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Posterior linearisation filter for non-linear state
transformation noises

Matti Raitoharju, Roland Hostettler, Simo Särkkä

Abstract—This paper is concerned with discrete time Kalman-
type filtering with state transition and measurement noises
that may be non-additive or non-linearly transformed. More
specifically, we extend the iterative estimation algorithm Posterior
Linearization Filter (PLF) for estimation with this kind of
noises. The approach solves the prediction and update step
simultaneously, which allows to use the PLF iterations to improve
the estimation in the non-linear state transition model. The
proposed algorithm also produces single step fixed-lag smoothing
estimates. We show in examples how the proposed approach
can be used with non-Gaussian state transition noises and non-
linearly transformed state transition noises.

Index Terms—Nonlinear estimation, Kalman filtering, Fixed-
lag smoother, Non-additive noise

I. INTRODUCTION

The estimation of dynamic state from noisy measurements
is a problem that arises in many fields of science and engi-
neering, for example, target tracking, audio signal processing,
or finance [1], [2]. In the Bayesian framework the system is
described using a state transition model and a measurement
model. Using these models, we can obtain the posterior
probability density function (PDF) that describes the state
given measurements available in an optimal manner. The
computation of the PDF can be divided into two parts, first
prediction with state transition model to obtain prior, then
update with measurements to obtain posterior [3].

In general, that is when the model is non-linear or non-
Gaussian, the posterior PDF cannot be calculated analytically.
In these situations, particle filters are one option [4], but
they have often high computational burden. Gaussian filters
approximate the posterior PDF using a Gaussian and may
be accurate enough when the posterior is unimodal [1], [3].
For non-linear estimation a Gaussian filter may use different
ways to linearize non-linear models to obtain the posterior. The
General Gaussian Filter (GGF) uses a statistical linearization
for linearization [1]. However, the statistical linearization is in
general case intractable and approximations have to be used.
One of most common ways to make approximate statistical
linearization is to use the unscented transform [5], [6]. This
filter is called Unscented Kalman Filter (UKF).

The GGF makes the linearization for prediction at the
posterior of previous time step and for the update at the prior
of the current time step. In [3] it was shown that it is beneficial
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to make the linearization at the posterior for the measurement
update. Because the posterior being unknown, the Posterior
Linearization Filter (PLF) approximates the update with re-
spect to the posterior iteratively. However, the prediction in
PLF is still done as in GGF.

A smoother uses measurements from future in addition from
past and present. Rauch-Tung-Striebel (RTS) smoother is an
optimal smoother for linear-Gaussian case [7]. It performs
the smoothing so that it first does the filtering and then
a backward pass to obtain the smoothed estimates for the
whole track. The PLF was extended for smoothing in [8].
Posterior Linearization Smoother (PLS) can be applied only
for systems with additive and Gaussian noises. A fixed-lag
smoother uses measurements from a fixed number of steps
from the future [1].

In this paper, we extend PLF so that the state transition
model may have non-additive noises anditerative posterior
linearization is used in the prediction. To achieve this we do
the prediction and update simultaneously instead of having
two separate phases. The algorithm also produces a single step
fixed-lag smoothed estimates of the state.

The rest of the paper is organized as follows. In Section III
the problem is formulated. Section II presents related work.
Section IV shows the proposed approach. Section V contains
the examples and Section VI concludes the article.

II. RELATED WORK

A. Posterior linearization filter

In [3] PLF was presented and it was shown that the posterior
linearization scheme minimizes the expected Kullback-Leibler
Divergence (KLD). PLF uses state transition model of form

xi = fi(xi−1) + ei, (1)

where fi(·) is called state transition function and ei is normal
distributed with zero mean and covariance R. The measure-
ment model is

yi = hi(xi) + εi, (2)

where hi(·) is called measurement function and ε is normal
distributed with zero mean and covariance Q.

The prediction in PLF is identical to the prediction of GGF:

µi|i−1 =

∫
fi (xi) pN

(
xi|µi−1|i−1, Pi−1|i−1

)
dxi (3)

Pi|i−1 =

∫ (
fi (xi)− µi|i−1

) (
fi (x)− µi|i−1

)T
· pN

(
xi|µi−1|i−1, Pi−1|i−1

)
dxi +Q, (4)
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where pN(x|µi|i, Pi|i) is the PDF of a multivariate normal
distribution.

PLF updates the state using a measurement model it-
eratively, using previous estimate as a point for statistical
linearization. An iteration of the update is:

ŷi =

∫
hi (xi) pN

(
xi|µLi , PLi

)
dxi (5)

Φ =

∫
(hi (xi)− ŷi) (hi (xi)− ŷi)T

· pN

(
xi|µLi , PLi

)
dx (6)

Ψ =

∫ (
xi − µi|i−1

)
(hi(xi)− ŷi)T

· pN

(
xi|µLi , PLi

)
dxi (7)

A = ΨT
(
PLi
)−1

(8)

b = ŷ −AµLi (9)

Ω = Ψ−APLi AT (10)

S = APi|i−1A
T +R (11)

K = Pi|i−1A
TS−1 (12)

µL+1
i = µi|i−1 +K

(
y −Aµi|i−1 − b

)
(13)

PL+1
i = Pi|i−1 −KSKT , (14)

where µLk and PLk define the mean and covariance of the
distribution that is used for the next statistical linearization.
The algorithm is iterative and the mean (13) and covariance
(14) are used as the linearization parameters for next iteration.
The final µLk and PLk are used as the parameters of the
posterior. If the iteration is done only once, the result is
identical to the result of GGF. The integrals in equations (3)-
(7) can be approximated with a suitable method, such as the
unscented transform [6].

B. Nonlinearly transformed measurement noises

In [9], [10] a measurement equation had a form

yi = hi(xi) + gi(εi). (15)

The nonlinear transformation gi(·) is chosen so that if εi
has standard normal distribution, then gi(εi) has desired
distribution. With a non-iterative Kalman filter extension that
linearizes at prior the noise part g(εi) in (15) has always a
same linearization and could be replaced with a Gaussian.
With PLF the linearization changes between each iteration
and the PLF can be used with transforming functions that
effectively allow to use non-Gaussian noises with a Kalman
type filter. The formulation in [10] uses an augmented state,
where the measurement noise variables εi are augmented
with the state dimensions in the update to obtain posterior
estimate and the posterior linearization for those too. In the
augmented state formulation, the posterior covariance may
be singular, which causes problems in computation of the
statistical linearization of the PLF. To avoid this a small
diagonal covariance was added for PLi to make it always
nonsingular.

In [9] it was shown that the gi(·) can be chosen to be

gi(εi) = F−1(Φ(εi)), (16)

where Φ is the Cumulative Distribution Function (CDF) of a
standard normal distribution and F−1 is the inverse CDF of
the desired distribution. In [10] was also presented a method
to determine function gi(·) from samples. Function gi(·) was
built using piecewise cubic Hermite interpolating polynomials.
This removes the step to find a analytical function and specific
distribution for the noise.

III. PROBLEM FORMULATION

We use more general state transition model than in (1):

xi = fi(xi−1, ei) (17)

and more general measurement model than in (2) and (15):

yi = hi(xi, εi). (18)

We assume that ei is normal distributed with mean µei and
covariance Qi and ε is normal distributed with mean µεi and
covariance Ri.

Filtering problems with (18) could be solved with the PLF
presented in [10], but (17) would not get any help from using
PLF as it does the prediction as GGF. PLS has different
linearization points for the state transition model between
iterations, but it is only for additive Gaussian noises.

IV. PROPOSED APPROACH

In [10] the measurement noise εi was augmented with the
state so that both were estimated in iterations. In this paper we
will also augment the state transition noise in the augmented
state x̂i

x̂i =

xi−1

ei
εi

 . (19)

We propose to do the filtering taking the state transition noise
also into the state and instead of making GGF predict – update
procedure we make the update at using a measurement that
contains the state transition function

yi = ĥi(x̂i) = hi(fi(xi−1, ei), εi). (20)

This augmented state can be updated with the version of
PLF that was introduced in [10]. The iterations involving the
augmented state (19) and measurement model (20) produce
the x̂i|y1:i, but we have to note that the first elements of the
augmented state are xi−1|y1:i, which is not the posterior of
the time instance i, but a single step fixed-lag smoothed state.
One interpretation for the proposed algorithm is that we make
the linearization for the prior in the smoothed posterior of the
previous state to obtain more accurate linearization. The mean
and covariance of the posterior xi|y1:i can be then obtained
integrals

µxi|i =

∫
fi(x, e)pN

([
x
e

] ∣∣∣∣ [µxi−1|i

µei|i

]
, cov

[
xi−1|i
ei|i

])
dx

(21)

cov xi|i =

∫ (
fi(x, e)− µxi|i

) (
fi(x, e)− µxi|i

)T
(22)

× pN
([
x
e

] ∣∣∣∣ [µxi−1|i

µei|i

]
, cov

[
xi−1|i
ei|i

])
dx,
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which can be approximated using, for example, UKF. These
moments can be then used for initialization of the next time
step.

A. Algorithm

In [9] the augmented state with nonlinearly transformed (15)
was solved using a variation of Recursive Update Kalman
Filter (RUKF) [11], [12], however there were noted some
situations, where the recursive update did not produce satis-
factory results. In [10] a modification of [3] was used. In [10]
it was noted that there were sometimes numerical problems
caused by singular covariance matrices of the augmented state.
The matrices are made nonsingular by adding a diagonal
covariance matrix to the covariance that is used for computing
the statistical linearization. For this there is a parameter α for
which we use value 10−3. There is also variable β that limits
the step lengths if we are estimating with noises with unit
variance that occur when we are doing estimation for situations
presented in Section II-B. This improves stability especially
when the noise models are empirically determined as the noise
terms make at most one sigma steps. Algorithm 1 shows the
main general algorithm and Algorithm 2 shows the iterations
within PLF updates. We will use 10 iterations (Lmax ) in our
examples.

Algorithm 1: Filtering for non-additive models

1 Input: Prior mean µ0 and covariance P0

2 for i = 1 : imax do

3 Build augmented mean µ̂i =

µi−1

µei
µεi


4 Build augmented covariance

P̂i =

Pi−1 0 0
0 Ri 0
0 0 Qi


5 Build augmented measurement function ĥ(x̂)

Update augmented state using Algorithm 2
6 (Store single-step fixed-lag estimates if necessary)
7 Use (21) to obtain posterior mean µi
8 Use (22) to obtain posterior covariance Pi
9 end

V. EXAMPLES

A. Student-t state transition model

In this example, we show how the proposed algorithm
can handle a situation with a non-Gaussian state transition
noise. We consider a state transition model with Student-
t distribution and a single time step update. Compared to
normal distribution Student-t has heavier tails. The state is
unidimensional, x0 has standard normal distribution and the
state transition model is

x1 = x0 + e, (23)

where e is Student-t distributed with 3 degrees of freedom
and scaled with 1√

3
so that it has unit variance. Thus we use

Algorithm 2: PLF for augmented states

1 for L = 1 : Lmax do
2 ŷ =

∫
hk (x) pN

(
x|µ̂Li,τ , P̂Li,τ + α diag(P̂Li,τ )

)
dx

3
Φ =

∫
(hk (x)− ŷk) (hk (x)− ŷk)

T

· pN

(
x|µ̂Li,τ , P̂Li,τ + α diag(P̂Li,τ )

)
dx

4
Ψ =

∫ (
x− µ̂Li,τ

)
(hk(x)− ŷk)

T

· pN

(
x|µ̂Li,τ , P̂L+1

i,τ + α diag(P̂L+1
i,τ )

)
dx

5 A = ΨT
(
P̂Li,τ + α diag(P̂Li,τ )

)−1

6 b = ŷ −AµLk
7 Ω = Ψ−A(P̂Li,τ + α diag(P̂Li,τ ))AT

8 S = AP̂ 0
i,τA

T

9 K = P̂ 0
i,τA

TS−1

10 ∆ = K
(
y −Aµ̂0

i,τ − b
)

11 if We are estimating transformed noises with unit
variance as in Section II-B then

12 β = min
(

1
max ∆[n+1:n̂]

, 1
)

13 else
14 β = 1
15 end
16 µ̂L+1

i,τ = (1− β)µ̂Li,τ + β
(
µ̂0
i,τ + ∆

)
17 P̂L+1

i,τ = P̂ 0
i,τ −KSKT

18 end

transformation function (16) with F−1 being the inverse CDF
of the Student-t distribution. Measurement model is

y = x+ ε, (24)

where ε has standard normal distribution. The combined
measurement is then

y = x0 + F−1(Φ(ê)) + ε, (25)

where ê ∼ (0, 1). The measurement value is 10. We solve
this one step problem, with the proposed algorithm and with
linear Kalman filter, assuming that the prior x0 + e has
normal distribution with same mean and variance as the true
prior (N(0, 2)) and then the true posterior by computing
the PDF in a dense grid. Top part of Figure 1 shows the
distributions before update and the measurement likelihood.
The measurement is clearly far away from the prior mean.
Bottom part of Figure 1 shows the posteriors computed in
the three different ways described above. Because the state
transition model has heavier tails than the measurement, the
measurement dominates the posterior. Figure 1 shows how
the posterior of the proposed algorithm that takes the heavy-
tailness of the prior into account has posterior distribution
close to the true posterior unlike the Kalman posterior.
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Fig. 1. Probabilities associated with the example 1

B. Nonlinear motion model

In this example, we consider a filtering example with state
transition model

xi = xi−i + ‖xi−i‖ ei, (26)

where ei ∼ N(0, I) and thus the magnitude of state transition
noise is directly proportional to the norm of the state. The state
contains 2 variables and the measurement model is linear

yi = xi + εi, (27)

where εi ∼ N(0, I). Because the measurement model is linear,
there are no benefit of using PLF over GGF. We simulated
1000 tracks of length 20 time steps using prior mean 0 and
diagonal unit covariance and used UKF for approximating
integrals in the algorithms.

Figure 2 shows the mean estimation errors of the means
at each time step of the filtering and also the smoothed
estimates. Initial prior at time step 0 is identical for both
filtering algorithms, but the smoother improves it. Towards the
end of the track the state has moved away from the origin and
the measurement variance is much smaller than the variance
of state transition variance and so the state estimate is close to
the measurement, but in the beginning of the track as the state
is close to origin and ‖xi−i‖ ei has small variance compared to
Ri the proposed algorithm outperforms GGF and the smoother
is even more accurate, as expected.
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Fig. 2. Probabilities associated with the example 1

C. Accelerometer positioning

In this example, we consider a one dimensional tracking
using an accelerometer. The state transition model isxi,1xi,2

xi,3

 =

xi−1,1 + xi−1,2 +
xi,3

2
xi−1,2 + xi−1,3

xi−1,3 + ei

 , (28)

where ei is Student-t distributed. The prior is N(0, 10−6I).
The used measurement model is an accelerometer measure-
ment

yi = xi,3 + εi, (29)

where ε ∼ N(0, 1).
We made two tests, in the first one the ei had 3 degrees of

freedom and variance 3. In the second test, we used 2 degrees
of freedom for the Student-t distribution. This distribution does
not have finite variance. As the models are linear, we used the
linear Kalman filter as reference. For the 3 degrees of freedom
we used Q = 3 so that the Kalman filter has the correct
variance. For the second case, as the variance is not defined,
we tested different variances {1, 10, 100, 1000, 10000}.

We simulated the 10 step tracks 10000 times and results
for mean errors for each state variable are given in Table I

TABLE I
RESULTS OF STUDENT-t ACCELEROMETER TEST WITH 3 DEGREES OF

FREEDOM

Method x1 x2 x3

Proposed 11.68 2.30 0.68
Kalman 11.90 2.32 0.70
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TABLE II
RESULTS OF STUDENT-t ACCELEROMETER TEST WITH 2 DEGREES OF

FREEDOM

Method x1 x2 x3

Proposed 11.88 2.35 0.69
Kalman Q = 1 14.16 2.65 0.87

Kalman Q = 10 12.37 2.40 0.75
Kalman Q = 100 12.57 2.40 0.79

Kalman Q = 1000 12.61 2.43 0.79
Kalman Q = 10000 12.61 2.43 0.79

and in Table II. From results we can see that with 3 degrees
of freedom the results obtained were slightly better with the
proposed method than with Kalman filter that assumed the
noise Gaussian instead of Student-t. While making this test we
noticed that with large prior variance the methods produced
even more similar results. When the state transition noise had
2 degrees of freedom the proposed method outperformed the
Kalman filter with all tested variances.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a modification to the PLF that uses the
state transition and measurement functions simultaneously to
improve the estimation accuracy in situations where the state
transition noise is not additive. In our examples, we showed
how the proposed method can be used with non-Gaussian
state transition noise, how the proposed method outperformed
method in literature in situation where the state noise was
dependent on the state and how the proposed algorithm is
applicable to inertial positioning when state transition model
noise is not Gaussian. We also showed how the algorithm
produces a single time step fixed lag smoothed estimates.

As future work, the algorithm could be extended to work
with multiple time steps in a similar manner as accumulated
state density filter [13], [14]. In that case, we would be able
to obtain a smoothed estimates from multiple time steps.
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[1] S. Särkkä, Bayesian Filtering and Smoothing. United Kingdom:
Cambridge University Press, 2013.

[2] Y. Bar-Shalom, X. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation: Theory, Algorithms and Software, 2001.

[3] A. F. Garcı́a-Fernández, L. Svensson, M. R. Morelande, and S. Särkkä,
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filtering with empirical noise models,” in 2021 International Conference
on Localization and GNSS (ICL-GNSS), 2021, pp. 1–7.

[11] R. Zanetti, “Recursive update filtering for nonlinear estimation,” IEEE
Transactions on Automatic Control, vol. 57, no. 6, pp. 1481–1490, June
2012, doi:10.1109/TAC.2011.2178334.

[12] Y. Huang, Y. Zhang, N. Li, and L. Zhao, “Design of sigma-point Kalman
filter with recursive updated measurement,” Circuits, Systems, and Signal
Process., pp. 1–16, August 2015, doi:10.1007/s00034-015-0137-y.

[13] W. Koch and F. Govaers, “On accumulated state densities with applica-
tions to out-of-sequence measurement processing,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 47, no. 4, pp. 2766–2778,
2011.

[14] F. Govaers and W. Koch, “Generalized solution to smoothing and out-of-
sequence processing,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 50, no. 3, pp. 1739–1748, 2014.

https://doi.org/10.1109/ASSPCC.2000.882463
https://doi.org/10.1109/TAC.2011.2178334
https://doi.org/10.1007/s00034-015-0137-y

	Introduction
	Related work
	Posterior linearization filter
	Nonlinearly transformed measurement noises

	Problem formulation
	Proposed approach
	Algorithm

	Examples
	Student-t state transition model
	Nonlinear motion model
	Accelerometer positioning

	Conclusions and future work
	References

