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ABSTRACT

This paper is concerned with the estimation of unknown drift
functions of stochastic differential equations (SDEs) from ob-
servations of their sample paths. We propose to formulate
this as a non-parametric Gaussian process regression problem
and use an Itd-Taylor expansion for approximating the SDE.
To address the computational complexity problem of Gaus-
sian process regression, we cast the model in an equivalent
state-space representation, such that (non-linear) Kalman fil-
ters and smoothers can be used. The benefit of these meth-
ods is that computational complexity scales linearly with re-
spect to the number of measurements and hence the method
remains tractable also with large amounts of data. The over-
all complexity of the proposed method is O(N log N), where
N is the number of measurements, due to the requirement of
sorting the input data. We evaluate the performance of the
proposed method using simulated data as well as with real-
data applications to sunspot activity and electromyography.

Index Terms— Gaussian process regression, Kalman fil-
ter and smoother, stochastic differential equation, drift esti-
mation, sunspot activity, electromyography

1. INTRODUCTION

Stochastic differential equations (SDEs) have important ap-
plications in areas such as financial marketing [1], astron-
omy [2], bioinformatics [3,4], and classical physics [5]. SDEs
can be seen as ordinary differential equations which involve
randomness, and their theory is covered by the Itd stochas-
tic calculus [6]. However, it is not always possible to derive
an SDE model of a system directly from first principles and
instead, the SDE needs to be estimated from data.

One way to proceed is to fix the parametric form of the
SDE and estimate the parameters from data. Such estima-
tion can be done, for example, with Markov chain Monte
Carlo methods [7]. Alternatively we can use likelihood-based
methods such as maximum likelihood or maximum a poste-
rior [7-9]. Early studies focused on parametrizing with for
example, polynomial forms [10-12].
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Alternatively, as proposed by [7, 13], we can also model
the drift and diffusion functions as Gaussian processes (GPs).
This is a non-parametric approach, as we do not need to
specifically postulate forms of the functions. Compared to
parametric approaches, GP regression provides more flexi-
bility, as the uncertainties can be readily modeled. Current
state-of-the-art studies [7, 13—15] model the relationship be-
tween measurements and drift and diffusion functions with
Euler-Maruyama discretization scheme [16], which results
in a linear model, and the posterior of unknown functions is
still Gaussian with closed-form mean and covariance [7, 17].
However, one problem of GP regression is that the com-
putational complexity scales cubically with the number of
measurements [17]. Although it can be alleviated by utilizing
sparse GPs [18], they are only approximations to the full
batch GPs. Another problem is the use of Euler—-Maruyama,
which linearly approximates the It6—Taylor series in a small
time interval. For this reason, the accuracy of the approach is
limited when the sample path is not densely discretized [16].

The contributions of this paper are the following. Within
the framework of non-parametric GPs for learning unknown
drift functions in SDEs, we first propose to generalize the dis-
cretization scheme to higher order It6—Taylor expansions in-
stead of the Euler—Maruyama scheme. This gives more accu-
rate approximations with larger time intervals. Secondly, we
transform the GP into an equivalent state-space representation
such that the regression of the drift function reduces to a filter-
ing and smoothing problem in state-space [6, 19-21]. When
the Kalman filter and Rauch—-Tung—Striebel (RTS) smoother
are used, the computational complexity is linear in the num-
ber of measurements.

2. ITO-TAYLOR GAUSSIAN PROCESS
REGRESSION OF SDES

Consider the following stochastic differential equation
dz(t) = a(z(t)) dt + b AW (¢), (1

for the solution process 73, = z(t;) € R, where W (t) is a
Wiener process with spectral density ¢g. The aim is to learn
the unknown drift function ay £ a(x) from N discrete ob-
servations X1.§ = [Z1,...,Z,.. ., xN]T of one sample path



of z(t), where time interval Aty = t; — tg—1. Similarly
to [7,13-15], we model the drift function as a GP, that is,

a(z) ~ GP(0, ky(z,2")), 2)

where k, (-, -) is a covariance function. We first need to dis-
cretize the continuous model (1). Typically, this is done using
the Euler—Maruyama approximation of the SDE (1), given by

Tht1 = T + a(xk) Aty + b AWy, 3)

where AWy, = W (tg41) — W(tg) ~ N(0,q Aty). This can
now be rewritten as

yr = a(xy) Aty + b AW, 4

where we have defined the measurement v, = Tp411 — Tk,
and zy, for k = 1,..., N are actual observations from sample
path. As shown by [13-15] this can now be considered as
Gaussian process regression model of the form

a(x) ~ GP(0, ko(x,2')) )
yr = a(zy) Aty + ey,
with e ~ N(0, b2 q Aty). Thus given the values of x;, and
Yy, we can use standard Gaussian process regression to infer
a(x). The Euler-Maruyama method has the advantage that
the resulting posterior is still a GP with closed-form solution
[17], but will only work when At are small enough, as its
strong order of convergence is merely O(At!/?) [6,16].
Another more accurate approach is to use Ito—Taylor ex-
pansion for the SDE (1) in more general form

Th1 = Tk + gr(Tr) + €x(Tr), (6)

where gy (z) is a deterministic function of x, and € (zy) is
a random variable. It6—Taylor methods are methods to ap-
proximate the terms g and € using finite truncations of the
It6—Taylor series expansion. The Euler—-Maruyama method
is a special case of Ito-Taylor expansion where g(zy) =
a(xk) Atk, Ek(.’bk) = bAWtk, and AWk ~ N(O, q Atk).

A particularly useful instance is strong order 1.5 Ito—
Taylor (It6-1.5) scheme [16] that uses

gk(il'k) = a(xk) Atk
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The benefit is that the derivatives of the drift function are also
taken into account in regression.

The full formulation for drift function regression using GP
and It6—Taylor expansion then becomes

a(z) ~ GP(0, ko(x,2)),

9
Yk = gk (zk) + ex(xg), ©

where the form of gi(zy) and €, (zx) depend specifically
on how the It6—Taylor expansion is done, a particular ex-
ample being It6-1.5 in (7). Unfortunately, performing GP
regression for model (9) is more challenging than using
Euler—-Maruyama. Firstly, the measurement function in (9)
is non-linear and non-Gaussian and hence closed form Gaus-
sian process regression is no longer possible. Secondly, the
computational complexity of a vanilla GP is O(N?), and we
also need the derivatives of a(z).

However, these challenges can be solved by transform-
ing the GP prior into an equivalent state-space model [19,20]
such that the regression is done with (non-linear) filtering and
smoothing.

3. STATE-SPACE DRIFT ESTIMATION OF SDE

3.1. State-space Gaussian Process

As proposed by [19, 20], a scalar temporal Gaussian process
can be converted to a multidimensional linear stochastic dif-
ferential equation (i.e., state-space model), provided that the
Fourier transform of the GP kernel function has a rational
form. The major benefit of using state-space representation
of GP is that the computational complexities of Kalman filter
and RTS smoother, which can be used to solve the GP regres-
sion problem in state-space form, are O(NV). The derivatives
of the GP also naturally appear as state components, which
can be easily exploited.

However, the inputs of the GP have to be in temporal order
to use the state-space representation of GPs, which is not the
case in model (4). This can be accomplished by sorting pairs
(zk,yr) with respect to the values of x; which leads to new
pairs (x;,y;). Let us also interpret the inputs z; as (pseudo)
time-variables and denote 7; £ ;. Then the GP model (9)
can be rewritten as a temporal GP regression model

a(7_> ~ gP(Ov ka(TaT ))a (10)
vi = gi(7) + €.

If the kernel function k, is suitably chosen [6], then the spec-
tral density of the GP will have a rational form and we can
form a spectral factorization

S(w) =H(iw) ¢ H(—iw), (11)

where H(iw) is the transfer function that corresponds to a
differential equation. This leads to an equivalent linear time-



invariant state-space representation of (10) such that
da(r) =Fa(r)dr + L dB(7),

(12)
yi = gi(Ti) + €,

where a(7) € RP is a D-dimensional state containing a(7)
and its derivatives and B(7) a Wiener process with a given
diffusion matrix Q € R%*“, The initial distribution is given
by a(r9) ~ N(0,P) where 7y is some value 79 < 71
and P, is the solution to the corresponding Lyapunov equa-
tion [6]. Depending on the specific form of kernel function
ko, the matrices F, L, Q, and P have different forms. A
typical example is the Matérn kernel
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for which we have [6]
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where A = V2v /0, D = v+ 1/2, and ¢; = (i—D1) are the
binomial coefficients. The details of other parameters P,

Q, and derivations can be found in [6, Chap. 12].

3.2. Filtering and Smoothing

Given the state-space representation (12), and when the
measurement model is linear (as it is in the case of Euler—
Maruyama), a Kalman filter and RTS smoother can be used
to solve the estimation problem in linear computational
time [19]. The resulting smoothing posterior at 7

vyn) = N(a(r);m*(7), P*(7)), (13)

is exactly the same as of full GP regression, where m*(7)
and P?(7) are the posterior mean and covariance calculated
by the smoother. The posterior distribution of a(7) can then
be extracted via marginalization.

In the case of adopting higher order It6—Taylor expansion
as constructed in Section 2, the measurement function be-
comes non-linear, and exact Kalman filtering and smoothing
cannot be applied anymore. Instead, we can resort to gen-
eral Gaussian filtering and smoothing approaches for nonlin-
ear systems such as statistically linearized and sigma-point
Kalman filters (e.g., the cubature or unscented Kalman fil-
ters) [21,22]. A particularly useful state-of-the-art tool for
this purpose is the iterated posterior linearization filter (IPLF)
and smoother (IPLS) [23].

It is worth noting that although the time-complexity of the
filters and smoothers is O(N), the overall time-complexity
is dominated by sorting which is typically an O(N log N)
operation.

pla(T) | y1,-..

3.3. Extension to Diffusion Estimation

It would be also of interests to learn the drift and diffusion
functions jointly from a more generalized SDE

dz(t) = a(z(t)) dt + b(x(t)) AW (t). (14)
In this case, we proceed to form state-space models for both
a and b and the inference can be done using iterated non-
linear Kalman filters and smoothers. However, the inference
problem is now significantly harder, because the process b ap-
pears multiplicatively in the model and thus standard nonlin-
ear Kalman filter and smoother solutions can fail.

4. NUMERICAL EXPERIMENTS

4.1. Synthetic Toy Models
We first consider the Ginzburg-Landau double well SDE

de =3(x —2®)dt +dW, z0=1, (15)
and the modified Benes SDE
dz = tanh(z)dt + 0.01dW, 1z, =0, (16)

where W is a standard Wiener process. We generate sam-
ples from them on fixed time spans of lengths T" = 50 s and
T = 5 s for models (15) and (16), respectively. The range
and variation of At is found in Figure 2. The simulation is
done using Euler—-Maruyama with small enough sampling in-
terval At x 1le~* s. For calculating the root mean square error
(RMSE), we query predictions on fixed dense grids. We use
1000 independent Monte Carlo trials for computing the aver-
age RMSE and CPU time.

For the drift function estimation with GPs, we adopt
Mitern v = 5/2 kernel with ¢ = 1.2, 0 = 3, and ¢ = 1.5,
o = 0.3 for models (15) and (16), respectively. The equiva-
lent parameters for state-space model are calculated by (13)
and [6]. For comparison, we use Euler-Maruyama scheme
for full batch GPs, fully independent conditional (FIC) and
deterministic training conditional (DTC) sparse GPs [17],
and Kalman filter and RTS smoother (KF-RTS). We also test
1t6-1.5 (7) for higher order modeling with unscented Kalman
filter (UKF-RTS), IPLF-RTS, and IPLS.

For comparison of full batch GP, sparse GP, and KF-RTS,
we show their RMSE and CPU time in Table 1. The esti-
mation results of full GP and KF-RTS are exactly the same,
however, the time requirement of KF-RTS is significantly
lower. Sparse GPs have similar time performance with KF-
RTS, but they have trade-off on estimation accuracy, as they
use inducing-points for approximating the solution. The same
conclusion is also found in Figure 2.

Demonstration of drift estimation from one Monte Carlo
run is shown in Figure 1. The detailed RMSE of all methods
for two models is shown in Figure 2. It can be seen that



Fig. 1. Demonstration of drift function estimation (At =
0.1 s) for model (15) and (16), respectively. Shaded area
stands for 0.95 confidence interval of UKF-RTS.

RMSE CPU Time (s)

Kalman 1.42 0.245
GP 1.42 330.034
Sparse GP (FIC) 1.49 0.225
Sparse GP (DTC) 1.49 0.044

Table 1: RMSE and CPU time of drift estimation for model
(15) with Euler-Maruyam and At = 0.002 s.
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Fig. 2: RMSE of drift estimation for model (15) (left) and
(16) (right) as function of At.

the methods IPLF, IPLS, and UKF-RTS using non-linear It6-
1.5 outperform the methods that use the Euler—Maruyama
scheme and GPs, especially with larger A¢t. IPLF and
IPLS perform almost identically to UKF-RTS, while they
are slightly better for model (16). However, it is also worth
noticing that by decreasing At, the RMSE for double well
model (15) is not improved.

4.2. Real-Data Applications to Sunspot Activity and Elec-
tromyography (EMG)

For demonstration of drift function estimation on real-world
data, we use Monthly sunspot activity dataset by WDC-
SILSO, Royal Observatory of Belgium, Brussels, and Elec-
trocardiogram (ECG) dataset by Aalto university and Helsinki
University Central Hospital [24]. We adopt the same estima-
tion methods and Maitern kernel as done in previous toy
models with parameters £ = 10,0 = 1.2,and £ = 0.1, 0 = 2
for sunspot data and EMG data, respectively.

The drift estimation result for sunspot data is shown in
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Fig. 3: Drift estimation results (right column) for sunspot (top
left) and EMG (bottom left) data. Shaded area stands for
0.95 confidence interval of IPLF-RTS. UKF-RTS and IPLS
are not shown as their results are visually indistinguishable
from IPLE.

Figure 3. We notice that the GP regression, or equivalently,
KF-RTS, with Euler—Maruyama fails to give sensible function
estimation, as the result behaves almost as zero-mean random
walk. However, the estimation results from IPLF and other
methods with It6-1.5 scheme seem reasonable, because the
drift function should have a linear plus bias form [2].

The EMG data is manually extracted from the original
ECG dataset by expert. The EMG signal used here contains
77101 sample points and therefore the full batch GP regres-
sion fails due to memory limitation, while KF-RTS still works
with moderate computational effort. By observing the EMG
signal on Figure 3, we find it has significant changes when
the magnitude reaches around —0.1 mV and 0.1 mV due to
human body motion. This seems to manifest in the drift func-
tion estimation, which has peak values around —0.1 mV and
0.1 mV, correspondingly.

5. CONCLUSION

In this paper, we presented a novel state-space Gaussian pro-
cess regression framework for estimation of unknown drift
functions of SDEs. The problem is formulated as a filtering
and smoothing problem by transforming the GP into state-
space form, such that the computational complexity is linear
with respect to the number of measurements. Together with
data sorting procedure, the overall averaged complexity of the
method is O(N log N). We also used an Ito—Taylor expan-
sion for accurate modeling of the unknown drift SDE func-
tions. The estimation performance of the proposed method is
shown to be in line with the state-of-the-art by using synthetic
and real data experiments.
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