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Recursive Noise Adaptive Kalman Filtering by
Variational Bayesian Approximations

Simo S̈arkkä, Member, IEEEand Aapo Nummenmaa

Abstract— This article considers the application of variational
Bayesian methods to joint recursive estimation of the dynamic
state and the time-varying measurement noise parameters in
linear state space models. The proposed adaptive Kalman filtering
method is based on forming a separable variational approxi-
mation to the joint posterior distribution of states and noise
parameters on each time step separately. The result is a recursive
algorithm, where on each step the state is estimated with Kalman
filter and the sufficient statistics of the noise variances are
estimated with a fixed-point iteration. The performance of the
algorithm is demonstrated with simulated data.

Index Terms— Kalman filtering, Bayesian filtering, Variational
Bayesian methods, adaptive filtering, noise adaptive filtering,
adaptive Kalman filtering

I. I NTRODUCTION

The Kalman filter (KF) [1] considers estimation of the
dynamic state from noisy measurements in the class of estima-
tion problems where the dynamic and measurement processes
can be approximated by linear Gaussian state space models.
The extended Kalman filter(EKF) and theunscented Kalman
filter (UKF) extend this method to non-linear dynamic and
measurement models by forming a Gaussian approximation to
the posterior state distribution [2]–[5]. A serious limitation in
these filters is that they assume completea priori knowledge
of the measurement and dynamic model parameters, including
the noise statistics. The exact knowledge of the parameters,
and especially, the noise statistics is not in many practical sit-
uations a plausible assumption. Examples of such applications
are low cost integrated GPS/INS positioning systems and fault
tolerant systems (see,e.g., [6], [7] and references therein).

The classical way(see,e.g., [8], [9]) of solving the problem
of uncertain parameters is to useadaptive filterswhere the
model parameters or the noise statistics are estimated together
with the dynamic state. The classical noise adaptive filtering
approaches can be divided into Bayesian, maximum likeli-
hood, correlation and covariance matching methods [8].The
Bayesian approachis the most general of these and the other
approaches can often be interpreted as approximations to the
Bayesian approach. Examples of Bayesian approaches to noise
adaptive filtering are state augmentation based methods [10],
[11], multiple model methods such as theinteracting multiple
models(IMM) algorithm [3], [9] and particle methods [12]–
[15].

Variational Bayesian (VB) methodshave been developed
for a wide range of models to perform approximate posterior
inference at low computational cost in comparison with the
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sampling methods (for a review of VB methods, see,e.g.,
[16]–[18]). These methods assume a simpler, analytically
tractable form for the posterior. Two main approaches are
either to derive a factored free form distribution (for models
in the conjugate-exponential class), or to assume a fixed-
form posterior distribution (e.g., a multivariate Gaussian, with
possibly a suitable parametrization of the model).

Smidl and Quinn [19] present a theoretical framework
for VB-approximations, with special emphasis on recursive
Bayesian inference and signal processing applications. Related
to the present work, VB-approximations of AR-models with
unknown variances are also considered, but general linear
state space models with unknown time-varying variances are
not. A general variational version of the Kalman smoother
has been developed in [20] utilizing the conjugate-exponential
framework, but with stationary noise. Time varying variance
models have been addressed in [21] by using the fixed form
approach.

Our proposed method approximates the joint posterior dis-
tribution of the state and the noise variances by a factorized
free form distribution. This approximation is formed on each
time step separately, and the result is a recursive algorithm,
where on each step the sufficient statistics of the state and the
noise variances are estimated with a fixed-point iteration of a
Kalman filter. We also propose a heuristic dynamical model
for the variances, which can be used for modeling the time
behavior of the noise, still retaining the functional form of the
approximate posterior distribution.

II. M AIN RESULTS

A. Problem formulation

The discrete-time linear state space model considered here
is

xk = Ak xk−1 + qk

yk = Hk xk + rk,
(1)

where qk ∼ N(0, Qk) is the Gaussian process noise,rk ∼
N(0,Σk) is the measurement noise with diagonal covariance
Σk, and the initial state has a Gaussian prior distributionx0 ∼
N(m0, P0). The measurementyk is ad-dimensional vector and
the statexk is an n-dimensional vector. Time is indexed by
k and the matricesAk, Hk, Qk, as well as the parameters of
the initial state (prior) distributionm0, P0 are assumed to be
known.

Now, departing from the case of standard Kalman filter,
we assume that the observation noise variance parameters
σ2

k,i, i = 1, . . . , d, are stochastic with independent dynamic
models. We denote the diagonal covariance matrix comprising
of these variances byΣk = diag(σ2

k,1, ..., σ
2
k,d). The construc-

tion of a suitable dynamical model of the observation noise
variances will be discussed in Section (II-C), and at this stage
we denote it generically byp(Σk |Σk−1). We assume that the
dynamic models of the states and the variance parameters are
independent:

p(xk,Σk |xk−1,Σk−1) = p(xk |xk−1) p(Σk |Σk−1). (2)
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The goal of Bayesian optimal filtering of the above model is to
compute the posterior distributionp(xk,Σk | y1:k). Formally,
the well-known recursive solution to this filtering problem
consists of the following steps [2]:

• Initialization: The recursion starts from the prior distri-
bution p(x0,Σ0).

• Prediction: The predictive distribution of the statexk

and measurement noise covarianceΣk is given by the
Chapman-Kolmogorov equation:

p(xk,Σk | y1:k−1) =

∫

p(xk |xk−1) p(Σk |Σk−1)

× p(xk−1,Σk−1 | y1:k−1) dxk−1 dΣk−1.

(3)

• Update: Given the next measurementyk, the predictive
distribution above is updated to a posterior distribution
by the Bayes’ rule:

p(xk,Σk | y1:k) ∝ p(yk |xk,Σk) p(xk,Σk | y1:k−1). (4)

The integrations involved in the general solution are usually
not analytically tractable. In the following, we solve the above
recursion effectively by using a VB approximation for the
posterior update, accompanied by suitable (heuristic) dynamics
for the observation noise variances.

B. Variational approximation

Assume that we can approximate the conditional distribution
for xk−1 and Σk−1 given the measurementsy1, . . . , yk−1

as a product of Gaussian and independent Inverse-Gamma
distributions1 as follows:

p(xk−1,Σk−1 | y1:k−1) = N(xk−1 |mk−1, Pk−1)

×

d
∏

i=1

Inv-Gamma(σ2
k−1,i |αk−1,i, βk−1,i).

We have chosen this approximation, because the Inverse-
Gamma distribution is the conjugate prior distribution forthe
variance of a Gaussian distribution. For this reason, usingan
Inverse-Gamma model for variances of Gaussian models is
common in Bayesian analysis [22]. And for the same reason,
the Inverse-Gamma distribution turns out to be the natural
approximating distribution in the VB-approach considered
here.

Because the dynamics of the state and observation noise
variances are assumed to be independent, the factored form
will remain in the prediction step, as can be easily seen from
the Equation (3). The linear dynamics will result in a Gaussian
distribution for predictedxk, with parametersm−

k , P−

k given
by the standard KF prediction equation.

Let us assume that the dynamical models for the variance
parametersp(σ2

k,i |σ
2
k−1,i) are of such form that the predic-

tion step will always result in an Inverse-Gamma predicted
distribution for eachσ2

k,i, with parametersα−

k,i, β
−

k,i (we will

1In this article, we use the same parametrization of Gamma and Inverse-
Gamma distributions as in [22].

discuss possibilities for such dynamics later on). The joint
prediction distribution is thus

p(xk,Σk | y1:k−1) = p(xk | y1:k−1) p(Σk | y1:k−1)

= N(xk |m
−

k , P−

k )

d
∏

i=1

Inv-Gamma(σ2
k,i |α

−

k,i, β
−

k,i).

Now, in the posterior update step, the state and observation
noise variance parameters will be coupled through the like-
lihood p(yk |xk,Σk), and the exact posterior will not be of
tractable form.

In order to make the computations tractable we will now
form a variational approximation to the posterior distribution.
We follow the standard VB-approach (see,e.g., [16]–[19]) and
search for a free form factored approximate distribution for
p(xk,Σk | y1:k) as follows:

p(xk,Σk | y1:k) ≈ Qx(xk)QΣ(Σk).

The VB-approximation can now be formed by minimizing
the the Kullback-Leibler (KL) divergence [23] between the
separable approximation and the true posterior:

KL [Qx(xk)QΣ(Σk) || p(xk,Σk | y1:k)]

=

∫

Qx(xk)QΣ(Σk) log

(

Qx(xk)QΣ(Σk)

p(xk,Σk | y1:k)

)

dxk dΣk.

Using the methods from calculus of variations (see,e.g., [24])
for minimizing the KL-divergence with respect to the prob-
ability densitiesQx(xk) and QΣ(Σk) in turn, while keeping
the other fixed yields:

Qx(xk) ∝ exp

(∫

log p(yk, xk,Σk | y1:k−1)QΣ(Σk) dΣk

)

QΣ(Σk) ∝ exp

(∫

log p(yk, xk,Σk | y1:k−1)Qx(xk) dxk

)

.

This cannot be solved directly, as the above equations are
coupled. However, computing the expectation in the first
equation gives the following:

∫

log p(yk, xk,Σk | y1:k−1)QΣ(Σk) dΣk

= −
1

2
(yk − Hk xk)T 〈Σ−1

k 〉Σ(yk − Hk xk)

−
1

2
(xk − m−

k )T
(

P−

k

)

−1
(xk − m−

k ) + C1,

(5)

where 〈·〉Σ =
∫

(·)QΣ(Σk) dΣk denotes the expected value
with respect to the approximating distributionQΣ(Σk) and
C1 denotes terms independent ofxk. As a function ofxk,
this is a quadratic implying thatQx(xk) is a Gaussian, mean
and covariance of which can be found with standard matrix
manipulations.
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Similarly, the second expectation can be computed as fol-
lows:

∫

log p(yk, xk,Σk | y1:k−1)Qx(xk) dxk

= −

d
∑

i=1

(

3

2
+ αk,i

)

ln(σ2
k,i) −

d
∑

i=1

βk,i

σ2
k,i

−
1

2

∑ 1

σ2
k,i

〈(yk − Hk xk)2i 〉x + C2,

(6)

where 〈·〉x =
∫

(·)Qx(xk) dxk. From the equation it can be
seen thatQΣ(Σk) is a product of Inverse-Gamma distributions.
By evaluating the expectations in Equations (5) and (6), and
matching the parameters of the distributions on left and right
hand sides gives the following densities:

Qx(xk) = N(xk |mk, Pk)

QΣ(Σk) =

d
∏

i=1

Inv-Gamma(σ2
k,i |αk,i, βk,i),

where the parametersmk, Pk, αk,i, βk,i are the solution to the
following coupled set of equations:

mk = m−

k + P−

k HT
k (HkP−

k HT
k + Σ̂k)−1(yk − Hkm−

k )

Pk = P−

k − P−

k HT
k (HkP−

k HT
k + Σ̂k)−1HkP−

k

αk,i = 1/2 + αk−1,i

βk,i = βk−1,i +
1

2

[

(yk − Hk mk)2i + (Hk Pk HT
k )ii

]

,

(7)

wherei = 1, . . . , d and

Σ̂k = diag(βk,1/αk,1, . . . , βk,d/αk,d).

In this manner, we have completed one prediction-update
cycle ending up with an approximate posterior distribution
of the same functional form as the one we began with. This
same procedure can now be applied to the next measurement
and the measurement after that, which results in a recursive
type of filtering algorithm. However, in order to complete the
algorithm description we will construct a suitable dynamic
model for the noise variances in the next section.

C. Dynamics of observation noise variances

It is not straightforward to choose a dynamical model
p(Σk |Σk−1) such that the Chapman-Kolmogorov equation
(3) for the observation noise variances would yield Inverse-
Gamma distributions as their predicted distributions. Usually,
the dynamical model of the noise variances is not known in
detail, and hence we propose a heuristic dynamics for the
variances, which simply “spreads” their previous approximate
posteriors. We choose to keep the expected measurement
noiseprecisions(inverse variances) constant, and increase their
variances by a factor ofρ−1, ρ ∈ (0, 1]. This is obtained by
the following, for i = 1, . . . , d:

α−

k,i = ρi αk−1,i

β−

k,i = ρi βk−1,i.
(8)

Note that the valueρ = 1 corresponds to stationary variances
and lower values increase their assumed time-fluctuations.A
strong practical motivation for this specific heuristic is the
stability of the VB scheme: it ensures that the algorithm
starts from the same posterior (parameter values) where it was
terminated at the previous time point and thus if the parameters
already have the correct values, they remain unaffected (see
the fixed point iteration in Algorithm 1).

D. The Adaptive Filtering Algorithm

• Predict: Compute the parameters of the predicted distri-
bution as follows:

m−

k = Ak mk−1

P−

k = Ak Pk−1 AT
k + Qk

α−

k,i = ρi αk−1,i, i = 1, . . . , d

β−

k,i = ρi βk−1,i, i = 1, . . . , d

• Update: First setm(0)
k = m−

k , P
(0)
k = P−

k , αk,i = 1/2 +

α−

k,i, andβ
(0)
k,i = β−

k,i, for i = 1, . . . , d. Then iterate the
following a few, sayN , steps:

Σ̂
(n)
k = diag(β(n)

k,1/α
(n)
k,1 , . . . , β

(n)
k,d/α

(n)
k,d)

m
(n+1)
k = m−

k

+ P−

k HT
k (HkP−

k HT
k + Σ̂

(n)
k )−1(yk − Hkm−

k )

P
(n+1)
k = P−

k

− P−

k HT
k (HkP−

k HT
k + Σ̂

(n)
k )−1HkP−

k

β
(n+1)
k,i = β−

k,i +
1

2

(

yk − Hk m
(n+1)
k

)2

i

+
1

2

(

Hk P
(n+1)
k HT

k

)

ii
, i = 1, . . . , d,

and setβk,i = β
(N)
k,i , mk = m

(N)
k , Pk = P

(N)
k .

Algorithm 1: The Variational Bayesian Adaptive Kalman
Filter (VB-AKF) algorithm

The adaptive filtering algorithm is presented as Algorithm
1. The algorithm should be started from a prior of the form

p(x0,Σ0) = N(x0 |m0, P0)

d
∏

i=1

Inv-Gamma(σ2
0,i |α0,i, β0,i),

and the approximation formed by the algorithm on stepk is
then

p(xk,Σk | y1:k)

≈ N(xk |mk, Pk)

d
∏

i=1

Inv-Gamma(σ2
k,i |αk,i, βk,i).

The prediction step of the algorithm consists of the standard
KF prediction step and the heuristic prediction presented in
Equations (8). The update step is simply a fixed point iteration
algorithm for the Equations (7). Note that the degrees of
freedom parameters of the Inverse-Gamma distributions do
not change in the fixed point iteration. Also, the update of
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Qx(xk) is the standard KF update step with the known noise
covarianceΣ̂k. This is used to find a distribution for the
noise variances, which would give the best separable match
to the (intractable) joint posterior of state and observation
noise variances. The KF update is then performed again
with the obtained new expected noise covariance. The fixed-
point algorithm is in fact a type of natural gradient method,
which can be shown to have asymptotic optimal convergence
properties [25].

In experiments we have noticed that the fixed point iteration
tends to converge very fast and most of the time only few, say
2 or 3, iterations are enough in practice.

III. I LLUSTRATIVE EXAMPLE

A. Stochastic Resonator Model

In this simulation the phenomenon is a randomly drifting
stochastic resonator, which is measured at time intervals of
∆t = 1/10 seconds. The dynamic model for the resonator
with angular velocityω can be written in form





x1,k+1

x2,k+1

x3,k+1



 =





1 0 0

0 cos(ω ∆t) sin(ω ∆t)
ω

0 −ω sin(ω ∆t) cos(ω ∆t)









x1,k

x2,k

x3,k





+





w1,k

w2,k

w3,k



 ,

(9)

where wk = (wk,1 wk,2 wk,3)
T is a white Gaussian noise

sequence with a known covarianceQ. The measurement model
at time stepk is

yk = xk,1 + xk,2 + vk,

wherevk is a Gaussian random variable with unknown time
varying varianceσ2

k. In the simulation, angular velocityω =
0.05 was used. The initial state was assumed to be known
with variance1 in each component, that is,x0,i ∼ N(0, 1) for
k = 1, 2, 3. Because no prior information was available on
the measurement noise variance, a rather diffuse priorσ2

0 ∼
Inv-Gamma(1, 1) was used.

The simulated data is shown in the Figure 1. In the simu-
lation the measurement noise first had the variance0.2 (see
Figure 2). Around timet = 100 the variance quickly increased
to 1 and then aroundt = 200 it again quickly decreased back
to the value0.2.

The following methods were tested:
• Variational Bayesian adaptive Kalman filter (VB-AKF)

with the variance decreasing factorρ = 1 − exp(−4).
The number of fixed point iterations per time step was
N = 2.

• Interacting multiple models (IMM)[3], [9], where a
separate mode was used for each variance level0.1 . . . 1.2
in steps of0.01 (total of 111 models). The mode transition
probabilities were chosen such that the probability of
switching from modei to j was proportional topij =
exp(−λ ∆t|i − j|) with λ = 5.

• Kalman filter (KF) [1] for each noise level0.1 . . . 1.2
separately, in steps of0.01.
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Fig. 1. Simulated noisy resonator model. Theground truth is the actual
simulated position and themeasurementsare the noisy measurements obtained
from it once per 1/10 seconds.

Note that none of the dynamic models is exactly matched
to the true simulated variance dynamics. Instead, the models
are selected to represent sufficiently smooth changes, which
approximate the true dynamics of the variance.
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Fig. 2. Results of tracking the variance parameter of noisy resonator by
VB-AKF and IMM.

The result of variance estimation, when VB-AKF and IMM
methods were applied to the simulated data is shown in the
Figure 2. In the figure, the actual variance and the estimated
variance (posterior means) of VB-AKF and IMM estimates
are shown. It can be seen that both the estimates follow the
true variance trajectory quite well. IMM does seem to follow
the trajectory a bit better than VB-AKF. But the performance
of IMM comes with penalty of CPU time, because the CPU
time needed for IMM was at least 100 times the CPU time of
VB-AKF.

The root mean squared errors (RMSE) of VB-AKF and
IMM are both lower than of any standard Kalman filters
without the noise adaptivity. This can be seen from the Figure
3 where the RMSE results of Kalman filters with noise
variance0.1, . . . , 1.2 are shown together with the errors of
VB-AKF and IMM. None of the Kalman filters has as low
RMSE error as the VB-AKF or IMM. The CPU time of single
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Fig. 3. RMSE errors of Kalman filters with different noise variances, and
the RMSE errors of VB-AKF and IMM. It can be seen that both VB-AKF
and IMM give lower RMSE errors than any of the standard Kalman filters.

KF was approximately half of the CPU time of VB-AKF.
As can be seem from the RMSE in Figure 3 and variance

trajectory in Figure 2, the IMM algorithm performs a bit better
than VB-AKF. This is natural, because IMM forms a grid
approximation to the variance distribution and forms Gaussian
state distributions conditionally to each of these grid values. In
the limit of infinite number of grid points the estimate becomes
exact and thus it is likely to be good approximation with a
sufficiently large number of grid points – but with cost of
high CPU time. The CPU time needed by IMM also grows
exponentially in the number of unknown variances and thus
IMM can practically be applied only to models with very low
dimensional measurements.

IV. D ISCUSSION

Although, the VB-AKF method presented in this article is a
Bayesian method for noise identification, the algorithm much
resembles the covariance matching methods presented in, for
example, [8], [10]. This is because the algorithm essentially
estimates noise parameters such that the parameters become
consistent with the observed residual, which is also the basis
of covariance matching methods.

Because the algorithm presented in this article contains
explicit Kalman filter prediction and update steps as parts of
the algorithm, the extension to non-linear filtering problems
can be done by replacing them with, for example, the corre-
sponding extended Kalman filter (EKF) or unscented Kalman
filter (UKF) equations [2]–[5]. The update equations of the
parametersβk,i can also be easily approximated with EKF
and UKF type of approximations.

V. CONCLUSION

In this article, we have presented a new adaptive Kalman
filtering algorithm, which is based on recursively forming
separable approximations to the joint distribution of state
and noise parameters by variational Bayesian methods. The
performance of the algorithm has been demonstrated in a
simulated application.
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