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Abstract — We propose a new Rao-Blackwellized sequential
Monte Carlo method for tracking multiple targets in presence of
clutter and false alarm measurements. The advantage of the new
approach is that Rao-Blackwellization allows the estimation algo-
rithm to be partitioned into single target tracking and data associ-
ation sub-problems, where the single target tracking sub-problem
can be solved by Kalman filters or extended Kalman filters, and
the data association by sequential importance resampling. Be-
cause the sampled sub-space is finite, it is possible to use the opti-
mal importance distribution explicitly, which significantly reduces
the required number of Monte Carlo samples.
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1 Introduction

The problem of data association makes multiple target
tracking much harder task than single target tracking. In
multiple target tracking, the algorithm has to estimate
which targets produced the measurements, before it is able
to use the measurements in actual tracking. If the correct
data associations were known, the multiple target tracking
problem would reduce to tracking each of the single targets
separately.

In this article we propose a new algorithm which is based
on separating the multiple target tracking problem into two
parts - the estimation of the posterior distribution of the
data associations, and the estimation of the single target
tracking sub-problems conditional on the data associations.
This kind of separation is possible by first solving the joint
data association and state estimation problem by sequen-
tial Monte Carlo method [1] and then replacing the Monte
Carlo integration of the state variables with closed form
integration. This Rao-Blackwellization procedure [2] is
equivalent to solving the single target tracking problem con-
ditional on the data associations.

The Rao-Blackwellized Monte Carlo data association
(RBMCDA) algorithm is derived using Kalman filters [3]
as the single target tracking sub-estimators. It can be eas-
ily generalized to allow any single target tracking sub-
estimator such as the extended Kalman filter (EKF) [4],
the unscented Kalman filter (UKF) [5], or the interacting
multiple model (IMM) filter [6]. We demonstrate the per-
formance of the proposed algorithm in the presence of the
ghost phenomenon [7], which refers to the appearance of a
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ghost target in the virtual crossing of measurements from
two angular sensors. Bayesian interpretation [8] of this
is that the posterior distribution of target states is multi-
modal. Because the data associations are represented as
Monte Carlo samples, the multi-modal posterior distribu-
tions can be represented without problems.

1.1 Approaches to Multiple Target Tracking

Data association methods in multiple target tracking can be
divided into two main classes [7]. Unique-neighbor data
association methods, such as multiple hypothesis tracking
(MHT), associate each measurement to one of the pre-
viously established tracks. All-neighbors data associa-
tion methods, such as joint probabilistic data association
(JPDA), use all measurements for updating all the track es-
timates.

The idea of MHT [7-9] is to associate each measurement
to one of the existing tracks, or to form a new track from
the measurement. Because this association is not neces-
sarily unique, several hypotheses are continuously formed
and maintained. The MHT algorithm calculates the like-
lihoods of the measurements and the posterior probabili-
ties of the hypotheses, storing only the most probable hy-
potheses. To enhance the computational efficiency, heuris-
tic methods such as gating, hypothesis merging, clustering
and several other strategies can be employed. If some of the
target tracks do not get associated measurements for a long
period of time, they can be deleted.

JPDA [7,9] approximates the posterior distribution of the
targets as separate Gaussian distributions for each target. If
the number of targets is 7', then T" separate Gaussian dis-
tributions are maintained. The number of Gaussian distri-
butions is kept constant by integrating over the distribution
of data associations of the previous step. This results in al-
gorithm where each of the target estimates gets updated by
every measurement with weights that depend on the pre-
dicted probabilities of the associations. Gating is used for
limiting the number of measurements for each track. If the
predicted probabilities are too low for certain targets, those
targets are not updated at all. Clutter measurements can be
modeled similarly.

Sequential Monte Carlo (SMC) based multiple target
tracking methods [10-12] typically belong to the class



of unique-neighbor data association methods, as they are
based on representing the data association and state pos-
teriors as a discrete set of hypotheses. SMC methods can
be considered as generalizations of MHT. Instead of main-
taining N most probable data association hypotheses, the
joint tracking and data association problem is modeled as a
Bayesian estimation problem and the posterior distribution
is estimated with SMC methods. This particle filtering ap-
proach has the advantage that there are no restrictions for
the analytic form of model, although the required number
of particles for a given accuracy can be high.

The sequential Monte Carlo data association strategies
represented in [10-12] are based on pure particle represen-
tation of the joint posterior distribution of states and data as-
sociations. In this article we propose how the accuracy and
efficiency of SMC methods can be enhanced by closed form
marginalization of the state variables. Instead of the pure
particle representation this leads to a mixture of Gaussians
representation of the joint posterior distribution, which re-
duces variance and requires less particles for the same ac-
curacy.

2 Optimal Filtering

In this section we review briefly the basic methods of op-
timal filtering and introduce the notation used. The RBM-
CDA algorithm, which is based on the reviewed methods,
is described later in Sections 3 and 4.

Optimal filtering (see, e.g. [4, 6]), also called Bayesian
filtering considers state estimation models of the form

X ~ P(Xk | kal)

Yi ~ p(Yk | Xk), @

where x;, is the unknown hidden state, which is observable
only indirectly through the measurements yy.

According to the philosophy of optimal filtering, the pur-
pose of the optimal filter is to form an approximate rep-
resentation of the posterior distribution of the states. The
more accurate this representation is, the closer the algo-
rithm is to the optimal performance.

The equations for computing the posterior distributions
of the states sequentially in a recursive manner are called
the optimal filtering or Bayesian filtering equations. The
recursion starts from an initial distribution x ~ p(x) and
the successive posteriors can be computed from the equa-
tions

P(Xk | Yik—1) = /p(Xk | Xk—1) P(Xk—1 | Y1:h—1) dXp—1
P(Xk | y1k) X P(YE | Xk) P(XE | Y1:8-1)-

2.1 The Kalman Filter

The Kalman filter (KF) (see, e.g. [4, 6]), which originally
appeared in [3], considers the special case of the filtering
model (1), in which the dynamic and measurements models
are linear Gaussian

qr—1~ N(0,Qp-1)
rp ~ N(0,Ryg).

Xp = Ap_1Xp—1 + Qr—1
yi = Hpxp + 1

If the prior distribution is Gaussian, xo ~ N (myg, Py), then
the optimal filtering equations can be evaluated in closed
form and the resulting distributions are Gaussian
p(xk | y1:6-1) = N(xx | m; , P})
p(Xk | y1:6) = N(xx | mg, Py)
¥k | Yik—1) = N(yx | Hym,, Sk)-
In this article we use the following notation:

e KF,(-) denotes the Kalman filter prediction step, that
is, the calculation of p(xx | y1.6-1)-

e KF,(-) denotes the Kalman filter update step, that is,
the calculation of p(xx, | y1.x)-

e KFy,(-) the evaluation of marginalized measurement
likelihood p(y | y1:6-1)-

2.2 The Extended Kalman Filter

The extended Kalman filter (EKF) (see, e.g. [4,6]) is a non-
linear extension of the Kalman filter. The model is given

by

qr—1~ N(0,Qp_1)
ri ~ N(0,Ryg).

XE = a(Xk—th—l)

vi = h(xg,ry)

By linearization of the model, EKF generates Gaussian ap-
proximations of the predictive, posterior and marginal like-
lihood distributions

P(xXk | y1k—1) = N(xx | m, ,P,)
P(xXp | yik) = N(xi | my, Py)
P(Yk | y1k-1) = N(¥k | By, Sk)-

2.3 Sequential Importance Resampling

Sequential importance resampling (SIR) (see, e.g. [1, 13]),
is a generalization of the particle filtering framework for
the estimation of generic state space models of the form

xp, ~ p(Xp | Xk—1)
Vi~ p(yr | Xp).

The algorithm uses a weighted Monte Carlo representation
of the posterior state distribution. The set of particles is
updated and reweighted using a recursive version of impor-
tance sampling.

Additional resampling step is used for removing the par-
ticles with very low weights and duplicating the particles
with high weights. The variance introduced by the resam-
pling procedure can be reduced by a proper choice of the
resampling method [13].

The performance of the SIR algorithm is dependent on
the importance distribution 7 (), which is an approximation
of the posterior distribution of the states given the state on
the previous step. The optimal importance distribution is

T(Xp | Xp—1,¥1:6) = P(Xp | X1, Y1:8)-

This importance distribution is optimal in the sense that it
minimizes the variance of the importance weights.



The bootstrap filter is a variation of SIR, in which the
dynamic model p(xy, | xx—1) is used as the importance dis-
tribution. This makes the implementation of the algorithm
very easy, but due to the inefficient importance distribution
it may require very high number of Monte Carlo samples
for accurate estimation results.

2.4 Rao-Blackwellized Particle Filtering

The idea of Rao-Blackwellized particle filtering (see, e.g.
[1]) is that sometimes it is possible to evaluate a part of the
filtering equations analytically and the other part by Monte
Carlo sampling instead of computing everything by pure
sampling. According to the Rao-Blackwell theorem this
leads to estimators with less variance than what could be
obtained by pure Monte Carlo sampling [2]. An intuitive
way of thinking this is that marginalization replaces the fi-
nite Monte Carlo particle set representation with an infinite
closed form particle set, which is always more accurate than
any finite set.

3 Tracking Multiple Targetsin Clutter

The Rao-Blackwellized Monte Carlo data association
(RBMCDA) algorithm proposed here estimates data asso-
ciations with a SIR filter and the other parts with a Kalman
filter. This idea can be directly used in the multiple-targets-
in-clutter case, where the dynamic and measurement mod-
els of the targets are linear Gaussian, and the only non-
linearity is due to the uncertainty in the data associations.
If the measurement or dynamic model is non-linear, it is
possible to use approximate non-linear filters such as EKF,
UKF or IMM instead of the Kalman filter. Of course, in this
case the filtering is no longer theoretically optimal.

3.1 Description of the Problem
All targets j = 1,...,T are assumed to have linear dy-
namic and measurement models
Xjk = Ajk—1Xjk—1 + Qje—1

yi =H;iX; 5+ 15k,

where
Qi k-1~ N(0,Qjr-1)
rj,k ~ ]V(O7 Rj7k,).

We do not know which measurements were generated by
the targets and which by clutter, and the measurement ori-
gins form a random sequence such as:

y1 . targetl
yo . target4
ys . targetl
y4 . clutter

ys . target2
y¢ . target4d
y7 . clutter

Our goal is to estimate the posterior distributions of the
states of all the targets at each time step k.

3.2 Assumptions

The assumptions in this section state the conditions when
the algorithm works best, that is, closest to the optimal fil-
ter. The performance of the algorithm depends on how well
they are met. These assumptions are not very restrictive in
practice, because they are quite much the same as the typi-
cal ones in tracking literature [9] and they can be overcome
by extending the algorithm (and model), for example, by
adding the adaptiveness of certain model parameters [14].

In order to derive the algorithm, we need to make some
general assumptions about the nature of the estimation
problem:

e The posterior distribution of the association history
can be represented as a weighted sample of finite num-
ber of association histories. This is probably a quite
good approximation, because there actually exists ex-
actly one true association history. From the estimation
point of view, however, our goal is not to estimate that
one truth, but to form a representation of the informa-
tion that can be inferred from the measurements — the
posterior distribution.

e Given a state and an association history, every new
measurement is conditionally independent of the old
measurement history. This is a common assumption in
statistical inference, including estimation theory [6]. It
can, in principle, always be achieved by redefining the
model such that it includes the assumed correlations
and other dependencies.

e Every new association is independent of the old asso-
ciation histories. This simply states that even if we
knew the associations up to this point, we do not know
what the next measurement will be associated with.
The time dependencies could be allowed with quite
small madification to the algorithm, but this is not dis-
cussed in this article.

e \We are not restricted to synchronized sensors. Instead,
we use the more general and realistic asynchronous
sensor assumption.

e Measurements are processed one at a time in sequen-
tial fashion instead of parallel fashion. The sequential
and parallel update schemes are mathematically equiv-
alent [9].

e For the above reason, we do not perform inference on
the number of clutter measurements at one time step.
Thus, we also do not need a Poisson approximation for
the number of clutter measurements as in [9].

e Dynamic models are treated as discrete-time models
because integration of a continuous time model from
measurement to measurement leads to discrete-time
Markov models [4]. We only need to derive algorithms
for discrete Markov dynamics and this easily general-
izes to the continuous dynamics case.



e As the measurements are assumed to arrive at irregu-
lar, discrete instances of time, we have to assume that
our dynamic models may depend on time (for exam-
ple, A instead of A).

The additional explicit mathematical assumptions used in
the algorithm derivation are the following:

e The clutter originated measurements are uniformly
distributed in the measurement space with volume V.
The probability density is given as

p(yr | Xg, yi is clutter) = 1/V,

where X, denotes the stacked vector of all target states
at the time step k.

e The target originated measurements are linear func-
tions of the state with normally distributed measure-
ment errors. The probability density is

p(yi | Xk, Yk is from target 7)
= N(yk | Hj7ka,k7Rj’k).

e Target dynamics can be modeled as Gauss-Markov
random sequences

P(Xjk | Xjk—1) = N(Xjk | Ajk—1Xj k-1, Qjr—1)-

e The prior distributions of the target states are Gaussian

P(Xj0) = N(xj0 [ m;oP;0).

These prior distributions do not need to be very in-
formative, but if there is information available on the
initial states of the targets, it can be encoded into the
prior distributions.

o If the prior probabilities of clutter and target associa-
tions are known, they can be included in the model.
For example, if the clutter density is 10% and the 3
targets have equal prior association probabilities, these
prior probabilities are

p(ex, =0)=0.1
p(c, =1) =0.3
pler, =2)=10.3
plex, =3)=0.3

If there is no information, the prior probabilities can
be set to be the same for all targets and clutter.

4 Derivation of the Algorithm

In order to implement a SIR filter for the data associations,
we need the following:

e The likelihood of a measurement conditional on all
previous measurements, previous data associations
and the current data association

DYk | Chr Y1:k—15Clik—1)-

e The predictive probability

p(Ck | 01:1@71),

which gives the prior probability of the data associa-
tions given the old data associations.

e The optimal importance distribution is useful for con-
structing an efficient SIR filter. The optimal impor-
tance distribution is given by

p(Ck|Y1:k7 Cl:k—l)-

As we shall see later, in this case we can sample from
the optimal importance distribution directly.

Once we have the distributions above, we can implement
SIR as follows:

fori=1,...,N

— Sample a new association from the optimal im-
portance distribution:

A~ p(el? | yrm ).

— Calculate new weights as

wr, (i) o wi? |
(Yk\ck yY1:k— 1a053€ 1)1’(0;;) |ngi—1)

p(e) | yim )

end for

Resample if needed, that is, if the observed variance of
the weights is too high [1].

4.1 Data Representation

An association event ¢y, is represented with an integer vari-
able with T’ + 1 values

¢, =0 = clutter association at time step k

r = 1 = target 1 association at time step k

c, =T = target T association at time step k.

Each of the NV particles implicitly contain the state means
and covariances for each target on time step &, the whole
association history up to time step k, and an importance
weight. In practice, because the old associations have no
direct effect on the new associations, we only need to store
the means, covariances and weights:

particle 1 : {m?k, Pgl,)f, e (Tl)k, P(Tl)ka w;(cl)}
particle N : {m1 i ,P(]\,?, (Tk) P<TA27 IE:N)}'



4.2 Likelihood of Measurement

In order to derive the SIR filter for the data associations, we
need to calculate the measurement likelihood

P(Yr | €k Yik—1sClik—1)-

For each data association history particle 7 and for each tar-
get j at time step k, we have the state distribution

, D)y _ N(x @ pW
P(Xjk—1 | Yrk—1,01 1) = N(Xj k-1 | m; 1 j,k—l)'

The predicted state distribution for the target ;5 at the time
step k is

P(Xj,k \ Y1:k7170§3¢_1) =

= /p(xj,k | %50 1) Pk | Yiho1, &% 1) X1

= /N(Xj,k: | Aj—1X5 -1, Qje—1)
X N(X] k—1 | m :Ll)c 1,P§-fl)€71) dxj,k—l-
)

The last term in Eq. (2) is the Kalman Filter prediction step
for the target j

pOalyin-1, ¢ 1) = N(xjp | m; 7, P ),
where
m ) P = KF,(mY)_ |, P A1, Qi)

If the measurement originated from target j, the measure-
ment likelihood is

p(Yk | Cr = jaylzk—lvcgl;gg_l) =
= /p()’k | ek = J,%5,6)P(X5k | Y1:k—1,C§fL,1)de,k
/N Y& | Hj kX, k,RJ k) (X] k | m]li),P (¢ ))dxj,k-

®3)

The last term in Eq. (3) is the Kalman Filter likelihood for
the target

p(Yk | Ck :jvylzk 176?2 1)

:KFlh(Yk» j](g)’P] ]S-l)aHj kij k)
A clutter measurement has the likelihood
P(Yk | Cr = 07Y1:k717053€._1) = ]-/V

Thus, the state independent measurement likelihood term is

p(Yk | C/c,}’1:k71,cgl:3€_1)

1V if ¢ = 0
KFlh()’k,m;;(;),Pi(kl),H1,k7R1,k) ifep=1
KFlh(ykv m;)(}:;)a P;,([z)a HT,k7 RT,k) if Ck = Ta

(4)

whereforj =1,....T

im0 P = KF,(ml) | PO A1, Qi)
and mJ k 17 ng,)%l are the mean and covariance of target

4 in particle 4, which is conditioned on the state history

Cﬁ@ 1

4.3 Predictive Probability

Because the associations are independent of time, we have

plex | cre—1) = plek).

The prior distribution p(cy) gives the relative probabilities
of the target and clutter associations.

4.4 Optimal Importance Distribution

The optimal importance distribution is given by

p(ck | Yik, Cgl:chl)

for each particle s.

We already know the measurement likelihood
p(yr | croyrn_1,c%_,), which is given by Eq. (4).
The posterior distribution of ¢, can be calculated using the
Bayes’ rule

plck | yLk,ng:L_l) o< p(ye | Ck,ykava(f;L—l) p(ck),

where we have used the fact that an association ¢; does not
depend on the previous measurements y;.;_1 or the asso-
ciations ¢!} ..

We can sample from the optimal importance distribution
as follows:

1. Compute the unnormalized clutter association proba-
bility
7%(()1‘) (2)

= p(yk ‘ Cl(;) = O,ylzkfl,cgfgc_l) p(Ck = 0)

2. Compute the unnormalized target association proba-
bilities for each target j = 1,...,T

#0 = plyn | e = joyrm—1, 1) ple? = ).

3. Normalize the importance distribution:

. s
o L =0,

— R
] T ()7 )
Z/O 3’

4. Sample a new association c
abilities:

) with the following prob-

e Draw ¢! = 0 with probability 7.’

(@ _

e Draw ¢! = T with probability 7",



45 Generalization to Non-Linear Kalman
Filters

Any sufficient statistics based state estimation algorithm
can be used as the sub-estimator instead of the linear
Kalman filter. This kind of state estimators are, for ex-
ample, the extended Kalman filter (EKF), the unscented
Kalman filter (UKF) and multiple model based filters such
as the interacting multiple model (IMM) filter. The Kalman
filter prediction step KF,(-), the update step KF,,(-) and
the evaluation of marginalized measurement likelihood
KFy,(+) are replaced by the corresponding steps of the es-
timator.

5 Simulation Results
5.1 Tracking a Sine Signal in Clutter

In this scenario the true signal is the sine signal
x(t) = sin(wt), (5)

where the angular velocity w is only approximately known.
Half of the measurements are corrupted by additive Gaus-
sian noise and half of them are completely corrupted so
that they can take any value in the sensor’s dynamic range,
which in this case is [—2, 2].

Assuming a sampling period of At, the true signal (5)
can be approximately modeled by a discretized white noise
acceleration model [6]

) (1 At T
6= 1) Gi) rar
where the Gaussian white noise process qx—1 has moments

Elqx-1] =0

SAL?
E[Qkflqg—l] = (

LA#?
NN ) ©
where ¢ is the spectral density of the noise. The state is
defined as x;, = (x, @1)7 where x;, is the value of signal
at time step ¢, = to + kAt and zy, is the derivative of signal
at the same time step.

The likelihood of the measurement y;, can be modeled
by defining a latent variable ¢, which has the value of 0
if measurement is a corrupted measurement (clutter) and
1 if it is a measurement from the signal. If the measure-
ment is clutter, it is assumed to be evenly distributed in the
measurement space [—2, 2] (which is the dynamic range of
sensor). The likelihood is

1/4
Pk X061 =\ Ny | Hixi, R)

where H = (10).

The prior distributions of the signal and its derivative
were chosen to be xg ~ N(0,02) and 79 ~ N(1,0?) with
o2 =0.1.

Table 1 shows the RMSE results of tracking the simu-
lated sine signals with the following methods:

ifc, =0
ikaZI ’

Table 1: Root mean squared error values for the differ-
ent methods for tracking a sine signal in 50% clutter. The
means (RMSE) and standard deviations (STD) from 10 dif-
ferent simulated data sets are given in the table. The same
data sets were used with all the methods.

Method RMSE STD
RBMCDA, 10 particles 0.16 0.02
RBMCDA, 100 particles 0.15 0.01
Bootstrap filter, 1000 particles 2.07 2.31
Bootstrap filter, 10000 particles 0.16 0.02
Kalman filter, assuming no clutter  0.39 0.02
Kalman filter, clutter modeled 0.32 0.03
Kalman filter, perfect associations  0.11 0.01

e RBMCDA, 10 particles: Rao-Blackwellized Monte
Carlo data association algorithm with 10 particles.

e RBMCDA, 100 particles: Rao-Blackwellized Monte
Carlo data association algorithm with 100 particles.

e Bootstrap filter, 1000 particles: Bootstrap filter with
adaptive resampling and 1000 particles, such that the
joint distribution of states and data associations is rep-
resented as a set of weighted Monte Carlo samples.
The high RMSE values are due to filter divergence in
many of the test cases.

e Bootstrap filter, 10000 particles: The same bootstrap
filter as above with 10000 particles.

e Kalman filter, assuming no clutter: Kalman filter with
the assumption that there are no clutter measurements
at all.

o Kalman filter, clutter modeled: Kalman filter with in-
creased measurement variance such that the presence
of 50% clutter is taken into account.

e Kalman filter, perfect associations: Kalman filter with
perfect data association knowledge, such that clutter
measurements are simply thrown away as would an
ideal data association algorithm do.

Typical conditional means of the estimated marginal state
distributions when the Rao-Blackwellized Monte Carlo
data association method is used are shown in Fig. 1. It can
be seen that the estimate follows the true signal trajectory
quite well despite the high number of clutter measurements.

5.2 Multiple Target Bearings Only Tracking

Now, we shall consider a classical bearings only multiple
target tracking problem, which frequently arises in the con-
text of passive sensor tracking.

The dynamics of target j with the state vector x;; =
(jk Yik Tk yj,k)T can be modeled with a discretized
Wiener velocity model

Tjk 1 0 At 0 Tjk—1
Y.k . 01 0 At Yjk—1
ir | = loo 1 o0 iy | T
Uik 00 0 1 Ui k-1
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Fig. 1: Result of tracking a sine signal in the presence of
50% clutter measurements with RBMCDA and 100 parti-
cles.

where qj_1 is the process noise. The noise in an angular
measurement from known target j made by sensor ¢ can be
modeled as Gaussian

; Yik — 5,
0, = arctan 73 + 7k,
Ljk = Sg

where (s%,s;) is the position of sensor i and rj ~
N(0,02).

Because the measurement model is non-linear we replace
the Kalman filter in the data association algorithm with sub-
optimal EKF. The uncertainty in data associations can be
modeled by defining a variable ¢, which has the value ¢;, =
j if the measurement at time step & is associated to target ;.

The evolution of the tracking is illustrated in Figs. 2 —
4. The particles in the figures are a random sample drawn
from the posterior distribution estimate, used for visualiz-
ing the distribution. The actual posterior distribution esti-
mate is a mixture of Gaussians which is hard to visualize
directly. The number of Monte Carlo samples used in the
Rao-Blackwellized Monte Carlo data association method
was 100.

The prior distribution was selected on purpose such that
all the four crossings of measurements from the two sensors
contain some probability mass, and the distributions of the
targets are two-modal as shown in Fig. 2. In the beginning
of the tracking the multi-modality can be still seen in the es-
timated posterior distribution (Fig. 3). This phenomenon is
often called the ghost phenomenon in tracking literature [7].
When the tracking proceeds, the implicit trajectory restric-
tions set by the dynamic model force the false modes to
become much less probable than the other, causing them to
disappear, as can be seen in Fig. 4.

Fig. 5 shows the final tracking result, where the multi-
modality can clearly be seen. Again, particles are used for
visualizing the distribution, although the true posterior dis-
tribution estimate is a mixture of Gaussians. Fig. 5 also
illustrates the disadvantage of using the conditional mean

=== True Target 1
True Target 2

-

¥ sle—"
A

Fig. 2: The prior distributions of the targets. Half of the
prior probability mass is located in the ghost sensor mea-
surement crossings.
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Fig. 3: At the start of tracking the multi-modality of poste-
rior distribution can clearly be seen.

True Target 1
True Target 2
\ = Estimated Target 1
\ =  Estimated Target 2

Fig. 4: After a while the posterior distribution becomes uni-
modal due to the restrictions set by the dynamic model.
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Fig. 5: Filter estimates for each time step. In the beginning
of the trajectory the posterior distribution is multi-modal
and using the posterior mean as the summary statistic can
be misleading.

=== Smoothed Target 1
=  Smoothed Target 2

Fig. 6: Smoothed estimates do not have the ambiguity in
the beginning of the trajectory, because the later measure-
ments have resolved it. This is because the trajectories with
discontinuities are much less probable than the ones with-
out them. These discontinuities are not taken into account
in the filter estimates, because filter cannot know about the
discontinuities before they occur.

as the state summary in the multi-modal case. When the
posterior distribution is two-modal, the conditional mean
is between the modes, which is a place where the target is
known not to be.

Fig. 6 shows the smoothed tracking result, which is an
estimate where the distributions of all time steps are con-
ditioned on all the measurements. This kind of an estimate
can be easily calculated with Kalman smoothers [4, 6] and
particle smoothers [13] also in the Rao-Blackwellized par-
ticle filtering case. Conditional on all the measurements the
trajectory no longer contains the ghost phenomenon, be-
cause the dynamic model forces the discontinuous trajec-
tories to be much less probable than the continuous ones.
These discontinuities can be detected after seeing the future
measurements, not before.

6 Conclusions

In this article we have proposed a new multiple target track-
ing method, which is based on Rao-Blackwellization of the

sequential Monte Carlo estimator formulated for the joint
tracking and data association problem. The performance of
the algorithm was demonstrated in the case of a very high
number of clutter measurements, and in the case where the
posterior distribution of targets is multi-modal due to the
ghost phenomenon in bearings only tracking.
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