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Abstract—This paper is concerned with the use of Gaussian
process regression based quadrature rules in the context of sigma-
point-based nonlinear Kalman filtering and smoothing. We show
how Gaussian process (i.e., Bayesian or Bayes–Hermite) quadra-
tures can be used for numerical solving of the Gaussian integrals
arising in the filters and smoothers. An interesting additional
result is that with suitable selections of Hermite polynomial
covariance functions the Gaussian process quadratures can be
reduced to unscented transforms, spherical cubature rules, and
to Gauss-Hermite rules previously proposed for approximate
nonlinear Kalman filter and smoothing. Finally, the performance
of the Gaussian process quadratures in this context is evaluated
with numerical simulations.

I. INTRODUCTION

The key computational challenge arising in many non-
linear Kalman filtering and smoothing methods can be reduced
to computation of Gaussian expectation integrals of the form

I[g] =
∫

g(x) N(x |m,P) dx, (1)

where g : Rn 7→ Rm is a non-linear function. The reason
to this is that the equations of non-linear Gaussian (Kalman)
filters and smoothers [1]–[5] consist of Gaussian integrals of
the above form and linear operations on vectors and matrices.

For example, the multidimensional Gaussian type of
Gauss–Hermite quadrature and cubature1 based filters and
smoothers [3], [4], [6]–[8] are based on explicit numerical
integration of the Gaussian integrals. The unscented transform
based methods as well as other sigma-point methods [9]–
[17] can also be retrospectively interpreted to belong to the
class of Gaussian numerical integration based methods [6].
Conversely, Gaussian type of quadrature or cubature based
methods can also be interpreted to be special cases of sigma-
point methods. Furthermore, the classical Taylor series based
methods [18] and Stirling’s interpolation based methods [17],
[19] can be seen as ways to approximate the integrand such that
the Gaussian integral becomes tractable (cf. [5]). The recent
Fourier–Hermite series [20], Hermite polynomial [21] methods
are also based on numerical approximation of the integrands.

In this paper, we study the use of more recent numerical
integration methods called Gaussian process quadratures [22]–
[26] in the filtering and smoothing context. This kind of
quadrature methods is also often referred to as Bayesian

1Terms quadrature and cubature simply mean numerical integration, the
latter usually over more than a single variable.

or Bayes–Hermite quadratures. They are closely related to
Gauss–Hermite type of Gaussian quadratures in the sense that
as Gaussian quadratures can be seen to form a polynomial
approximation to the integrand via point-evaluations, Gaussian
process quadratures use a Gaussian process regression [27] ap-
proximation instead [24]. Because Gaussian process regressors
can be used to approximate much larger class of functions
than polynomial approximations, they can be expected to
perform much better in numerical integration than polynomial
approximation based methods.

The use of Gaussian process regression approximations in
the context of non-linear Kalman filtering and smoothing has
been recently studied in [28], where the idea was to form
a fixed Gaussian process approximation to the non-linearities
allowing for closed form integration of the Gaussian integrals
in the filtering and smoothing equations. Here we take a bit
different, the Gaussian process quadrature point of view. That
is, instead of training the Gaussian process beforehand from
a set of point-wise evaluations of the dynamic function as in
[28], we retrain the Gaussian process at every step to give a
local approximation to the function. The resulting method is
equivalent to the use of Gaussian process quadrature for ap-
proximating the Gaussian integrals in filtering and smoothing
equations. This point of view has also been discussed [29] and
[5]; and the aim of this article is to present these ideas in full
as well as to analyze connections to sigma-point methods. In
particular, we show the explicit relationship of the proposed
methods to the unscented transform, cubature integration, and
Gauss–Hermite quadrature based methods.

II. BACKGROUND

A. Non-Linear Gaussian (Kalman) Filtering and Smoothing

In [3]–[6] sigma-point filtering and smoothing methods are
treated as special cases of non-linear Gaussian (Kalman) filters
and smoothers. These methods can be used to approximate
the filtering distributions p(xk | y1, . . . ,yk) and smoothing
distributions p(xk | y1, . . . ,yT ) of non-linear state-space
models of the form

xk = f(xk−1) + qk−1,

yk = h(xk) + rk,
(2)

where, for k = 1, 2, . . . , T , xk ∈ Rn are the hidden states,
yk ∈ Rd are the measurements, and qk ∼ N(0,Qk−1) and
rk ∼ N(0,Rk) are the process and measurements noises,
respectively. The non-linear function f(·) is used to model the



dynamics of the system and h(·) models the mapping from
the states to the measurements.

Non-linear Gaussian filters (see, e.g., [5], page 98) are
general methods to produce Gaussian approximations to the
filtering distrubutions:

p(xk | y1, . . . ,yk) ≈ N(xk |mk,Pk), k = 1, 2, . . . , T.
(3)

Non-linear Gaussian smoothers (see, e.g., [5], page 154) are
the corresponding methods to produce approximations to the
smoothing distributions:

p(xk | y1, . . . ,yT ) ≈ N(xk |ms
k,P

s
k), k = 1, 2, . . . , T.

(4)
Both Gaussian filters and smoothers above can be easily
generalized to state-space models with non-additive noises (see
[5]), but here we only consider the additive noise case.

B. Gaussian Integration and Sigma-Point Methods

Sigma-point filtering and smoothing methods can be quite
generally seen as methods which approximate the Gaussian
integrals in the Gaussian filtering and smoothing equations as∫

g(x) N(x |m,P) dx ≈
∑
i

Wi g(xi), (5)

where Wi are some predefined weights and xi are the sigma-
points (classically called abscissas). Typically, the sigma-point
methods use so called stochastic decoupling which refers to
the idea that we do a change of variables∫

g(x) N(x |m,P) dx =

∫
g(m+

√
P ξ)︸ ︷︷ ︸

g̃(ξ)

N(ξ | 0, I) dξ

(6)

where P =
√
P
√
P

T
. This implies that we only need to design

weights Wi and unit sigma-points ξi for integrating against
unit Gaussian distributions:∫

g̃(ξ) N(ξ | 0, I) dξ ≈
∑
i

Wi g̃(ξi), (7)

thus leading to approximations of the form∫
g(x) N(x |m,P) dx ≈

∑
i

Wi g(m+
√
P ξi). (8)

Different sigma-point methods correspond to different
choices of weights Wi and unit sigma-points ξi. For example,
the canonical unscented transform [9] uses the following set
of 2n+ 1 weights and sigma-points:

W0 =
κ

n+ κ
, Wi =

1

2(n+ κ)
, i = 1, . . . , 2n,

ξi =


0, i = 0,√
n+ κ ei, i = 1, . . . , n,

−
√
n+ κ ei−n, i = n+ 1, . . . , 2n.

(9)

where κ is a parameter of the algorithm and ei is the unit
vector towards the direction of the ith coordinate axis.

Note that sigma-point methods sometimes use different
weights for the integrals appearing in the mean and covariance

computations of Gaussian filters and smoothers. However,
here we will only concentrate on the methods which use
the same weights for both in order to derive more direct
connections between the methods. For example, the above
unscented transform weights are just a special case of more
general unscented transforms (see, e.g., [5]).

C. Gaussian Process Regression

Gaussian process quadrature [23], [24] is based on forming
a Gaussian process (GP) regression [27] approximation to
the integrand using pointwise evaluations and then integrating
the approximation. GP regression [27] is considered with
predicting the value of an unknown function

o = g(x) (10)

at a certain test point (o∗,x∗) based on a finite number of
training samples D = {(oj ,xj) : j = 1, . . . , N} observed
from it. The difference to classical regression is that instead
of postulating a parametric regression function gθ(x;θ), there
θ ∈ RD are the parameters, in GP regression we put a Gaus-
sian process prior with a given covariance function K(x,x′)
on the unknown functions gK(x).

In practice, the observations are often assumed to contain
noise and hence a typical model setting is:

gK ∼ GP(0,K(x,x′))

oj = gK(xj) + εj , εj ∼ N(0, σ2),
(11)

where the first line above means that the random function
gK has a zero mean Gaussian process prior with the given
covariance function K(x,x′). A commonly used covariance
function is the exponentiated quadratic (also called squared
exponential) covariance function

K(x,x′) = s2 exp

(
− 1

2`2
‖x− x′‖2

)
, (12)

where s, ` > 0 are parameters of the covariance function (see
[27]). The GP regression equations can be derived as follows.
Assume that we want to estimate the value of the “clean”
function g(x∗) based on its Gaussian process approximation
gK(x∗) at a test point x∗ given the vector of observed values
o = (o1, . . . , oN ). Due to the Gaussian process assumption we
now get(

o
gK(x∗)

)
∼ N

((
0
0

)
,

(
K+ σ2I k(x∗)
kT(x∗) K(x∗,x∗)

))
(13)

where K = [K(xi,xj)] is the joint covariance of observed
points, K(x∗,x∗) is the (co)variance of the test point, k(x∗) =
[K(x∗,xi)] is the vector cross covariances with the test point.

The Bayesian estimate of the unknown value of gK(x∗) is
now given by its posterior distribution, given the training data.
Because everything is Gaussian, the posterior distribution is
Gaussian and hence by the posterior mean and variance:

E[gK(x∗) |o] = kT(x∗) (K+ σ2I)−1 o

Var[gK(x∗) |o] = K(x∗,x∗)− kT(x∗) (K+ σ2I)−1k(x∗).
(14)

These are the Gaussian process regression equations in their
typical form [27], in the special case where g is scalar.



The extension to multiple output dimensions is conceptually
straightforward (see, e.g., [27], [30]), but construction of the
covariance functions as well as the practical computational
methods tend to be complicated [31], [32]. However, a typical
easy approach to the multivariate case is to treat each of the
dimensions independently.

D. Gaussian Process Quadrature

In Gaussian process quadrature [23], [24] the basic idea is
to approximate the integral of a given function g (assumed
scalar for simplicity) against a weight function w(x) by
evaluating the function g at a finite number of points and
then by forming a Gaussian process approximation gK to the
function. The integral is then approximated by integrating the
Gaussian process approximation (or its posterior mean) which
is conditioned on the evaluation points instead of the function
itself. That is, we use∫

g(x)w(x) dx ≈
∫

E[gK(x) |o]w(x) dx

=

[∫
kT(x) w(x) dx

]
(K+ σ2I)−1 o,

(15)

where the “training set” o = (g(x1), . . . , g(xN )) now contains
the values of the function g evaluated at certain selected inputs.
The posterior variance of the integral can be evaluated in an
analogous manner, and it is sometimes used to optimize the
evaluation points of the function gN [23]–[26].

If in (15) we denote the ith component of the row matrix[∫
kT(x) w(x) dx

]
(K+σ2I)−1 as Wi the Gaussian process

quadrature approximation can be seen to have the form∫
g(x)w(x) dx ≈

∑
i

Wi g(xi), (16)

which is both a Gaussian quadrature and a sigma-point type
of approximation.

As in the classical Gaussian quadrature integration the
selection of evaluation points xi affects the quality of the
integral approximation considerably. The classical quadrature
points are determined by the roots of special polynomials (e.g.,
Hermite polynomials). In the Gaussian process quadratures
we can either use some predefined point designs (such as the
unscented transform or Gauss-Hermite points [5]), or optimize
the point set using a suitable criterion [23]–[26].

III. GAUSSIAN PROCESS QUADRATURES IN NON-LINEAR
FILTERING AND SMOOTHING

A. Gaussian Process Quadrature Based Sigma-Point Methods

The key innovation, which makes Gaussian quadrature
integration useful in the present sigma-point filtering and
smoothing context, is that when the weight function is Gaus-
sian w(x) = N(x | m,P), we can often evaluate the term∫
k(x)N(x | m,P) dx in closed form. This happens, for

example, when the covariance function is the exponentiated
quadratic (12), which leads to the classical Bayes–Hermite
integration [23], and it is also closely related to the Gaussian
process regression based filters proposed in [28].

If we use stochastic decoupling (6) with the Gaussian
process quadrature, it turns out that the weights Wi and unit

sigma-points can be fully precomputed ξi, because they are in-
dependent of the means and covariances. Hence we obtain the
following algorithm which uses Gaussian process quadrature
to approximate multidimensional Gaussian integration required
in the Gaussian filters and smoothers.

Algorithm III.1 (Gaussian process quadrature based sigma–
point approximation). The Gaussian process quadrature (or
Bayes–Hermite/Bayesian quadrature) based sigma-point-type
of integral approximation can be computed as∫

g(x) N(x |m,P) dx ≈
N∑
i=1

Wi g(xi), (17)

where xi = m +
√
P ξi with the unit sigma-points ξi are

selected according to a predefined criterion (see discussion in
Section II-D), and the weights are determined by

Wi =

[ ∫
kT(ξ)N(ξ | 0, I) dξ (K+ σ2I)−1

]
i

, (18)

where K = [K(ξi, ξj)] is the matrix of unit sigma-point
covariances and k(ξ) = [K(ξ, ξi)] is the vector cross co-
variances. In principle, the choice of sigma-points above is
completely free, but good choices of them are discussed below.

The weights Wi in Algorithm III.1 are fully determined
once the covariance function and the unit sigma-points ξi are
fixed. The above algorithm implicitly models the components
of g(x) as independent Gaussian processes with identical
covariance, but generalization to different covariance functions
and dependent processes is possible as well (cf. [30]–[32]).
Note that, for example, with the exponentiated quadratic co-
variance function (12), the integral

∫
kT(ξ)N(ξ | 0, I) dξ can

be computed easily in closed form (see [28]) and hence the
weights are available in closed form as well.

The selection of unit sigma-points ξi is an important factor
in the accuracy of the above sigma-point approximation –
along with choice of covariance function, of course. Good
selections are, for example:

1) The sigma-points of the unscented transform (9).
2) Quasi-random point patterns such as Hammersley

points sets [33], which are transformed through the
inverse of a cumulative Gaussian distribution.

3) Multivariate Gauss–Hermite abscissas [3], [5].
4) Minimum variance point sets [23], [24].

In the theoretical analysis of this paper, we concentrate on the
unscented transform points, because they provide an explicit
link to GP quadrature based sigma-point methods. In the
numerical experiments we also use Hammersley point sets,
because they turned out to perform well in practice and are
easy to compute.

B. Gaussian Process Transform

We can also define a general Gaussian process transform
as follows (cf. [5]).

Algorithm III.2 (Gaussian process transform). The Gaussian
process quadrature based Gaussian approximation to the joint



distribution of x and the transformed random variable y =
g(x) + q, where x ∼ N(m,P) and q ∼ N(0,Q), is given by(

x
y

)
∼ N

((
m
µGP

)
,

(
P CGP

CT
GP SGP

))
, (19)

where

µGP =

N∑
i=1

Wi g(xi),

SGP =

N∑
i=1

Wi (g(xi)− µGP) (g(xi)− µGP)
T +Q,

CGP =

N∑
i=1

Wi (xi −m) (g(xi)− µGP)
T,

(20)

where the weights Wi and sigma-points xi are selected ac-
cording to Algorithm III.1.

C. Gaussian Process Quadrature Filter and Smoother

In this section we show how to construct filters and
smoothers using the Gaussian process quadrature approxima-
tions. Because Algorithm III.1 can be seen as a sigma-point
method, analogously to other sigma-point filters considered,
for example, in [5], we can now formulate the following sigma-
point filter for model (2), which uses the unit sigma-points ξi
and weights Wi defined by Algorithm III.1.

Algorithm III.3 (Gaussian process quadrature filter). The fil-
tering is started from initial mean and covariance, m0 and P0,
respectively, such that x0 ∼ N(m0,P0). Then the following
prediction and update steps are applied for k = 1, 2, 3, . . . , T .

Prediction:

1) Form the sigma points as follows: X (i)
k−1 = mk−1 +√

Pk−1 ξi, i = 1, . . . , N .
2) Propagate the sigma points through the dynamic

model: X̂ (i)
k = f(X (i)

k−1), i = 1, . . . , N .
3) Compute the predicted mean m−k and the predicted

covariance P−k :

m−k =

N∑
i=1

Wi X̂ (i)
k ,

P−k =

N∑
i=1

Wi (X̂ (i)
k −m−k ) (X̂

(i)
k −m−k )

T +Qk−1.

Update:

1) Form the sigma points: X−(i)k = m−k +
√

P−k ξi, i =

1, . . . , N .
2) Propagate sigma points through the measurement

model: Ŷ(i)
k = h(X−(i)k ), i = 1 . . . N .

3) Compute the predicted mean µk, the predicted co-
variance of the measurement Sk, and the cross-

covariance of the state and the measurement Ck:

µk =

N∑
i=1

Wi Ŷ(i)
k ,

Sk =

N∑
i=1

Wi (Ŷ(i)
k − µk) (Ŷ

(i)
k − µk)

T +Rk,

Ck =

N∑
i=1

Wi (X−(i)k −m−k ) (Ŷ
(i)
k − µk)

T.

4) Compute the filter gain Kk and the filtered state
mean mk and covariance Pk, conditional on the
measurement yk:

Kk = Ck S
−1
k ,

mk = m−k +Kk [yk − µk] ,

Pk = P−k −Kk SkK
T
k .

Further following the line of thought in [5] we can formu-
late a sigma-point smoother using the unit sigma-points and
weights from Algorithm III.1.

Algorithm III.4 (Gaussian process quadrature sigma-point
RTS smoother). The smoothing recursion is started from the
filtering result of the last time step k = T , that is, ms

T = mT ,
PsT = PT and proceeded backwards for k = T − 1, T −
2, . . . , 1 as follows.

1) Form the sigma points: X (i)
k = mk +

√
Pk ξi, i =

1, . . . , N .
2) Propagate the sigma points through the dynamic

model: X̂ (i)
k+1 = f(X (i)

k ), i = 1, . . . , N .
3) Compute the predicted mean m−k+1, the predicted

covariance P−k+1, and the cross-covariance Dk+1:

m−k+1 =

N∑
i=1

Wi X̂ (i)
k+1,

P−k+1 =

N∑
i=1

Wi (X̂ (i)
k+1 −m−k+1) (X̂

(i)
k+1 −m−k+1)

T +Qk,

Dk+1 =

N∑
i=1

Wi (X (i)
k −mk) (X̂ (i)

k+1 −m−k+1)
T.

4) Compute the gain Gk, mean ms
k and covariance Psk

as follows:

Gk = Dk+1 [P
−
k+1]

−1,

ms
k = mk +Gk (m

s
k+1 −m−k+1),

Psk = Pk +Gk (P
s
k+1 −P−k+1)G

T
k .

Note that we could cope with non-additive noises in the
model by using augmented forms of the above filters and
smoothers as in [5].

IV. RELATIONSHIP WITH OTHER SIGMA-POINT
METHODS

In this section we start by briefly reviewing multivari-
ate Fourier–Hermite series and discuss its relationship with



multivariate Gaussian integration. We then show how the
unscented transform can be seen as a method to determine
the coefficients of a truncated Fourier–Hermite series from
pointwise-evaluations of the function. Finally, we construct
a covariance function which makes the Gaussian process
transform equivalent to the unscented transform. Because we
can always transform integration over a general Gaussian
distribution N(m,P) into integration over a unit Gaussian
N(0, I) via the use of stochastic decoupling (6), we will restrict
the analysis here to unit Gaussian distributions.

A. Fourier–Hermite Series

Fourier–Hermite series (see, e.g., [34]) are orthogonal
polynomial series in a Hilbert space, where the inner product
is defined via an expectation of a product over a Gaussian
distributions. These series are also inherently related to non-
linear Gaussian filtering as they can be seen as generalizations
of statistical linearization and they also have a deep connection
with unscented transforms, Gaussian quadrature integration,
and Gaussian process regression [5], [20], [21].

We can define an inner product of multivariate scalar
functions f(x) and g(x) as follows:

〈f, g〉 =
∫
f(x) g(x) N(x | 0, I) dx. (21)

If we now define a norm via ||f ||2H = 〈f, f〉, and the
corresponding distance function d(f, g) = ||f − g||H, then the
functions ||f ||H < ∞ form a Hilbert space H. It now turns
out that the multivariate Hermite polynomials form a complete
orthogonal basis of the resulting Hilbert space [34].

A multivariate Hermite polynomial with multi-index I =
{i1, . . . , in} can be defined as

HI(x) = Hi1(x1)× · · · ×Hin(xn) (22)

which is a product of univariate Hermite polynomials

Hp(x) = (−1)p exp(x2/2)
dp

dxp
exp(−x2/2). (23)

The orthogonality property can now be expressed as

〈HI , HJ 〉 =
{
I!, if I = J
0, otherwise,

(24)

where we have denoted I! = i1! · · · in! and I = J means that
each of the elements in the multi-indices I = {i1, . . . , in} and
J = {j1, . . . , jn} are equal. We will also denote the sum of
indices as |I| = i1 + · · ·+ in.

A function g(x) with 〈g, g〉 < ∞ can be expanded into
Fourier–Hermite series [34]

g(x) =

∞∑
p=0

∑
|I|=p

1

I!
cI HI(x), (25)

where HI(x) are multivariate Hermite polynomials and the se-
ries coefficients are given by the inner products cI = 〈HI , g〉.

The Fourier–Hermite series representation is particularly
useful if we are interested in computing the integral of the
function over a unit Gaussian distribution. From the definition

of Fourier–Hermite series it follows that the expected value of
the function is simply∫

g(x) N(x | 0, I) dx = 〈H0, g〉 = c0. (26)

Expectations of vector valued functions can be similarly
extracted from the zeroth order terms of the component-
wise Fourier–Hermite series. The covariance can then also
be computed by a Parseval-like identity given in [20]. Thus,
if we knew the coefficients of the Fourier–Hermite series,
the construction of the Gaussian moment matching transform
would be possible without additional approximations, because
all the required expectations can be extracted from the series
coefficients. However, in practice, we rarely know the coef-
ficients of the series nor can we easily compute them for a
given non-linear function.

B. Relationship of Fourier-Hermite Series and Unscented
Transform

Consider a Gaussian process gG(x) which has zero mean
and a covariance function K(x,x′). In the same way as deter-
ministic functions, Gaussian processes can also be expanded
into Fourier–Hermite series:

gG(x) =

∞∑
p=0

∑
|I|=p

1

I!
c̃I HI(x), (27)

where the coefficients are given as c̃I = 〈HI , gG〉. The
coefficients c̃I are zero mean Gaussian random variables and
their covariance is given as

E [c̃I c̃J ] = E [〈HI , gG〉 〈HJ , gG〉]

=

∫∫
HI(x)K(x,x′)HJ (x

′)

×N(x | 0, I) N(x′ | 0, I) dx dx′.

(28)

If we define constants λI,J = E [c̃I c̃J ] then the covariance
function K(x,x′) can be further written as series

K(x,x′) =

∞∑
q=0

∑
|J |=q

∞∑
p=0

∑
|I|=p

1

I!J !
λI,J HI(x)HJ (x

′).

(29)
Recently, Sandblom and Svensson [21] proposed the marginal-
ized transform where the idea is to identify the coefficients in
a Hermite polynomial series (i.e., Fourier–Hermite series) by
point-wise evaluations of the function g(x). When the series
coefficients are treated as unknown parameters in Bayesian
sense, as was done in [21], this approach can be interpreted
to form a Gaussian process approximation to the unknown
function.

Recall that the Bayesian way to treating the unknown series
coefficients cI in the series (25) is by replacing them with
random variables c̃I and computing their posterior distribution
given the point-wise evaluations (observations). The result
of replacing the coefficients with Gaussian random variables
results exactly in a series expansion of the form (27). In
principle, it would now be possible to compute the posterior
distribution of the whole series of coefficients given the finite
set of observations. However, to make computations tractable,
it is convenient to truncate the series.



Assume now that the coefficients of order four and above
|I| ≥ 4 vanish and thus the function is in fact a third order
multivariate polynomial. The corresponding prior Gaussian
random function is then given as

gG(x) =

3∑
p=0

∑
|I|=p

1

I!
c̃I HI(x). (30)

Let us evaluate the integrand g in the unscented transform
points xi , ξi given in (9). If we let zi = g(xi) for
i = 0, . . . , 2n, and denote z = {zi : i = 0, . . . , 2n},
c̃ = {c̃I : |I| ≤ p} then the solution to the estimation
problem on the coefficients is the posterior distribution

p(c̃ | z) = p(z | c̃) p(c̃)∫
p(z | c̃) p(c̃) dc̃

(31)

Recall that we are now actually interested in computing the
integral of g(x) over the Gaussian distribution N(x | 0, I). Due
to Equation (26) we are interested in the marginal posterior
distribution of the zeroth order coefficient:

p(c̃0 | z) =
∫
p(c̃ | z) dc̃I6=0. (32)

It now turns out that the above distribution is actually singular
as stated by the following theorem which is a generalization
of the result derived in [21].

Theorem IV.1 (Posterior of c̃0). The posterior distribution of
the zeroth order coefficient c̃0 is

p(c̃0 | z) = δ(c̃0 − c0), (33)

where δ(·) is the Dirac delta distribution and c0 is given as

c0 =W0 zi +W

2n∑
i=1

zi, W0 =
κ

n+ κ
, W =

1

2(n+ κ)
.

(34)

Proof: It is sufficient to show that the following system
of equations can be uniquely solved for c̃0 and the solution is
c0 in Equation (34):

zi =

3∑
p=0

∑
|I|=p

1

I!
c̃I HI(xi), i = 0, . . . , 2n. (35)

First note that we have

zi =

3∑
p=0

∑
|I|=p


c̃I
I! HI(0), i = 0
c̃I
I! HI(

√
n+ κ ei), i = 1, . . . , n

c̃I
I! HI(−

√
n+ κ ei−n), i = n+ 1, . . . , 2n.

(36)

Let us now attempt to simplify the expression of z0. First
note that HI(0) is 1 when I = 0, and zero whenever any
of the elements of I is odd. The only purely even terms
have univariate second order Hermite polynomials which give
H2(0) = −1. Thus we get

z0 = c̃0 −
1

2

n∑
i=1

c̃2ei
, (37)

where 2ei denotes a set of indices with 2 at index i and zeros
elsewhere.

Let us now see what happens if we calculate the sum
of terms i = 1, . . . , 2n. Recall that the only zeroth order
(multivariate) Hermite polynomial is H0(x) = 1. Thus from
the zeroth order terms we get 2n c̃0. The first order terms are
just univariate Hermite polynomials H1(xi) = xi. Because
we have H1(

√
n+ κxi) +H1(−

√
n+ κxi) = 0, all the first

order terms simply cancel out. It is also easy to see that the
third order terms are either zero or cancel out and we are only
left with the second order terms. For each i we get two second
order terms with coefficient H2(±

√
n+ κ) = (n+κ)−1 and

2n− 2 terms with H2(0) = −1. Thus we get
2n∑
i=1

zi = 2n c̃0 +

n∑
i=1

c̃2ei
[(n+ κ)− 1]−

n∑
i=1

∑
j 6=i

c̃2ej

= 2n c̃0 + κ

n∑
i=1

c̃2ei

(38)

and we are left with the pair of equations

z0 = c̃0 −
1

2

n∑
i=1

c̃2ei

2n∑
i=1

zi = 2n c̃0 + κ

n∑
i=1

c̃2ei

(39)

Solving for c̃0 gives the unique solution

c̃0 =
κ

n+ κ
z0 +

1

2(n+ κ)

2n∑
i=1

zi, (40)

which completes the proof.

The above theorem thus states that if we do Bayesian
inference on the Gaussian random function (30) using the
values of function g evaluated at the unscented transform
points, the posterior distribution of the expected value is
concentrated at the unscented transform mean estimate.

C. Relationship of Gaussian Process Transform with Un-
scented Transform

We can now get an explicit link to Gaussian process
regression by noting that the random function in Equation (30)
is a Gaussian process with the covariance function

K(x,x′) =

3∑
q=0

∑
|J |=q

3∑
p=0

∑
|I|=p

1

I!J !
λI,J HI(x)HJ (x

′).

(41)
where the series coefficients are λI,J = E [c̃I c̃J ]. The Gaus-
sian process regression with the above covariance function now
turns out to be equivalent to parameteric regression with the
function (30) and hence we get the following theorem.

Theorem IV.2 (UT covariance function). If we select the GP
covariance functions as in Equation (41) and use the UT points
as the training set, then the GP transform is equivalent to the
unscented transform [9].

Proof: As shown in [27] computing predictions with the
parametric model in Equation (30) and with a GP with covari-
ance function (41) conditionally on a set of measurements are
completely equivalent. This relationship is sometimes called



kernel trick. Thus prediction of the integral must be equivalent
as well, because the expectation is just a linear functional of
the predictor.

Corollary IV.1 (Spherical cubature covariance function). The
Gaussian process transform reduces to the third cubature
integration rule [7] when we select κ = 0 above and only
use the evaluation points with indices i = 1, . . . , 2n.

D. Relationship with Gauss–Hermite and Other Methods

The cartesian product based Gauss–Hermite integration
rule used in [3]–[6] is the unique integration method which
is able to integrate all multivariate Hermite polynomials with
im ≤ 2p − 1. The method can be interpreted to form a pth
order multivariate polynomial product approximation to the
integrand and selecting evaluation points in an optimal manner.
Due to the uniqueness, if we take all Hermite polynomials with
im ≤ p to a summation of the form (41) and use the Gauss–
Hermite sigma-points, we recover the Gauss–Hermite method
from the Gaussian process quadrature based method. Relation-
ships with other methods could be derived from the results of
[24] or by recalling that all parametric approximations can be
considered as special cases of Gaussian process regression via
the kernel trick [27].

V. NUMERICAL RESULTS

A. Covariance Function Implied by Unscented Transform

The exponentiated quadratic (i.e., the squared exponential)
covariance function and the unscented transform covariance
function (41) together with the corresponding Gaussian process
regression results on random data are illustrated in Figure 1.
The polynomial nature of the unscented transform covariance
function can be clearly seen in the figures. The Gaussian
process prediction with the unscented transform covariance
function has a polynomial shape and thus it has less flexibility
to explain the data than the exponentiated quadratic.
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Fig. 1. Top left: Exponentiated quadratic (i.e., squared exponential covari-
ance function. Top right: The covariance function implied by the unscented
transform. Bottom left: Gaussian process regression with the exponentiated
quadratic covariance function. Bottom right: Gaussian process regression with
the covariance function implied by the unscented transform.

B. Univariate Non-linear Growth Model

In this section we compare the performance of the different
methods in the following univariate non-linear growth model
(UNGM) which is often used for benchmarking non-linear
estimation methods:

xk =
1

2
xk−1 + 25

xk−1
1 + x2k−1

+ 8 cos(1.2 k) + qk−1,

yk =
1

20
x2k + rk,

(42)

where x0 ∼ N(0, 5), qk−1 ∼ N(0, 10), and rk ∼ N(0, 1).

We generated 100 independent datesets with 500 time
steps each and applied the following methods to it: extended,
unscented (κ = 2), and cubature filters and smoothers
(EKF/UKF/CKF/ERTS/URTS/CRTS); Gauss–Hermite filters
and smoothers with 3, 7, and 10 points (GHKF/GHRTS);
Gaussian process quadrature filter and smoother with
unscented transform points (GPQKFU/GPQRTSU); and
with Hammersley point sets of sizes 3, 7, and 10
(GPQKFH/GPQRTSH). The covariance function was the ex-
ponentiated quadratic with s = 1 and ` = 3 and the noise
variance was set to 10−8. The RMSE results (computed across
the 500 time steps) together with single standard derivation
bars are shown in Figures 2 and 3. As can be seen in the
figures, with 5 and 10 points the Gaussian process quadrature
based filters and smoothers have significantly lower errors than
almost all the other methods – only Gauss–Hermite with 10
points and the cubature RTS smoother come close.
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Fig. 2. RMSE results of filters in the UNGM experiment.

C. Pendulum Tracking

We also tested similar methods as in the previous section
in the two-dimensional-state pendulum tracking example con-
sidered in [5]. For comparison, we also tested the Gaussian
process filtering and smoothing methods (GPKF/GPRTS) pro-
posed in [28] and taught a Gaussian process regression model
from a training set of size 100. As already shown in [5], non-
linear Kalman filters and smoothers tend to work practically
identically in this particular problem. Our results indeed con-
firmed it such that 100 Monte Carlo runs did not reveal any
statistically significant differences in the results. For this and
space reason we also leave out the table of RMSE results
here, because it would have identical RMSEs for all filters
and similarly for the smoothers. Additional multidimensional
examples will be considered in a future work.
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Fig. 3. RMSE results of smoothers in the UNGM experiment.

VI. CONCLUSION

In this paper we have shown how Gaussian process quadra-
ture can be used as a sigma-point method for solving Gaussian
integrals arising in non-linear Kalman filters and smoothers.
We have also shown that many of the existing sigma-point
methods can be derived as special cases of this method. Finally,
via numerical simulations, we have shown that the proposed
methodology also works well in practice.
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[4] S. Särkkä and J. Hartikainen, “On Gaussian optimal smoothing of non-
linear state space models,” IEEE Transactions on Automatic Control,
vol. 55, no. 8, pp. 1938–1941, August 2010.
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[20] J. Sarmavuori and S. Särkkä, “Fourier-Hermite Kalman filter,” IEEE
Transactions on Automatic Control, vol. 57, pp. 1511–1515, 2012.

[21] F. Sandblom and L. Svensson, “Moment estimation using a marginal-
ized transform,” IEEE Transactions on Signal Processing, vol. 60, pp.
6138–6150, 2012.

[22] A. O’Hagan, “Curve fitting and optimal design for prediction (with
discussion),” Journal of the Royal Statistical Society. Series B (Method-
ological), vol. 40(1), pp. 1–42, 1978.

[23] ——, “Bayes-Hermite quadrature,” Journal of Statistical Planning and
Inference, vol. 29, pp. 245–260, 1991.

[24] T. P. Minka, “Deriving quadrature rules from Gaussian processes,”
Statistics Department, Carnegie Mellon University, Tech. Rep., 2000.

[25] M. A. Osborne, R. Garnett, S. J. Roberts, C. Hart, S. Aigrain, N. P.
Gibson, and S. Aigrain, “Bayesian quadrature for ratios: Now with even
more Bayesian quadrature,” in International Conference on Artificial
Intelligence and Statistics (AISTATS 2012), 2012.

[26] M. Osborne, D. Duvenaud, R. Garnett, C. Rasmussen, S. Roberts, and
Z. Ghahramani, “Active learning of model evidence using Bayesian
quadrature,” in Advances in Neural Information Processing Systems 25,
2012, pp. 46–54.

[27] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for
Machine Learning. MIT Press, 2006.

[28] M. Deisenroth, R. Turner, M. Huber, U. Hanebeck, and C. Rasmussen,
“Robust filtering and smoothing with Gaussian processes,” IEEE Trans-
actions on Automatic Control, vol. 57, no. 7, pp. 1865–1871, 2012.

[29] J. Hartikainen, “Sequential inference for latent temporal Gaussian
process models,” Doctoral dissertation, Aalto University, 2013.
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