networks have also been utilized for multi- 

modal image fusion. However, the applications of these techniques 

are mostly limited to generating decision/weight maps for the fu- 

sion of raw image pixels [26] or multi-scale features extracted us- 

ing standard MST methods [27,28] . 

In general, both MST- and learning-based fusion methods as- 

sume that features with similar structural properties convey re- 

dundant information. These features are therefore deemed appro- 

priate for fusion. However, this assumption does not hold in many 

cases due to the varying characteristics of imaging modalities. For 

example, the highest resolution level of MR and CT images usu- 

ally depicts very different types of tissues, i.e., soft tissues, such 

as fat and liquid, in MR and hard structures, such as bones and 

implants, in CT [8] . In the context of surveillance, the details in in- 

frared and visible images display fundamentally different informa- 

tion. Applying a fusion rule (e.g., binary selection) to features rep- 

resenting distinct objects or characteristics can cause a loss of use- 

ful information. Using averaging techniques can mitigate this loss, 

but it leads to an attenuation of the original intensities (particu- 

larly when there is a weak signal in one of the input images). In 

general, it is not always meaningful to apply a fusion rule when 

there is no guarantee that features with the same levels of resolu- 

tion or morphological characteristics encompass the same type of 

information. Conversely, different imaging techniques can provide 

varying resolutions for the same underlying structures. 

This paper presents an image fusion method using a novel de- 

composition model base on an SR multi-component approach. Un- 

like other multi-component fusion methods ( e.g. , [11,13,20,28] ), we 

do not make assumptions on the characteristics of the correlated 

features nor rely on deterministic decomposition models. Instead, 

a general data-driven model enables us to preserve the essential 

features in both input modalities and reduce the loss of informa- 

tion. Specifically, coupled dictionary learning (CDL) [29] is used to 

learn features from input images and simultaneously decompose 

them into correlated and uncorrelated components. The core idea 

of the proposed model consists of two aspects: 

1. The uncorrelated components contain modality-specific infor- 

mation that should appear in the final fused image. Therefore, 

these components should be preserved entirely rather than 

subjected to some fusion rule. 

2. Since the input images still represent the same scene, organ, 

etc. , they can contain a significant amount of similar or over- 

lapping information. This redundant information is taken into 

account in the correlated components and considered relevant 

for fusion. 

The coupled dictionaries play a key role here; each pair of cor- 

responding atoms (columns) in the dictionaries, represent a corre- 

lated feature. This allows us to choose the best candidate for fusion 

based on the most significant dictionary atom without any loss of 

information. A summary of the proposed methodology and contri- 

butions is provided in the following. 

• We employ a general learning-based decomposition model suit- 

able for fusing images from various imaging modalities. 
• A CDL method based on simultaneous sparse approximation is 

proposed for estimating the correlated features. In order to in- 

corporate variability in the appearance of correlated features, 

we relax the assumption of equal SRs by enforcing common 

supports only. 
• The uncorrelated components are estimated using a Pearson 

correlation-based constraint (enforcing low correlation). 
• An alternating optimization method is designed for simultane- 

ous dictionary learning and image decomposition. 
• The final fusion step combines direct summation with the max- 

absolute-value rule. 
• A MATLAB implementation of the proposed fusion method is 

available online at [30] . 

A thorough experimental comparison with current multimodal 

image fusion methods is conducted using 80 pairs of real multi- 

modal images. The data comprises four different combinations of 

medical imaging techniques, including MR-CT, MR-PET and MR- 

SPECT, as well as infrared and visible images. The experimental re- 

sults show that the proposed method results in a better fusion of 

local intensity and texture information, compared to other current 

techniques. In particular, isolating modality-specific information re- 

duces the loss of information significantly. 

Throughout the paper, we use bold capital letters for matrices. 

In a matrix, the entry at the intersection of the i th row and jth 

column is denoted as [ ·] (i, j) . A single subscript [ ·] i is used to de- 

note a column of a matrix. For example, [ D 1 ] i is the i th column 

of the matrix D 1 . The Frobenius norm of a matrix is denoted by 

‖ · ‖ F , the Euclidean norm of a vector is denoted by ‖ · ‖ 2 , and 

‖ · ‖ 0 is the operator counting the number of nonzero coefficients 

of a vector. The supp {·} denotes the support of a matrix. Opera- 

tor | · | denotes the absolute value of a number. The symbol (·) T 
denotes the transpose operation and (·) + stands for the updated 

variable. The symbol ⊥⊥ denotes the conditional independence be- 

tween two variables. 

The remainder of the paper is organized as follows. 

Section 2 presents the proposed CDL approach and SR with 

common supports. The proposed image decomposition method 

and the fusion step are explained in Sections 3 and 4 , respectively. 

Section 5 reports the experimental results using various exam- 

ples of multi-modal images. Finally, conclusions are provided in 

Section 6 . 

2. Coupled feature learning 

In this section, we modify the standard CDL problem to learn 

the correlated features in multimodal image pairs. The standard 

CDL provides a pair of dictionaries D 1 and D 2 , used to jointly rep- 

resent two datasets X 1 and X 2 . The underlying relationship be- 

tween these datasets is captured using a common sparse coding 

matrix A . A standard formulation of the CDL problem is given by 

the following minimization problem 

min 

D 1 , D 2 , A 
‖ 

D 1 A − X 1 ‖ 

2 
F + ‖ 

D 2 A − X 2 ‖ 

2 
F 

s.t. ‖ 

A i ‖ 0 ≤ T , ‖ 

[ D 1 ] t ‖ 2 = 1 , ‖ 

[ D 2 ] t ‖ 2 = 1 , ∀ t, i 
(1) 

where T is the maximum number of non-zero coefficients in each 

column of the sparse coding matrix A . The constraint on the norm 

of the dictionary elements is used to avoid scaling ambiguities. 

The standard CDL is particularly suitable for tackling problems that 

involve image reconstruction in different feature spaces. Problem 

(1) has been successfully employed in numerous image processing 

applications, such as image super-resolution [31] , single-modal im- 

age fusion [32] , or photo and sketch mapping [33] . 

The proposed modified CDL algorithm also captures the corre- 

lated features in associated atoms of the learned dictionaries D 1 

and D 2 . However, since we are dealing with images acquired from 

different sensors, the same underlying structure can be displayed 

with different levels of visibility in each modality. For example, 

both CT and MRI can show tendons, but they are more visible in 

2 



F.G. Veshki, N. Ouzir, S.A. Vorobyov et al. Signal Processing 200 (2022) 108637 

Fig. 1. Example of coupled dictionaries learned from MR and CT images using (a) the standard CDL approach of [29] and (b) the proposed SCDL method. The red frames 

indicate weakly correlated atoms. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

MR images [34] . We incorporate this in the modified CDL by im- 

posing identical supports instead of enforcing an equal sparse rep- 

resentation for each pair of dictionary atoms. In this way, the cor- 

related elements can be represented with different levels of signif- 

icance in each dictionary. The proposed modified CDL problem can 

be formulated as follows 

minimize 
D 1 , D 2 , A 1 , A 2 

‖ 

D 1 A 1 − X 1 ‖ 

2 
F + ‖ 

D 2 A 2 − X 2 ‖ 

2 
F 

s.t. supp { A 1 } = supp { A 2 } 
‖ 

[ A 1 ] i ‖ 0 ≤ T , ‖ 

[ A 2 ] i ‖ 0 ≤ T , ∀ i 

‖ 

[ D 1 ] t ‖ 2 = 1 , ‖ 

[ D 2 ] t ‖ 2 = 1 , ∀ t. 

(2) 

Problem (1) is typically solved by alternating between a sparse 

coding stage and a dictionary update step [35–37] . In this work, we 

solve problem (2) using an alternating approach too. Specifically, 

after splitting the variables into two subsets { A 1 , A 2 } and { D 1 , D 2 } , 
we alternate between two optimization phases detailed in the fol- 

lowing subsections. 

2.1. Sparse coding 

Minimizing (2) with respect to the first set of variables { A 1 , A 2 } 
requires some changes to the standard sparse coding proce- 

dure ( e.g. , OMP [38] ). First, one has to enforce common sup- 

ports. The method of simultaneous orthogonal matching pursuit 

(SOMP) [39] is of interest here as it includes a common support 

constraint. Secondly, one has to consider coupled dictionaries. This 

can be achieved by modifying the atom selection rule of SOMP so 

that each of the input signals is approximated using a different dic- 

tionary instead of sharing a single one. In each iteration, this mod- 

ified algorithm selects a pair of coupled atoms { [ D 1 ] s , [ D 2 ] s } min- 

imizing the sum of the squared residuals. This can be formulated 

as 

s = argmin 

t 

∥∥αt 
1 [ D 1 ] t − r 1 

∥∥2 
2 + 

∥∥αt 
2 [ D 2 ] t − r 2 

∥∥2 
2 , (3) 

where r 1 and r 2 are the approximation residuals of a pair of in- 

put signals ( e.g. , r 1 = [ X 1 ] i − D 1 [ A 1 ] i and r 2 = [ X 2 ] i − D 2 [ A 2 ] i are 

the residuals corresponding to the i th columns of X 1 and X 2 , re- 

spectively). Moreover, αt 
1 

= [ A 1 ] (t,i ) and αt 
2 

= [ A 2 ] (t,i ) are the sparse 

coefficients corresponding to [ D 1 ] t and [ D 2 ] t , respectively. Problem 

(3) can be efficiently addressed by solving its equivalent maximiza- 

tion problem, that is 

s = argmax 
t 

(
r T 1 [ D 1 ] t 

)
2 + 

(
r T 2 [ D 2 ] t 

)
2 . 

The optimal nonzero coefficients of the sparse codes are then com- 

puted based on their associated selected atoms. As opposed to 

SOMP, we stop the algorithm when only one of the input signals 

meets the stopping criterion ( i.e., the Euclidean norm of one of 

the residuals is smaller than a user-defined threshold ε). This is 

based on the fact that the main objective of the algorithm is to es- 

timate the correlated features, whereas any remaining noise (once 

the approximation of one of the signals is complete) is evidently 

uncorrelated with the residual of the second signal. The modified 

SOMP algorithm can be straightforwardly extended to multiple in- 

puts (see Section 4.4 for details). The steps of the proposed SOMP 

algorithm are explained in Appendix A. 

2.2. Dictionary update 

The first two terms of (2) are independent with respect to the 

dictionaries D 1 and D 2 . They are also independent with respect to 

the non-zero coefficients in A 1 and A 2 when the supports are fixed. 

Therefore, the dictionaries D 1 and D 2 can be updated individually 

using any efficient dictionary learning algorithm. We choose to use 

the K-SVD method [35] because it updates the dictionary atoms 

and the associated sparse coefficients without changing their sup- 

ports. Specifically, K-SVD uses a singular value decomposition. 

The proposed CDL method alternates between the sparse cod- 

ing step using the modified SOMP and the dictionary update us- 

ing K-SVD. We will refer to the proposed approach as simultane- 

ous coupled dictionary learning (SCDL). Algorithm 1 summarizes 

Algorithm 1 Main steps of the SCDL method. 

Inputs: multimodal data X 1 and X 2 , and initial dictionaries D 1 and 

D 2 . Repeat until stopping criteria are fulfilled: 

1. Simultaneous Sparse Coding: solve problem (2) with respect to 

A 1 and A 2 using the modified SOMP method (see Section 2.1). 

2. Dictionary Update : solve problem (2) with respect to D 1 and 

D 2 and the nonzero coefficients in A 1 and A 2 using the K-SVD 

method [35]. 

Outputs: learned coupled dictionaries D 1 and D 2 , and sparse rep- 

resentations with identical supports A 1 and A 2 . 

the main steps of the SCDL method. Fig. 1 shows how the pro- 

posed SCDL method captures correlated features more efficiently 

than the standard CDL method of [29] . Specifically, one can see 

how the dictionaries obtained using the standard method (Fig. ) 

contain relatively uncorrelated atoms (framed in red), while all the 

atoms obtained with SCDL present a clear correlation (see Fig. 1 ). 

3. Image decomposition via SCDL 

Our fusion method decomposes the input images into corre- 

lated and uncorrelated components. The latter represent features 

that are unique to each modality and which we seek to preserve. 

This section introduces the proposed decomposition model and ex- 

plains how to solve the resulting minimization problem. Through- 

out this section, we use examples of multimodal medical images 

to illustrate the properties of the proposed model. 

3.1. Decomposition model 

Let the input images to be fused be denoted by I 1 ∈ R 

M×N and 

I 2 ∈ R 

M×N . 1 The correlated components are denoted by I z 
1 

∈ R 

M×N 

3 
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Fig. 2. A pair of MR and CT images (a,e) decomposed into their correlated (b,f) and uncorrelated (c,g) components based on the proposed model. The residuals are shown 

in (d,h). 

and I z 
2 

∈ R 

M×N , and the uncorrelated components by I e 
1 

∈ R 

M×N and 

I e 
2 

∈ R 

M×N . The proposed decomposition model can be expressed as 

follows {
I 1 = I z 1 + I e 1 

I 2 = I z 2 + I e 2 

where I e 1 ⊥⊥ I e 2 . (4) 

The SCDL method explained in Section 2 operates patch-wise. 

Therefore, we rewrite (4) using the matrices containing all the ex- 

tracted patches as follows {
X 1 = Z 1 + E 1 

X 2 = Z 2 + E 2 
where E 1 ⊥⊥ E 2 , (5) 

where the matrices X 1 ∈ R 

m ×p and X 2 ∈ R 

m ×p contain the p vec- 

torized overlapping patches of size m extracted from the input im- 

ages. The patches of the correlated components are represented by 

Z 1 ∈ R 

m ×p and Z 2 ∈ R 

m ×p , and those of the uncorrelated compo- 

nents by E 1 ∈ R 

m ×p and E 2 ∈ R 

m ×p . 

Fig. 2 shows how the proposed decomposition model captures 

correlated and uncorrelated features in a pair of MR-CT images. 

The uncorrelated components contain edges and details that can 

be clearly observed in only one of the modalities, e.g., sulci details 

in the MR image and calcification in the CT image (indicated by 

red arrows). The correlated components represent the underlying 

joint structure that can be referred to as the base or background 

layer. Fig. 3 , shows another example of decomposition for a pair of 

PET and MR images. In functional-anatomical imaging, any details 

in the images are naturally uncorrelated. The uncorrelated compo- 

nents also capture any non-overlapping regions. Finally, the corre- 

lated components contain the regions where the background of the 

anatomical image overlaps with the biological activity information. 

3.2. Minimization problem 

In order to estimate the correlated and uncorrelated compo- 

nents in (5) , we formulate a minimization problem based on the 

SCDL approach described in the previous section. Specifically, we 

seek the coupled sparse representation of Z 1 and Z 2 using sparse 

codes with identical supports A 1 ∈ R 

n ×p and A 2 ∈ R 

n ×p and cou- 

pled dictionaries D 1 ∈ R 

m ×n and D 2 ∈ R 

m ×n ( i.e., Z 1 = D 1 A 1 and 

Z 2 = D 2 A 2 ). The element-wise independence of E 1 and E 2 is en- 

forced by minimizing the squared Pearson correlation coefficients, 

1 A typical assumption in multimodal image fusion is that the input images are 

accurately coregistered beforehand [40] . Multimodal image registration is consid- 

ered a separate problem and effectively addressed using various available methods 

[41,42] . 

where the local means μ and standard deviations σ are estimated 

patch-wise. The corresponding cost function is expressed as fol- 

lows 

φ
(
[ E 1 ] (i, j) , [ E 2 ] (i, j) 

)
= 

(
([ E 1 ] (i, j) − μ1 , j )([ E 2 ] (i, j) − μ2 , j ) 

σ1 , j σ2 , j 

)
2 

where j is the patch index and the subscripts 1 and 2 indicate the 

associated components E 1 and E 2 . Note that this patch-wise ap- 

proach results implicitly in multiple counts of the same pixel when 

considering overlapping patches [43] . Combining the independence 

term with the proposed SCDL approach leads to the following min- 

imization problem 

minimize 
D 1 , D 2 , A 1 , A 2 , 

E 1 , E 2 

∑ 

i =1 , ... ,m 

j=1 , ... ,p 

φ
(
[ E 1 ] (i, j) , [ E 2 ] (i, j) 

)
s.t. D k A k + E k = X k , k = 1 , 2 

supp { A 1 } = supp { A 2 } 
‖ 

[ A 1 ] i ‖ 0 ≤ T , ‖ 

[ A 2 ] i ‖ 0 ≤ T , ∀ i 

‖ 

[ D 1 ] t ‖ 2 = 1 , ‖ 

[ D 2 ] t ‖ 2 = 1 , ∀ t, 

(6) 

where the sparsity and common support constraints introduced in 

(2) . 

3.3. Optimization 

Problem (6) is challenging because of its non-convexity and the 

presence of multiple sets of variables. Therefore, we propose to 

break the optimization procedure into simpler subproblems where 

we consider minimization with respect to separate blocks of vari- 

ables. We then alternate between these subproblems until find- 

ing a local optimum. Specifically, the minimization with respect to 

the sparse codes and dictionaries, and the minimization with re- 

spect to the uncorrelated components are treated separately. Fur- 

thermore, we simplify the problem by approximating the first two 

equality constraints in (6) by quadratic approximation terms. This 

leads to a new optimization problem that can be written as 

minimize 
D 1 , D 2 , A 1 , A 2 , 

E 1 , E 2 

∑ 

i = 1 , · · ·, m 

j=1 , · · ·, p 
φ
(
[ E 1 ] ( i, j ) , [ E 2 ] ( i, j ) 

)

+ρ ∑ 

k =1 , 2 ‖ D k A k +E k −X k ‖ 

2 
F 

s.t. supp { A 1 } = supp { A 2 } 
‖ 

[ A 1 ] i ‖ 0 ≤ T , ‖ 

[ A 2 ] i ‖ 0 ≤ T , ∀ i 

‖ 

[ D 1 ] t ‖ 2 = 1 , ‖ 

[ D 2 ] t ‖ 2 = 1 , ∀ t 
(7) 

where ρ > 0 controls the trade-off between the independence of 

E 1 and E 2 and the accuracy of the sparse representations. As men- 

tioned above, problem (7) is tackled by alternating minimizations 

4
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with respect to the two blocks of variables { A 1 , A 2 , D 1 , D 2 } and 

{ E 1 , E 2 } . Each resulting subproblem is described in more detail in 

the following. 

3.3.1. Optimization with respect to { A 1 , A 2 , D 1 , D 2 } 
The first optimization subproblem can be written as 

minimize 
D 1 , D 2 , A 1 , A 2 

‖ D 1 A 1 − X 

′ 
1 ‖ 

2 
F + ‖ D 2 A 2 − X 

′ 
2 ‖ 

2 
F 

s.t. supp { A 1 } = supp { A 2 } 
‖ 

[ A 1 ] i ‖ 0 ≤ T , ‖ 

[ A 2 ] i ‖ 0 ≤ T , ∀ i 

‖ 

[ D 1 ] t ‖ 2 = 1 , ‖ 

[ D 2 ] t ‖ 2 = 1 , ∀ t 

where X 

′ 
1 = X 1 − E 1 and X 

′ 
2 = X 2 − E 2 . This subproblem is ad- 

dressed using the SCDL method explained in Section 2 . The dictio- 

naries can be initialized in the first iteration of the algorithm using 

a predefined dictionary, e.g., based on discrete cosine transforms 

(DCT). In subsequent iterations, the SCDL method is initialized us- 

ing the dictionaries obtained from the previous one. Furthermore, 

initializing the sparsity parameter T with a small value and grad- 

ually increasing it at each iteration ensures a warm start of the 

algorithm. 

3.3.2. Optimization with respect to { E 1 , E 2 } 
The second optimization subproblem can be written as 

minimize 
E 1 , E 2 

∑ 

i = 1 , · · · , m 

j=1 , · · · , p 

φ
(
[ E 1 ] ( i, j ) , [ E 2 ] ( i, j ) 

)
+ρ ∑ 

k =1 , 2 ‖ D k A k +E k −X k ‖ 

2 
F . 

(8) 

The estimates of { E 1 , E 2 } are dependent on unobserved latent 

variables, namely the patch-wise means and standard devia- 

tions. Therefore, we propose to address this subproblem using an 

expectation-maximization (EM) method [44, Chap. 5.3] . The EM 

approach leads to the following updates for the uncorrelated com- 

ponent 

[ E 1 ] 
+ 
(i, j) 

= 

ρ[ X 1 −D 1 A 1 ] (i, j) + 

([ E 2 ] (i, j) −μ2 , j ) 
2 

σ 2 
1 , j 

σ 2 
2 , j 

μ1 , j 

ρ + 

([ E 2 ] (i, j) −μ2 , j ) 2 

σ 2 
1 , j 

σ 2 
2 , j 

[ E 2 ] 
+ 
(i, j) 

= 

ρ[ X 2 −D 2 A 2 ] (i, j) + 

([ E 1 ] (i, j) −μ1 , j ) 
2 

σ 2 
1 , j 

σ 2 
2 , j 

μ2 , j 

ρ + 

([ E 1 ] (i, j) −μ1 , j ) 2 

σ 2 
1 , j 

σ 2 
2 , j 

(9) 

where the means and standard deviations are computed using the 

current values of { E 1 , E 2 } . Note that E 1 and E 2 are initialized with 

X 1 − D 1 A 1 and X 2 − D 2 A 2 , respectively. The updates are performed 

only for entries in columns with σ 2 
1 , j 

σ 2 
2 , j 

> δ, where δ > 0 is a 

small constant used to avoid division by zero. 

3.4. Computational complexity 

The computational cost of the proposed decomposition algo- 

rithm is dominated by the first subproblem (solved using SCDL). 

In particular, the complexity of one SCDL iteration (including all 

substeps) is O(p max (T nm, T 2 m, T 3 , nm 

2 )) , while the complexity of 

the EM step is only O(mp) . Based on the experimental findings of 

[45] , sparse approximations are performed in this work in single 

precision, which improves the computational efficiency of the al- 

gorithm. 

4. Multimodal fusion rule 

Once the correlated and uncorrelated components are esti- 

mated, the final fused image is obtained using an appropriate fu- 

sion rule. In this work, the different components are handled sep- 

arately. Specifically, the correlated components are fused because 

they contain redundant information, for instance, shared underly- 

ing structures in anatomical imaging or background elements in 

the functional-anatomical case. In contrast, the uncorrelated com- 

ponents are entirely preserved in the final image to avoid loss of 

modality-specific information ( e.g. , the calcification inside the CT 

image of Fig. 2 (g)). 

4.1. Fusion of correlated components 

According to the justifications provided above, the correlated 

components are fused using a binary selection where the most rel- 

evant features are chosen based on the magnitudes of the sparse 

coefficients. Recall that the proposed SCDL method with common 

supports allows correlated features to be captured with varying 

significance levels for each modality. This is a novel approach com- 

pared to the standard max-absolute-value rule with a single pre- 

defined basis [21,46] . Precisely, the most significant features are se- 

lected based on the sparse coefficients with the largest magnitudes 

as follows 

[ A 

′ 
1 ] (i, j) = 

{
[ A 1 ] (i, j) , if | [ A 1 ] (i, j) | ≥ | [ A 2 ] (i, j) | 
0 , otherwise 

, 

[ A 

′ 
2 ] (i, j) = 

{
[ A 2 ] (i, j) , if [ A 2 ] (i, j) | > | [ A 1 ] (i, j) | 
0 , otherwise 

. 

Then, the fused correlated component, denoted by Z 

F , is recon- 

structed using the selected coefficients as Z 

F = D 1 A 

′ 
1 

+ D 2 A 

′ 
2 
. 

4.2. Reconstruction of final fused image 

Since the uncorrelated components contain details or non- 

overlapping regions that should be preserved in the final image, 

they can be added directly to the fused correlated components, i.e., 

X 

F = Z 

F + E 1 + E 2 . 

Finally, the fused image I F is reconstructed by placing the 

patches of X 

F at their original positions in the image and averaging 

the overlapping ones. The decomposition residuals (see examples 

in Fig. 2 a–d) are negligible and are not included in the final fused 

image. The block diagram of the proposed method is presented in 

Fig. 4 . Fig. 5 shows the fused image obtained with the proposed 

method for the MR-CT images in Fig. 2 and the MR-PET images in 

Fig. 3 . The fused MR-CT image contains the modality-specific infor- 

mation captured by the uncorrelated components ( e.g., calcification 

and sulci details), as well as the most visible features selected from 

the correlated components. The fused MR-PET image combines the 

background of the MR image ( Fig. 3 a) with the functional informa- 

tion from the PET image at the overlapping regions. The details and 

non-overlapping regions, captured in the uncorrelated components 

appear unaltered in the fused image. 

4.3. Color images 

Multimodal image fusion can involve fusion of a color image 

with a greyscale one. For example, functional medical images ( e.g. , 

PET) are usually displayed in a color code, as opposed to the grey- 

scale anatomical medical images. One common approach for deal- 

ing with the fusion of color images is to convert them from the 

original RGB format to the YCbCr (or YUV) color-space [13,27] . In 

this new color-space, component Y ( i.e., luminance) provides the 

grey-scale version of the image, which is used here for fusion. 

Since the full color information comes from the functional images, 

the remaining color components ( i.e. , Cb and Cr) are transmitted 

directly to the final (grey-scale) fused image. Fig. 6 shows the block 

diagram of the greyscale and color image fusion method. 
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Fig. 3. A pair of PET and MR images (a,e) decomposed into their correlated (b,f) and uncorrelated (c,g) components using the proposed model. The residuals are shown in 

(d,h). (The grey-scale component of the PET image is used in the decomposition, as explained in Section 4.3 .). 

Fig. 4. Block diagram of the proposed fusion method. 

Fig. 5. Final fused images obtained with the proposed method for (a) the MR-CT 

example in Fig. 2 , and (b) MR-PET example in Fig. 3 . Red arrows indicate the calci- 

fication and sulci details preserved by the proposed method. 

Fig. 6. Block-diagram of the grey-scale and color image fusion method. 

4.4. Extension to multiple input images 

Generalizing the proposed method to handle more than two in- 

put images is straightforward. Since the sparse approximation (the 

modified SOMP method) can be applied to any number of inputs 

(see Appendix A), and the dictionary update is performed over the 

coupled dictionaries separately, the SCDL algorithm can be directly 

applied to more than two images. To ensure that all correlated fea- 

tures between images are captured, the SOMP iterations can be 

stopped when all inputs except one meet the stopping criteria. 

In the correlation minimization phase, one needs to mini- 

mize the correlation between each uncorrelated component and all 

other uncorrelated components. For K inputs, the correlation term 

for the l-th input can be written as ∑ 

k = 1 , · · ·, K 

k 
 = l 

φ
(
[ E l ] ( i, j ) , [ E k ] ( i, j ) 

)
= 

∑ 

k = 1 , · · ·, K 

k 
 = l 

×
( (

[ E l ] ( i, j ) −μl, j 

)(
[ E k ] ( i, j ) −μk, j 

)
σl, j σk, j 

) 2 

. 

To optimize the objective function with respect to E l , the fol- 

lowing problem is solved 

minimize 
E l 

ρ‖ D l A l +E l −X l ‖ 

2 
F + 

∑ 

k = 1 , · · ·, K 

k 
 = l 

∑ 

i = 1 , · · ·, m 

j=1 , · · ·, p 
φ
(
[ E l ] ( i, j ) , [ E k ] ( i, j ) 

)
which leads to the iteration 

[ E l ] 
+ 
(i, j) 

= 

ρ[ X l −D l A l ] (i, j) + 
∑ 

k =1 , ... ,K 
k 
 = l 

(
[ E k ] (i, j) −μk, j 

σl, j σk, j 

)
2 μl, j 

ρ+ ∑ 

k =1 , ... ,K 
k 
 = l 

(
[ E k ] (i, j) −μk, j 

σl, j σk, j 

)
2 

. 

In the fusion step, similar to the case with two inputs, the cou- 

pled features with the largest sparse coefficients are selected for 

the fused image, and the uncorrelated components are added to 

the fused image directly. 

5. Experiments 

In this section, we evaluate the proposed method in the con- 

text of two major applications of multimodal image fusion. First, 

we use medical imaging data from various modalities and com- 

pare our method to state-of-the-art medical image fusion methods. 

Then, we conduct experiments in the context of infrared-visible 

images and compare with several recent methods. The evaluation 

is based on objective metrics, visual quality, and computational ef- 

ficiency. We also discuss the parameter tuning strategy. 
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Fig. 7. Multimodal medical image fusion results. 

5.1. Experiment setup 

5.1.1. Datasets 

We use 60 pairs of multimodal medical images from The 

Whole Brain Atlas database [47] and 20 infrared-visible images col- 

lected from [48] . The medical fusion data includes 20 anatomical- 

anatomical images (10 MR(T1)–MR(T2) images and 10 MR–CT im- 

ages). The functional-anatomical fusion dataset comprises 20 MR–

PET images and 20 MR–SPECT images. All of the images are accu- 

rately registered. The medical images are of size 256 × 256 pixels. 

5.1.2. Methods used for comparison 

For the experiments on multimodal medical images, the pro- 

posed fusion method is compared to seven recent medical image 

fusion methods, including (1) NSST [13] and (2) LLF [15] (intro- 

duced in Section 1 ); (3) CNN [27] , which relies on convolutional 

neural networks and Laplacian pyramids; (4) a method using con- 

volutional sparse coding referred to as CSR [19] ; (5) a method 

using union Laplacian pyramids referred to as ULAP [14] ; (6) a 

method based on boundary measured PCNN and energy attribute 

in NSST domain (BPCNN) [49] ; a method based on Laplacian re- 

decomposition (LRD) [18] . For the infrared-visible image fusion 

task, four recent methods are used for comparison: (1) a method 

based on deep learning that uses deep residual network and re- 

lies on zero-phase component analysis, referred to as ResNet [26] ; 

(2) a method based on DCT in a discrete stationary wavelet trans- 

form domain, referred to as SWT [11] ; (3) a method that incor- 

porates a hierarchical Bayesian model (Bayes) [10] ; (4) the CSR 

method [19] . All methods considered for comparison are imple- 

mented using MATLAB. All experiments are performed on a PC 

running an Intel(R) Core(TM) i5-8365U 1.60GHz CPU. Note that LLF 

is an anatomical-functional image fusion method. Therefore, it is 

tested in our experiments for this type of data only. To ensure a 

fair comparison in the case of anatomical-functional images, the 

grey-scale CSR method is adopted to color images using the ap- 

proach explained in Section 4.3 . 

5.1.3. Parameter setting 

For the proposed method, we use m = 64 (fully overlapping 

patches of size 8 × 8 ), ε = 

√ 

m × 10 −3 , and δ = 10 −6 in all the ex- 

periments. In addition, we use n = 100 (number of atoms), T = 

6 (sparsity level) and ρ = 20 for anatomical-anatomical (MR-MR 

and MR-CT) image fusion, n = 16 , T = 3 and ρ = 10 for functional- 

anatomical (MR-PET and MR-SPECT) image fusion, and n = 16 , T = 

3 and ρ = 5 for infrared-visible image fusion. The details of the pa- 

rameter selection strategy are discussed in Section 5.4 . For all other 

methods, we use the best parameters as tuned by the authors. 

5.1.4. Objective metrics 

The quantitative comparison of the methods is performed based 

on the following metrics: the tone-mapped image quality index 

T MQI [50] , which measures preservation of intensity and structural 

information, the similarity-based fusion quality metric Q Y [51] , 

the human visual system-based metric Q CB [52] , the feature mu- 

tual information metric F MI [53] , the visual information fidelity 

metric V IF [54] , the objective image fusion performance measure 

Q AB/F [55] , the spatial frequency index SF [56] , which measures 

the overall activity level in the image, the edge intensity metric 

EI [57] , the structural similarity index SSIM [58] , and standard de- 

viation (STD). Note that high V I F , T MQI and SSIM values corre- 

spond to high fidelity in terms of intensity and structural features, 

high F MI, Q AB/F and Q Y values indicate high structural similarities, 

high Q CB values indicate good visual compatibility, high EIs indicate 

high quality edges, and high SF and ST D values imply an improved 

contrast. 

7
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Fig. 8. Decomposition components obtained using the proposed method for mul- 

timodal medical images in Fig. 7 : (first row) CT-MR images, (second row) MR(T1)- 

MR(T2) images, (third row) MR-PET images, and (forth row) MR-SPECT images. For 

better visualization, the components are converted to the standard image range. 

5.2. Multimodal medical image fusion 

5.2.1. Visual comparison 

Fig. 7 shows the final fused image for one pair of images in 

each of the medical image fusion experiments. The decomposition 

components obtained using the proposed method for the images 

in Fig. 7 are shown in Fig. 8 . In Fig. 7 , one can see that the CNN 

and BPCNN methods clearly suffer from a loss of local intensity. 

We observed the same negative effect (even more severe) for the 

ULAP and CSR methods. This is because these four methods rely on 

an averaging-based approach for the fusion of low-resolution com- 

ponents, which usually contain most of the energy content of the 

images. For example, the intensities are significantly attenuated in 

regions where one of the input images is dark. The ULAP and CNN 

methods also use averaging for their high-resolution components. 

In this case, averaging results in a loss of details or texture, as can 

be seen in Fig. 7 (c,3) and (d,3). 

We observed that all the results obtained using the LLF method 

contain clear artifacts and visual inconsistencies. This MST-based 

method uses binary-selection-based fusion for both low and high- 

resolution features. As explained in Section 1 , binary selection of 

resolution-based components can cause loss of details and essen- 

tial information. The same effect is observed for the CSR method, 

which also relies on binary selection for its detail layer correspond- 

ing to the highest resolution. The LRD method usually preserves 

the local intensities but results in color distortions and blurred de- 

tails. 

The BPCNN and NSST methods both use 49 decomposition lay- 

ers that is significantly more than in the CSR (2 layers) and LLF 

(3 layers) methods. This allows the BPCNN and NSST methods to 

capture more relevant information, including intensity and texture. 

Also, the use of directional filters in the NSST method improves 

the fusion of features with higher structural similarities. How- 

ever, these NSST-based method occasionally suffers from a non- 

negligible amount of intensity attenuation, again due to employing 

a binary-selection rule for resolution-based features (see Fig. 7 (a,4) 

and (b,4)). Moreover, the NSST method reconstructs the final im- 

age solely based on a sparse representation, which inevitably leads 

to a loss of texture information. For example, the magnified re- 

gion of Fig. 7 (d,4) shows how the texture of the MR image appears 

with a significantly lower contrast in the NSST and BPCNN results. 

Note that the corresponding regions in the SPECT image are en- 

tirely dark, meaning that the texture is expected to appear in the 

final image unaltered. 

The proposed method provides good visual results by preserv- 

ing both intensity and details. Recall that in the proposed method, 

the fusion rule is applied to the correlated features only, which 

guarantees that binary selection does not omit any modality- 

specific information. Moreover, the uncorrelated components iso- 

late these modality-specific features and add them directly to the 

fused image without employing any additional processing that 

might lead to texture degradation or necessitate expensive com- 

putations. The advantage of this strategy is evident in functional- 

anatomical fusion, where large areas in one of the images can be 

flat or dark in the other image. For example, the regions of the 

MR image that are dark (flat with low intensity) in the SPECT im- 

age of Fig. 7 d are well preserved by the proposed method, while 

all other methods show a loss of the local intensity or decreased 

contrast. 

Fig. 8 shows how the uncorrelated components in MR-PET and 

MR-SPECT capture the high-resolution content of the MR images. 

In contrast, the correlated components of these images contain 

only low-resolution information. In MR-CT and MR(T1)-MR(T2), 

significant amount of information is captured by the correlated 

components, while each uncorrelated component contains the de- 

tails of specific types of tissues. 

5.2.2. Comparison using objective metrics 

The results obtained based on the objective metrics are re- 

ported in Table 1 . These results are in favor of the proposed 

method. Specifically, the ULAP and CSR methods provide low STD 

and SF values, which is due to the loss of contrast discussed pre- 

viously. Moreover, the LLF method always shows relatively low Q Y 

and Q CB values, which points to the presence of visual artifacts. 

The objective metrics of the CNN and BPCNN methods are always 

lower than those of the proposed methods. Finally, the proposed 

method leads to the best overall results for all datasets. These find- 

ings show that the proposed method generalizes well to diverse 

medical imaging modalities. 

5.2.3. Execution times 

The average execution times of all the experiments are reported 

in the last row of Table 1 . This table shows that the proposed 

method is competitive with recent multimodal fusion methods in 

terms of computational efficiency. Specifically, the running time of 

the proposed method is comparable to that of the NSST method 

and significantly better than those of the LRD and BPCNN meth- 

ods. The ULAP method results in the shortest execution time but 

does not yield competitive results. 

5.3. Fusion of infrared and visible images 

Fig. 9 illustrates four examples of fused infrared-visible images 

obtained by different methods. The decomposition components ob- 

tained for the images in Figs. 9 using the proposed method are vi- 

sualized in Fig. 10 . The average objective evaluation results of all 

images in the dataset are summarized in Table 2 . As can be seen 

in Fig. 9 , the ResNet and Bayes methods result in a loss of intensity, 

as well as blurred textures and details. The low contrast resolution 
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Table 1 

Objective evaluation results and average execution times for different methods using medical image datasets. The best perfor- 

mance is shown in bold. 

Data-sets Metrics CSR LLF ULAP CNN NSST LRD BPCNN proposed 

MR(T1)-MR(T2) 

F MI 0.7560 – 0.6739 0.7229 0.7412 0.7760 0.7125 0 . 7899 

V IF 0.6388 – 0.6461 0.7444 0.7603 0.7364 0.7140 0 . 7708 

Q AB/F 0.5679 – 0.3664 0 . 5741 0.4750 0.5721 0.5086 0.4295 

Q Y 0.8899 – 0.8359 0.7349 0.8651 0.8778 0.7730 0 . 9223 

Q CB 0.7073 – 0.6769 0.5891 0.7107 0.6858 0.6273 0 . 7309 

T MQI 0.7745 – 0.7680 0.7694 0.7768 0.7802 0.7612 0 . 7809 

ST D 56.3661 – 66.1464 64.5726 66.2631 68.2687 62.2850 68 . 9236 

SF 23.0481 – 23.4086 26.2503 25.3642 24.9977 25.1888 27 . 2283 

EI 61.6357 – 75.5990 72.4133 71.7468 67.9044 68.9969 76 . 9263 

SSIM 0.7569 – 0.7233 0.5845 0.7297 0.7368 0.6294 0 . 7811 

MR-CT 

F MI 0.6474 – 0.5989 0.6504 0.6592 0.7122 0.6433 0 . 7343 

V IF 0.3134 – 0.3525 0.3726 0.4162 0.4086 0.3565 0 . 4463 

Q AB/F 0.4272 – 0.3747 0.5160 0.4255 0 . 5628 0.3681 0.4382 

Q Y 0.8007 – 0.7613 0.7573 0.7621 0.8171 0.7092 0 . 8754 

Q CB 0.6112 – 0.5991 0.5659 0.5725 0.5627 0.5527 0 . 6160 

T MQI 0.7285 – 0.7228 0.7101 0.7277 0.7470 0.6913 0 . 7494 

ST D 65.0380 – 71.4757 84.2350 87.4317 89 . 4686 82.5867 87.8284 

SF 31.0923 – 28.4499 36.4562 35 . 2533 32.8678 34.8559 34.2227 

EI 70.6873 – 82.7175 82.1789 82.7084 75.3461 78.7288 84 . 6628 

SSIM 0.5848 – 0.5791 0.5217 0.5371 0.5834 0.4708 0 . 6299 

MR-PET 

F MI 0.7005 0.6281 0.6371 0.6844 0.6883 0.6588 0.7109 0 . 7517 

V IF 0.4067 0.5003 0.4534 0.5054 0.5376 0.5054 0.4836 0 . 5649 

Q AB/F 0.6178 0.5616 0.3962 0.5637 0.6114 0.5637 0.6015 0 . 6426 

Q Y 0.6388 0.8022 0.8196 0.7938 0.8216 0.8305 0.8914 0 . 9012 

Q CB 0.6148 0.6661 0.6761 0.6346 0.6455 0.6105 0.6993 0 . 7032 

T MQI 0.7108 0.7429 0.7379 0.7369 0.7422 0 . 7542 0.7395 0.7484 

ST D 59.0764 69.4553 59.5870 67.6949 71.8906 71.6910 67.9095 74 . 9391 

SF 26.2088 26.6573 21.3770 25.6565 26.5064 23.9968 28.9480 29 . 4094 

EI 62.2546 64.5835 63.5225 63.8979 67.2917 61.6251 71.1088 74 . 0612 

SSIM 0.7106 0.6465 0.6986 0.6388 0.6538 0.6737 0.7141 0 . 7264 

MR-SPECT 

F MI 0.6826 0.6044 0.5650 0.7266 0.7470 0.7046 0.7242 0 . 7435 

V IF 0.4452 0.5460 0.5315 0.5659 0.5432 0.5487 0.5009 0 . 5833 

Q AB/F 0 . 6346 0.4115 0.3304 0.5855 0.6043 0.6080 0.6307 0.6002 

Q Y 0.6117 0.7195 0.7554 0.7618 0.8448 0.8500 0.8170 0 . 8599 

Q CB 0.5819 0.5617 0.5619 0.5281 0.5966 0.5500 0.5968 0 . 6155 

T MQI 0.6901 0.7157 0.7184 0.7145 0.7143 0 . 7219 0.7083 0.7190 

ST D 56.4166 64.8633 54.2769 67.7034 67.7515 65.8108 64.8094 70 . 7426 

SF 19.9102 19.9478 17.2870 20.2278 20.2400 18.9368 22.0236 22 . 1879 

EI 55.3838 59.4569 56.6308 60.0496 60.2900 55.5375 62.3058 64 . 9607 

SSIM 0.6348 0.5552 0.6080 0.5434 0.6267 0.6327 0.6333 0 . 6449 

Avg runtime (s) 34.57 64.58 0.11 12.69 4.62 74.95 14.26 6.10 

Table 2 

Objective evaluation results and average execution times using infrared and visi- 

ble image dataset. The best performance is shown in bold. 

CSR ResNet SWT Bayes proposed 

F MI 0.2963 0.3166 0 . 4738 0.3966 0.4206 

V IF 0.2715 0.2539 0.2988 0.2117 0 . 3612 

Q AB/F 0.4774 0.3222 0.4884 0.3989 0 . 4888 

Q Y 0.8015 0.6979 0 . 8090 0.8013 0.8038 

Q CB 0.4894 0.5013 0.4975 0 . 5377 0.5015 

T MQI 0.7038 0.6999 0.6937 0.6777 0 . 7103 

ST D 23.4193 22.4443 36.1532 27.4666 36 . 1935 

SF 9.0527 6.0869 10.6624 7.5415 11 . 1993 

EI 32.0732 23.4465 40.8319 27.3616 43 . 0047 

SSIM 0.4723 0.5096 0.4790 0.5070 0 . 5109 

Avg runtime (s) 140.05 3.76 65.06 2.07 18.37 

and blurred edges in the results of ResNet and Bayes are also re- 

flected in their ST D , SF and Q Y results, all of which are exception- 

ally low. The CSR method also uses plain averaging for the fusion 

of low resolution components which results in a considerable at- 

tenuation of local intensities. SWT on the other hand preserves the 

local intensities and edge information in the source images. How- 

ever, since this method reconstructs the final fused images from 

transform coefficients, it often results in a loss of fine texture de- 

tails. The objective evaluation metrics are always relatively high for 

SWT, but often inferior to those of the proposed method. 

The best overall results in terms of fusion of local intensities 

and preservation of edge information and contrast resolution are 

obtained by the proposed method. This is also validated by the 

best overall performance in terms of objective evaluation metrics. 

In particular, only the visible images contain visual details. 

Moreover, the details of some objects are visible only in the in- 

frared images. The proposed method captures this information in 

the uncorrelated components (see Fig. 10 ) and directly transfers 

them to the fused image. For example, in Fig. 9 , the texts on the 

sun shades (fourth row) and the bush leaves (third row) are well 

preserved in our results. On the other hand, the objects and sur- 

faces visible in both source images are captured as correlated com- 

ponents. Thus, the most visible representation of the correlated 

features, such as brighter surfaces and sharper edges, are used in 

the fused images. This is illustrated in the third row of Fig. 9 , 

where the proposed method captures the most visible details of 

the person (in the infrared image) and the roof (in the visible im- 

age). 

The average execution times using all the images in the 

infrared-visible image dataset are given in the last rwo of Table 2 . 

The results show that the proposed method is significantly faster 

than the CSR and the SWT methods but slower than ResNet and 
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Fig. 9. Four examples of (a) infrared and (b) visible image fusion results using (c) Resnet, (d) SWT, (e) Bayes and (f) the proposed method. 

Fig. 10. Decomposition components obtained using the proposed method for the infrared-visible images in Fig. 9 . For better visualization, the components are converted to 

the standard image range. 

especially Bayes method. However, the ResNet method uses a pre- 

trained convolutional neural network available in MATLAB, which 

takes ∼ 136 seconds to be loaded on the computer used in our ex- 

periments. Note that using a low-level programming language such 

as C++ can dramatically improve the speed of the proposed method 

and make it applicable to real-time tasks. 

5.4. Parameter tuning 

In this section, we discuss our strategy for selecting optimal pa- 

rameters for the proposed decomposition model. The parameters 

are listed in Table 3 . Optimal parameters must meet three criteria: 

(1) the decomposition must be accurate; (2) low correlation be- 

tween the uncorrelated components must be ensured; (3) the cho- 

sen parameters must be computationally efficient (smaller n and T 

are preferred). 

The best patch size is related to the size of local features in the 

input images. The patch size also impacts the computational cost 

of the fusion problem. We use a value of m = 64 in the experi- 

ments in order to achieve the best compromise between running 

time and effective capturing of features. In our experiments, we 
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Table 3 

The parameters of the proposed image decomposition model. 

ε: the maximum allowed residual norm in sparse approximation 

T : the maximum number of nonzero entries in the sparse codes 

m : the patch size (also the size of the dictionary atoms) 

n : the number of atoms in the dictionaries 

ρ: the tuning parameter in optimization algorithm (7) 

δ: the constant used for stabilization of { E 1 , E 2 } updates (9) 

Table 4 

The parameters of the image decomposition model and the resulting performances. 

Multimodal Dataset n T ρ avg MSE avg Correlation 

Anatomical–Anatomical: 100 6 5 9 . 84 × 10 −5 0.0035 

Functional–Anatomical: 16 3 10 4 . 73 × 10 −5 0.0054 

Infrared–Visible: 16 3 5 3 . 22 × 10 −5 0.0092 

observed that ε = 

√ 

m × 10 −3 and δ = 10 −6 lead to the best overall 

performance in all presented fusion problems. An exhaustive grid 

search was carried out to find the optimal values for the remaining 

parameters n , T and ρ . Table 4 summarizes the optimal parameters 

selected for each of the fusion problems in the experiments as well 

as the resulting performance in terms of the mean squared errors 

(MSE) of the decomposition and the absolute Pearson correlation 

coefficient between the associated entries of the uncorrelated com- 

ponents (both averaged over all images in each dataset). Note that 

average correlations are calculated using only pixels with enough 

variance ( i.e. , when σ 2 
1 , j 

σ 2 
2 , j 

> δ), so that dark/no signal regions are 

ignored. 

The functional medical images are characterized by very low 

contrast-resolutions. Also, it should be noted that, infrared images 

usually do not contain any texture information. As a result, the 

correlated features associated with these two imaging modalities 

are very sparse and can be estimated using a small dictionary and 

few samples (see n and T values in Table 4 ). In contrast, the medi- 

cal anatomical images contain high resolution information and fine 

texture details. Consequently, the estimation of correlated compo- 

nents in anatomical-anatomical fusion requires a relatively larger 

dictionary and more samples as can be seen in Table 4 . 

6. Conclusion 

A novel image fusion method for multimodal images has been 

presented. A decomposition method separates input images into 

their correlated ( i.e. , common to both images) and uncorrelated 

(modality-specific) components. The correlated components are 

captured by sparse representations with identical supports and 

learned coupled dictionaries. The low correlation between the un- 

correlated components is enforced by the minimization of pixel- 

wise Pearson correlations. An alternating optimization strategy is 

adopted for addressing the resulting optimization problem. One 

particularity of the proposed method is that it applies a fusion 

rule to the correlated components only while fully preserving the 

uncorrelated components. In the experiments, this strategy has 

shown superior preservation of intensity and detail compared to 

other recent methods. Quantitative evaluation metrics and compar- 

ison of execution times have also shown the competitiveness of the 

proposed method. 
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Appendix A. Modified SOMP algorithm 

The steps of the proposed modified SOMP method are ex- 

plained in Algorithm A.1. Symbol | · | denotes the cardinality of a 

set (number of elements), operator 1 (·) returns one if the con- 

dition is true and zero otherwise, and symbol (·) † denotes the 

Moore-Penrose pseudoinverse. 

Algorithm 2 SOMP with coupled dictionaries. 

Input: Data matrices X k ∈ R 

m ×p , k = 1 , . . . , K, coupled dictionaries 

D k ∈ R 

m ×n , k = 1 , . . . , K, error threshold ε, and maximum num- 

ber of non-zero coefficients T . 

1: Initialization: sparse representations A k = 0 ∈ R 

n ×p , 

k = 1 , . . . , K. 

2: for i = 1 , · · · , p do 

3: ∫ = {} , r k = [ X k ] i , k = 1 , . . . , K 

4: while |∫| < T and 

∑ K 
k =1 1 

(‖ r k ‖ 2 ≥ ε
)

> 1 do 

5: s = argmax 
t 

∑ K 
k =1 (r T 

k 
[ D k ] t ) 

2 � Simultaneous atom 

selection 

6: ∫ = {∫ , s } � Updating the support 

7: [ A k ] (∫ ,i ) = [ D k ] 
† 

(·, ∫ ) [ X k ] i , k = 1 , . . . , K � Orthogonal 

projection 

8: r k = [ X k ] i − D k [ A k ] i , k = 1 , . . . , K � Updating the 

residuals 

9: end while 

10: end for 

Output: Sparse representations with common supports A k , k = 

1 , . . . , K 

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at doi: 10.1016/j.sigpro.2022.108637 
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COUPLED FEATURE LEARNING VIA STRUCTURED CONVOLUTIONAL SPARSE CODING
FOR MULTIMODAL IMAGE FUSION
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ABSTRACT

A novel method for learning correlated features in multimodal
images based on convolutional sparse coding with applica-
tions to image fusion is presented. In particular, the correlated
features are captured as coupled filters in convolutional dictio-
naries. At the same time, the shared and independent features
are approximated using separate convolutional sparse codes
and a common dictionary. The resulting optimization prob-
lem is addressed using alternating direction method of mul-
tipliers. The coupled filters are fused based on a maximum-
variance rule, and a maximum-absolute-value rule is used to
fuse the sparse codes. The proposed method does not entail
any prelearning stage. The experimental evaluations using
medical and infrared-visible image datasets demonstrate the
superiority of our method compared to state-of-the-art algo-
rithms in terms of preserving the details and local intensities
as well as improving objective metrics.

Index Terms— Multimodal image fusion, convolutional
sparse coding, structured dictionary learning.

1. INTRODUCTION

Multimodal image fusion aims at merging the informa-
tion from multiple images acquired using different imaging
modalities into a single image, without introducing noise or
artifacts [1, 2]. For instance, in medical image fusion, differ-
ent information about the anatomies of tissues or the levels of
biological activities captured using various medical imaging
modalities are aggregated in a single fused image [1]. In
surveillance applications, combining the visual information
in optical images and the thermal information captured using
infrared imaging techniques yield more informative images,
and has applications, for example, in night vision [2].

A common approach for addressing the multimodal image
fusion problem is to decompose the input images into multi-
scale or morphologically distinct components. This is usu-
ally done by employing deterministic mathematical models
such as multiscale transforms [3–5]. Other techniques used
for a similar purpose include subspace learning [6], dictio-
nary learning [7,8], and deep learning [9,10]. An assumption
made by all aforementioned fusion techniques is that the fea-
tures (components) with similar structural properties convey

the same type of information. Therefore, they are appropriate
for fusion. However, the multimodal images may not obey
this assumption. For example, in medical imaging, computed
tomography (CT) captures hard tissues and structures (e.g.,
bones and implants) with a higher resolution, while using
magnetic resonance (MR) imaging, the details of soft tissues
(e.g., fat and bone marrow) are reflected more effectively [1].
In infrared-visible images, the details in each input image pro-
vide different types of information. Thus, a fusion based on
the similarity of structural properties can lead to the omission
of important information.

In a recent work [11], we demonstrated that the fusion
performance can be considerably improved by replacing the
conventional deterministic feature-extraction techniques with
a data-driven approach for extracting correlated features in
multimodal images. Specifically, a method based on coupled
dictionary learning [12] and a Pearson correlation constraint
has been developed to decompose the multimodal images into
their correlated and independent components. In particular,
the correlated features have been captured as pairs of atoms
in the coupled dictionaries. Then, the fusion is performed us-
ing the most significant representations of the coupled atoms.
Since the information in the independent components is spe-
cific to each modality, these components are transferred to the
fused image directly. This approach has shown to be superior
in terms of preserving important information while yielding
an improved contrast resolution [11].

In this paper, we present a coupled feature learning (CFL)
method based on convolutional sparse coding (CSC) and dic-
tionary learning. CSC incorporates a global single-valued
model that, unlike standard sparse approximation, does not
require patch extraction and enables shift-invariant dictionary
learning [13]. In addition, instead of minimizing linear cor-
relations between independent components (as in [11]), we
incorporate a more general model that promotes statistical
independence. We also propose novel schemes for fusion
of correlated features and reconstruction of the final fused
image. Experimental evaluations using multimodal medical
and infrared-visible image datasets show that the proposed
method significantly improves the performance of state-of-
the-art multimodal fusion techniques. A MATLAB imple-
mentation of our fusion method is available at https://
github.com/FarshadGVeshki/ConvCFL-MMIF.



2. CONVOLUTIONAL COUPLED FEATURE
LEARNING

The proposed model decomposes n input multimodal images
si ∈ RN , i = 1, . . . , n, where N is the number of pix-
els in the images, into their correlated, shared and indepen-
dent components. For simplicity of notations, we use one-
dimensional arrays to represent the images. Generalization to
multi-dimensional arrays is mathematically straightforward.

2.1. Problem Formulation

The correlated components are captured using a set of com-
mon sparse feature maps Γ ∈ RN×K and coupled convolu-
tional dictionaries Di ∈ RM×K , i = 1, . . . , n. The shared
and independent components are represented using a com-
mon dictionary C ∈ RM×L and separate sparse feature maps
Xi ∈ RN×L , i = 1, . . . , n. The decomposition problem can
then be formulated as the following optimization problem

minimize
{Di}ni=1,C,

{Xi}ni=1,Γ

1

2

n∑

i=1

∥∥∥
K∑

k=1

Di
k∗Γk +

L∑

l=1

Cl∗Xi
l − si

∥∥∥
2

2
+λ1

K∑

k=1

‖Γk‖1

+ λ2

n∑

i=1

L∑

l=1

‖Xi
k‖1 s.t. Cl,D

i
k,∈ D ∀k, l, i, (1)

where D = {d ∈ RM |‖d‖2 ≤ 1} is the set of dictionary
filters and λ1 > 0 and λ2 > 0 are regularization parameters.
Subscripts are used to denote the columns of matrices.

The overlapping nonzero entries in {Xi}ni=1 indicate that
one of the dictionary filters {Cl}Ll=1 is used for approxima-
tion of multiple images at the same location, thus, it repre-
sents a shared feature. In addition, when only one of the en-
tries in {Xi}ni=1 is nonzero at one location, it means that one
of the filters in {Cl}Ll=1 is used for only one source image.
Thus, it represents an independent feature. Note that the con-
volutional filters are assumed to be statistically independent.
As first demonstrated in [14], dictionary learning promotes
statistical independence. The proof relies on the fact that ac-
curate sparse codes preserve the information (joint entropy)
in the source signal. Moreover, the sparsity regularization
minimizes the entropy in each of the sparse codes (simply by
maximizing the probability of one event (being zero) and min-
imizing the probability of all other events (being nonzero)).
Therefore, by enforcing the equality of the joint entropy and
the sum of the entropies of the individual sparse codes, sparse
dictionary learning promotes statistical independence.

2.2. Optimization

Problem (1) is typically solved by alternating between min-
imization over the sparse codes and the dictionary filters.
Since we address both steps in Fourier domain (using [15]),
we first zero-pad all of the dictionary filters to the size of the
sparse coefficient maps (RN ).

2.2.1. Sparse Coding Step

Using the consensus ADMM method [16], (1) can be ad-
dressed with respect to the sparse feature maps {Γ, {Xi}ni=1}
by solving the following optimization problem

minimize
{Xi}n

i=1
,Γ

1

2

n∑

i=1

∥∥∥
K∑

k=1

D
i
k∗Θ

i
k+

L∑

l=1

Cl∗Y i
l−s

i
∥∥∥
2

2
+λ1

K∑

k=1

‖Γk‖1+λ2

n∑

i=1

L∑

l=1

‖Xi
k‖1

s.t. Γ = Θ
i
, X

i
=Y

i
i = 1, . . . , n.

Using scaled Lagrangian multipliers U i ∈ RN×K and V i ∈
RN×L ,i = 1, . . . , n, the augmented Lagrangian is written as

1

2

n∑

i=1

∥∥∥
K∑

k=1

D
i
k∗Θ

i
k+

L∑

l=1

Cl∗Y i
l−s

i
∥∥∥
2

2
+λ1

K∑

k=1

‖Γk‖1+λ2

n∑

i=1

L∑

l=1

‖Xi
k‖1

+
ρ

2

n∑

i=1

( K∑

k=1

‖Θi
k − Γk + U

i
k‖

2
2 +

L∑

l=1

‖Y i
l −X

i
l + V

i
l‖

2
2

)
,

(2)
where ρ > 0 is the penalty parameter. The ADMM itera-
tions consist of minimizing (2) alternatively with respect to
{Θi,Y i}ni=1, {Γ, {Xi}ni=1} and {U i,V i}ni=1. The details
of each subproblem are explained in the following. Denoting
Zi = {Θi,Y i},F i = {Di,C} and W i = {Γ−U i,Xi −
V i}, we can update {Θi,Y i}ni=1 by solving n parallel opti-
mization problems, which can be written as follows

(Zi)+ =argmin
Zi

1

2

∥∥∥
P∑

p=1

F
i
p ∗ Z

i
p−s

i
∥∥∥

2

2
+
ρ

2

P∑

p=1

‖Zip −W
i
p‖22,

(3)
where P =K+L and (·)+ denotes the updated variables. The
problem in (3) is a standard convolutional fitting problem that
can be addressed using available CSC methods (e.g., [15]).

Updating {Γ, {Xi}ni=1} can be efficiently addressed in an
elementwise manner using the shrinkage operator Sκ(a) =
sign(a)max(0, |a| − κ). The updates are written as follows

Γ
+

= Sλ1/ρ
( 1

n

n∑

i=1

Θ
i
+U

i
)
, (X

i
)
+

=Sλ2/ρ
(
Y
i
+V

i)
, i=1, . . . , n.

Finally, the updates for the scaled Lagrangian variables
{U i,V i}ni=1 are given as

(U
i
)
+

= Θ
i − Γ + U

i
, (V

i
)
+

= Y
i −X

i
+ V

i
, i = 1, . . . , n.

2.2.2. Dictionary Update Step

Using the consensus ADMM, (1) can be reformulated with
respect to the dictionary filters {C, {Di}ni=1} as

minimize
{Di}n

i=1
,C

1

2

n∑

i=1

∥∥∥
K∑

k=1

G
i
k∗Γk+

L∑

l=1

H
i
l∗X

i−s
i
∥∥∥
2

2
+Ω

(
{C,{Di}ni=1}

)

s.t. C = H
i
, D

i
= G

i
, i = 1, . . . , n

where Ω(·) is an indicator function of the constraint set in (1).
The augmented Lagrangian is written as follows

1

2

n∑

i=1

∥∥∥
K∑

k=1

G
i
k ∗ Γk +

L∑

l=1

H
i
l ∗X

i − s
i
∥∥∥
2

2
+ Ω

(
{C, {Di}ni=1}

)

+
σ

2

n∑

i=1

( K∑

k=1

‖Gi
k −D

i
k + R

i
k‖

2
2 +

L∑

l=1

‖Hi
l −Cl + T

i
l‖

2
2

)
,

(4)



where Ri ∈ RN×K and T i ∈ RN×L,i = 1,. . .,n, are scaled
Lagrangian variables. The ADMM iterations consist of
minimizing (4) alternatively with respect to {Gi,Hi}ni=1,
{C, {Di}ni=1} and {Ri,T i}ni=1.

Indeed, denote Ei = {Gi,Hi},Si = {Γ,Xi} and
Qi = {Di − Ri,C − T i}, i = 1, . . . , n,. Then updating
{Gi,Hi}ni=1 can be addressed by solving n parallel opti-
mization problems

(Ei)+ =argmin
Ei

1

2
‖

P∑

p=1

E
i
p∗Sip−s

i‖22 +
σ

2

P∑

p=1

‖Eip − Q
i
p‖22.

(5)
Problem (5) is similar to (3) and can be efficiently addressed
using available CSC methods (e.g., [15]).

Updating {C, {Di}ni=1} is performed as

(D
i
)
+

=projD
(
G
i
+R

i)
, i=1,. . .,n, C

+
=projD

(
1

n

n∑

i=1

H
i
+T

i

)
,

where projD(·) denotes the orthogonal projection onto the
set D. This can be done by mapping the entries outside the
constraint support to zero and then projecting the filters on the
unit-ball.

The updates for scaled Lagrangian variables are given as

(R
i
)
+

= G
i −D

i
+ R

i
, (T

i
)
+

= H
i −C + T

i
. i = 1, . . . , n.

We perform the sparse coding and the dictionary update
steps in an interleaved manner (one iteration of each step is
executed before passing the variables to the next). The up-
dated ADMM variables (auxiliary variables and scaled La-
grangian multipliers) are used to initialize the next iteration.

2.3. Projection on the Sparse Support

After the convolutional CFL stage, we can still significantly
improve the approximation accuracy by orthogonalizing the
residuals on the supports (the set of indices of nonzero entries)
of the sparse coefficient maps. For this purpose, we use a
gradient descent (GD) approach. Based on the convolution
theorem, the GD iterations are found as

[
Γ

+
k

]
S(Γk)

=
[
Γk
]
S(Γk)

− α
[

DFT
−1
( n∑

i=1

¯̂
D
i
k � r̂

i
)]

S(Γk)

, ∀k,

[
(X

i
l)

+]
S
(Xi
l
)

=
[
X
i
l

]
S
(Xi
l
)

− α
[

DFT
−1
(

¯̂
C
i
l � r̂

i
)]

S
(Xi
l
)

, ∀l, i,

where (̂·) denotes the discrete Fourier transform and DFT−1(·)
represents its inverse, (̄·) denotes the complex-conjugate, �
is the elementwise multiplication and operator S(·) returns
the support of an array. In addition, α is the stepsize and ri

represents the residuals associated with si, that is

r
i

=
K∑

k=1

D
i
k ∗ Γk +

L∑

l=1

Cl ∗Xi
l − s

i
, i = 1, . . . , n.

3. MULTIMODAL IMAGE FUSION ALGORITHM

In this section, the steps of the proposed fusion method
are explained. Note that the images are considered as one-
dimensional arrays. The elementwise operations are applied
to all pixels.

3.1. Low-pass Filtering

The input images are first decomposed into base-layers
{sib}ni=1 and details-layers {sid}ni=1 using low-pass filtering.
This is done using the lowpass function from the SPORCO
library [17] (the regularization parameter is set to 10).

3.2. Fusion of the Details-layers

The details-layers {sid}ni=1 are decomposed into the corre-
lated, shared and independent components using the convo-
lutional CFL method explained in Section 2.

3.2.1. Fusion of Coupled Features

The coupled features are fused based on the highest visual
significance, which can be measured, for example, using vari-
ance (denoted as var(·)). This can be formulated as follows

DF
k = Di∗

k , i∗ = argmax
i=1,...,n

(
var(Di

k)
)
, k = 1, . . . ,K,

where DF is the dictionary of fused coupled features.

3.2.2. Fusion of Shared and Independent Components

The fusion of shared and independent component XF is
found by combining the redundant sparse codes {Xi}ni=1

using maximum-absolute-value rule. This can be written as

X
F
l (j) = X

i∗
l (j), i

∗
= argmax
i=1,...,n

(∣∣(Xi
l(j)

∣∣
)
, j = 1, . . . , N, l = 1, . . . , L.

This allows to transfer the independent features along with
the shared features with the most significant representation
coefficients into the fused image.

The fused details-layer sFd is then reconstructed using

s
F
d =

K∑

k=1

D
F
k ∗ Γk +

L∑

l=1

Cl ∗XF
l .

3.3. Fusion of the Base-layers

We form two images smaxb and sminb representing the maxi-
mum and the minimum allowed local intensities, using

s
max
b = max

i=1,...,n

(
s
i
b

)
, s

min
b =ω

(
max

i=1,...,n

(
s
i
b

))
+(1−ω)

(
min

i=1,...,n

(
s
i
b

))
,

where 0 ≤ ω ≤ 1, and max(·) and min(·) are the element-
wise maximum and minimum operators, respectively.



It is favorable to incorporate smaxb into the final fused im-
age. However, this can cause a loss of information due to the
limited range (0 to 1) of the standard images. To achieve a
compromise between contrast resolutions and local intensi-
ties, we propose the following approach. First, the difference
between the local maximum and minimum intensities (local
variations) of sFd (for example, in a 3 × 3 neighborhood) is
stored in svd. Then the fused base-layer sFb is computed as

sFb (j) =





smax
b (j), if svd(j) ≤ 1−smax

b (j)

smin
b (j), if svd(j) ≥ 1−smin

b (j)

1− svb (j), if otherwise

, j = 1, . . . , N.

A Gaussian filter may be used to smooth sFb so that disconti-
nuities are not introduced.

The final fused image sF is then reconstructed as

sF = sFb + sFd .

4. EXPERIMENTAL RESULTS

We compare our method to four recent multimodal fusion
methods both visually and using objective evaluation metrics.
We use two medical image fusion methods: a method based
on the non-subsampled shearlet transform (NSST) [4] and a
method based on Laplacian redecomposition (LRD) [5]. We
also use two infrared-visible image fusion method: a method
that incorporates a hierarchical Bayesian model (Bayes) [18]
and a method based on deep learning (Resnet) [9]. The
multimodal medical image dataset consists of 20 pairs of
images collected from [19], and the infrared-visible image
dataset includes 21 pairs of images taken from https://
github.com/hli1221/imagefusion_resnet50/
tree/master/IV_images. Four metrics are used for ob-
jective evaluations, the objective image fusion performance
measure QAB/F [20], the information measure for perfor-
mance of image fusion QIM [21], spatial frequency (SF) [22]
and the structural similarity index (SSIM) [23]. The algorithm
parameters areλ1=λ2= 0.01,K=8, L=12, ρ=σ=10, α=0.01
and ω = 0.9. Moreover, we use 150 ADMM iterations, 100
GD iterations and 8×8 filters (M in two-dimensional case).

(a) MR-T1 (b) MR-T2 (c) Visible (d) Infrared

Fig. 1: Examples of multimodal images.

Fig. 1 shows a pair of images from each dataset used. The
results obtained using different methods are shown in Fig. 2.
Table 1 compares the average results for objective evalua-
tion metrics for each dataset. The results show that the LRD

method leads to low contrast-resolutions, which is reflected in
very low SF and QAB/F values for this method. NSST also
loses/blurs high-resolution information, while this informa-
tion is well preserved using our method (see Figs. 2a and 2b,
for example). Results obtained using Resnet and Bayes show
an inferior fusion of local intensities, which results in low vis-
ibility of the details in the fused images (see Figs. 2d and 2e,
for example). Overall, the proposed method results in the best
performance in terms of the fusion of the high-resolution in-
formation as well as the local intensities (for example, see
Figs. 2c and 2f). These observations can be validated by the
objective evaluation results in Table 1, where our method ob-
tains the best results in all cases.

(a) NSST (b) LRD (c) proposed

(d) Bayes (e) Resnet (f) proposed

Fig. 2: The fusion results for the multimodal images in Fig. 1
using different methods.

Metrics Medical Infrared-Visible

NSST LRD proposed Bayes Resnet proposed

QAB/F 0.5646 0.5278 0.5667 0.4561 0.3520 0.4941
QIM 0.6778 0.7341 0.7424 0.4044 0.3167 0.4311
SF 30.02 28.93 31.93 7.63 6.13 11.11

SSIM 0.5501 0.6601 0.7047 0.5040 0.5072 0.5121

Table 1: Average objective evaluation results for each dataset
using different methods. The Best results are shown in bold.

5. CONCLUSION

A novel multimodal image fusion method based on convo-
lutional sparse coding has been developed. A convolutional
coupled feature learning algorithm has been proposed for the
decomposition of multimodal images into correlated, shared,
and independent features. Appropriate schemes have been
proposed for the fusion of extracted features and reconstruc-
tion of the final image. The experimental results show signif-
icant improvements by the proposed method compared to the
state-of-the-art multimodal image fusion methods.
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Abstract—Simultaneous sparse approximation (SSA) seeks to
represent a set of dependent signals using sparse vectors with
identical supports. The SSA model has been used in various
signal and image processing applications involving multiple
correlated input signals. In this paper, we propose algorithms
for convolutional SSA (CSSA) based on the alternating direction
method of multipliers. Specifically, we address the CSSA problem
with different sparsity structures and the convolutional feature
learning problem in multimodal data/signals based on the SSA
model. We evaluate the proposed algorithms by applying them
to multimodal and multifocus image fusion problems.

Index Terms—Simultaneous sparse approximation, convolu-
tional sparse coding, dictionary learning, image fusion

I. INTRODUCTION

Simultaneous sparse approximation (SSA) aims to recon-
struct multiple input signals using sparse representations (SRs)
with identical supports, i.e., using different linear combinations
of the same subset of atoms in a dictionary [1], [2]. The SSA
problem can be written as follows

minimize
{xn}N

n=1

N∑

n=1

(
1

2
∥Dxn − sn∥22 + λ ∥xn∥0

)

s.t. Supp
(
xl

)
= Supp

(
xm

)
, l,m = 1, . . . , N,

(1)

where D, {xn}Nn=1 and {sn}Nn=1 represent the dictionary, the
SRs with identical supports, and the input signals, respectively.
Moreover, λ > 0 is the sparsity regularization parameter,
∥ · ∥2 is the Euclidean norm, ∥ · ∥0 is an operator that counts
the nonzero entries of a vector, and Supp(·) denotes the
support of an array. The simultaneous sparsity model has
been used in a wide range of signal and image processing
applications involving multiple dependent input signals. For
example, multi measurement vectors (MMV) problems [3],
[4], image fusion [5], [6], anomaly detection [7], and blind
source separation [8].

Problem (1) is non-convex and, in general, intractable in
polynomial time. A common approach for addressing the SSA
problem is convex relaxation using mixed-norms [2], [9]. For
a matrix A ∈ RR×C , the mixed ℓp,q-norm, p, q ≥ 1, is defined
as

∥A∥p,q =

(
R∑

r=1

∥A(r, ·)∥qp

) 1
q

where A(r, ·) is the rth row of A, and ∥ · ∥p denotes the p-
norm of a vector. For example, the ℓ2,1 and the ℓ∞,1-norms
have been used for addressing the SSA problem in [10] and
[2], respectively. An unconstrained convex relaxation of (1)
using the ℓ2,1-norm can be written as

minimize
X

1

2

N∑

n=1

∥Dxn − sn∥22 + λ ∥X∥2,1 , (2)

where X = [x1 · · ·xN ]. Solving (2) entails minimizing the
ℓ2-norm of the rows (enforcing dense rows) and the sum of
the ℓ2-norms of the rows (promoting all-zero rows) of X .
Thus, the resulting X is expected to be mostly zeros with
only few non-zero and dense rows. This structure is referred
to as row-sparse structure. A row-sparse structure with sparse
rows can be enforced by embedding an additional ℓ1-norm
regularization term in the objective function of (2) [9]

minimize
X

1

2

N∑

n=1

∥Dxn − sn∥22 + γ1

N∑

n=1

∥xn∥1 +γ2 ∥X∥2,1 ,

(3)
where γ1 ≥ 0 and γ2 ≥ 0 are the element-sparsity and row-
sparsity regularization parameters, respectively.

In this paper, we extend the SSA problem to the convo-
lutional sparse approximation (CSA) framework. Unlike its
conventional counterpart, CSA allows local processing of large
signals without first breaking them into vectorized overlapping
blocks. Thus, it provides a global, single-valued, and shift-
invariant model. Specifically, CSA uses a sum of convolutions
instead of the matrix-vector product as in the standard sparse
approximation model [11].

We first address the convolutional SSA (CSSA) problem
with row-sparse structure using the ℓ2,1-norm regularization
(the convolutional extension of problem (2)). Then, we discuss
variations of the proposed method for solving problem (3) and
SSA with ℓ∞,1-norm regularization in the CSA framework. We
use the alternating direction method of multipliers (ADMM)
as a base optimization approach for solving the corresponding
problems. We investigate convolutional dictionary learning
(CDL), and coupled feature learning in multimodal data based
on CSSA. We evaluate the proposed CSSA and CDL algo-
rithms by applying them to the multifocus image fusion and



the near infrared (NIR) and visible light (VL) image fusion
problems. Specifically, a novel NIR-VL image fusion method
is proposed. MATLAB implementations of the proposed al-
gorithms are available at https://github.com/FarshadGVeshki/
ConvSSA-IF.

II. CONVOLUTIONAL SIMULTANEOUS SPARSE
APPROXIMATION

We aim to approximate the input signals s(n) ∈ RP , n =
1, . . . , N, using the sparse feature maps with identical supports
X(n) ∈ RP×K , n = 1, . . . , N , and the dictionary D ∈
RQ×K . The columns of X(n) and D are the convolutional
SR elements and the convolutional filters, respectively. For
simplicity, we consider the case where the input signals are
one-dimensional arrays. The proposed method can be straight-
forwardly generalized to handling multi-dimensional arrays.

A. Problem Formulation

The CSSA problem is formulated as follows

minimize
{X(n)}N

n=1

1

2

N∑

n=1

∥∥∥∥∥
K∑

k=1

Dk ∗X(n)
k −s(n)

∥∥∥∥∥

2

2

+λ
N∑

n=1

K∑

k=1

∥∥∥X(n)
k

∥∥∥
0

s.t. Supp
(
X(m)

)
= Supp

(
X(n)

)
, m, n = 1, . . . , N.

(4)
Using the ℓ2,1-norm1, a convex relaxation of (4) can be written
as

minimize
{X(n)}N

n=1

1

2

N∑

n=1

∥∥∥∥∥
K∑

k=1

Dk ∗X(n)
k − s(n)

∥∥∥∥∥

2

2

+λ

K∑

k=1

∥∥∥X (k)
∥∥∥
2,1

(5)
where X (k)(p, ·) = [X

(1)
k (p) · · · X(N)

k (p)], p = 1, . . . , P .

B. Optimization Procedure

The ADMM formulation of (5) can be written as

minimize
{X(n),Y (n)}N

n=1

1

2

N∑

n=1

∥∥∥∥∥
K∑

k=1

Dk∗Y (n)
k −s(n)

∥∥∥∥∥

2

2

+λ
K∑

k=1

∥∥∥X (k)
∥∥∥
2,1

s.t. X(n) = Y (n), n = 1, · · · , N.
(6)

Then the ADMM iterations are given as

(Y (n))i+1 = argmin
Y (n)

1

2

∥∥∥∥∥
K∑

k=1

Dk ∗ Y (n)
k − s(n)

∥∥∥∥∥

2

2

+
ρ

2

∥∥∥Y (n) − (X(n))i + (U (n))i
∥∥∥
2

F
, n = 1, . . . , N

(7)

({X(n)}Nn=1)
i+1 = argmin

{X(n)}N
n=1

λ
K∑

k=1

∥∥∥X (k)
∥∥∥
2,1

+
ρ

2

N∑

n=1

∥∥∥(Y (n))i+1−X(n)+(U (n))i
∥∥∥
2

F

(8)

(U (n))i+1=(Y (n))i+1−(X(n))i+1+(U (n))i, n = 1, . . . , N,

1The mixed ℓ2,1,...,1-norm can be used for multi-dimensional input signal.

where ∥ · ∥F denotes the Frobenius norm of a matrix,
{U (n)}Nn=1 are the scaled Lagrangian multipliers, and ρ > 0
is the ADMM penalty parameter. The Y -update step (7)
entails N convolutional regression subproblems which can be
addressed using existing CSA methods (e.g., [11]).

Since the ℓ2,1-norm is a separable sum of the ℓ2-norms of
the rows, (8) can be addressed in a row-wise manner using
the proximal operator of the Euclidean norm. Using W (n) =
(Y (n))i+1 + (U (n))i, the solution to (8) can be calculated as
(
[X

(1)
k (p) · · · X(N)

k (p)]
)i+1

= proxλ
ρ ∥·∥2

(
[W

(1)
k (p) · · · W (N)

k (p)]
)
,

k = 1, . . . ,K, p = 1, . . . , P, (9)

with
proxτ∥·∥2

(
a
)
=

(
1− τ

max(∥a∥2, τ)

)
a. (10)

C. Other Convex Formulations of CSSA
Problem (4) can be alternatively relaxed using the ℓ∞,1-

norm. To address the resulting optimization problem, we only
need to modify the X-update step of the ADMM algorithm
explained in Subsection II-B. Specifically, in (9), we need to
replace proxλ

ρ ∥·∥2
(·) with the proximal operator of the ℓ∞-

norm proxλ
ρ ∥·∥∞(·), which is given as

proxτ∥·∥∞

(
a
)
= a− τΠ(∥·∥1≤1)

(a
τ

)
, (11)

where Π(∥·∥1≤1)(·) denotes the projection on the unit ℓ1-norm
ball. Solving (11) requires iterative methods and it is more
computationally expensive compared to computing (10).

The CSSA problem corresponding to (3) can be written as

minimize
{X(n)}N

n=1

1

2

N∑

n=1

∥∥∥∥∥
K∑

k=1

Dk ∗X(n)
k − s(n)

∥∥∥∥∥

2

2

+
K∑

k=1

(
γ1

∥∥∥X (k)
∥∥∥
1,1

+ γ2

∥∥∥X (k)
∥∥∥
2,1

)
. (12)

Problem (12) can be addressed using the method in Subsec-
tion II-B after modifying the X-update step (9) by replacing
proxλ

ρ ∥·∥2
(·) with prox γ1

ρ ∥·∥1+
γ2
ρ ∥·∥2

(·), which can be calcu-
lated using

proxτ∥·∥1+κ∥·∥2
(a) = proxκ∥·∥2

(
Sτ (a)

)
, (13)

where the (elementwise) shrinkage operator Sτ (a) =
sign(a)max(0, |a|− τ) is a proximal operator of the ℓ1-norm.

III. CONVOLUTIONAL DICTIONARY LEARNING IN
SIMULTANEOUS SPARSE APPROXIMATION SETUP

Given T sets of N dependent input signals and their simul-
taneous SRs ({s(t,n)}Nn=1 and {X(t,n)}Nn=1, t = 1, . . . , T ),
the CDL problem can be formulated as follows

minimize
D

1

T

T∑

t=1

1

2

N∑

n=1

∥∥∥
K∑

k=1

Dk ∗X(t,n)
k − s(t,n)

∥∥∥
2

2

s.t. Dk,∈ D, k = 1, . . . ,K,

(14)



where D =
{
d ∈ RQ | ∥d∥2 ≤ 1

}
. Problem (14) is a standard

CDL problem and can be addressed using available batch [11]
or online [12] CDL methods. Batch CDL requires all training
data to be available at once, while online CDL is useful
when the training samples are observed sequentially over time.
Online CDL is also more computationally efficient when the
total number of training samples (here T ×N ) is larger than
the number of filters in the dictionary (here K) [12].

Convolutional Feature Learning in Multimodal Data
If the input signals are multimodal and the order of modal-

ities is fixed in all T sets of training samples, we can extend
the CDL problem (14) to learning multimodal convolutional
dictionaries. This can be formulated as

minimize
{D(n)}N

n=1

1

T

T∑

t=1

1

2

N∑

n=1

∥∥∥
K∑

k=1

D
(n)
k ∗X(t,n)

k − s(t,n)
∥∥∥
2

2

s.t. D
(n)
k ,∈ D, k = 1, . . . ,K, n = 1, . . . , N,

(15)

which can be addressed as N separate CDL problems. Prob-
lem (15) can be interpreted as learning correlated (coupled)
features in multimodal data using the corresponding filters in
the multimodal dictionaries {D(n)}Nn=1.

IV. NIR-VL IMAGE FUSION BASED ON CSSA
The NIR images are characterized by high contrast res-

olutions, for example, in capturing vegetation scenes and
imaging in low-visibility atmospheric conditions such as fog
or haze [16]. Based on these characteristics, the NIR images
are used for enhancing outdoor VL images. In this section,
we propose a NIR-VL image fusion method based on CSSA
and CDL. The CSSA is performed using both ℓ1 and ℓ2,1
regularizations and also multimodal dictionaries. The steps of
the proposed method for the fusion of a pair of NIR and VL
images (denoted as sn and sv, respectively) of the same sizes
are explained as follows.

Since, the NIR images are presented in greyscale, they can
be fused with the intensity components of the VL images
which are usually available in the RGB (red-green-blue)
format. Hence, in the first step, the VL image is converted
to a color space (e.g., YCbCr), where the intensity (greyscale)
component, denoted by sv,g, is isolated from the color com-
ponents of the image. Next, sn and sv,g are decomposed
into their low-resolution components sbn and sbv,g, and high-
resolution components shn and shv,g, for example, using low-
pass filtering (more details are given in Subsection V-B).

Using the proposed CSSA method and a pair of pre-learned
multimodal NIR-VL dictionaries (denoted as Dn and Dv), the
convolutional SRs Xn and Xv are obtained for shn and shv,g,
respectively. The convolutional SRs are fused using the max-
absolute-value fusion rule. This can be formulated as follows

F v
k(i, j)=

{
Xv

k(i, j), if |Xv
k(i, j)| ≥ |Xn

k(i, j)|
0, otherwise

,

F n
k(i, j)=

{
Xn

k(i, j), if |Xn
k(i, j)| > |Xv

k(i, j)|
0, otherwise

,

(16)

where F n
k and F v

k are the fused convolutional SRs containing
only the most significant representation coefficients at each
entry. Moreover, the points (i, j) represent the locations of
all pixels in shn and shv,g, | · | denotes the absolute value
of a number, and k = 1, . . . ,K (number of filters in the
dictionaries). The fused greyscale high-resolution component
shf,g is then reconstructed using

shf,g =

K∑

k=1

F n
k ∗Dn

k +

K∑

k=1

F v
k ∗Dv

k.

The fused greyscale image sf,g is formed using shf,g and the
low-resolution component of the VL image

sf,g = sbv,g + shf,g.

Finally, the (YCbCr) image with sf,g as the intensity compo-
nent and the color components of the VL image is converted
back to the RGB format to form the fused color image sf .

V. EXPERIMENTS

We first use the proposed CSSA methods with different
sparsity structures for sparse approximation of a pair of NIR-
VL images and compare the obtained SRs. Next, we use the
proposed methods in multifocus and multimodal image fusion
tasks and compare the results with existing image fusion meth-
ods. The convolutional dictionaries used in the experiments
contain 32 filters of size 8×8 and are learned using the online
CDL method of [12]. The training data consists of a NIR-VL
image dataset and a multifocus image dataset, each containing
10 pairs of images. The NIR-VL and multifocus images are
collected from the RGB-NIR Scene dataset [15] and the Lytro
dataset [14], respectively. The fusion results are evaluated
both visually and based on objective evaluation metrics. Five
metrics are used for objective evaluations: average entropy
(EN), average peak signal-to-noise ratio (PSNR), the structural
similarity index (SSIM) [13], spatial frequency (SF) [18], and
edge intensity (EI) [19].

(a) VL image (b) NIR image

Fig. 1: A pair of VL and NIR images.

A. Performance Comparison

We investigate the performances of the proposed CSSA
methods in capturing the underlying structures of the NIR-
VL images in Fig. 1 in terms of sparsity, the overlap between
supports of the SRs, and the residual power. We compare the
results also with those obtained using the unstructured CSA



CSA CSSA-1 CSSA-2a CSSA-2b
λ Sparsity Com. supp. App. err. Sparsity Com. supp. App. err. Sparsity Com. supp. App. err. Sparsity Com. supp. App. err. γ1 γ2

0.001 0.0159 2.92% 4.2326 0.0345 100% 2.5245 0.0209 33.52% 6.5948 0.0248 32.91% 2.8497 0.001 0.001
0.01 0.0094 3.48% 40.2714 0.0183 100% 36.7564 0.0165 87.66% 40.9878 0.0201 87.30% 24.9402 0.001 0.01
0.05 0.0038 4.22% 148.9280 0.0073 100% 137.0919 0.0091 37.61% 72.8397 0.0110 35.31% 51.6590 0.01 0.01
0.1 0.0020 4.34% 241.0831 0.0040 100% 221.8418 0.0040 98.57% 223.7260 0.0045 98.74% 214.8775 0.001 0.1
0.5 0.0001 1.14% 657.2492 0.0004 100% 625.3224 0.0034 87.96% 240.1183 0.0038 87.77% 233.0870 0.01 0.1

TABLE I: Comparison of the convolutional SRs of the multimodal images in Fig. 1 obtained using the (unstructured) CSA
method of [11], the proposed CSSA method with ℓ2,1 regularization (CSSA-1), and the proposed CSSA method with ℓ2,1 and
ℓ1 regularizations using a single dictionary (CSSA-2a) and two (multimodal) dictionaries (CSSA-2b) in terms of ratio of the
nonzero entries (sparsity), the percentage of overlapping nonzero entries (Com. supp.), and the residuals power (App. err.). The
convolutional dictionaries used consist of 32 filters of size 8× 8 and are learned using a set of 10 pairs of NIR-VL images.

method of [11]. The results obtained using different values
of the sparsity regularization parameters are summarized in
Table I. As can be seen, the unstructured CSA leads to
inconsiderable overlaps between the supports of the convo-
lutional SRs, indicating the fact that CSA with no structure
cannot effectively capture the existing correlations between
the input images. The CSSA method with ℓ2,1 regularization
(CSSA-1) results in convolutional SRs with identical supports
(100% overlap). However, the imposed structure leads to lower
sparsity in the SRs and higher approximation errors.

CSSA using ℓ1 and ℓ2,1 regularizations (CSSA-2a) allows
to relax the identical supports constraint. Specifically, the use
of a larger element-sparsity parameter γ1 allows for a smaller
overlap between the supports of the SRs. This approximation
model is more appropriate when the correlated input signals
can contain (or lack) specific features. For example, in NIR-
VL images, some details are visible only in one of the
input images. This model can be also extended to learn the
nonlinear local relationships in the multimodal data in terms
of a set of multimodal dictionaries (CSSA-2b). The results
in Table I show that the use of multimodal dictionaries leads
to considerably more accurate approximations while achieving
SRs with the same level of sparsity compared to the case where
a single dictionary is used for both modalities.

B. NIR-VL Image Fusion Results

We benchmark the performance of the proposed NIR-VL
image fusion method by comparing our results with those
obtained using the fusion method of [16]. There are 51 pairs
of outdoor NIR-VL images labeled as “country” in the RGB-
NIR Scene dataset. We use 10 pairs of these images for CDL,
and the remainder 41 images are used as the test dataset. The
CSSA is performed using parameters ρ = 10, γ1 = 0.001
and γ2 = 0.01. The lowpass filtering is performed using the
lowpass function from the SPORCO library [20] with the
regularization parameter of 5.

Fig. 2 shows the fusion results for the NIR-VL images in
Fig. 1. The average objective evaluation results obtained for
the entire test dataset are reported in Table II. As it can be seen
in Fig. 2, the proposed fusion method achieves higher contrast
resolutions, which is also reflected in larger entropy, spatial
frequency, and edge intensity values in Table II. However,
method of [16] results in better SSIM and PSNR. This can be

(a) The method of [16]

(b) CSSA

Fig. 2: Visible light and near infrared image fusion results.

explained by the fact that in the proposed method, the fused
images are reconstructed from sparse approximations, while
the original pixel values are used in [16].

C. Multifocus Image Fusion

In this section, we modify the multifocus image fusion
method of [17] to incorporate CSSA instead of using uncon-
strained CSA and compare the resulting performances. The test
dataset contains 10 pairs of multifocus images (different from



Multifocus NIR-VL
Metrics The method of [17] CSSA The method of [16] CSSA

EN 7.4273 7.4371 7.0630 7.2649
SF 16.6709 16.8536 18.1657 20.0136
EI 60.6051 61.9919 59.7521 73.0752
SSIM 0.8491 0.8498 0.7629 0.7574
PSNR 27.8952 27.5893 20.3470 19.3590

TABLE II: Average objective evaluation results using different
methods. The best results are shown in bold.

the training dataset) and 4 sets of triple multifocus images. The
CSSA is performed using only the ℓ1-norm regularization with
parameters ρ = 10 and λ = 0.01. The method of [17] uses
the max-ℓ1-norm rule for fusing the convolutional SRs. In the
modified fusion method, we fuse the convolutional SRs (with
identical supports) using the elementwise maximum absolute
value rule to generate the fused convolutional SRs. All other
steps of the two algorithms are identical. The obtained fusion
results show that the use of CSSA leads to considerable
improvements in terms of higher contrast resolutions and better
fusion of multifocus edges (boundaries where one side is in-
focus and the other side is out of focus). Fig. 3 shows an
example of fusion results obtained using the two methods.
The objective evaluation results in Table II also indicate that
CSSA improves on the overall performance of the CSA-based
multifocus image fusion method of [17] .

(a) Input 1 (b) Input 2 (c) Input 3

(d) The method of [17] (e) CSSA

Fig. 3: Multifocus image fusion results.

VI. CONCLUSION

Algorithms for convolutional simultaneous sparse approx-
imation with different sparsity structures based on the alter-
nating direction method of multipliers have been proposed.
We have evaluated the effectiveness of the proposed methods
by using them in two different categories of image fusion
problems and compared the obtained results with those of

existing image fusion methods. In particular, a novel near
infrared and visible light image fusion method based on
convolutional simultaneous sparse approximation has been
proposed.
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ABSTRACT

Most available convolutional dictionary learning (CDL)
methods use a batch-learning strategy, which consists of
alternating optimization of the dictionary and the sparse rep-
resentations using a training dataset. The computational
efficiency of CDL can be improved using an online-learning
approach, where the dictionary is optimized incrementally
following a sparse approximation of each training sample.
However, the existing online CDL (OCDL) methods are still
computationally costly when learning large dictionaries. In
this paper, we propose an OCDL approach that incorporates
decomposed sparse approximations instead of the training
samples and substantially improves the computational costs
of the existing CDL methods. The resulting optimization
problem is addressed using the alternating direction method
of multipliers (ADMM).

1. INTRODUCTION

Sparse representations have been widely used in various sig-
nal processing and machine learning applications [1–6]. In
this model, a signal is approximated using a product of a ma-
trix, called dictionary, and a vector with only a few non-zero
entries, i.e., a sparse representation vector. In the context of
sparse representations, dictionary learning refers to the pro-
cess of finding a dictionary that leads to sparser representa-
tions and more accurate approximations for a large collection
of data [7–10].

Convolutional sparse representations (CSRs) provide
a shift-invariant model that can be applied to the entire
high-dimensional image [11, 12]. In the CSR model, the
signal s ∈ RP is approximated using a sum of convolu-
tions of the dictionary filters {dk ∈ Rm}Kk=1 and convo-
lutional sparse representations {xk ∈ RP }Kk=1, i.e., using
s =

∑K
k=1 dk ∗ xk, where ∗ is the convolution opera-

tor. The convolutional dictionary learning (CDL) problem
is commonly addressed using alternating optimization with
respect to the CSRs and the dictionary filters using a train-
ing dataset [13–17]. This approach is referred to as batch
CDL. Optimization of the dictionary filters over a batch of N

samples {sn ∈ RP }Nn=1 can be formulated as

minimize
{dk}K

k=1

1

2N

N∑

n=1

∥∥∥∥∥
K∑

k=1

dk ∗ x
n
k − s

n

∥∥∥∥∥

2

2

+

K∑

k=1

Ω (dk) , (1)

where ∥ · ∥2 represents the Euclidean norm of a vector and
Ω(·) is the indicator function associated with the constraint
on the dictionary filters, that is,

Ω (d) =

{
0, if ∥d∥2 ≤ 1

∞, otherwise
.

When the number of training samples N is large, batch CDL
becomes extremely computationally expensive. The state-of-
the-art batch CDL algorithms have a space (memory) com-
plexity of O(KNP ). The computational efficiency1 of CDL
can be improved using an online-learning approach, where
the dictionary is optimized incrementally after sparse approx-
imation of each training sample [18–20]. The online CDL
(OCDL) methods are also useful when the data is observed
gradually over time. Available OCDL methods have achieved
a space complexity of O(K2P ) which is independent from
the number of the data samples. Nevertheless, the compu-
tational costs of these methods can be still excessively large
when learning large dictionaries or using high-dimensional
data samples.

This paper proposes a novel OCDL method that substan-
tially improves the computational efficiency of the state-of-
the-art algorithms. The space complexity of the proposed
method is of O(KP ). In particular, an approximate sparse
components decomposition is used to decentralize the CDL
problem with respect to the convolutional filters.

2. BACKGROUNDS

The most efficient solutions to the CDL problem are based on
the convolution theorem [16–19]. In the frequency (Fourier)
domain, problem (1) can be reformulated as

minimize
{dk}K

k=1

1

2NP

N∑

n=1

∥∥∥∥∥
K∑

k=1

d̂k ⊙ x̂
n
k−ŝ

n

∥∥∥∥∥

2

2

+
K∑

k=1

Ω (dk) , (2)

1Computational efficiency accounts for overall algorithmic complexities
in terms of both time and space.



where (̂·) denotes the discrete Fourier transform (DFT) and
⊙ is the elementwise multiplication operator. The filters
{dk}Kk=1 are zero-padded prior to DFT to be of the same size
as the CSRs. By defining δp ≜ [d̂1(p), · · · , d̂K(p)]T and
ζn
p ≜ [x̂n

1 (p), · · · , x̂n
K(p)]T , problem (2) can be rewritten as

minimize
{dk}Kk=1

1

2NP

P∑

p=1

N∑

n=1

∥∥∥(ζn
p )

T δp − ŝn(p)
∥∥∥
2

2
+

K∑

k=1

Ω (dk) , (3)

where (·)T denotes the non-conjugate transpose operator. Ef-
ficient solutions to problem (3) have been proposed based
on ADMM and the fast iterative shrinkage-thresholding algo-
rithm (FISTA) [18, 19]. The time and the space complexities
of these algorithms are both of O(KNP ).

An online reformulation of problem (3) can be written
as [18, 19]

minimize
{dk}Kk=1

1

2

P∑

p=1

δHp AN
p δp −

P∑

p=1

δTp bNp +
K∑

k=1

Ω (dk) , (4)

where (·)H denotes the Hermitian transpose, and the his-
tory arrays AN

p ∈ RK×K and bNp ∈ RK , p = 1, . . . , P ,
are defined as AN

p ≜ 1
NP

∑N
n=1(ζ

n
p )

∗(ζn
p )

T , bNp ≜
1

NP

∑N
n=1 ŝ

n(p)∗ζn
p , with (·)∗ representing the element-

wise complex-conjugate of an array. The history arrays can
be updated incrementally after observing each data sample
and its sparse representations. The update rules are written as

AN
p =

1

NP
(ζN

p )∗(ζN
p )T +

N − 1

N
AN−1

p , p = 1, . . . , P,

bNp =
1

NP
ŝN (p)∗ζN

p +
N − 1

N
bN−1
p , p = 1, . . . , P,

(5)

where A0
p and b0p are initialized using zero arrays. In OCDL,

the dictionary filters are optimized by solving problem (4)
once updated history arrays are available. In this way, the
space complexity of CDL is reduced2 to O(K2P ). The
state-of-the-art OCDL algorithms have a time complexity of
O(K2NP ) [18, 19].

3. THE PROPOSED METHOD

The proposed method entails compressing the old (already
processed once CDL-wise) data samples and their CSRs in
a pair of compact history arrays which are used for regulariz-
ing the optimization of the dictionary with respect to the new
data sample and its CSRs (sN and {xN

k }Kk=1). Hence, the
CDL problem (1) is rewritten as

minimize
{dk}Kk=1

1

2N

∥∥∥∥∥
K∑

k=1

dk ∗ xN
k − sN

∥∥∥∥∥

2

2

+
1

2N

N−1∑

n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − sn

∥∥∥∥∥

2

2

+
K∑

k=1

Ω (dk) .

(6)

2The efficiency of OCDL is justified only when the number of training
samples is larger than that of dictionary filters, i.e., when N > K.

In OCDL the CSRs are calculated only once. Thus, the best
achievable approximations of the data samples {sn}N−1

n=1 can
be calculated as tn =

∑K
k=1 c

n
k ∗xn

k , n = 1, . . . , N−1, where
{cnk}Kk=1 is the optimal dictionary for the single data sample
sn with CSRs {xn

k}Kk=1. It can be found by solving

{cnk}Kk=1 = arg min
{dk}Kk=1

1

2

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − sn

∥∥∥∥∥

2

2

+
K∑

k=1

Ω (dk) . (7)

Problem (7) can be efficiently addressed (with complexity of
O(KP )) using the existing CDL algorithms. The solution to
(6) can be then approximated by replacing the original data
samples {sn}N−1

n=1 with their best achievable approximations
{tn}N−1

n=1 . This leads to the following optimization problem

minimize
{dk}Kk=1

1

2N

∥∥∥∥∥
K∑

k=1

dk ∗ xN
k − sN

∥∥∥∥∥

2

2

+
1

2N

N−1∑

n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − tn

∥∥∥∥∥

2

2

+
K∑

k=1

Ω (dk) .

(8)

3.1. CDL Based on Approximate Sparse Components

We further approximate the solution to problem (8) using the
following optimization problem

minimize
{dk}Kk=1

1

2N

∥∥∥∥∥
K∑

k=1

dk ∗ xN
k − sN

∥∥∥∥∥

2

2

+
1

2N

N−1∑

n=1

K∑

k=1

∥dk ∗ xn
k − tnk∥22 +

K∑

k=1

Ω (dk) ,

(9)

where the approximate sparse components (ASCs) are calcu-
lated using tnk = cnk ∗ xn

k . To demonstrate an approximate
equivalency between (8) and (9), we need to show that the
second quadratic terms in the two problems are approximately
equal. Let us denote the approximation residuals of ASCs in
(9) as rnk = dk ∗ xn

k − tnk . We also denote the approximation
residuals of {tn}N−1

n=1 in (8) as rn =
∑K

k=1 dk ∗ xn
k − tn.

Then, we have

1

2
∥rn∥22 =

1

2

∥∥∥∥∥
K∑

k=1

r
n
k

∥∥∥∥∥

2

2

=
1

2

K∑

k=1

∥rn
k∥22

︸ ︷︷ ︸
r1

+
K−1∑

k=1

K∑

l=k+1

(rn
k )

T rn
l

︸ ︷︷ ︸
r2

.

(10)
Since the squared Euclidean norms of the approximation
residuals are minimized in (9), we can assume that residuals
rnk have zero mean Gaussian distributions.3 Moreover, since
the approximation of ASCs is addressed using separate terms
with no couplings in the objective function of (9), we can
assume that {rnk}Kk=1 are statistically independent. Based on

3This is a standard assumption made based on the fact that minimization
of squared Euclidean norm of the residuals is equivalent to maximum like-
lihood estimation when the residuals are assumed to be zero mean Gaussian
distributed. See [8, Sec. 3.B], for example.



the aforementioned assumptions, the term r2 can be disre-
garded in (10) (because it involves a sum of inner products
of uncorrelated zero mean variables). Thus, we can use the
following approximation

1

2
∥rn∥22 ≃ 1

2

K∑

k=1

∥rnk∥22 . (11)

Note that the two sides of the approximation in (11) are the
second quadratic terms in (8) and (9). For example, if we as-
sume that the entries of rnk , k = 1, . . . ,K, are independent
and identically distributed Gaussian random variables with
zero mean and variance σ2

n, then the value of r1 (see (10))
has a generalized chi-squared distribution with mean µr1 =
2KPσ2

n and variance σ2
r1 = 4KPσ4

n (here, note that σr1 is
considerably smaller than µr1 , which means that r1 is ex-
pected to be centered around its mean value). Based on the
same assumption, it can be also shown that the value of r2
has a Gussian distribution with zero mean and variance σ2

r2 =
K(K − 1)Pσ4

n/2. This ensures that the standard deviation of r2
is drastically smaller than the expected value of r1, specifi-
cally, σr2 < µr1/2

√
2P . This means, for example, for a small

image of size 128 × 128 pixels (2
√
2P = 362.0387), that

r2 < r1
180 with a probability larger than 95%.

3.2. Problem Formulation

In this section, we recast problem (9) as an OCDL problem.
In the Fourier domain, problem (9) can be reformulated as

minimize
{dk}Kk=1

1

2NP

∥∥∥∥∥
K∑

k=1

d̂k ⊙ x̂N
k − ŝN

∥∥∥∥∥

2

2

+
1

2NP

N−1∑

n=1

K∑

k=1

∥∥∥d̂k ⊙ x̂n
k − t̂

n
k

∥∥∥
2

2
+

K∑

k=1

Ω (dk) ,

and then rewritten as

minimize
{dk}Kk=1

1

2NP

P∑

p=1

∥∥∥(ζN
p )T δp − ŝN (p)

∥∥∥
2

2
+

1

2P

P∑

p=1

αN−1
p ⊙δ∗p ⊙ δp

− 1

P

P∑

p=1

βN−1
p ⊙ δp +

K∑

k=1

Ω (dk) ,

(12)
with history arrays αN

p ∈ RK and βN
p ∈ RK , p = 1, . . . , P ,

defined as

αN
p ≜ 1

(N + 1)

N∑

n=1

ζn
p ⊙ (ζn

p )
∗, βN

p ≜ 1

(N + 1)

N∑

n=1

(τn
p )

∗ ⊙ ζn
p ,

where τn
p ≜ [̂t

n

1 (p), · · · , t̂
n

K(p)]T . The incremental updates
for the history arrays are given by

αN
p =

1

(N + 1)
ζN
p ⊙ (ζN

p )∗ +
N

N + 1
αN−1

p , p = 1, . . . , P,

βN
p =

1

(N + 1)
(τN

p )∗ ⊙ ζN
p +

N

N + 1
βN−1
p , p = 1, . . . , P.

3.3. Optimization Procedure
We address problem (12) using the ADMM approach. The
ADMM formulation of problem (12) can be written as

minimize
{dk}Kk=1

1

2NP

P∑

p=1

∥∥∥(ζN
p )T δp − ŝN (p)

∥∥∥
2

2

+
1

2P

P∑

p=1

αN−1
p ⊙ δ∗p ⊙ δp − 1

P

P∑

p=1

βN−1
p ⊙ δp

+
K∑

k=1

Ω (gk) s.t. dk = gk, ∀k.

The ADMM iterations are then given as

(
{dk}K

k=1

)t+1
= arg min

{dk}K
k=1

1

2NP

P∑

p=1

∥∥∥(ζN
p )

T
δp − ŝ

N
(p)
∥∥∥
2

2

+
1

2P

P∑

p=1

α
N−1
p ⊙ δ

∗
p ⊙ δp − 1

P

P∑

p=1

β
N−1
p ⊙ δp

+
ρ

2

K∑

k=1

∥∥∥dk − (gk)
t
+ (hk)

t
∥∥∥
2

2

(13)

(
{gk}K

k=1

)t+1
=arg min

{gk}K
k=1

K∑

k=1

Ω (gk)

+
ρ

2

K∑

k=1

∥∥∥(dk)
t+1 − gk + (hk)

t
∥∥∥
2

2

(14)

(hk)
t+1

=(dk)
t+1 − (gk)

t+1
+ (hk)

t
, k = 1, . . . , K.

where ρ > 0 is the penalty parameter and {hk}Kk=1 are the
scaled Lagrangian variables.

3.3.1. The d-update step

Defining (wk)
t ≜ (gk)

t − (hk)
t, k = 1, . . . ,K, and ωp ≜

[ŵ1(p), · · · , ŵK(p)]T , the solution to update (13) can be ob-
tained by solving P separate problems

minimize
δp

1

2N

∥∥∥(ζN
p )T δp−ŝN (p)

∥∥∥
2

2

+
1

2
αN−1

p ⊙δ∗p ⊙ δp − βN−1
p ⊙ δp+

ρ

2

∥∥δp−(ωp)
t
∥∥2
2
.

(15)

Based on the Sherman-Morrison formula, (15) can be effi-
ciently solved with complexity of O(K) as

(δp)
t+1 =

(
γp −

γ⊙2
p ⊙ |ζN

p |⊙2

N +
∑K

k=1 |ζN
p (k)|2γp(k)

)

⊙
(

1

N
(ζN

p )∗ŝN (p) + (βN−1
p )∗ + ρ(ωp)

t

)
,

(16)

with γp =
(
ρ+αN−1

p

)⊙−1
, where (·)⊙a denotes elementwise

exponentiation to the power of a. After finding
(
{δp}Pp=1

)t+1
,

the filters
(
{dk}Kk=1

)t+1 are found using an inverse DFT.

3.3.2. The g-update step

Problem (14) is addressed simply by projecting (dk)
t+1 +

(hk)
t on to the unit ball after mapping the entries outside the

support to zero (recall that the filters are zero padded).



4. EXPERIMENTAL RESULTS

Compared methods: We compare our algorithm to the fol-
lowing state-of-the-art OCDL methods: the method of [18],
which is based on ADMM and uses the iterative Sherman-
Morrison formula for updating the history arrays (the ISM
method); the frequency-domain-based OCDL method pro-
posed in [19] which is based on FISTA (the FISTA method).
We set the maximum number of iterations to 200 in all al-
gorithms. We use convolutional filters of size 8 × 8 in all
experiments. In all algorithms, the CSRs are obtained using
the method of [17]. The experiments using the Flowers and
SIPI datasets use λ = 0.01 and λ = 0.1, respectively. To
reduce the statistical dependencies on the initial dictionaries
and the order of appearance of the images, experiments are
repeated 5 times using different random generator seeds and
the average and standard deviation values are reported. All al-
gorithms are implemented using MATLAB. All experiments
are conducted on a PC equipped with an Intel(R) Core(TM)
i5-8365U 1.60GHz CPU and 16GB memory.
Datasets: the experiments are conducted using two datasets:

• SIPI: 37 random images of size 256 × 256 taken from
the USC-SIPI database [21]. The training and test
datasets contain 32 and 5 images, respectively.

• Flowers: 210 images of flowers of size 200×200 taken
from Oxford Flower Datasets [22]. The training and
test datasets contain 200 and 10 images, respectively.

The original images are converted to grey-scale and resized.
Conventionally, the images used for CDL are high-pass fil-
tered [11,16,19]. In our experiments, the low frequency com-
ponents of all images are removed using the lowpass function
of the SPORCO toolbox [23] with a regularization parameter
of 10.
Comparison criteria: The methods are compared using peak
signal to noise ratio (PSNR) of the reconstructed images and
the average objective functional values (fval). In addition, the
evolution of the test functional values using the dictionaries
learned by different methods are compared.

4.1. Performance Comparisons

Table 1 reports the objective functional values and the PSNR
results obtained using the methods tested for datasets SIPI
and Flowers. As can be seen, the proposed method results in
the best performance in terms of both the smallest objective
functional values, which shows the effectiveness of the pro-
posed optimization method of solving the CDL problem, and
the largest PSNR values, which indicates more accurate re-
constructed images. More significant improvements obtained
by the proposed method can be observed in our results for
larger dataset Flowers, where the proposed method results in
significantly shorter training times.

As in [18] and [19], the performances of the learned dic-
tionaries are compared based on their effects on the evolution

Table 1: The results obtained using the SIPI dataset with K =
32, and the Flowers dataset with K = 64 and K = 128. The
best results are shown in bold.

Methods test fval test PSNR training runtime

SIPI (K = 32)

ISM 96.62± 0.12 30.46± 0.05 1044± 17
FISTA 96.09± 0.36 30.23± 0.05 2518± 157
proposed 93.18 ± 0.69 31.10 ± 0.05 986 ± 25

Flowers (K = 64)

ISM 5.35± 0.02 43.88± 0.06 8053± 38
FISTA 5.19± 0.01 44.44± 0.02 7117± 635
proposed 4.71 ± 0.01 47.57 ± 0.03 6041 ± 24

Flowers (K = 128)

ISM 5.31±+0.01 42.72± 0.03 31302± 156
FISTA 5.15± 0.03 43.32± 0.06 20364± 2657
proposed 4.67 ± 0.01 45.42 ± 0.10 14417 ± 99

of objective functional values over the test datasets. The re-
sults presented in Fig. 1 show that the proposed method leads
to the best performance.

(a) Flowers (K = 64) (b) Flowers (K = 128)

Fig. 1: Evolution of test functional values for dictionaries
learned using different methods.

5. CONCLUSIONS

An efficient online convolutional dictionary learning (OCDL)
method has been presented. The proposed method is based
on a novel formulation of the CDL problem that incorporates
approximate sparse decomposition of training data samples.
The proposed formulation assumes that the residuals of the
approximate sparse components are statistically independent.
The proposed algorithm substantially improves the space and
time complexities of the state-of-the-art CDL algorithms. Ex-
perimental evaluations demonstrate that the proposed method
outperforms the existing OCDL algorithms.
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An Efficient Approximate Method for Online
Convolutional Dictionary Learning

Farshad G. Veshki and Sergiy A. Vorobyov, Fellow, IEEE

Abstract—Most existing convolutional dictionary learning
(CDL) algorithms are based on batch learning, where the
dictionary filters and the convolutional sparse representations
are optimized in an alternating manner using a training dataset.
When large training datasets are used, batch CDL algorithms
become prohibitively memory-intensive. An online-learning tech-
nique is used to reduce the memory requirements of CDL by
optimizing the dictionary incrementally after finding the sparse
representations of each training sample. Nevertheless, learning
large dictionaries using the existing online CDL (OCDL) algo-
rithms remains highly computationally expensive. In this paper,
we present a novel approximate OCDL method that incorporates
sparse decomposition of the training samples. The resulting
optimization problems are addressed using the alternating direc-
tion method of multipliers. Extensive experimental evaluations
using several image datasets show that the proposed method
substantially reduces computational costs while preserving the
effectiveness of the state-of-the-art OCDL algorithms.

Index Terms—Convolutional sparse coding, online convolu-
tional dictionary learning.

I. INTRODUCTION

SPARSE representations have become increasingly preva-
lent as a result of their wide use in diverse applications

such as signal and image processing, machine learning, and
computer vision [1]–[4]. The sparse representation model ap-
proximates a signal using a product of a matrix called a dictio-
nary and a vector that only has a few non-zero entries (sparse
representation). There are numerous applications where the
use of the sparse representation model coupled with a learned
dictionary results in remarkably improved performance. A
learned dictionary aims to produce sparser representations and
more accurate approximations of its domain signals [5]–[7].

Typically, dictionary learning and sparse approximation
are used to extract local patterns and features from high-
dimensional signals (such as images). Therefore, a prior de-
composition of the original signals into vectorized overlapping
blocks is usually required (e.g., patch extraction in image pro-
cessing). However, relations between neighboring blocks are
ignored, which results in multi-valued sparse representations
and dictionaries composed of similar (shifted) atoms.

Convolutional sparse coding (CSC) provides a single-valued
and shift-invariant model for describing high-dimensional sig-
nals [8]–[11]. This model replaces the matrix-vector product
used in the standard sparse approximation by a sum of convo-
lutions of dictionary filters {dk ∈ Rm}Kk=1 and convolutional
sparse representations (CSRs) {xk ∈ RP }Kk=1 (also called

The authors are with the Department of Information and Commu-
nications Engineering, Aalto University, Espoo, Finland (e-mail: far-
shad.ghorbaniveshki@aalto.fi; sergiy.vorobyov@aalto.fi)

sparse feature maps). The convolutional sparse approximation
problem can be formulated as follows

minimize
{xk}K

k=1

1

2

∥∥∥∥∥
K∑

k=1

dk ∗ xk − s

∥∥∥∥∥

2

2

+ λ

K∑

k=1

∥xk∥1, (1)

where s ∈ RP is the signal, λ > 0 is the regularization
parameter that controls the sparsity of the representations, ∗
denotes the convolution operator (here, with “same” padding),
and ∥ · ∥1 and ∥ · ∥2 represent the ℓ1-norm and the Euclidean
norm of a vector, respectively.

The convolutional dictionary learning (CDL) problem is
typically addressed using a batch approach in which the
sparse representations and the dictionary filters are optimized
alternately (batch CDL) [11]–[17]. The following is the for-
mulation of the dictionary optimization problem over a batch
of N training signals {sn ∈ RP }Nn=1,

minimize
{dk}K

k=1

1

2N

N∑

n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − sn

∥∥∥∥∥

2

2

+
K∑

k=1

Ω (dk) , (2)

where Ω(·) represents the indicator function of the constraint
set for the dictionary filters, that is,

Ω (d) =

{
0, if ∥d∥2 ≤ 1

∞, otherwise.

The existing batch CDL methods require access to all
training signals and their CSRs at once. As a result, mem-
ory of the order of NPK is required [18], which can be
extremely expensive when using large training datasets, i.e.,
when N ≫ K. It is reminded that K is the number of
dictionary filters, N is the number of training signals (the
batch size), and P is the dimension of the training signals,
for example, the number of pixels in an image (usually
P ≫ K and P ≫ N ). The memory requirement of CDL
can be reduced using an online-learning approach, where the
dictionary is optimized incrementally after observing each
training signal and finding its sparse representations [7]. The
online CDL (OCDL) methods are also useful when the training
signals are not available all at once, but they are observed
gradually over time. The state-of-the-art OCDL methods have
achieved memory requirements of the order of K2P [19],
[20], which is independent of the number of training signals.
Nevertheless, when learning large dictionaries or using high-
dimensional signals, these methods can still incur excessive
computational costs.

This paper presents a novel approximate OCDL method
that significantly improves the computational efficiency of
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the state-of-the-art algorithms while providing competitive
performance compared to the existing methods. As a re-
sult, we propose a method that requires a memory of the
order of KP only. More specifically, our method approx-
imates the OCDL problem by minimizing an upper bound
of the objective function, where the dictionary optimiza-
tion problem is decentralized with respect to the convolu-
tional filters. We then solve the resulting optimization prob-
lem using the alternating direction method of multipliers
(ADMM). MATLAB implementations of the proposed al-
gorithms are available at https://github.com/FarshadGVeshki/
Approximate-Online-Convolutional-Dictionary-Learning.

The rest of the paper is organized as follows. Section II
briefly reviews CDL in the Fourier domain. The proposed
CDL method and derivation of the algorithms are presented in
detail in Section III. Thorough experimental evaluation results
in terms of convergence properties and reconstruction accuracy
based on multiple image datasets of varying sizes are presented
in Section IV. The conclusions are provided in Section V.

II. OCDL IN THE FOURIER DOMAIN

Most efficient CDL methods are based on the Fourier
transform [11], [17], [19], [20]. In the frequency (Fourier)
domain, problem (2) is equivalent to

minimize
{dk}K

k=1

1

2NP

N∑

n=1

∥∥∥∥∥
K∑

k=1

d̂k ⊙ x̂n
k − ŝn

∥∥∥∥∥

2

2

+

K∑

k=1

Ω (dk) ,

(3)

where (̂·) and ⊙ denote the discrete Fourier transform (DFT)
and the elementwise multiplication operator, respectively. The
filters {dk}Kk=1 are zero-padded prior to DFT, so that {d̂k}Kk=1

are of the same size as the CSRs.
Defining δp ≜ [d̂1(p), · · · , d̂K(p)]T and χn

p ≜
[x̂n

1 (p), · · · , x̂n
K(p)]T , problem (3) can be rewritten as

minimize
{dk}K

k=1

1

2NP

P∑

p=1

N∑

n=1

∥∥(χn
p )

T δp − ŝn(p)
∥∥2
2
+

K∑

k=1

Ω (dk) ,

(4)

where (·)T is the transpose operator. The most efficient
solutions to problem (4) (the batch CDL problem) have been
proposed based on ADMM, and the fast iterative shrinkage-
thresholding algorithm (FISTA) [17], [18]. The complexities
of these algorithms are of O(KNP ) and they require memory
of the order of KNP . As a result, when the training dataset
is large, batch CDL becomes excessively computationally
demanding in practice.

OCDL alleviates the problem of large required memory by
storing sufficient statistics of the training signals and their
CSRs in compact history arrays. An online reformulation of
problem (4) can be written as

minimize
{dk}K

k=1

1

2

P∑

p=1

δHp AN
p δp −

P∑

p=1

δTp b
N
p +

K∑

k=1

Ω (dk) , (5)

where (·)H is the Hermitian transpose operator, and the history
arrays AN

p ∈ RK×K and bNp ∈ RK , p = 1, . . . , P , are defined
as

AN
p ≜ 1

NP

N∑

n=1

(χn
p )

∗(χn
p )

T , bNp ≜ 1

NP

N∑

n=1

ŝn(p)∗χn
p ,

(6)
with (·)∗ standing for the element-wise complex conjugate
of an array vector. After observing each training signal and
finding its sparse representations, the history arrays are recal-
culated incrementally using the following formulas

AN
p =

1

NP
(χN

p )∗(χN
p )T +

N − 1

N
AN−1

p , p = 1, . . . , P,

bNp =
1

NP
ŝN (p)∗χN

p +
N − 1

N
bN−1
p , p = 1, . . . , P.

(7)
The history arrays are initialized using zero arrays. In OCDL,
the dictionary is optimized by solving problem (5) only after
the updated history arrays are available. As a result, a memory
requirement of K2P and a complexity of O(K2NP ) are
achieved [19], [20].

III. THE PROPOSED METHOD

In the proposed method, the training signals are approxi-
mated in a distributed manner using N distinct dictionaries
{cnk ∈ Rm}Kk=1. A fusion of the separately optimized dictio-
naries based on the respective CSRs is used to calculate the
dictionary {dk}Kk=1. Specifically, the quadratic term in CDL
problem (2) is approximated using the following upper-bound
estimate

N∑

n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − sn

∥∥∥∥∥

2

2

=

N∑

n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k −

K∑

k=1

cnk ∗ xn
k +

K∑

k=1

cnk ∗ xn
k − sn

∥∥∥∥∥

2

2

≤
N∑

n=1

K∑

k=1

∥dk∗xn
k−cnk ∗xn

k∥22+
N∑

n=1

∥∥∥∥∥
K∑

k=1

cnk ∗xn
k−sn

∥∥∥∥∥

2

2

,

(8)
where the inequality is due to the triangle inequality. Accord-
ingly, the proposed approximate CDL problem is formulated
as

minimize
{dk}K

k=1,

{{cn
k}K

k=1}N
n=1

1

2N

N∑

n=1

K∑

k=1

∥dk∗xn
k−cnk ∗xn

k∥22+
K∑

k=1

Ω (dk)

+
1

2N

N∑

n=1

∥∥∥∥∥
K∑

k=1

cnk ∗xn
k−sn

∥∥∥∥∥

2

2

+

N∑

n=1

K∑

k=1

Ω (cnk ) . (9)

In the following, two ADMM-based online methods for ad-
dressing (9) are presented. The first algorithm uses a standard
approach for optimization of {dk}Kk=1 and {cNk }Kk=1, while
the second algorithm incorporates pragmatic modifications to
the first algorithm to improve the effectiveness of the proposed
approximation method and lower computational costs.
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A. Algorithm 1

Optimization problem (9) is jointly convex with respect to
{dk}Kk=1 and {{cnk}Kk=1}Nn=1. Thus, using the OCDL frame-
work, problem (9) can be addressed for the joint optimization
variables {cNk ,dk}Kk=1 after observing the N th training signal
sN and obtaining its CSRs {xN

k }Kk=1. Compact history arrays
are used to store sufficient statistics of {{cnk}Kk=1}N−1

n=1 and
{{xn

k}Kk=1}N−1
n=1 .

The following ADMM formulation is used to solve (9) for
{cNk ,dk}Kk=1

minimize
{cN

k ,dk}K
k=1,

{fN
k ,gk}K

k=1

1

2N

N∑

n=1

K∑

k=1

∥gk∗xn
k−fn

k ∗xn
k∥22+

K∑

k=1

Ω (dk)

+
1

2N

N∑

n=1

∥∥∥∥∥
K∑

k=1

fn
k ∗xn

k−sn

∥∥∥∥∥

2

2

+
N∑

n=1

K∑

k=1

Ω (cnk )

s.t. gk = dk, fN
k = cNk , k = 1, . . . ,K,

(10)
where {fN

k , gk}Kk=1 are the (joint) ADMM auxiliary variables.
The ADMM iterations consist of the following three steps.

The {f , g}-update step: In this step the auxiliary variables
{fN

k , gk}Kk=1 are updated as

(
{fN

k }Kk=1

)t+1

= argmin
{fN

k }K
k=1

1

2N

K∑

k=1

∥∥∥fN
k ∗ xN

k − zN
k

∥∥∥
2

2

+
1

2N

∥∥∥∥∥
K∑

k=1

fN
k ∗xN

k −sN

∥∥∥∥∥

2

2

+
ρ

2

K∑

k=1

∥∥∥fN
k −(cNk )t+(uk)

t
∥∥∥
2

2
,

(11)

(
{gk}Kk=1

)t+1
= argmin

{gk}K
k=1

1

2N

N∑

n=1

K∑

k=1

∥gk ∗ xn
k − tnk∥22

+
ρ

2

K∑

k=1

∥∥gk − (dk)
t + (vk)

t
∥∥2
2
,

(12)

where {uk,vk}Kk=1 are the scaled Lagrangian variables,
ρ > 0 is the ADMM penalty parameter, zN

k ≜ (gk)
t ∗ xN

k

and tnk ≜ (fn
k )

t+1 ∗ xn
k .

The {c,d}-update step: In this step {cNk ,dk}Kk=1 is updated
as

(
{cNk }Kk=1

)t+1
= argmin

{cN
k }K

k=1

K∑

k=1

Ω
(
cNk
)

+
ρ

2

K∑

k=1

∥∥∥(fN
k )t+1 − cNk + (uk)

t
∥∥∥
2

2
,

(13)

(
{dk}Kk=1

)t+1
= argmin

{dk}K
k=1

K∑

k=1

Ω (dk)

+
ρ

2

K∑

k=1

∥∥(gk)
t+1 − dk + (vk)

t
∥∥2
2
.

(14)

Updating the scaled Lagrangian parameters: Finally, the
scaled Lagrangian variables are updates as

(uk)
t+1=(fN

k )t+1−(cNk )t+1+(uk)
t, k = 1, . . . ,K,

(vk)
t+1=(gk)

t+1−(dk)
t+1+(vk)

t, k = 1, . . . ,K.
(15)

The {c,d}-update step involves projecting (fN
k )t+1+(uk)

t

(in (13)) and (gk)
t+1+(vk)

t (in (14)) onto the constraint set.
First, the entries outside the support (Rm) are mapped to zero
(recall that the filters are zero-padded), followed by projection
onto the unit ℓ2-norm ball.

In the {f , g}-update step, solving problem (11) is equivalent
to solving the following optimization problem

minimize
{fN

k }K
k=1

1

2N

K∑

k=1

∥∥∥f̂N

k ⊙ x̂N
k − ẑN

k

∥∥∥
2

2

+
1

2N

∥∥∥∥∥
K∑

k=1

f̂
N

k ⊙ x̂N
k − ŝN

∥∥∥∥∥

2

2

+
ρ

2

K∑

k=1

∥∥∥f̂N

k −q̂k

∥∥∥
2

2
, (16)

where qk ≜ (cNk )t − (uk)
t. By equating the derivative of

the objective in (16) to zero and using the Sherman-Morrison
(SM) formula, the solution to the f -update step is found as

(
f̂
N

k (p)
)t+1

=

(
akp +

(akp)
2|x̂N

k (p)|2

1 +
∑K

k=1 a
k
p|x̂N

k (p)|2

)

×
(
(x̂N

k (p))∗
(
ẑN
k (p) + ŝN (p)

)
+Nρq̂k(p)

)
,

(17)
where akp ≜ (|x̂N

k (p)|2 + Nρ)−1. Using precalculated values
of
∑K

k=1a
k
p|x̂N

k (p)|2, the f -update step can be carried out with
the complexity of O(KP ) using (17).

Problem (12) can be addressed via solving the following
optimization problem

minimize
{gk}K

k=1

1

2N

N∑

n=1

K∑

k=1

∥∥∥ĝk⊙x̂n
k−t̂

n

k

∥∥∥
2

2
+
ρ

2

K∑

k=1

∥ĝk−ŵk∥22 ,

(18)
where wk ≜ (dk)

t − (vk)
t.

The solution to (18) can be found as

(ĝk(p))
t+1

=
βN
k (p) + ŵk(p)

αN
k + ρ

, p = 1, . . . , P, k = 1, . . . ,K,

(19)
where history arrays αN

k ∈ RP and βN
k ∈ RP , k=1, . . . ,K,

are defined as

αN
k ≜ 1

N

N∑

n=1

(x̂n
k )

∗ ⊙ x̂n
k , β

N
k ≜ 1

N

N∑

n=1

(x̂n
k )

∗ ⊙ t̂
n

k . (20)

The history arrays are incrementally updated using

αN
k =

N − 1

N
αN−1

k +
1

N
(x̂N

k )∗ ⊙ x̂N
k , (21)

βN
k =

N − 1

N
βN−1
k +

1

N
(x̂N

k )∗ ⊙ t̂
N

k . (22)

Algorithm 1 summarizes the main steps of the proposed
approximate OCDL algorithm detailed in this section. Unit
norm Gaussian distributed random arrays can be used as initial
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dictionary {d0
k}Kk=1. At the first iteration, dictionary {dk}Kk=1

can be used to initialize {cnk}Kk=1 and {gk}Kk=1. Note that,
before each iteration of the ADMM algorithm, {βn

k}Kk=1 needs
to be recalculated using (22) based on the latest values of
{fn

k}Kk=1.

Algorithm 1 OCDL method proposed in Subsection III-A
Input: Training signals {sn ∈ RP }Nn=1, initial dictionary

{d0
k ∈ Rm}Kk=1, sparsity regularization parameter λ;

Initialisation : History arrays α0
k ∈ RP and β0

k ∈ RP ,
k = 1, . . . ,K as zero arrays, {dk}Kk=1 = {d0

k}Kk=1;
1: for n = 1 to N do
2: Find {xn

k}Kk=1 for sn using {dk}Kk=1 and λ by solving
(1);

3: Calculate {αn
k}Kk=1 using (21);

4: Optimize {cnk ,dk}Kk=1 using the ADMM-based method
in Subsection III-A (recalculate {βn

k}Kk=1 using (22) in
every iteration);

5: end for
6: return Learned convolutional dictionary {dk}Kk=1.

B. Algorithm 2

To improve the performance of the proposed OCDL algo-
rithm, dictionary optimization can be performed exactly for the
latest observed signal sN , while the proposed approximation
method is used for {sn}N−1

n=1 . Thus, the modified approximate
CDL problem is now formulated as

minimize
{dk}K

k=1,

{{cn
k}K

k=1}N
n=1

1

2N

∥∥∥∥∥
K∑

k=1

dk∗xN
k −sN

∥∥∥∥∥

2

2

+
1

2N

N−1∑

n=1

K∑

k=1

∥dk∗xn
k−cnk ∗xn

k∥22+
K∑

k=1

Ω (dk)

+
1

2N

N−1∑

n=1

∥∥∥∥∥
K∑

k=1

cnk ∗xn
k−sn

∥∥∥∥∥

2

2

+
N∑

n=1

K∑

k=1

Ω (cnk ) . (23)

The alternating procedure for addressing (23) consists of the
following steps.

1) Optimization of {dk}Kk=1: Solving (23) with respect
to {dk}Kk=1 can be addressed using the following ADMM
formulation

minimize
{dk}K

k=1,{gk}K
k=1

1

2N

∥∥∥∥∥
K∑

k=1

gk ∗ xN
k − sN

∥∥∥∥∥

2

2

+
1

2N

N−1∑

n=1

K∑

k=1

∥gk ∗ xn
k − rnk∥22 +

K∑

k=1

Ω (dk)

s.t. gk = dk, k = 1, . . . ,K. (24)

where rnk ≜ cnk ∗ xn
k .

The ADMM iterations consist of the following steps:
(i) the g-update step: a convolutional least-squares fitting

problem);
(ii) the d-update step: projection on the constraint set (similar

to (14));

(iii) updating the Lagrangian multipliers (similar to (15)).

The g-update step requires solving the optimization problem
in the form of

minimize
{gk}K

k=1

1

2N

∥∥∥∥∥
K∑

k=1

ĝk ⊙ x̂N
k − ŝN

∥∥∥∥∥

2

2

+
1

2N

N−1∑

n=1

K∑

k=1

∥ĝk⊙x̂n
k−r̂nk∥22+

ρ

2

K∑

k=1

∥ĝk−êk∥22 . (25)

Equating the derivative to zero and using the SM formula,
optimization problem (25) can be solved as

(
ĝN
k (p)

)t+1

=

(
bkp +

(bkp)
2|x̂N

k (p)|2

N +
∑K

k=1 b
k
p|x̂N

k (p)|2

)

×
(

1

N
(x̂N

k (p))∗ŝN (p) + β̃
N−1

k (p) + ρêk(p)

)
,

(26)
with bkp ≜ (α̃N−1

k (p) + ρ)−1, where history arrays α̃N
k ∈ RP

and β̃
N

k ∈ RP , k=1, . . . ,K, are defined as

α̃N
k ≜ 1

N + 1

N∑

n=1

(x̂n
k )

∗ ⊙ x̂n
k , β̃

N

k ≜ 1

N + 1

N∑

n=1

(x̂n
k )

∗ ⊙ r̂nk .

(27)
The incremental update rules for α̃N

k and β̃
N

k can be found
as

α̃N
k =

N

N + 1
α̃N−1

k +
1

N + 1
(x̂N

k )∗ ⊙ x̂N
k , (28)

β̃
N

k =
N

N + 1
β̃
N−1

k +
1

N + 1
(x̂N

k )∗ ⊙ r̂Nk . (29)

The g-update (26) can be performed with the complexity
of O(KP ) using precalculated values of

∑K
k=1b

k
p|x̂N

k (p)|2.
2) Optimization of {cNk }Kk=1: In the modified algorithm,

dictionary {cNk }Kk=1 is optimized only to provide a more
accurate approximation of sN (in comparison with the approx-
imation provided using {dk}Kk=1). It means that the second
quadratic term in (23) is ignored in the step of {cNk }Kk=1

optimization. Here we rely on the fact that CSRs {xN
k }Kk=1 are

direct products of {dk}Kk=1. As a result, considering that the
approximation is based on {xN

k }Kk=1, the resulting {cNk }Kk=1

cannot unfavorably deviate from {dk}Kk=1. Problem (23),
which needs to be solved now for {cNk }Kk=1 only, is then
reduced to the following optimization problem

minimize
{cN

k }K
k=1

1

2P

∥∥∥∥∥
K∑

k=1

cNk ∗ xN
k − sN

∥∥∥∥∥

2

2

+
K∑

k=1

Ω
(
cNk
)
, (30)

which is a CDL problem involving a single training signal,
which can be addressed using the existing CDL methods (e.g.,
[17]).

The main steps of the presented approximate OCDL al-
gorithm are summarized in Algorithm 2. Optimization of
dictionaries {dk}Kk=1 and {cnk}Kk=1 (lines 3 and 4) can be
initialized using the existing {dk}Kk=1.
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Algorithm 2 OCDL method proposed in Subsection III-B
Input: Training signals {sn ∈ RP }Nn=1, initial dictionary

{d0
k ∈ Rm}Kk=1, sparsity regularization parameter λ;

Initialisation : History arrays α̃0
k ∈ RP and β̃

0

k ∈ RP ,
k = 1, . . . ,K as zero arrays, {dk}Kk=1 = {d0

k}Kk=1;
1: for n = 1 to N do
2: Find {xn

k}Kk=1 for sn and {dk}Kk=1 by solving (1);
3: Optimize {dk}Kk=1 as in Subsection III-B1;
4: Optimize {cnk}Kk=1 as in Subsection III-B2;
5: Calculate {α̃n

k}Kk=1 and {β̃n

k}Kk=1 using (28), (29);
6: end for
7: return learned convolutional dictionary {dk}Kk=1.

C. Memory Requirements and Computational Complexity

The largest arrays used in the proposed algorithms are
of size KP . The most computationally expensive steps of
performing updates (17) and (26) both have a complexity of
O(KP ), which is slightly dominated by the complexity of
DFT that is of O(KP log(P )) when performed using Fast
Fourier Transform. Thus, the computational complexity of
the proposed algorithm is of the order of KP sequentially
performed N times (once for each signal in the training
dataset).

IV. EXPERIMENTAL RESULTS

A. Compared Methods

The performance of the proposed algorithms is bench-
marked against the following state-of-the-art OCDL methods:
OCSC The ADMM-based OCDL method of [19], which uses

the iterative Sherman-Morrison formula for updating the
history arrays;

FISTA The FISTA-based OCDL method of [20] that uses
gradient calculated in the Fourier domain.

In addition, we compare the OCDL methods to the following
batch-CDL algorithm,
ADMM-cns The batch-CDL method of [17] that is based on

consensus-ADMM.
Algorithms 1-2 are referred to as “proposed-1” and

“proposed-2”, respectively.

B. Datasets

The experiments are conducted using the following 5 image
datasets:
Fruit and City Two small datasets, each composed of 10

images of size 100 × 100. These datasets are typically
used as benchmarks for CSC and CDL [12], [13], [19];

SIPI A dataset composed of 20 training images and 5 test
images all of size 256 × 256 collected from the UCS-
SIPI image database http:// sipi.usc.edu/database/ .

Flicker A dataset composed of 40 training images and
5 test images all of size 256 × 256 collected from
the MIRFLICKR-1M image dataset https://press.liacs.nl/
mirflickr/mirdownload.html.

Flicker-large A dataset composed of 1000 training images
and 50 test images all of size 256 × 256 collected from
the MIRFLICKR-1M image dataset.

The initial images are transformed into greyscale and the 8-
bit pixel values are normalized to a range of 0-1 by dividing
by 255. Images from the MIRFLICKR-1M and USC-SIPI
datasets are then cropped and resized. As the CSC model
is not capable of effectively handling low-frequency signals,
it is a common practice to use high-pass filtered images for
CDL [11], [18], [20]. In the experiments, the low-frequency
components of all images are eliminated using the lowpass
function of the SPORCO toolbox [21] with a regularization
parameter of 5.

C. Implementation Details

The proposed algorithms employ the unconstrained convo-
lutional sparse approximation method of [17]. In all ADMM-
based algorithms (both sparse approximation and dictionary
learning) the maximum number of iterations is set to 300,
and stopping criteria discussed in [22, Subsection 3.3] with
absolute and relative tolerance values of 10−4 are used. We
use dictionary filters of size 8× 8 in all experiments.

All ADMM-based algorithms except OCSC use ADMM
extensions over-relaxation [22, Subsection 3.4.3] and varying
penalty parameter [22, Subsection 3.4.1] with initial penalty
parameter ρ = 10 (the same parameters are used in all
methods). The OCSC method incorporates the ADMM penalty
parameter ρ in the history arrays. Thus, this method cannot use
varying penalty parameter extension. For the OCSC method,
we use the default parameters set by the authors of the paper
(the stopping criteria are modified to be uniform with other
algorithms compared).

In all experiments, we use λ = 0.1λmax, where λmax is the
smallest value that results in all-zero sparse representations
and can be obtained using ℓ∞-norm of the gradient of the
objective of convolutional sparse approximation problem (1)
at {xk}Kk=1 = 0. Here, the value of λmax is calculated only
once using the first image in the training datasets.

All algorithms are implemented using MATLAB. All exper-
iments are performed using a PC equipped with an Intel(R)
Core(TM) i5-8365U 1.60GHz CPU and 16GB memory.

D. Comparison Criteria

The effectiveness of the CDL algorithms is typically eval-
uated based on the objective values of the convolutional
sparse approximation problem (1) averaged over the entire test
datasets [19], [20], [23]. A lower objective value indicates
a better performance. For the small datasets Fruit and City,
since there is no test data, the average training objective values
are reported to compare the effectiveness of the optimization
algorithms [12]. Using visualized learned dictionary filters, the
OCDL algorithms are evaluated for their ability to extract
(learn) visual features. The efficiency of the algorithms is
measured using the training times.
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Fig. 1. Datsets Fruit (first row) and City (second row).

E. Small Datasets Fruit and City
Fig. 1 shows the images in the small datasets Fruit and City.

Tables I and II report the average training objective values and
the training times obtained using the methods tested for these
two datasets. To facilitate comparison, the results are presented
as bar plots in Fig. 2. The experiments based on datasets Fruit
and City are performed using dictionary size K = 64.

TABLE I
AVERAGE TRAINING OBJECTIVE VALUES AND TRAINING TIMES OBTAINED

USING THE METHODS COMPARED FOR DATASET Fruit.

Objective Training Time (s)
Initial dictionary 19.5422 -

FISTA [20] 16.0159 167
OCSC [19] 14.5529 530
Proposed-1 16.6867 39
Proposed-2 14.3059 33

ADMM-cns (batch) [17] 11.8088 122

TABLE II
AVERAGE TRAINING OBJECTIVE VALUES AND TRAINING TIMES OBTAINED

USING THE METHODS COMPARED FOR DATASET City.

Objective Training Time (s)
Initial dictionary 33.9411 -

FISTA [20] 28.6235 190
OCSC [19] 24.5472 462
Proposed-1 30.1463 42
Proposed-2 25.2740 32

ADMM-cns (batch) [17] 18.9411 153

As can be observed, the ADMM-cns batch CDL algorithm
yields the lowest objective function values. However, this
method is not suitable for large datasets as mentioned ear-
lier. The proposed methods produce objective values that are
comparable to other OCDL algorithms tested. In particular,
algorithm 2 (proposed-2) results in the smallest objective for
the Fruit dataset among all OCDL algorithms. For the City
dataset, the OCSC method has the lowest objective compared
to other OCDL methods (slightly better than that of proposed-
2), but shows a longer training time. As shown in Tables I
and II, the proposed algorithms result in substantially shorter
training times, especially Algorithm 2, which is noticeably
faster than Algorithm 1.

The convolutional dictionaries learned based on datasets
Fruit and City using the methods tested are visualized in
Figs. 3 and 4, respectively.

Acquiring valid (as opposed to noisy and random) visual
features is crucial in many image and signal processing tasks

Fig. 2. Comparison of training objective values and training times obtained
using all methods compared for datasets Fruit (top) and City (bottom).

that utilize dictionary learning, such as image denoising, image
inpainting, and image fusion. By examining the dictionaries
shown in Figs. 3 and 4, it can be seen that the dictionaries
learned using the proposed method contain fewer noisy and
random filters compared to those learned using OCSC and
FISTA. The filters in the dictionaries learned using ADMM-
cns (batch CDL) appear crisper and sharper, while those
learned using the proposed algorithms seem smoother. This
can be explained by the fact that in the proposed method, the
dictionaries are, in a way, learned from the sparse approxima-
tion of the original images.

F. Datasets SIPI and Flickr

Figs. 5 and 6 depict 10 images randomly selected from the
SIPI and Flickr datasets, respectively. The experiments for
SIPI dataset are carried out using a dictionary size of K = 80.
A dictionary size of K = 100 is used for the experiments
based on Flickr dataset. The average test objective values and
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(a) ADMM-cns (b) FISTA (c) OCSC

(d) Proposed-1 (e) Proposed-2
Fig. 3. Dictionaries learned (K = 64) using the methods compared for
dataset Fruit.

(a) ADMM-cns (b) FISTA (c) OCSC

(d) Proposed-1 (e) Proposed-2
Fig. 4. Dictionaries learned (K = 64) using the methods compared for
dataset City.

the training times obtained using all methods tested for these
two datasets are reported in Tables III and IV, and displayed
in bar charts in Fig. 7.

TABLE III
AVERAGE TEST OBJECTIVE VALUES AND TRAINING TIMES OBTAINED

USING THE METHODS COMPARED FOR DATASET SIPI.

Objective Training Time (s)
Initial dictionary 103.0952 -

FISTA [20] 63.6088 4904
OCSC [19] 67.2540 5598
Proposed-1 65.0985 685
Proposed-2 63.4867 513

ADMM-cns (batch) [17] 61.1713 2248

As can be seen in Tables III and IV, the ADMM-cns method
achieves the lowest test objective values. However, its advan-
tage over the OCDL methods is not as noticeable as in the case
of experiments on small datasets Fruit and City. Specifically,
in the experiments on the larger dataset Flickr, ADMM-cns

TABLE IV
AVERAGE TEST OBJECTIVE VALUES AND TRAINING TIMES OBTAINED

USING THE METHODS COMPARED FOR DATASET Flickr.

Objective Training Time (s)
Initial dictionary 51.6432 -

FISTA [20] 31.3904 16032
OCSC [19] 35.4325 12689
Proposed-1 32.4064 1362
Proposed-2 31.6799 1102

ADMM-cns (batch) [17] 30.6657 16049

performs only slightly better than FISTA and proposed-2,
while requiring the longest training time. Among the OCDL
methods, FISTA results in the smallest test objective in the
experiments on Flickr, although it takes the longest training
time. The proposed methods result in comparable test objective
values to other OCDL methods while substantially shortening
the training time. In particular, Algorithm-2 has the smallest
objective among all OCDL algorithms for the SIPI dataset.

The convolutional dictionaries learned based on datasets
SIPI and Flickr using the methods tested are shown in Figs. 8
and 9, respectively. As can be observed from the dictionaries
displayed in Fig. 8, in the experiments on SIPI, the dictionary
filters learned using the proposed algorithms are less noisy and
random compared to those learned using FISTA and OCSC.
For the experiment on the Flicker dataset, the dictionary filters
learned using FISTA are crisper and sharper compared to other
OCDL methods tested (FISTA also resulted in the smallest test
objective for dataset Flickr).

G. Learning Large Dictionaries

In this experiment, we use the proposed algorithms to learn
large dictionaries of sizes K = 200, K = 300, and K = 400
based on the Flickr dataset. Learning such large dictionaries
over the images of the size of those in Flickr is not feasible
using the OCDL methods, OCSC and FISTA. Indeed, in
single precision, for K = 200, only the larger history array
of these methods, that is of size K2P , would require more
than 10 Gigabytes memory. The learned large dictionaries are
visualized in Fig. 10. It can be seen that all dictionaries learned
are mostly composed of visually valid features. The obtained
training times are reported in Table V and Fig. 11. As can be
seen, the longest training times obtained using the proposed
methods are still significantly shorter than those resulting from
using other methods tested for learning smaller dictionaries
(see Table IV, for example).

TABLE V
TRAINING TIMES (SECONDS) OBTAINED USING THE PROPOSED METHODS

FOR DATASET Flickr.

K = 200 K = 300 K = 400
Proposed-1 2691 3695 4574
Proposed-2 2466 3487 4258

H. CDL Over a Large Dataset

In this section, we demonstrate the scalability of the pro-
posed algorithms using the Flickr-large dataset (with 1000
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Fig. 5. 10 randomly selected images from dataset SIPI.

Fig. 6. 10 randomly selected images from dataset Flickr.

Fig. 7. Comparison of test objective values and training times obtained using
all methods compared for datasets SIPI (top) and Flickr (bottom).

training images). Dictionaries composed of K = 100 filters
are used in this experiment. Fig. 12 shows the average test
objective values obtained using the learned dictionaries after
processing 1, 10, 100, and 1000 images. The results show
that both proposed algorithms are applicable to large training
datasets. However, Algorithm-2 leads to considerably lower
objective values.

V. CONCLUSION

An efficient approximate method for CDL has been pre-
sented. The proposed method is based on a novel formulation
of the CDL problem that incorporates approximate sparse
decomposition of training data samples. We have developed
two computationally efficient OCDL algorithms based on
ADMM to address the proposed approximate CDL problem.

(a) ADMM-cns (b) FISTA (c) OCSC

(d) Proposed-1 (e) Proposed-2
Fig. 8. Dictionaries learned (K = 80) using the methods compared for
dataset SIPI.

(a) ADMM-cns (b) FISTA (c) OCSC

(d) Proposed-1 (e) Proposed-2
Fig. 9. Dictionaries learned (K = 100) using the methods compared for
dataset Flickr.

The proposed OCDL algorithms substantially reduce the re-
quired memory and improve the computational complexities
of the state-of-the-art CDL algorithms. Extensive experimental
evaluations using multiple image datasets have demonstrated
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Fig. 10. Large dictionaries learned using the proposed algorithms (top: proposed-1, bottom: proposed-2) for dataset Flickr with K = 200 (left), K = 300
(middle), and K = 400 (right).

Fig. 11. Comparison of training times obtained using the proposed algorithms
and dataset Flickr for learning dictionaries of different sizes.

the effectiveness of the proposed OCDL algorithms.
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