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ABSTRACT

Stationary one-dimensional Gaussian process models in ma-
chine learning can be reformulated as state space equations.
This reduces the cubic computational complexity of the naive
full GP solution to linear with respect to the number of train-
ing data points. For infinitely differentiable covariance func-
tions the representation is an approximation. In this paper, we
study a class of covariance functions that can be represented
as a scale mixture of squared exponentials. We show how the
generalized Gauss–Laguerre quadrature rule can be employed
in a state space approximation in this class. The explicit form
of the rational quadratic covariance function approximation
is written out, and we demonstrate the results in a regression
and log-Gaussian Cox process study.

Index Terms— Gaussian process, state space model, ra-
tional quadratic covariance function, Gaussian quadrature

1. INTRODUCTION

One-dimensional (typically temporal) Gaussian processes
(GPs, [1]) are a central part of both signal processing and
statistical machine learning. In signal processing they are
typically represented as state space models [2–4], whereas
the kernel (covariance function) formalism is favored in ma-
chine learning. The link between these two representations is
interesting, because it enables the combination of the intuitive
model specification from machine learning with computation-
ally efficient signal processing methods. Most notably, this
reduces the computational cost of a naive GP regression solu-
tion fromO(N3) toO(N) in the number of data points N by
solving the state space inference problem by Kalman filtering
methods (see, e.g., [5]).

Certain classes of covariance functions lend themselves
well to the state space formulation. Most notably, the Matérn
class of covariance functions [1, 6] can be directly converted
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into state space form for half-integer values of the smooth-
ness parameter. This link is discussed in [2, 3], where also
a Taylor approximation scheme for the squared exponential
(also known as exponentiated quadratic, Gaussian, or RBF)
covariance function is given. Other rational function approx-
imations to the squared exponential are discussed in [7]. Fur-
thermore, a complementary approach for converting periodic
covariance functions to state space models was recently pro-
posed in [4]. The approach also extends to spatio-temporal
modeling (see, e.g., [3, 8, 9]) and non-Gaussian likelihoods
(see [10] and Sec. 4.2).

In this paper, we focus on a class of covariance functions
that can be represented as a scale mixture of squared exponen-
tial covariance functions (see [1, 11]). This class of covari-
ance functions is infinitely differentiable and is therefore not
well suited for the state space representation (an exact repre-
sentation would require an infinite number of state variables).
As will be shown, the scale mixture integral can, however,
be approximated by the Gauss–Laguerre quadrature rule [12],
and thus a state space approximation can be constructed as a
superposition of scaled and weighted state space models for
the squared exponential.

This paper is organized as follows. In Section 2 we briefly
cover the connection between the kernel and state space for-
malisms of Gaussian processes. In Section 3 we consider a
class of covariance functions that can be written as a scale
mixture of squared exponentials, and write down the explicit
approximation to the rational quadratic (RQ) covariance. We
also analyze the convergence and error of this approximation.
We present two example studies in Section 4, a simulated re-
gression example and a log-Gaussian Cox process model with
empirical data. Finally the results are discussed.

2. GAUSSIAN PROCESSES IN MACHINE LEARNING

Gaussian processes can be used as flexible priors in Bayesian
statistical machine learning. The model function f is assumed
to be a realization of a Gaussian random process prior

f(t) ∼ GP(0, k(t, t′)), (1)
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where the covariance function k(t, t′) encodes the prior as-
sumptions of the process into the model.

For stationary models, we introduce the following one-
argument notation: k(t, t, ) , k(t − t′). In this case, the co-
variance function is the inverse Fourier transform of the cor-
responding spectral density S(ω):

k(τ) =
1

2π

∫ ∞
−∞

S(ω) exp(−iωτ) dω. (2)

Instead of directly working with the kernel formalism of
the Gaussian process f(t), certain classes of one-dimensional
covariance functions allow to work with the mathematical
dual [3], where the Gaussian process is constructed as a so-
lution to an M th order linear stochastic differential equation
(SDE). The corresponding inference problem can be solved
with Kalman filtering type of methods [13], where the com-
putational complexity isO(M3N). If the number of observa-
tions N � M , as typically is the case in temporal modeling,
this formulation is very beneficial.

The state space model corresponding to the GP formula-
tion (1) can be given as

df(t)

dt
= Ff(t) + Lw(t),

f(tk) = Hf(tk),
(3)

where f(t) =
(
f1(t), f2(t), . . . , fM (t)

)T
holds the M

stochastic processes, and w(t) is a multi-dimensional white
noise process with spectral density Qc. The model is defined
by the feedback matrix F and the noise effect matrix L.

The continuous-time linear time-invariant model (3) can
be solved for discrete points. The initial state f0 ∼ N (0,P∞)
is defined by the stationary covariance P∞ that is the solution
to the corresponding Lyapunov equation:

dP∞
dt

= FP∞ + P∞FT + LQcL
T = 0. (4)

The solution to (3) can be written out in closed-form at the
specified time points, and it is given as

fk+1 = Akfk + qk, qk ∼ N (0,Qk), (5)

where f(tk) = fk, and the state transition and process noise
covariance matrices can be solved analytically (see, e.g., [3]):

Ak = Φ(∆tk), (6)

Qk =

∫ ∆tk

0

Φ(∆tk − τ)LQcL
TΦ(∆tk − τ)T dτ

= P∞ −AkP∞AT
k , (7)

where ∆tk = tk+1 − tk and Φ(τ) = exp(Fτ) is the ma-
trix exponential of the feedback matrix. In (7) we have used
the method by [14], which is not generally well known and

provides a very efficient way of solving the stationary SDE in
practice.

In the state space form, the spectral density S(ω) of f(t)
can be written using the SDE matrices as

S(ω) = H(F− iωI)−1LQcL
T
[
(F + iωI)−1

]T
HT. (8)

The covariance function can also be recovered by considering
the following forward and backward time models:

k(τ) =

{
HP∞Φ(τ)THT, if τ ≥ 0,

HΦ(−τ)P∞HT, if τ < 0.
(9)

The problem in exploiting the link between the two represen-
tations is to come up with the actual form of the model ma-
trices F,L,Qc,H, and P∞ corresponding to the particular
covariance function.

3. GAUSSIAN QUADRATURE APPROXIMATION
FOR SCALE MIXTURES OF COVARIANCES

We study a class of covariance functions (i.e. kernels) which
can be written as superpositions of squared exponential ker-
nels. We start of by defining how the squared exponential can
be written out, and then consider the scale mixture expansion
defining the class of smooth kernels. The scale mixture can
be approximated by the Gauss–Laguerre quadrature. Finally,
we use this technique to come up with a state space approxi-
mation for the rational quadratic covariance function.

3.1. A general class of scale mixture covariance functions

As is discussed in [1, 11], we can construct a general class
of stationary kernels by writing them as superpositions of
squared exponential covariance functions with a distribution
p(`) over the length-scales `. This gives rise to the following
scale mixture formulation

kSM(t) =

∫ ∞
0

p(`) kSE(t | `) d`, (10)

where kSE(t | `) denotes the squared exponential kernel (11)
with length-scale `. Covariance functions of this class in-
clude, for example, the rational quadratic and the Cauchy
covariance functions. The squared exponential can be recov-
ered by imposing a delta function on p(`).

We parametrize the squared exponential as in [1] such that

kSE(t) = σ2 exp

(
− t2

2 `2

)
, (11)

where `, σ2 > 0 are the characteristic length-scale and magni-
tude parameters. The corresponding stochastic process is in-
finitely many times mean square differentiable, and thus also
(10) corresponds to infinitely smooth processes.
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Fig. 1: Approximations to the rational quadratic covariance function with different shape parameters α. The degree of approxi-
mation was n = 6 (quadrature degree) andm = 6 (state space). The thick solid lines show the exact values and the dashed lines
denote the approximations for each α. The thin solid line shows the values for the squared exponential covariance function.

Hartikainen and Särkkä [2] have presented a state space
approximation for this covariance function by approximating
the corresponding rational power spectrum

SSE(ω) = σ2
√

2π ` exp

(
−`

2ω2

2 `2

)
, (12)

by a truncated Taylor expansion of 1/S(ω) around origin.
For details on what the actual state space model matrices
F,L,Qc, and H look like, see [2]. The state space approxi-
mation is not infinitely differentiable, but already a truncated
approximation by a six-dimensional state gives good empiri-
cal results (see, e.g., [7]).

3.2. The generalized Gauss–Laguerre quadrature

When applicable, solving the integral equation (10) gives
the corresponding covariance function (e.g., the rational
quadratic in Sec. 3.3). However, the scale mixture integral can
also be directly approximated in terms of the Gauss–Laguerre
quadrature rule (see, e.g., [12, 15]).

The generalized Gauss–Laguerre quadrature rule approx-
imates integrals of the following form:∫ ∞

0

xγe−xf(x) dx ≈
n∑
i=1

wi f(xi), (13)

where xγ exp(−x) is the weight function and f(x) the inte-
grand.

The quadrature rule is given by the abscissae xi and cor-
responding weights wi, i = 1, 2, . . . , n, where the abscissae
are given by the roots of the generalized Laguerre polynomial
Lγn(x) of degree n [12], and the weights are given as:

wi =
Γ(n+ γ + 1)xi

n! (n+ 1)2
[
Lγn+1(xi)

]2 , (14)

where Γ(·) is the gamma function.

3.3. The rational quadratic covariance function

The rational quadratic (RQ) covariance function (see, e.g., [1,
6]) is of the form:

kRQ(t) = σ2

(
1 +

t2

2α`2

)−α
, (15)

where σ2, `, α > 0. The shape parameter α defines the decay
of the tail, and includes the Cauchy covariance as a special
case at α = 1. As α→∞, the covariance function converges
to the squared exponential.

The RQ covariance function is stationary, and there exists
a corresponding spectral density. The spectral density can be
obtained by Fourier transforming the above expression for the
covariance. The spectral density expression is given by

SRQ(ω) = σ2
√
πα `

22−α

Γ(α)

×
(√

2α ` |ω|
)α− 1

2

Kα− 1
2

(√
2α ` |ω|

)
, (16)

where Kν(·) denotes the modified Bessel function of the sec-
ond kind.

The rational quadratic covariance bears a lot of resem-
blance to the Matérn family of covariance functions (see [1]).
The rational quadratic family complements the Matérn family
as a sort of spectral dual.

The rational quadratic covariance function can be seen as
a scale mixture of squared exponentials with different char-
acteristic length-scales. Following [1], we parametrize the
squared exponential in terms of inverse squared length-scales,
ξ = `−2

SE , and put a gamma distribution prior on ξ:

p(ξ | α, β) ∝ ξα−1 exp(−α ξ/β). (17)



The scale mixture form (10) now gives the integral represen-
tation:

kRQ(t) =

∫ ∞
0

p(ξ | α, β) kSE(t | ξ) dξ (18)

=
σ2

SE

Γ(α)

(
β

α

)−α
×
∫ ∞

0

ξα−1 exp

(
−α ξ
β

)
exp

(
−ξ t

2

2

)
dξ,

where we do a change of variables in order to match the
Gauss–Laguerre formulation in (13) such that

=
σ2

SE

Γ(α)

∫ ∞
0

xα−1 exp(−x) exp

(
−β x t

2

2α

)
dx

≈ σ2
SE

Γ(α)

n∑
i=1

wi exp

(
−β xi t

2

2α

)
. (19)

Now we may re-parametrize β−1 = `2RQ. The final approxi-
mation to the rational quadratic covariance function (parame-
terized in terms of σ2

RQ, `RQ, and α) is of the form:

kRQ(t) ≈
n∑
i=1

kSE(t | σ2
i , `i), (20)

where the squared exponentials are evaluated with magni-
tudes σ2

i = σ2
RQ wi/Γ(α) and length-scales `2i = `2RQα/xi.

The quadrature points and weights are given such that xi, i =
1, 2, . . . , n are the roots of the generalized Laguerre polyno-
mial Lα−1

n (x), and the weights wi are given as:

wi =
Γ(n+ α)xi

n! (n+ 1)2
[
Lα−1
n+1(xi)

]2 . (21)

Now in terms of state space models, this means that if we
are able to approximate the squared exponential covariance
function by a state space model, the rational quadratic can be
approximated as a sum of such models by suitably coupling
the magnitude and length-scale hyperparameters σ2

i and `i.
The corresponding state space model can now be formed

by a sum of state space models approximating the squared
exponential covariance function (see [7] for ways of form-
ing different approximations). Summing covariance functions
corresponds to stacking state space models such that the feed-
back matrix is a block-diagonal matrix of the distinct feed-
back matrices. Figure 1 shows the covariance function and
spectral density of the rational quadratic covariance for differ-
ent values of α. The thick solid lines correspond to the exact
values for given α, and the dashed lines are the values corre-
sponding to a state space approximation with m = 6 (state
dimension of the squared exponential using a Taylor expan-
sion) and n = 6 (quadrature approximation degree). The full
state dimension is thus M = nm. For α = 1, the approxi-
mation has trouble capturing the long tail, whereas for larger
values of alpha, the lines are practically indistinguishable.
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Fig. 2: The approximation error between the exact rational
quadratic covariance function and the quadrature approxima-
tion of it, with α = 1, 2, 4, 8, n = 6, 12, `RQ = 1, σ2

RQ = 1
(cf. Fig. 1a). The maximum is show by the point markers ( ).

3.4. Convergence and computational aspects

The quadrature form of the RQ covariance in Equation (20) is
an approximation that depends on the degree n of the quadra-
ture and on the hyperparameter values of α, `RQ, and σ2

RQ.

Lemma 3.1. Following the results by [16], the convergence
of the quadrature is secured for any integrable function satis-
fying the condition

|f(y)| ≤ ey

yγ+1+ρ
, for some ρ > 0, (22)

for all sufficiently large values of y. For a proof, see [16].

Theorem 3.2. Let knm(t) denote the approximation of
kRQ(t) with n quadrature points and an mth order state
space model, and let kn(t) denote an approximation with n
quadrature points and the exact SE covariance function. The
overall error,

|k(t)− knm(t)| = |k(t)− kn(t) + kn(t)− knm(t)|
≤ |k(t)− kn(t)|+ |kn(t)− knm(t)|, (23)

converges to zero as n,m→∞.

Proof. The integrand f(·) in Equation (19) may be written
as f(x) = exp(−β t2 x/(2α)), and the convergence criterion
from Lemma 3.1, |f(x)| ≤ ex x−α−ρ, is satisfied for any pos-
itive x and ρ. Thus the first part of (23) converges pointwise.
Because

∑n
i=1 σ

2
i = σ2

RQ, by Theorem 3.1 of [7] the approx-
imations of the SE covariance function converge uniformly,
and thus the second part converges pointwise.

As seen in Figure 1a, the approximation seems to diverge
from the true covariance curve as |t− t′| grows. This is, how-
ever, not the case. Figure 2 shows the absolute error between
the approximate covariance function from (20).



4. EXPERIMENTS

As a first example we compare the results given by the state
space approximation model against the naive full GP regres-
sion solution by using the rational quadratic covariance func-
tion, and we show that the results are practically equal. As
a more elaborate example we consider a log-Gaussian Cox
process model with a Poisson likelihood.

4.1. A simulated example study

In Gaussian process regression we want to predict an un-
known scalar output f(t∗) associated with a known input
t∗ ∈ R, given a set of training data D = {(tk, yk) | k =
1, 2, . . . , N}. The model functions f(t) are seen as realiza-
tions of a Gaussian process prior with observations corrupted
by Gaussian noise:

f(t) ∼ GP(0, k(t, t′)),

yk = f(tk) + εk,
(24)

where εk ∼ N (0, σ2
n). The solution to the GP regression

problem can be computed in closed-form [1] such that

E[f(t∗)] = kT
∗ (K + σ2

nI)−1y,

V[f(t∗)] = k(t∗, t∗)− kT
∗ (K + σ2

nI)−1k∗,
(25)

where the predictions are given for p(f(t∗) | t∗,D) =
N (E[f(t∗)],V[f(t∗)]). However, the direct solution to the
GP regression problem scales as O(N3) which is due to the
inversion of the N ×N matrix in (25).

Therefore, as the number of data points N becomes large,
using the state space methodology becomes appealing. This
is possible if the model in (24) can be written in the SDE
form as explained in Section 2. The inference problem can
then be solved by Kalman filtering and smoothing methods in
O(NM3) time complexity, where M is the full state dimen-
sionality.

We consider a small simulated data set of N = 32 data
points from a sinc function, where the measurements have
been corrupted by zero-mean Gaussian noise. We train both a
full GP model (24) and a state space model for this regres-
sion problem, and compare the results. We use a rational
quadratic covariance function with α = 1 and optimize the
hyperparameters σ2

n, σ2
RQ and `RQ with respect to marginal

likelihood (see, e.g., [1, 4] for details).
Figure 3 shows the state space inference outcome for the

GP regression problem with the rational quadratic covariance
function. The shaded region marks the 95% confidence in-
terval. The naive full GP solution corresponding to (25) is
shown by the dashed red lines, and they agree with the state
space approximation result. The degree of the approximations
were n = 6 and m = 6 leading to state dimension M = nm.
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Fig. 3: GP regression results for simulated data (shown by the
point markers). The state space mean and 95% confidence
interval estimates are shown by the solid blue line and the
grey patch. The corresponding full GP regression results is
shown by dashed red lines. The thin solid lines are random
draws from the state space posterior.

4.2. A temporal log-Gaussian Cox process

As a second example we consider a log-Gaussian Cox pro-
cess, which is an inhomogeneous Poisson point process
model with an unknown intensity function λ(t). The log-
intensity is modeled as a GP such that f(t) = log λ(t) (see,
e.g., [17]). We use the method proposed by Møller et al.
[17], where the data range is discretized into N intervals and
a locally constant intensity is assumed in each interval. The
model is thus a GP model with a Poisson likelihood:

f(t) ∼ GP(0, k(t, t′))

p(D | f) =

N∏
k=1

Poisson(yk | exp(f(tk))) ,
(26)

where tk, k = 1, 2, . . . , N , denotes the coordinate of the kth
interval and yk the number of incidents in the interval. As the
model is now non-Gaussian we have to resort to the Laplace
approximation (finding the mode by a Newton scheme and
forming a Gaussian approximation in the mode, see [1, 10])
for doing the updates inside the Kalman filter.

The data1 contain the dates of 191 coal mine explosions
that killed ten or more men in Britain between years 1851 and
1962, where the RQ assumptions of smoothness and long-
range correlations are justified. We use a grid discretization of
N = 1024 points, a RQ covariance function with α = 1, and
optimize the model hyperparameters with respect to marginal
likelihood. Figure 4 shows the estimated intensity curve for
the log-Gaussian Cox process with a shaded 90% confidence
region.

1The data set is available as a part of the GPSTUFF software package:
http://becs.aalto.fi/en/research/bayes/gpstuff/

http://becs.aalto.fi/en/research/bayes/gpstuff/
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Fig. 4: Coal mining accident data, with N = 1024 intervals
and 191 incidents. The bar shows the actual incidents, and the
modeling outcome for the intensity in the log-Gaussian Cox
process model with an approximate 90% confidence region is
shown in the figure above.

We argue that the state space approximation can be ben-
eficial in this type of modeling, as the interval can be dis-
cretized into a very dense grid without running into compu-
tational limitations. Dense grids are appealing in this type of
modeling, as it is known [18] that this approximation reaches
posterior consistency in the limit of widths of the intervals
going to zero.

5. CONCLUSION AND DISCUSSION

In this paper we have shown how certain types of covari-
ance functions (most notably the rational quadratic covari-
ance) that are constructed as scale mixtures of the squared
exponential covariance function can be approximated by a
Gaussian quadrature rule. In state space estimation, this en-
ables us to use existing methods for conversion of the squared
exponential covariance functions in approximating the ratio-
nal quadratic covariance function.

In Section 3.3, we have written down approximation to the
rational quadratic covariance function, and the convergence
of this approximation is analyzed. Furthermore, the results in
the experiments section showed that this state space approx-
imation is useful in practice both in GP regression (Sec. 4.1)
and GP modeling in a more general setting (Sec. 4.2).
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[8] Simo Särkkä and Jouni Hartikainen, “Infinite-dimensional
Kalman filtering approach to spatio-temporal Gaussian process
regression,” in Proceedings of the Fifteenth International Con-
ference on Artificial Intelligence and Statistics, 2012, vol. 22
of JMLR W&CP, pp. 993–1001.
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