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Abstract: This paper is concerned with application of cubature integration methods to Kalman
filtering of discretely observed non-linear stochastic continuous-time systems. We compare two
recently proposed variants of the continuous-discrete cubature Kalman filter (CD-CKF), which
differ in the order how the discretization and the Gaussian approximation are done. Aside with
theoretical analysis we test the performance of the different variants in a simulated application.
The results indicate that the relative advantages of the approaches are application specific and
neither one is unconditionally better than the other.
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1. INTRODUCTION

Recently, Särkkä [2007] introduced a continuous-discrete
version of the unscented Kalman filter (CD-UKF), which
is based on computing the formal continuous-time limit of
the discrete-time UKF [Julier et al., 2000]. The CD-UKF
can be used for state estimation in continuous-discrete
non-linear filtering models [Jazwinski, 1970, Maybeck,
1982] of the form

dx(t) = f(x(t), t) dt+
√

Qdβ(t)

zk = h(x(tk)) + vk,
(1)

where x(t) is the n-dimensional state, β(t) is an n-
dimensional standard Brownian motion, and vk is a zero
mean Gaussian random vector with covariance Rk. Be-
cause the recently introduced cubature Kalman filter
(CKF) [Arasaratnam and Haykin, 2009] can be obtained
as a special case of the discrete-time UKF with suitable
selection parameters in the unscented transform [cf. Wu
et al., 2006, Arasaratnam and Haykin, 2009], the CD-
UKF of Särkkä [2007] also includes the continuous-discrete
cubature Kalman filter (CD-CKF) as a special case.

More recently, Arasaratnam et al. [2010] introduced a
continuous-discrete version of the cubature Kalman filter
(CKF) [Arasaratnam and Haykin, 2009], which is applica-
ble to the above class of models, but is based on discretiza-
tion of the continuous dynamics with Itô-Taylor expansion
of strong order 1.5 and then applying the discrete-time
CKF. The resulting continuous-discrete cubature Kalman
filter (CD-CKF) is different from what we get as the
special case of the CD-UKF [Särkkä, 2007], and here we
shall analyze these differences in detail and the relative
merits of the different formulations.

The Itô-Taylor expansion based method of Arasaratnam
et al. [2010] can be considered as a special case of so
called linearized discretization approach to continuous-

discrete filtering [cf. Gustafsson and Isaksson, 1996]. In
that method we first discretize the continuous-time dy-
namic model and then apply discrete-time filter to the
resulting discrete time system. The alternative approach
is discretized linearization, where we first form the filter to
the continuous system and then discretize the continuous
filter. The latter approach is compatible with the clas-
sical framework of continuous-discrete Gaussian filtering
[Maybeck, 1982] as well as with the classical continuous-
discrete extended Kalman filter (CD-EKF) [Jazwinski,
1970] and recently proposed continuous-discrete unscented
Kalman filter (CD-UKF) [Särkkä, 2007]. Cubature inte-
gration based filters and smoothers using the latter ap-
proach was also recently proposed in [Särkkä and Sar-
mavuori, 2012].

In this article we present the discretized linearization based
continuous-discrete CKF and analyze its advantages and
disadvantages over the linearized discretization version.
We also show how the new filter can be implemented in
square root form and compare its performance to the CD-
CKF of Arasaratnam et al. [2010], to other Itô-Taylor
expansion based Gaussian filters as well as to CD-UKF
of Särkkä [2007] and CD-GHKF of Singer [2008].

1.1 Cubature Integration

In the present context cubature integration refers to meth-
ods for approximate computation of Gaussian integrals of
the form

E[f(x)] =

∫

Rn

f(x)N(x |m,P ) dx, (2)

where f : R
n 7→ R

d and N(x |m,P ) is the multidi-
mensional Gaussian density with mean m and covariance
matrix P . In particular, cubature integration methods
here primarily refer to multidimensional generalizations of



Gauss-Hermite quadrature, that is, to approximations of
the form

E[f(x)] ≈
∑

i

wi f(xi), (3)

where the weights wi and the sigma points xi are functions
of the mean m and covariance P of the Gaussian term.
In the 3rd order spherical cubature method [see, e.g.
Arasaratnam et al., 2010, Arasaratnam and Haykin, 2009],
which we mainly discuss here, the sigma points are selected
as follows:

xi = m+
√
P ξi, (4)

where P =
√
P
√
P

T
and the 2n unit sigma points ξi

are selected to be at the intersections of an n-dimensional
sphere and the coordinate axes:

ξi =

{√
n ei , i = 1, . . . , n

−
√
n ei−n , i = n+ 1, . . . , 2n.

(5)

Here ei denotes a unit vector to the direction of coordinate
axis i, and the weights are defined as wi = 1/(2n) for
i = 1, . . . , 2n. The advantage of this method is that the
number of evaluation points is linear function of the state
dimension. This rule is also a special case of the unscented
transform (UT) with a suitable selection of parameters [cf.
Wu et al., 2006].

1.2 Discrete-Time Gaussian Filtering and CKF

In discrete-time Gaussian filtering or Gaussian assumed
density filtering, one is considered with forming Gaussian
approximations to the filtering distributions of models of
the following form:

xk = g(xk−1) + wk−1

zk = h(xk) + vk,
(6)

where xk ∈ R
n is the discrete-time state sequence, and

wk ∼ N(0, Qd
k) is the discrete-time process noise sequence.

The discrete-time Gaussian filter [Wu et al., 2006, Ito and
Xiong, 2000] is the following:

• Prediction: Compute predicted state mean and co-
variance as follows:

m−

k = E[g(xk−1)]

P−

k = E[(g(xk−1)−m−

k ) (g(xk−1)−m−

k )
T ] +Qd

k−1
,

(7)

where all the expectations are taken with respect to
the distribution xk−1 ∼ N(mk−1, Pk−1).

• Update: Compute the mean and covariance of the
state distribution given the measurement zk:

µk = E[h(xk)]

Sk = E[(h(xk)− µk) (h(xk)− µk)
T ] +Rk

Ck = E[(xk −m−

k ) (h(xk)− µk)
T ]

Kk = Ck S
−1

k

mk = m−

k +Kk (zk − µk)

Pk = P−

k −Kk Sk K
T
k ,

(8)

where all the expectations are taken with respect to
the distribution xk ∼ N(m−

k , P
−

k ).

The discrete-time CKF [Arasaratnam and Haykin, 2009]
is a special case of the above algorithm, where the Gaus-
sian integrals are approximated with 3rd order spherically

symmetric cubature integration rule. With different selec-
tions of integration methods, we get various other filtering
methods [Wu et al., 2006]. The discrete-time UKF [Julier
et al., 2000] can also be considered as an approximation
to the Gaussian filter.

2. TWO FORMULATIONS OF CD-CKF

2.1 IT-1.5 Based CD-CKF

The method proposed by Arasaratnam et al. [2010] uses
the 1.5 order strong Itô-Taylor scheme [Kloeden and
Platen, 1999] based discretization of the SDE in model
(1) as follows:

x(t+ δ) = x(t) + δ f(x(t), t) +
δ2

2
L0 f(x(t), t)

+
√

Qw + (Lf(x(t), t)) y,

(9)

where w and y are a suitably correlated pair of zero mean
Gaussian random variables and the operators L0 and L
are defined as

L0 =
∂

∂t
+
∑

i

fi
∂

∂xi

+
1

2

∑

p,q,j

√

Qpj

√

Qqj

∂2

∂xp∂xq

L =
∑

i,j

√

Qij

∂

∂xi

eTj .

(10)

If we define

fd(x(t)) = x(t) + δ f(x(t), t) +
δ2

2
L0 f(x(t), t), (11)

then the mean m(t + δ) and covariance P (t + δ) of
x(t+ δ) in approximation (9) can be computed as follows
[Arasaratnam et al., 2010]:

m(t+ δ) = E[fd(x(t))]

P (t+ δ) = E[fd(x(t)) f
T
d (x(t))]−m(t+ δ)mT (t+ δ)

+
δ3

3
E[(Lf(x(t), t))(Lf(x(t), t))T ]

+
δ2

2

√

QE[(Lf(x(t), t))T ]

+
δ2

2
E[(Lf(x(t), t))]

√

Q
T
+ δ Q,

(12)

where the expected values are computed over the distri-
bution N(x(t) |m(t), P (t)). It is also possible to utilize
additional approximations to simplify the equations with-
out significantly affecting the performance [Arasaratnam
et al., 2010], but here we use the full version of the algo-
rithm.

In the CD-CKF of Arasaratnam et al. [2010] the primary
idea is to approximate the expectations in the above
equations with the 3rd order cubature integration method.
The algorithm is the following:

• Prediction: Divide sampling interval T into M steps
of length δ = T/M iterate the mean and covari-
ance Equations (12) M times while approximating
the expectation integrals with 3rd order symmetric
cubature integration.

• Update: Perform normal discrete-time CKF update
step [Arasaratnam and Haykin, 2009], that is, the
Gaussian filter update step (8) with 3rd order cu-
bature integration.



Obviously, we could use any other numerical integration
scheme [Kloeden and Platen, 1999] for the SDE instead
of the Itô-Taylor expansions. The 3rd order cubature inte-
gration could also be replaced with some other Gaussian
integration method [Wu et al., 2006].

2.2 Classical Gaussian Filtering Based CD-CKF

In classical Gaussian filtering [Maybeck, 1982] and thus
also in the CD-UKF of Särkkä [2007] the idea is to approx-
imate the mean and covariance prediction directly in con-
tinuous time without discretizing the dynamic model first.
The differential equations for the mean and covariance can
be derived using the Itô formula [see, e.g., Øksendal, 2003],
which states that if the evolution of the state is governed
by the stochastic differential equation

dx = f(x, t) dt+
√

Qdβ, (13)

then the time evolution of an arbitrary (scalar) function
of state φ(x) is governed by the equation

dφ =
∑

j

∂φ

∂xj

[f(x, t) dt+
√

Qdβ]j +
1

2

∑

ij

Qij

∂2φ

∂xi∂xj

dt.

(14)

Taking expectations from both sides and formally dividing
by dt gives the general differential equation for the mean
of φ as follows:

E

[

dφ

dt

]

= E





∑

j

∂φ

∂xj

fj(x, t)



+
1

2
E





∑

ij

Qij

∂2φ

∂xi∂xj



 .

(15)

By first selecting φ(x) = xi, and then φ(x) = (xi −
mi) (xj − mj), we get the following results [Jazwinski,
1970]:

dm

dt
= E[f(x, t)]

dP

dt
= E[(x−m) fT (x, t)] + E[f(x, t) (x−m)T ] +Q,

(16)

where m = E[x] and P = E[(x − m) (x − m)T ]. Note
that in the Equations (16) the expectations are taken with
respect to the actual distribution of the state p(x(t)). That
is, the equations are not true differential equations in the
sense that they cannot be solved without first solving the
full Fokker-Planck-Kolmogorov partial differential equa-
tion [Jazwinski, 1970].

We shall now use the Gaussian filter [Maybeck, 1982,
Ito and Xiong, 2000, Wu et al., 2006] approach, where
the idea is to the expectations with respect to the true
distribution of x(t) with expectations over the Gaussian
approximations. The update step can be approximated
in the same way as in the discrete-time Gaussian filter
presented in Section 1.2 and thus the continuous-discrete
Gaussian filter equations can be written as follows:

(1) Prediction step: Integrate the mean and covariance
differential equations (16) starting from the mean and
covariance on the last update time tk−1, to the time
tk of the measurement yk. The expectations are taken
with respect to x(t) ∼ N(m(t), P (t)). The results of
the prediction are denoted asm(t−k ), P (t−k ), where the

minus at superscript means “infinite-decimally before
the time tk”.

(2) Update step: Update step is the same as the discrete-
time filter update step in Equations (8), but with

the definitions m−

k , m(t−k ), P
−

k , P (t−k ) and mk ,

m(tk), Pk , P (tk).

The third-degree rule based continuous-discrete cubature
Kalman filter (CD-CKF) can be now obtained by sub-
stituting the cubature approximations to the continuous-
discrete Gaussian filter equations:

(1) Prediction step: Integrate the following differential
equations from initial conditions mk−1, Pk−1 at time
tk−1 to time tk

dm(t)

dt
=

1

2n

2n
∑

i=1

f(m(t) +
√

P (t) ξi, t)

dP (t)

dt
=

1

2n

2n
∑

i=1

f(m(t) +
√

P (t) ξi, t) ξ
T
i

√

P (t)
T

+
1

2n

2n
∑

i=1

√

P (t) ξi f
T (m(t) +

√

P (t) ξi, t)

+Q,
(17)

where the cubature points ξi are defined in Equation
(5). The prediction result is m−

k = m(tk), P−

k =
P (tk).

(2) Update step: The update step can be obtained by
substituting the cubature approximation to the Gaus-
sian filter update Equations (8). First we form the
cubature points as

xi = m−

k +
√

P−

k ξi, i = 1, . . . , 2n, (18)

and then we approximate the first 3 equations in the
Gaussian filter update step (8) as follows:

µk =
1

2n

2n
∑

i=1

h(xi)

Sk =
1

2n

2n
∑

i=1

(h(xi)− µk) (h(xi)− µk)
T +Rk

Ck =
1

2n

2n
∑

i=1

(xi −m−

k ) (h(xi)− µk)
T .

(19)

Other (higher order) cubature rules could be used for
approximating the Gaussian integrals on prediction and
update steps in an analogous manner. The above algorithm
is also a special case of the CD-UKF Algorithm 4.6 in
Särkkä [2007] if we select the UT parameters as α = 1,
β = 0 and κ = 0.

If we define matrix A(t) as the lower triangular Cholesky
factor of the covariance A(t) = chol(P (t)), then the differ-
ential equations of the prediction step can be transformed
into square root form in the same way as in Stengel [1994]
and Särkkä [2007], and the result is:



dm(t)

dt
=

1

2n

2n
∑

i=1

f(m(t) +A(t) ξi)

dA(t)

dt
= A(t) Φ

[ 1

2n

2n
∑

i=1

A−1(t) f(m(t) +A(t) ξi) ξ
T
i

+
1

2n

2n
∑

i=1

ξi f
T (m(t) +A(t) ξi)A

−T (t)

+A−1(t)Q(t)A−T (t)
]

(20)

where Φ[·] is a function returning the lower triangular part
of the argument as follows:

Φij [B] =











Bij , if i > j
1

2
Bij , if i = j

0 , if i < j.

(21)

The update step can be implemented in square root form
using the methodology presented in Arasaratnam et al.
[2010] and Arasaratnam and Haykin [2009].

2.3 Comparison of Discretizations

The key difference between CD-CKF [Arasaratnam et al.,
2010] and CD-CKF presented in Section 2.2 is how the
discretization is done:

• In CD-CKF of Arasaratnam et al. [2010] the continuous-
time system is first discretized and then approxi-
mated as Gaussian. This could be called linearized
discretization approach.

• In CD-CKF in Section 2.2 the continuous-time system
is first approximated with Gaussian process and this
Gaussian process is then discretized. This could be
called discretized linearization approach.

As discussed in Gustafsson and Isaksson [1996], the former
approach indeed tends to work better in the case of EKF,
as it theoretically should, because in a sense, there are
fewer Gaussian approximations involved. In linearized dis-
cretization the Gaussian approximations are only formed
on the discretization steps, but in discretized linearization
Gaussianity is assumed for all time instants on the sam-
pling interval.

It should also be stressed that unlike claimed in Arasarat-
nam et al. [2010], the discretized linearization based CD-
UKF [Särkkä, 2007] is not based on Euler approximation
of the dynamics, but instead, a rigorous application of the
Itô formula (see Section 2.2). The reason why we only need
to consider terms up to first order in time step size δ, as
has been done in Särkkä [2007], is because in the limit
δ → 0 the higher order terms do not contribute anything.
That is, we could start from the Itô-Taylor expansion in
derivation of the CD-UKF [Särkkä, 2007] and the limit
δ → 0 would still be the same. In fact, it is not hard to see
that by taking the formal limit δ → 0 of Equations (12),
we indeed get the Equations (16).

2.4 Order of Convergence in Itô-Taylor

In the Gaussian filtering context, it is not actually the
strong order of convergence, which is important, but the
weak order of convergence, because one is interested in

the moments of the distribution instead of functionals
of the path. In the present additive noise case the IT-
1.5 actually coincides with the order 2.0 weak Itô-Taylor
scheme [Kloeden and Platen, 1999], which was proposed as
a suitable SDE discretization method for target tracking
applications by Morelande and Gordon [2005]. The model
considered by the Morelande and Gordon [2005] was a 2d
coordinated turn model with radar measurements, which
is a 2d version of the model considered in Arasaratnam
et al. [2010].

Although according to Morelande and Gordon [2005] and
Arasaratnam et al. [2010], the Itô-Taylor expansion is a
suitable choice when the numerical accuracy and compu-
tational complexity are concerned, the accuracy does not
come without a price. From the definitions of the operators
a clear disadvantage of the method can be seen – the
discretization depends on the first and second derivatives
of the function x 7→ f(x, t). That is, the derivatives have
to exist and analytical forms need to be available. Due
to these requirements, one of the key advantages, the
derivative-freeness property of the cubature Kalman filter-
ing [Arasaratnam and Haykin, 2009] is lost. However, the
need for the closed form derivatives could be eliminated by
replacing the Itô-Taylor based method, for example, with
one of the Runge-Kutta methods presented in Kloeden and
Platen [1999].

3. NUMERICAL COMPARISON

For numerically evaluating the differences between the two
filter formulations, we used the same simulation scenario
as was used in Arasaratnam et al. [2010]. In this difficult
tracking scenario, the state consists of 3d-position, 3d-
velocity and the angular velocity of a maneuvering aircraft.
We used the same model parameters and repeated the
cases with sampling periods T = 4s and T = 8s, and
angular velocity ω = 6◦/s. A difference in our simulation
was that instead of using the initialization procedure
presented in Section 5.5.3 of Bar-Shalom et al. [2001],
we used the initialization presented in the Section 5.5.2.
That is, we simply draw the initial estimate from the prior
distribution with standard deviation 100m in position and
velocity components, and 1◦/s in the angular velocity. We
tested the methods in terms of number of divergences
(an > 1000m error in position was also considered as
a divergence) and root mean squared errors (RMSE) of
position.

We tested the following methods:

• CD-EKF: The classical first order CD-EKF [Jazwin-
ski, 1970] with 4th order Runge-Kutta (RK) integra-
tion.

• CD-CKF1: The IT-1.5 based continuous-discrete
CKF of Arasaratnam et al. [2010].

• CD-UKF1: The IT-1.5 based continuous-discrete
UKF with the “classical” parameterization α =
1, β = 0, κ = −4 of Julier et al. [2000].

• CD-GHKF1: The IT-1.5 based continuous-discrete
GHKF with 3n-point Gauss-Hermite (GH) rule.

• CD-CKF2: The Gaussian filtering based continuous-
discrete CKF presented in Section 2.2 with 4th order
RK integration.



Table 1. Number of divergences in 100 Monte
Carlo runs in the case T = 4s as function of

number of integration steps M .

Method/M 1 2 4 8 16 32 64

CD-EKF 0 0 0 0 0 0 0

CD-CKF1 0 0 0 0 0 0 0

CD-UKF1 0 0 0 0 0 0 0

CD-GHKF1 0 0 0 0 0 0 0

CD-CKF2 100 100 56 6 0 0 0

CD-UKF2 100 100 77 12 0 0 0

CD-GHKF2 100 100 0 0 0 0 0
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Fig. 1. Position errors as function of number of discretiza-
tion steps for the case T = 4s.

• CD-UKF2: The Gaussian filtering based continuous-
discrete UKF [Särkkä, 2007] with 4th order RK-
integration.

• CD-GHKF2: The Gaussian filtering based continuous-
discrete GHKF [Singer, 2008] with 3n-point GH rule
and 4th order RK-integration.

The filter divergences for the case T = 4s in 100 Monte
Carlo simulations are listed in Table 1. Surprisingly, CD-
EKF does not diverge in any of the runs and seems to
produce meaningful results starting at M = 1 discretiza-
tion steps. The IT-1.5 based CD-CKF1, CD-UKF1 and
CD-GHKF1 do not diverge in any of the runs, and they
work fine already with only single discretization step. The
Gaussian filter based CD-CKF2 and CD-UKF2 diverge in
all of the runs when M = 1 or M = 2, in most of the
runs when M = 4, and in some of the runs when M = 8.
Starting at M = 16 they do not diverge in any of the runs.
The Gaussian filter based CD-GHKF2 diverges in all of the
runs when M = 1 or M = 2, but starts to work reliably
from M = 4.

The position errors for the case T = 4s as function of
the logarithmic number of discretization steps, averaged
over the 100 Monte Carlo simulations are shown in Figure
1. It can be seen that the errors of CD-EKF are high
with some values of M , and low with some values of M .
Thus its performance is very unpredictable and unreliable.
All the IT-1.5 based methods CD-CKF1, CD-UKF1 and
CD-GHKF1 have practically the same errors. Also the
Gaussian filter based methods, in the runs that they do
not diverge, have practically the same errors as the IT-1.5
based methods.

Table 2. Number of divergences in 100 Monte
Carlo runs in the case T = 8s as function of

number of integration steps M .

Method/M 1 2 4 8 16 32 64

CD-EKF 34 0 0 0 0 0 0

CD-CKF1 0 0 0 0 0 0 0

CD-UKF1 23 12 17 14 12 8 19

CD-GHKF1 0 0 0 0 0 0 0

CD-CKF2 100 100 100 5 0 0 0

CD-UKF2 100 100 100 33 14 8 19

CD-GHKF2 100 100 100 0 0 0 0
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Fig. 2. Position errors as function of number of discretiza-
tion steps for the case T = 8s.

The filter divergences for the case T = 8s are shown in
Table 2 and the errors are shown in Figure 2. In this case
CD-EKF diverges in some of the runs when the step size
is small. However, the errors are an order of magnitude
higher than with the other methods and thus, in reality,
CD-EKF does not produce meaningful results in this case.
Of the IT-1.5 based methods, CD-CKF1 and CD-GHKF1
do not diverge in any of the runs, and they also have the
smallest errors with a small number of discretization steps,
CD-GHKF1 error being slightly smaller than of CD-CKF1.
The IT-1.5 based CD-UKF1 diverges in many of the runs
with all of the step sizes. Its error varies a lot with the
number of discretization steps, and it sometimes has higher
error than CD-CKF1 and sometimes lower.

In the case T = 8s the CD-GHKF2 has slightly less
divergences than the other Gaussian filter based CD-
CKF2 and CD-UKF2 methods. All these methods start
somewhat work at M = 8, but CD-UKF2 has divergence
problems even with higher number of steps. It is interesting
to note that the errors of the corresponding IT-1.5 and
Gaussian filter based methods are practically the same
after M = 8 – as is predicted by the fact that in the limit
δ → 0 the methods converge to the same limit. Starting
at M = 8 both the Gauss-Hermite based methods CD-
GHKF1 and CD-GHKF2 have smaller errors than any of
the cubature or unscented transform based methods.

4. CONCLUSION AND DISCUSSION

In this paper, we have analyzed the connection and dif-
ferences of the continuous-discrete cubature Kalman fil-
ter (CD-CKF) obtained as a special of the CD-UKF



[Särkkä, 2007], which amounts to approximating the clas-
sical continuous-discrete Gaussian filter equations with
cubature integration, and the 1.5 order strong Itô-Taylor
(IT-1.5) expansion based CD-CKF presented by Arasarat-
nam et al. [2010]. The difference in the methods is in the
order how the discretization and Gaussian approximation
(linearization) are formed. In the limit of infinite number of
discretization steps, the algorithms are indeed equivalent,
but their numerical performance is different with finite
number of discretization steps.

The results indicate that the Gaussian filter based method
can have more numerical problems with long discretization
step lengths. The explanation for this can be that the IT-
1.5 approach has the form that more naturally preserves
the positive definiteness of the covariance matrix. When
using Runge-Kutta method for the differential equations
of mean and covariance, the covariance can more easily
become singular or negative definite. It might be possible
to avoid this by using some other numerical integration
method that would preserve the positive definiteness bet-
ter.

The usage of the IT-1.5 approach can be beneficial when
the discretization steps are long. However, the difference is
only present with very small number discretization steps,
and when more steps are used, the difference disappears.
The IT-1.5 approach has the disadvantage that it re-
quires computation of the first and second order analytical
derivatives of the dynamic model function, and thus a
single step of the algorithm can be quite computationally
heavy. The other disadvantage is that the method can-
not be easily extended to case of non-additive noises in
dynamic model. The Gaussian filter based approach does
not need any analytical derivatives nor their evaluation
and it is directly applicable to the non-additive noise case.
The relative superiority of the approaches is dependent on
the particular application and neither one is always better
than the other.

The Gaussian integration method used also has an effect
on the performance. The full Gauss-Hermite integration
routine works best in both the IT-1.5 and Gaussian fil-
ter cases. The second best of the tested ones is the 3rd
spherical cubature integration and the third is the un-
scented transform (with the classical parameters). The
most significant difference in the latter two is that the
cubature based method is numerically more stable than
the unscented transform based method. The explanation
for this might be that the classical parameterization of
unscented transform causes some of the weights to be neg-
ative. Although this choice has some desirable theoretical
properties, it easily causes numerical problems. However,
one should remember that the cubature rule is just the
unscented transform with selection α = 1, β = 0, κ = 0,
and thus we cannot conclude that the cubature method
would be better than unscented transform, because both
of the methods are indeed unscented transforms.
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