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ABSTRACT

Particle filters are important approximation methods for solv-
ing probabilistic optimal filtering problems on nonlinear
non-Gaussian dynamical systems. In this paper, we derive
novel moment conditions for importance weights of sequen-
tial Monte Carlo based particle filters, which ensure the L4

convergence of particle filter approximations of unbounded
test functions. This paper extends the particle filter conver-
gence results of Hu & Schön & Ljung (2008) and Mbalawata
& Särkkä (2014) by allowing for a general class of potentially
unbounded importance weights and hence more general im-
portance distributions. The result shows that provided that the
seventh order moment is finite, then a particle filter for un-
bounded test functions with unbounded importance weights
are ensured to converge.

Index Terms— Particle filter convergence, unbounded
importance weights, moment conditions

1. INTRODUCTION

Dynamic state estimation problems are of great interest in
many real life applications such as navigation, target tracking,
brain imaging, spread of infectious diseases, biological pro-
cesses, telecommunication, audio signal processing, stochas-
tic optimal control, machine learning, and physical systems
[1]. In these problems, the state vector at time t is represented
by xt ∈ Rn and satisfies the stochastic equation

xt ∼ f(xt | xt−1), (1)

where f(xt | xt−1) is the transition probability density of
the corresponding Markovian stochastic process modeling the
dynamics of the system. At each time step twe get a measure-
ment yt ∈ Rm from the measurement model

yt ∼ g(yt | xt), (2)
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where g(yt | xt) is a conditional probability density modeling
the distribution of measurements.

The Bayesian approach to dynamic state estimation prob-
lem involves the construction of the probability density func-
tion of xt, given y1:t , (y1, y2, . . . , yt) [2]. This problem
is known as the Bayesian filtering problem. If we denote the
probability density function of xt given y1:t by p(xt | y1:t),
then the construction of p(xt | y1:t) can be recursively done
using the Bayesian filtering equations [1]

p(xt | y1:t−1) =

∫
f(xt | xt−1) p(xt−1 | y1:t−1) dxt−1,

p(xt | y1:t) =
g(yt | xt) p(xt | y1:t−1)∫
g(yt | xt) p(xt | y1:t−1) dxt

,

(3)

where the first step is often referred to as the prediction step
(or time update) and the second step is the measurement up-
date step (or correction step).

In this paper, we aim to analyze the theoretical conver-
gence properties of particle filters. In such theoretical analy-
sis, it is convenient to rewrite the Bayesian filtering equations
in terms of probability measures as follows (see., e.g, [3–6]).
Let ν be a measure and φ be a measurable function. Then we
denote

(ν, φ) ,
∫
φdν, and f φ(x) ,

∫
f(dz | x)φ(z). (4)

Let πt|t−1 denote the measure corresponding to the probabil-
ity density p(xt | y1:t−1) and πt|t the measure correspond-
ing to the density p(xt | y1:t), then, using notations (4), the
Bayesian filtering equations (3) can be written as

(πt|t−1, φt) = (πt−1|t−1, f φt),

(πt|t, φt) =
(πt|t−1, φt g)

(πt|t−1, g)
.

(5)

2. PARTICLE FILTERING

In the most practical cases, especially in nonlinear or non-
Gaussian models, the closed form solution of (3) or (5) is in-
tractable. Thus, several approximate methods have been pro-
posed and the most used classes of approximate methods are



Gaussian approximation based extended/non-linear Kalman
filters (e.g., [1,2]), and sequential Monte Carlo based particle
filters (e.g., [1, 7, 8]). In this paper we study particle filters,
where the main idea is to approximate πt|t by a weighted set
of Monte Carlo samples {(xit, wit) : i = 1, . . . , N}, and,
based on these samples, we can approximate the statistics of
the distribution via (weighted) sample averages.

Given a set of assumptions, it is sometimes possible to
show that a particle filter converges to the exact filtering dis-
tribution, when the number of particlesN tends to infinity [9].
Typically, a particle filter is said to convergence if the expec-
tations of a suitable class of test functions φ(.) converges in
this limit in some suitable topology:

lim
N→∞

(
N∑
i=1

wit φ(xit)

)
= E[φ(xt) | y1:t]. (6)

General convergence results for particle filters for test bounded
functions have been given, for example, in references [3, 9–
15] while for unbounded test functions, results can be found
in [4–6].

3. MODIFIED PARTICLE FILTER

The L4-convergence of particle filter in the paper [4] required
the modification of standard bootstrap filter algorithm to cope
with unbounded test functions. The convergence results were
obtained by computing the bounds for the conditional expec-
tation of the fourth power of error (L4) in the test function
estimates.

These results of [4] were extended in the paper [6] to
the case of more general importance distributions q(xt |
xt−1, y1:t). The results of [6] showed that with general im-
portance distributions the (modified) particle filter converges
provided that the importance weights are bounded.

The modified particle filter algorithm as presented in [6]
is given in Algorithm 1. The modified particle filter is con-
structed such that we always have

(πt|t−1, wt) ≈ (π̃Nt|t−1, wt) =
1

N

N∑
i=1

w
(i)
t ≥ γt > 0, (8)

where γt > 0 is a chosen threshold [4, 6].
In this paper, we extend the L4 particle filter convergence

proof of [6] to the case of (potentially) unbounded importance
weights. We use the same techniques and some assumptions
from [6], but impose a weaker assumption that the seventh
order moment is finite.

4. CONVERGENCE RESULT

The convergence proof of Algorithm 1 with bounded impor-
tance weights is found in the paper [4] for bootstrap type of

Algorithm 1 General Modified Particle Filter

1. Initialize the particles, {x(i)
0 }Ni=1 ∼ π0(dx0)

2. Predict the particles by drawing independent samples ac-
cording to

x̄
(i)
t ∼

N∑
j=1

αij q(xt | xt−1, yt),

where αi = (α1
1, α

2
2, . . . , α

i
N ) are the weights such that

αij ≥ 0,

N∑
j=1

αij = 1,

N∑
i=1

αij = 1,

and

1

N

N∑
i=1

N∑
j=1

αij q(xt | x
(j)
t−1, yt) =

1

N

N∑
j=1

q(xt | x(j)
t−1, yt)

(7)

3. If (1/N)
∑N
i=1 w̄t ≥ γt, proceed to step 4 otherwise re-

turn to step 2. Note that w̄t is the value computed at x̄(i)
t .

4. Rename x̃(i)
t = x̄

(i)
t , and compute the importance weights

{w(i)
t }Ni=1 at x̃it, and then normalize them.

5. Resample, x(i)
t ∼ π̃Nt|t(dxt) =

∑N
i=1 w̃

(i)
t δx̃i

t
(dxt)

6. Set t = t+ 1 and repeat from step 2).

importance distributions and in the paper [6] for general im-
portance distributions. Here we follow a similar path as in
the proof in [6], but modify it such that we can replace the
assumption on the boundeness of the important weights with
a moment condition.

To guarantee the convergence, we impose the following
assumptions.

Assumption 4.1. For any given y1:s we have (πs|s−1, gs) >
γs > 0, where s = 1, . . . , t.

Assumption 4.2. The dynamical model density f and mea-
surement model density g are bounded, that is, there exists
constants cf and cg such that ‖f‖ ≤ cf and ‖g‖ ≤ cg , where
‖ · ‖ denotes the supremum norm.

Assumption 4.3. The test function of interest φ(·) satisfies
supxs

|φ(xs)|4g(ys | xs) < C(y1:s).

Assumption 4.4. For any potentially unbounded importance
weights wt(xt, xt−1) defined as

wt(xt, xt−1) =
g(yt | xt) f(xt | xt−1)

q(xt | xt−1, yt)
, (9)

the seventh order moment E[(wt(xt, xt−1))7 | xt−1] is finite,
where the expectation is over q(.).



We now present the following convergence theorem,
which shows the bound for error of the fourth moment condi-
tional mean.

Theorem 4.5. Consider the modified particle filter in Algo-
rithm 1 and suppose that Assumptions 4.1–4.4 are satisfied.
Then

i. For sufficiently large N , the algorithm will not run into
an infinite loop in steps 2-3.

ii. Let L4
t (g) be the class of functions satisfying Assumption

4.3. For any φ ∈ L4
t (g), there exists a constant ct|t,

independent of N such that

E

[∣∣∣(πNt|t, φ)− (πt|t, φ)
∣∣∣4] ≤ ct|t ||φ||4t,4

N2
, (10)

where

‖φ‖t,4 = max
{

1, (πs|s, |φ|4)1/4, s = 0, 1, . . . , t
}
.

Proof. The proofs for initialization and resampling steps are
the same as in [4]. Therefore, here, we only prove the conver-
gence of the (combined) prediction and update steps as in [6].
That is, we prove the convergence of

(πNt|t, φ)− (πt|t, φ) =
(π̂Nt|t, φ)

(π̂Nt|t, 1)
−

(π̂t|t, φ)

(π̂t|t, 1)
, (11)

where π̂Nt|t = (πNt−1|t−1, w q
N ) and π̂t|t = (πt−1|t−1, w q).

This is attained by finding the bounds for the following terms:

E

[∣∣∣(πNt|t, φ)− (πt|t, φ)
∣∣∣4] and E[(πNt|t, |φ|

4)]. (12)

As in [6], it is enough to find the bounds for the following
terms:

E

[∣∣∣(π̂Nt|t, φ)− (π̂t|t, φ)
∣∣∣4] and E

[
(π̂Nt|t, |φ|

4)
]
, (13)

and

E

[∣∣∣(π̂Nt|t, 1)− (π̂t|t, 1)
∣∣∣4] and E

[
(π̂Nt|t, 1)

]
. (14)

We only study the boundedness of (13). The bounds for (14)
are obtained by setting φ = 1 in (13). We denote Ft−1 as the
σ-algebra generated by xit−1. We write (π̂Nt|t, φ)− (π̂t|t, φ) as
Π1 + Π2 + Π3, where

Π1 = (π̂Nt|t, φ)− 1

N

N∑
i=1

E[φ(x̃it)w(x̃it, xt−1) | Ft−1], (15)

Π2 =
1

N

N∑
i=1

E[φ(x̃it)w(x̃it, xt−1) | Ft−1]

− 1

N

N∑
i=1

(πN,αi

t−1|t−1, f φ g), (16)

Π3 =
1

N

N∑
i=1

(πN,αi

t−1|t−1, f φ g)− (π̂t|t, φ). (17)

Let x̄it ∼ (πN,αi

t−1|t−1, q), then

E[φ(x̄it)w(x̄it, x
i
t−1) | Ft−1] = (πN,αi

t−1|t−1, f φ g). (18)

We next compute the bounds for E[|Π1|4, E[|Π2|4 and
E[|Π3|4, as in [6]. For E[|Π1|4, we use Lemmas 7.1, 7.2,
7.3, 7.4 and 7.5 from [4] and Equation (18) to get

E[|Π1|4|Ft−1]

≤ 24

N4

N∑
i=1

E

∣∣∣∣∣φ(x̃it)w(x̃it, x
i
t−1)

∣∣∣∣∣
4

| Ft−1


+

24

N4

 N∑
i=1

E

∣∣∣∣∣φ(x̃it)w(x̃it, x
i
t−1)

∣∣∣∣∣
2

| Ft−1

2

≤ 24

N4(1− ε)2

N∑
i=1

E
[
|φ(x̄it)w(x̄it, x

i
t−1)|4|Ft−1

]
+

24

N4(1− ε)2

(
N∑
i=1

E
[
|φ(x̄it)w(x̄it, x

i
t−1)|2|Ft−1

])2

.

From Assumption 4.4, we can deduce the following.

Lemma 4.6. Provided that E[(wt(x̄
i
t, x

i
t−1))7 | xt−1] is

bounded, then E[(wt(x̄
i
t, x

i
t−1))7 | Ft−1] is bounded too.

Proof.

E[(wt(x
(i)
t , xt−1))7 | Ft−1]

≤ sup
x0:t

(
E

[(
wt(x

(i)
t , xt−1)

)7

| xt−1

])
≤ sup

x0:t

c7w ≤ C7
w.

Remark 4.7. If the seventh moment is finite then the lower
moments are finite too.

Proof. Results are easily obtained from Hölder’s and Jensen’s
inequalities,

With Lemma 4.6 and the Cauchy–Schwarz inequality, we
get

E
[
|φ(x̄it)w(x̄it, x

i
t−1)|4|Ft−1

]
≤
√

E
[
φ8(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
×
√

E
[
w7(x̄it, x

i
t−1) | Ft−1

]
≤ C7/2

w

√
E
[
φ8(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
.

E
[
|φ(x̄it)w(x̄it, x

i
t−1)|2|Ft−1

]
≤
√

E
[
φ4(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
×
√

E
[
w3(x̄it, x

i
t−1) | Ft−1

]
≤ C3/2

w

√
E
[
φ4(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
.



Thus

E[|Π1|4|Ft−1]

≤ 24C
7/2
w

N4(1− ε)2

N∑
i=1

√
E
[
φ8(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
+

24C3
w

N4(1− ε)2

(
N∑
i=1

√
E
[
φ4(x̄it)w(x̄it, x

i
t−1) | Ft−1

])2

.

But

N∑
i=1

√
E
[
φ8(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
≤ N +

N∑
i=1

E
[
φ8(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
(

N∑
i=1

√
E
[
φ4(x̄it)w(x̄it, x

i
t−1) | Ft−1

])2

≤ (1 +N)

N∑
i=1

E
[
φ4(x̄it)w(x̄it, x

i
t−1) | Ft−1

]
.

Then

E[|Π1|4|Ft−1]

≤ 24C
7/2
w

N2(1− ε)2
+

24C
7/2
w ‖f‖‖g‖

N2(1− ε)2
Mt−1|t−1‖φ‖8t−1,4

+
24C3

w‖f‖‖g‖
N2(1− ε)2

Mt−1|t−1‖φ‖4t−1,4

+
24C3

w‖f‖‖g‖
N2(1− ε)2

Mt−1|t−1‖φ‖4t−1,4

=

(
c1

‖φ‖4t−1,4

+ c2‖φ‖4t−1,4 + c5

)
‖φ‖4t−1,4

N2

= C̃Π1

‖φ‖4t−1,4

N2
. (19)

The computation of bounds for E[|Π2|4 and E[|Π3|4 is the
same as in [6]. Therefore

E

[∣∣∣Π2

∣∣∣4 | Ft−1

]
≤ C̃Π2

‖φ‖4t−1,4

N2
. (20)

E

[∣∣∣Π3

∣∣∣4 | Ft−1

]
≤ C̃Π3

‖φ‖4t−1,4

N2
. (21)

By combining Equations (19), (20), and (21) via Minkowski’s
inequality, we get

E

[∣∣∣(π̂Nt|t, φ)− (π̂t|t, φ)
∣∣∣4] 1

4

≤ Ĉ1/4
t|t
‖φ‖t−1,4

N1/2
,

which implies

E

[∣∣∣(π̂Nt|t, φ)− (π̂t|t, φ)
∣∣∣4] ≤ Ĉt|t ‖φ‖4t−1,4

N2
. (22)

From [6], the bound for E[(π̂Nt|t, |φ|
4)] is

E
[∣∣∣(π̂Nt|t, |φ|4)

∣∣∣] ≤Mt|t||φ||4t−1,4. (23)

Note that if we set φ = 1 in (22) and (23), we get bounds for
(14). Hence the remaining task is to find the bounds for (12),
which is done exactly the same way as in [6]. Thus

E

[∣∣∣(πNt|t, φ)− (πt|t, φ)
∣∣∣4] ≤ Ct|t ‖φ‖4t−1,4

N2
,

E
[
(πNt|t, |φ|

4)− (πt|t, |φ|4)
]
≤ M̄t|t‖φ‖4t−1,4,

which complete the proof of Theorem 4.5.

5. NUMERICAL EXAMPLE

A relevant question is now that what is the actual benefit of the
current extension in practical particle filtering models. The
clear benefit is that it extends the class of allowed importance
distributions to the class which does not ensure that the im-
portance weights are uniformly bounded. For example, the
weights might become infinite in isolated points provided that
the required expectations of them remain bounded.

However, to get an idea what kind of importance weights
have this kind of property, consider

v(x) = |x|−1/2 exp(−|x|). (24)

Clearly this function is everywhere positive, but it also con-
tains an infinite value at x = 0, and hence it is not bounded.
However, its integral is finite, which can be seen by comput-
ing its integral by reducing it into the definition of the Gamma
function: ∫ ∞

−∞
|x|−1/2 exp(−|x|) dx = 2

√
π. (25)

The function defined by (24) is thus an example of a positive
function which is unbounded, but has a bounded integral (see
Figure 1). It is now easy to see that it is possible to construct
models for which the importance weights are point-wise un-
bounded but still satisfy Assumption 4.4. Examples of practi-
cal models which lead to this kind of importance weights will
be considered in future work.

6. CONCLUSION

In this paper, we have extended the L4 particle filter conver-
gence proof of [6] to the case of potentially unbounded impor-
tance weights, by replacing the boundedness condition with



Fig. 1. Example of a point-wise unbounded function with a
finite integral over (−∞,∞).

finiteness of conditional weight moments. Our proof shows
that provided that the seventh order moment is finite, then a
particle filter for unbounded test functions with unbounded
importance weights are ensured to converge.
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vergence of particle filters with general importance dis-
tributions,” in Proceedings of IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), 2014, (to appear).

[7] Arnaud Doucet, Simon J. Godsill, and Christophe An-
drieu, “On sequential Monte Carlo sampling methods
for Bayesian filtering,” Statistics and Computing, vol.
10, no. 3, pp. 197–208, 2000.

[8] Arnaud Doucet, Nando de Freitas, and Neil Gordon, Se-

quential Monte Carlo methods in practice, Springer,
2001.

[9] Dan Crisan and Arnaud Doucet, “A survey of conver-
gence results on particle filtering methods for practi-
tioners,” IEEE Transactions Signal Processing, vol. 50,
no. 3, pp. 736–746, 2002.

[10] Dan Crisan and Arnaud Doucet, “Convergence of se-
quential Monte Carlo methods,” Tech. Rep. CUEDIF-
INFENGrrR38, Signal Processing Group, Department
of Engineering, University of Cambridge, 2000.

[11] Pierre Del Moral and Alice Guionnet, “On the stabil-
ity of interacting processes with applications to filter-
ing and genetic algorithms,” Annales de l’Institut Henri
Poincare (B) Probability and Statistics, vol. 37, no. 2,
pp. 155–194, 2001.

[12] Randal Douc and Eric Moulines, “Limit theorems for
weighted samples with applications to sequential Monte
Carlo methods,” Annals Statistics, vol. 36, no. 5, pp.
2344–2376, 2008.

[13] Randal Douc, Eric Moulines, and Jimmy Olsson, “Op-
timality of the auxiliary particle filter,” Probability and
Mathematical Statistics, vol. 29, no. 1, pp. 1–28, 2009.

[14] Alan Bain and Dan Crisan, Fundamentals of stochastic
filtering, vol. 60, Springer, 2009.

[15] Pierre Del Moral, Mean field simulation for Monte
Carlo integration, Chapman & Hall/CRC, 2013.


