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Recursive Noise Adaptive Kalman Filtering by sampling methods (for a review of VB methods, seeg,

Variational Bayesian Approximations [16]-[18]). These methods assume a simpler, analytically
tractable form for the posterior. Two main approaches are

Simo Sarkka, Member, IEEEand Aapo Nummenmaa  €ither to derive a factored free form distribution (for misde
in the conjugate-exponential class), or to assume a fixed-

) ) ) o o form posterior distributiond.g, a multivariate Gaussian, with

Abst_ract—Thls artlclg 'con5|ders_ the appllcr_:\tlon of varlatlona! possibly a suitable parametrization of the model).

Bayesian methods to joint recursive estimation of the dynamic . . .

state and the time-varying measurement noise parameters in SMidl and Quinn [19] present a theoretical framework
linear state space models. The proposed adaptive Kalman filtering for VB-approximations, with special emphasis on recursive
method is based on forming a separable variational approxi- Bayesian inference and signal processing applicationsaidéte
mation ttgrstgi ggg; Fr?]ztesrtfr feiSthig.O”T%fesrfsfﬁ i sr;dreréﬂirsgv to the present work, VB-approximations of AR-models with
arame i : - - -
glgorithm, where on each steF;)) thg state)ils estimated with Kalman unknown variances a.re also conSIFiered, b.Ut gen'eral linear
filter and the sufficient statistics of the noise variances are State space models with unknown time-varying variances are
estimated with a fixed-point iteration. The performance of the not. A general variational version of the Kalman smoother
algorithm is demonstrated with simulated data. has been developed in [20] utilizing the conjugate-exptakn

Index Terms— Kalman filtering, Bayesian filtering, Variational ~ framework, but with stationary noise. Time varying varianc
Bayesian methods, adaptive filtering, noise adaptive filtering, models have been addressed in [21] by using the fixed form
adaptive Kalman filtering approach.

Our proposed method approximates the joint posterior dis-
tribution of the state and the noise variances by a factdrize
free form distribution. This approximation is formed on leac

The Kalman filter (KF) [1] considers estimation of the time step separately, and the result is a recursive algoith
dynamic state from noisy measurements in the class of estiighere on each step the sufficient statistics of the statefsnd t
tion problems where the dynamic and measurement procesg§ige variances are estimated with a fixed-point iteratioa o
can be approximated by linear Gaussian state space modgl§man filter. We also propose a heuristic dynamical model
The extended Kalman filteEKF) and theunscented Kalman for the variances, which can be used for modeling the time

filter (UKF) extend this method to non-linear dynamic anglehavior of the noise, still retaining the functional forrintioe
measurement models by forming a Gaussian approximationgighroximate posterior distribution.

the posterior state distribution [2]-[5]. A serious lintita in
these filters is that they assume complatpriori knowledge
of the measurement and dynamic model parameters, including Il. MAIN RESULTS
the noise statistics. The exact knowledge of the parametess proplem formulation
and especially, the noise statistics is not in many pracsita . . . .
uations a plausible assumption. Examples of such apyiitsti The discrete-time linear state space model considered here
are low cost integrated GPS/INS positioning systems ani fal¥
tolerant systems (see,g, [6], [7] and references therein). zr = Ap Th_1 + gk

The classical waysee,e.g, [8], [9]) of solving the problem _ @)

. . S Y = Hyxp + g,

of uncertain parameters is to uselaptive filterswhere the
model parameters or the noise statistics are estimateth@&gewhere ¢;, ~ N(0, Q) is the Gaussian process noisg, ~
with the dynamic state. The classical noise adaptive filteri N(0, ;) is the measurement noise with diagonal covariance
approaches can be divided into Bayesian, maximum likeliz;, and the initial state has a Gaussian prior distributigri-
hood, correlation and covariance matching methods T8  N(m,, P,). The measuremeny, is ad-dimensional vector and
Bayesian approacls the most general of these and the othehe statex;, is an n-dimensional vector. Time is indexed by
approaches can often be interpreted as approximationseto thand the matricesi;,, Hy,, Qx, as well as the parameters of
Bayesian approach. Examples of Bayesian approaches ® néig initial state (prior) distributiomn,, P, are assumed to be
adaptive filtering are state augmentation based methods [Ihown.
[11], multiple model methods such as timeracting multiple  Now, departing from the case of standard Kalman filter,
models(IMM) algorithm [3], [9] and particle methods [12]- we assume that the observation noise variance parameters
[15]. 0% = 1,...,d, are stochastic with independent dynamic

Variational Bayesian (VB) methodsave been developedmodels. We denote the diagonal covariance matrix comprisin
for a wide range of models to perform approximate posteriof these variances by, = diagio? ,,...,07 ;). The construc-
inference at low computational cost in comparison with thgon of a suitable dynamical model of the observation noise

. . , variances will be discussed in Section (II-C), and at thégst
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The goal of Bayesian optimal filtering of the above model is tdiscuss possibilities for such dynamics later on). Thetjoin
compute the posterior distribution(x, X | y1.1). Formally, prediction distribution is thus
the well-known recursive solution to this filtering problem

consists of the following steps [2]: (T, Xk | Y1:6—1) = p(@k | y1:6—1) Pk | Y1:86—-1)
« Initialization: The recursion starts from the prior distri- d
bution p(zg, X0). = N(z [m,,, P) H Inv-Gammaa,%yi | Q. i ﬂk_z)
« Prediction The predictive distribution of the statey =1

and measurement noise covariaricg is given by the

Chapman-Kolmogorov equation: Now, in the posterior update step, the state and observation

noise variance parameters will be coupled through the like-

p(Tr, Xk | Y1k1) = /p(xk|xk71)p(zk | 5-1) lihood p(yx | xx, k), and the exact posterior will not be of
(3) tractable form.
X P(Th—1, X1 | Y1:6—1) dzg—1 dXg 1. In order to make the computations tractable we will now

Update Given the next measurement, the predictive form a variational approximation to the posterior disttibno.
s Lpaate . Dk, the Prediciive -\ o follow the standard VB-approach (segg, [16]-[19]) and
distribution above is updated to a posterior distribution : e
) . search for a free form factored approximate distribution fo

by the Bayes’ rule:

p(xk, Xk | y1.x) as follows:

Tg, 2 k) X T, 2 Tr, 2k |y1e—1). (4

P(wr, X | yrk) o< p(yr | or, Xp) p(@r, Xk | y1e—1). (4) D, S [y1) ~ Qo) Qo(Se).

The integrations involved in the general solution are Ugual

not analytically tractable. In the following, we solve thgose The VB-approximation can now be formed by minimizing
recursion effectively by using a VB approximation for théhe the Kullback-Leibler (KL) divergence [23] between the
posterior update, accompanied by suitable (heuristichohios separable approximation and the true posterior:

for the observation noise variances.

KL[Qz(7k) @ (k) || (ks Bk | y1:10)]

- — Qa(zr) Qx(Xk)
B. Variational approximation /Qm(xk) Qs (Xx)log ( SNSRI > dxy dXy.
Assume that we can approximate the conditional distriloutio
for z;_; and X;_; given the measurementg, ..., yr_1
as a product of Gaussian and independent Inverse-Gamdsing the methods from calculus of variations (see, [24])
distributiong as follows: for minimizing the KL-divergence with respect to the prob-
ability densitiesQ..(z;) and Q= (Xx) in turn, while keeping
P(@r-1, X1 [Yre—1) = N(@x—1 [ mi—1, Pe-1) the other fixed yields:

d
X H Inv-Gammdo;_; ; | ak—1,i, Br—1,)-

=1 Q(xr) o< exp (/ log p(yk, Ty Xk | Y1:6—1) @x(Zk) dEk)

We have chosen this approximation, because the Inverse- '

Gamma distribution is the conjugate prior distribution foe Qx(Xx) oc exp (/ log p(yk: i, i [ Y1:-1) Qu (k) dx’“) :
variance of a Gaussian distribution. For this reason, uaimg

Inverse-Gamma model for variances of Gaussian models is

common in Bayesian analysis [22]. And for the same reasorhis cannot be solved directly, as the above equations are

the Inverse-Gamma distribution turns out to be the naturgupled. However, computing the expectation in the first
approximating distribution in the VB-approach consideregquation gives the following:

here.
Because the dynamics of the state and observation noise 1 - $) 45
variances are assumed to be independent, the factored form g P(Yk, Tk, X | y1in—1) @ (Ex) dZp

will remain in the prediction step, as can be easily seen from 1 e 5)
the Equation (3). The linear dynamics will result in a Gaassi = _g(yk — Hya)" (23, )= (yk — Hi k)
distribution for predictedr;,, with parametersn, , P_ given 1 T e — _

by the standard KF prediction equation. - 5(”% —my)" (Py) (we —my) +C,

Let us assume that the dynamical models for the variance
parameterg (o2, |o2_, ;) are of such form that the predic-where (-)s = [(-) Qs(Xx)dX, denotes the expected value
tion step will always result in an Inverse-Gamma predictesiith respect to the approximating distributiaps; (%) and
distribution for eachy,ii, with parametersy, ;, 5, ; (we will denotes terms independent of. As a function ofxy,
this is a quadratic implying thaD, (xx) is a Gaussian, mean
Un this article, we use the same parametrization of Gamma andsiewe @Nd COvariance of which can be found with standard matrix
Gamma distributions as in [22]. manipulations.
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Similarly, the second expectation can be computed as ftNote that the valug = 1 corresponds to stationary variances
lows: and lower values increase their assumed time-fluctuatins.
strong practical motivation for this specific heuristic et
/Ing(yk7xk;Ek | y1:6-1) Qu (1) g stability of the VB scheme: it ensures that the algorithm
d starts from the same posterior (parameter values) wherast w
_ 3 N n(e? ) — Bri terminated at the previous time point and thus if the paramet
=-> (5 +tawi )R - (6) ;
2 ’ Ok already have the correct values, they remain unaffectesl (se

=1

1 the fixed point iteration in Algorithm 1).

1
-3 > UT<(yk — Hyap)})e + Ca,
ki
o D. The Adaptive Filtering Algorithm
where (), = [(-) Qz(xx) dxy. From the equation it can be
seen that)s (X) is a product of Inverse-Gamma distributions-
By evaluating the expectations in Equations (5) and (6), and

matching the parameters of the distributions on left anttrig

o Predict Compute the parameters of the predicted distri-
bution as follows:

hand sides gives the following densities: my = Apmg_1
Qu (k) = N(zk | Mk, Pr) P = Ap Py AL + Qs
d a];Z:plak—l,'H 7;:17...,d
_ 2 ’
Qx(Zk) = H Inv-Gammaor, ; | a,is Br,i) Br.i = Pi Be—1,; i=1,...,d

=1
: 0 — 0 _
where the parametersy,, Py, ax.;, Bx.; are the solution to the| « Update First setmy) =my, B” = P, o =1/2+

following coupled set of equations: i and ﬂ,ﬁ?i) = B fori =1,...,d. Then iterate th
following a few, sayN, steps:

%

my =my + Py HE (Hp Py HiY + 35) " (y — Himy,) o .

P, = P, — P, HF (H,P; HF + )" 'H, P, (Ek ) =diad(By /o1y Bral/a)
n+1 —

mk =

api =1/2+ a1 My

1
Bri = Pr—1,i + 3 [(yx — Hymy,)? + (Hy, P HE )i

+ Py HY(Ho Py HE + 50) 7 gy, — Hymy,)
(n+1) _ p—

@) P =Py

— Py HL(Hy Py HE + S0))  H Py

wherei =1,...,d and ) 5
. (nt1) _ p— L _ (n+1)
Y =diagBri/ak1,-- - Brd/0h.d)- hi = Pt 2 (yk Hyemy, )1
1 n ,
In this manner, we have completed one prediction-update t3 (Hk P;E = Hsz)”7 i=1,....d,

cycle ending up with an approximate posterior distribution ™) ™) ™)
of the same functional form as the one we began with. This and set3y; = 3, ;", mx =my *, Py = B .
same procedure can now be applied to the next measuremgat - 1 The Variational Bayesian Adaptive Kalman
and the measurement after that, which results in a recursj ;
o . _ itter (VB-AKF) algorithm

type of filtering algorithm. However, in order to complete th
algorithm description we will construct a suitable dynamic
model for the noise variances in the next section.

The adaptive filtering algorithm is presented as Algorithm
1. The algorithm should be started from a prior of the form

d

C. Dynamics of observation noise variances p(x0,%0) = N(zo | mo, Po) H Inv-Gammaag’i | 0.6, B0.4),

It is not straightforward to choose a dynamical model i=1
p(Zr | Xk—1) such that the Chapman-Kolmogorov equatioand the approximation formed by the algorithm on stejs
(3) for the observation noise variances would yield Inverséhen
Gamma distributions as their predicted distributions. dligu
the dynamical model of the noise variances is not known in p(ar; B [ yux)
detail, and hence we propose a heuristic dynamics for the
variances, which simply “spreads” their previous appraatien ~ N(z [ my, Py) H Inv-Gammdoy ; | i, Br.q)-
posteriors. We choose to keep the expected measurement =1
noiseprecisiong(inverse variances) constant, and increase thdihe prediction step of the algorithm consists of the stashdar
variances by a factor gf~!, p € (0,1]. This is obtained by KF prediction step and the heuristic prediction presented i

d

the following, fori =1,....d: Equations (8). The update step is simply a fixed point iterati
B algorithm for the Equations (7). Note that the degrees of
Qi = Pi k-1, ©) freedom parameters of the Inverse-Gamma distributions do

Bri = Pi Br—1,i- not change in the fixed point iteration. Also, the update of
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Q. (xy) is the standard KF update step with the known noise : : : : : : :
covarianceX.;. This is used to find a distribution for the 2} —
noise variances, which would give the best separable match ol ]
to the (intractable) joint posterior of state and obseorati
noise variances. The KF update is then performed again
with the obtained new expected noise covariance. The fixed-
point algorithm is in fact a type of natural gradient method,
which can be shown to have asymptotic optimal convergence

signal

-8}

properties [25]. -1or
In experiments we have noticed that the fixed point iteration -2
tends to converge very fast and most of the time only few, say 14t
2 or 3, iterations are enough in practice. By ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 350 400

time

I1l. | LLUSTRATIVE EXAMPLE
A. Stochastic Resonator Model Fig. 1. Simulated noisy resonator model. Tg®und truthis the actual

. . . . ... simulated position and theasurementare the noisy measurements obtained
In this simulation the phenomenon is a randomly dnftmﬁom it Oncpe per 1/10 seconds. Y

stochastic resonator, which is measured at time intervals o
At = 1/10 seconds. The dynamic model for the resonator

with angular velocityw can be written in form Note that none of the dynamic models is exactly matched

T1 i1 1 0 0 T1k to the true simulated variance dynamics. Instead, the raodel
$27k-+1 — [0 coswAt) sin(w At) x2’k are selected to represent sufficiently smooth changes,hwhic
iL’37k+1 0 —w sin(wAt) COS(:’J At) ;1:37;@ approximate the true dynamics of the variance.
W1,k
+ | wark |, 1.4 VB-AKF o?(t) |
W3,k IMM a?(t)
(9) 1.2 true o*(t)
where wy = (wy1 wio wi3)? is a white Gaussian noise 1 t W'
sequence with a known covarian@e The measurement model o I ,

variance

at time stepk is

0.6
Yk = Tk,1 + Tk,2 + Vg,

0.4

wherewv, is a Gaussian random variable with unknown time L M I '; P
varying varianceai. In the simulation, angular velocity = 0.2 “lw"' Ll " MAAIPL il T
0.05 was used. The initial state was assumed to be known
with variancel in each component, that isq ; ~ N(0, 1) for % S0 100 150 200 250 300 350 400
k = 1,2,3. Because no prior information was available on time
the measurement noise variance, a rather diffuse pgjor _ . . .
Fig. 2. Results of tracking the variance parameter of noispmator by
|nV-Gamel, 1) was used. VB-AKF and IMM.

The simulated data is shown in the Figure 1. In the simu-
lation the measurement noise first had the variah@e(see The result of variance estimation, when VB-AKF and IMM
Figure 2). Around time = 100 the variance quickly increasedmethods were applied to the simulated data is shown in the
to 1 and then around = 200 it again quickly decreased backFigure 2. In the figure, the actual variance and the estimated
to the value0.2. variance (posterior means) of VB-AKF and IMM estimates
The following methods were tested: are shown. It can be seen that both the estimates follow the
« Variational Bayesian adaptive Kalman filter (VB-AKF)true variance trajectory quite well. IMM does seem to follow
with the variance decreasing factpr= 1 — exp(—4). the trajectory a bit better than VB-AKF. But the performance
The number of fixed point iterations per time step wasf IMM comes with penalty of CPU time, because the CPU
N =2. time needed for IMM was at least 100 times the CPU time of
« Interacting multiple models (IMM)3], [9], where a VB-AKF.
separate mode was used for each variance (evel . 1.2 The root mean squared errors (RMSE) of VB-AKF and
in steps 00.01 (total of 111 models). The mode transitionMM are both lower than of any standard Kalman filters
probabilities were chosen such that the probability afithout the noise adaptivity. This can be seen from the Fgur
switching from modei to j was proportional top;; = 3 where the RMSE results of Kalman filters with noise
exp(—A Atli — j|) with A = 5. variance0.1,...,1.2 are shown together with the errors of
« Kalman filter (KF) [1] for each noise leveD.1...1.2 VB-AKF and IMM. None of the Kalman filters has as low
separately, in steps @f01. RMSE error as the VB-AKF or IMM. The CPU time of single
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KF RMSE
VB-AKF RMSE
= = = |[MM RMSE
1.16 |
1155
o]
2 [1]
115}
[2]
1145
——————————————— [3]
‘ ‘ ‘ ‘ ‘ ‘ [4]
0 0.2 0.4 0.6 0.8 1 1.2 1.4
Kalman filter
[5]
Fig. 3. RMSE errors of Kalman filters with different noise \aates, and
the RMSE errors of VB-AKF and IMM. It can be seen that both VBA
and IMM give lower RMSE errors than any of the standard Kalmbter§. (6]
[71

KF was approximately half of the CPU time of VB-AKF.

As can be seem from the RMSE in Figure 3 and variancFS]
trajectory in Figure 2, the IMM algorithm performs a bit teatt
than VB-AKF. This is natural, because IMM forms a grid [9]
approximation to the variance distribution and forms Geuss
state distributions conditionally to each of these gridreal In
the limit of infinite number of grid points the estimate beasm
exact and thus it is likely to be good approximation with g4
sufficiently large number of grid points — but with cost of12]
high CPU time. The CPU time needed by IMM also grows
exponentially in the number of unknown variances and thi
IMM can practically be applied only to models with very low
dimensional measurements. [14]

[10]

IV. DIsScUsSION
[15]

Although, the VB-AKF method presented in this article is a
Bayesian method for noise identification, the algorithm mu 16
resembles the covariance matching methods presentedrin, fo
example, [8], [10]. This is because the algorithm essdntial

estimates noise parameters such that the parameters bec@ﬂeg'ﬁ

consistent with the observed residual, which is also thésbas
of covariance matching methods. [18]
Because the algorithm presented in this article contains
explicit Kalman filter prediction and update steps as pafts pgj
the algorithm, the extension to non-linear filtering probe
can be done by replacing them with, for example, the corré?!
sponding extended Kalman filter (EKF) or unscented Kalmagu
filter (UKF) equations [2]-[5]. The update equations of the
parameters3;, ; can also be easily approximated with EKHA??]

and UKF type of approximations. [23]

[24]
V. CONCLUSION
In this article, we have presented a new adaptive Kalmz[azr?]
filtering algorithm, which is based on recursively forming
separable approximations to the joint distribution of estat
and noise parameters by variational Bayesian methods. The
performance of the algorithm has been demonstrated in a
simulated application.
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