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ABSTRACT

This article considers the application of sequential importance

resampling to optimal continuous-discrete filtering problems,

where the dynamic model is a stochastic differential equa-

tion and the measurements are obtained at discrete instances

of time. In this article it is shown how the Girsanov theorem

from mathematical probability theory can be used for numeri-

cally evaluating the likelihood ratios needed by the sequential

importance resampling. Rao-Blackwellization of continuous-

discrete filtering models is also considered. The practical ap-

plicability of the proposed methods is demonstrated with a

numerical simulation.

1. INTRODUCTION

In many applications, especially in navigation [1, 2], it is

most natural to formulate the system dynamics and model un-

certainties as stochastic differential equations (SDE) [3, 4],

which are measured at discrete instances of time. The advan-

tage of this kind of continuous-discrete filtering model for-

mulation [5] over a discrete time model formulation is that

the case of non-uniform sampling (i.e., varying sampling in-

terval) is naturally included in the model. Non-uniform sam-

pling arises in practice, for example, when processing data

from multiple sensors that are not synchronized. This is com-

mon, for example, in multiple target tracking applications [6,

7]. The continuous-discrete formulation is also more realis-

tic than a pure continuous time model (see, e.g., [8]), because

sensor measurements are often processed with digital com-

puter which only allows processing of discrete time measure-

ments.

In this article, novel measure transformation based meth-

ods to continuous-discrete sequential importance resampling

(i.e., particle filtering) are presented. The methods are based

on transformations of probability measures by the Girsanov

theorem [3, 4], which is a theorem from mathematical prob-
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ability theory. The theorem can be used for computing like-

lihood ratios of stochastic processes. It states that the like-

lihood ratio of a stochastic process and Brownian motion,

that is, the Radon-Nikodym derivative of the measure of the

stochastic process with respect to the measure of Brownian

motion, can be represented as an exponential martingale which

is the solution to a certain stochastic differential equation.

Measure transformation based approaches are particularly

successful in continuous time filtering [8], but have less been

used in continuous-discrete filtering. The general idea of us-

ing the Girsanov theorem in importance sampling of SDEs

has been presented, for example, in [9]. Article [10] presents

the idea of using transformations of probability measures for

computing the likelihood ratios between importance process

and the true process in context of continuous-discrete filter-

ing. However, the results of [10] only apply when the Euler

integration scheme is used and when the dispersion matrix is

invertible. The Girsanov theorem is also used in the inter-

acting and branching particle systems [11], which are particle

based solutions to nonlinear filtering problems also in the con-

tinuous-discrete setting. In these methods the Girsanov theo-

rem is used for transforming the measure of the observation

process.

Technical details as well as further analysis and applica-

tions of the methods presented in this article can be found in

Author’s doctoral dissertation [12].

1.1. Continuous-Discrete Filtering

The continuous-discrete filtering models considered here have

the form

dx(t) = f(x(t), t) dt + Ldβ(t)

yk ∼ p(yk |x(tk)),
(1)

where x(t) ∈ R
n is the state, yk ∈ R

m is the measurement,

f is the drift function, L is the time-independent dispersion

matrix, β(t) is Brownian motion with diffusion matrix Qc(t)
and p(yk |x(tk)) is the measurement likelihood model and it

can be an arbitrary probability density or discrete probability

distribution. The dynamic model, which is the first equation



in the model (1), is interpreted as a Itô type stochastic differ-

ential equation.

The purpose of (Bayesian) continuous-discrete filtering is

to recursively compute the posterior distribution

p(x(tk) |y1, . . . ,yk), (2)

where tk is the time of measurement yk. By using optimal

prediction the corresponding distribution can also be com-

puted for all time instances before the next measurement t ∈
[tk, tk+1).

1.2. Sequential Importance Resampling

Sequential importance resampling (SIR) [13, 14] is a gener-

alization of the particle filtering framework for the estimation

of generic state space models of the form

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk),
(3)

where xk ∈ R
n is the state at time instance tk and yk ∈ R

m

is the measurement. The state and measurements may con-

tain both discrete and continuous components. The dynamic

model p(xk | xk−1) can also be the transition density of a

continuous time Markov process as is the case in this article.

That is, in continuous-discrete-time point of view this model

can be interpreted such that the notation xk , x(tk) is used,

where the time dependence of state is not explicitly stated.

2. CONTINUOUS-DISCRETE PARTICLE

FILTERING

2.1. Sequential Importance Resampling of Absolutely Con-

tinuous SDEs

Assume that the filtering model is of the form

dx = f(x, t) dt + Ldβ

yk ∼ p(yk |x(tk)),
(4)

where L is an invertible matrix. Further assume that there

exists importance process s(t), which is defined by the SDE

ds = g(s, t) dt + B dβ, (5)

and which has the law that is a rough approximation to the

filtering (or smoothing) result of the model (4), at least at the

measurement times. The matrix B is also assumed to be in-

vertible.

Now it is possible to generate a set of importance sam-

ples from the conditioned (i.e., filtered) process x(t), which

is conditional to the measurements y1:k using s(t) as the im-

portance process. The motivation of this is that because the

process s(t) is already an approximation to the optimal result,

using it as the importance process is likely to produce a less

degenerate particle set and thus more accurate presentation of

the filtering distribution.

Because the matrices L and B are invertible, the probabil-

ity measures of x and s are absolutely continuous with respect

to the probability measure of the driving Brownian motion β

and it is possible to compute likelihood ratio between the tar-

get and importance processes by applying the Girsanov theo-

rem. The continuous-discrete SIR filter for the model can be

now constructed as follows [12]:

Algorithm 2.1 (Continuous-discrete SIR I). Given the impor-

tance process s(t), a weighted set of samples {x
(i)
k−1, w

(i)
k−1}

and the new measurement yk, a single step of continuous-

discrete sequential importance resampling can be now per-

formed as follows:

1. Draw N Brownian motions {β(i)(t), tk−1 ≤ t ≤ tk, i =
1, . . . , N} and simulate the corresponding importance

processes

ds(i) = g(s(i), t) dt+B dβ(i)
, s(i)(tk−1) = x

(i)
k−1

(6)

from t = tk−1 to t = tk, and compute

s∗(i)(t) = x
(i)
k−1 + LB−1 (s(i)(t) − x

(i)
k−1), (7)

and set

x
(i)
k = s∗(i)(tk). (8)

2. For each i compute

w
(i)
k = w

(i)
k−1 exp

(

∫ tk

tk−1

[

L−1 f(s∗(i)(t), t)

− B−1 g(s(i)(t), t)
]T

dβ(i)

+

∫ tk

tk−1

[

L−1 f(s∗(i)(t), t)
]T

×
[

B−1 g(s(i)(t), t)
]

dt

−
1

2

∫ tk

tk−1

(

||L−1 f(s∗(i)(t), t)||2

+ ||B−1 g(s(i)(t), t)||2
)

dt

)

× p(yk |x
(i)
k ).

(9)

and re-normalize the weights to sum to unity.

3. If the effective number of particles is too low, perform

resampling.

2.2. Sequential Importance Resampling for More Gen-

eral SDEs

It is also possible to construct a similar SIR algorithm for

models, where there is an absolutely continuous type of model,



which is embedded inside a deterministic differential equa-

tion model. This kind of models are typical in navigation and

stochastic control applications, where the deterministic part

is typically a plain integral operator. Because the outer op-

erator is deterministic, the likelihood ratios of processes are

determined by the inner stochastic processes alone and thus

importance sampling of this kind of process is very similar to

sampling of the processes considered above.

Assume that the model is of the form

dx1

dt
= f1(x1,x2, t), x1(0) = x1,0

dx2 = f2(x1,x2, t) dt + Ldβ, x2(0) = x2,0, (10)

where f1(·) and f2(·) are deterministic functions, β(t) is a

Brownian motion and L is invertible matrix. Note that be-

cause the dimensionality of Brownian motion is less than of

the joint state (x1 x2)
T it is not possible to compute the like-

lihood ratio between the process and Brownian motion by the

Girsanov theorem directly.

However, it turns out that if the importance process for

(x1 x2)
T is formed as follows

ds1

dt
= f1(s1, s2, t), s1(0) = x1,0

ds2 = g2(s1, s2, t) dt + B dβ, s2(0) = x2,0, (11)

then the importance weights can be computed in exactly the

same way as when forming importance sample of x2(t) using

s2(t) as the importance process. The resulting SIR algorithm

is very similar to Algorithm 2.1 [12].

Rao-Blackwellized Sequential Importance Resampling

If the dynamic model has the form

dx1 = F(x2,x3, t)x1 dt + f1(x2,x3, t) dt

+ V(x2,x3, t) dη

dx2

dt
= f2(x2,x3, t)

dx3 = f3(x2,x3, t) dt + Ldβ,

(12)

where η and β are independent Brownian motions, and if the

measurement model is suitably conditionally Gaussian, it is

possible to integrate linear part of the filtering equations an-

alytically Kalman filter and the other part by Monte Carlo

sampling [12].

Analogously to the discrete time case presented in [15],

the procedure of Rao-Blackwellization can often be applied

to models with unknown static parameters. If the posterior

distribution of the unknown static parameters θ depends only

on a suitable set of sufficient statistics Tk = Tk(x1:k,y1:k),
the parameter can be marginalized out analytically and only

the state needs to be sampled.
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Fig. 1. The result of applying continuous-discrete particle

filter with UKF proposal to a simulated noisy pendulum data.

3. ILLUSTRATIVE EXAMPLE

3.1. Simple Pendulum with Noise

The stochastic differential equation for the angular position of

a simple pendulum [16], which is distorted by random white

noise accelerations w(t) with spectral density q can be written

as

d2x

dt2
+ a2 sin(x) = w(t), (13)

where a is the angular velocity of the (linearized) pendulum.

Assume that the state of the pendulum is measured once

per unit time and the measurements are corrupted by Gaussian

measurement noise with an unknown variance σ2. A suitable

model in this case is

yk ∼ N(x1(tk), σ2)

σ2 ∼ Inv-χ2(ν0, σ
2
0).

(14)

The variance σ2 is now an unknown static variable, where the

procedure of Rao-Blackwellization can be applied. Figure 1

shows the result of applying the continuous-discrete particle

filter with UKF proposal and 1000 particles to a simulated

data. The data was generated from the noisy pendulum model

with process noise spectral density q = 0.01, angular velocity

a = 1 and the sampling step size was ∆t = 0.1. The estimate

can be seen to be quite close to the true signal.

The evolution of the posterior distribution of the variance

parameter is shown in the Figure 2. In the beginning the

uncertainty about the variance is higher, but the distribution

quickly converges to the area of the true value.
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Fig. 2. The evolution of variance distribution in the noisy

pendulum problem.

4. CONCLUSION

In this article, a new class of sequential Monte Carlo methods

for continuous-discrete optimal filtering has been presented.

These methods are based on transformations of probability

measures by the Girsanov theorem. The new methods are ap-

plicable to a general class of models, in particular, they can be

applied to many models with singular dispersion matrices, un-

like many previously proposed measure transformation based

sampling methods. The new methods have been illustrated

in a simulated problem, where both the implementation de-

tails of the algorithms and the simulation results have been

reported.
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