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0 Introduction
e Runge—Kutta methods for ODEs
e Strong stochastic Runge—Kutta methods

@ Weak stochastic Runge—Kutta methods

e Summary
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Overview of this lecture

@ Runge—Kutta methods for ODEs
o Taylor series.
o General Runge—Kutta schemes.
o Explicit and implicit schemes.
@ Strong stochastic Runge—Kutta methods
o It6—Taylor series.
o A family of strong order 1.0 schemes.
o The iterated It6 integrals.
@ Weak stochastic Runge—Kutta methods

o A family of weak order 2.0 schemes.
o Approximating the iterated It6 integrals.
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Runge—Kutta: Basic principles

@ A family of iterative methods for solving differential equations.

@ Based on Taylor series (see the previous lecture), ...

@ ... but are derivative-free.

@ Plug-and-play methods that only requires specification of the
differential equation (at least ideally).

@ There are other methods as well (not considered here):

o Multistep methods (e.g. Adams methods)

o Multiderivative methods

o Higher-order methods (e.g. Nystrém method)
o Tailored methods (for specific problems)
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Runge—Kutta: Motivation

@ Consider a first-order non-linear ODE

d’;_gn =f(x(1),1),  x(&) = given,

@ The simplest Runge—Kutta method is the (forward) Euler scheme.
@ Itis based on sequential linearization of the ODE system:

X(tir1) = X(t) + (X (&), t) At.

@ Easy to understand and implement.

@ The global error of the method depends linearly on
the step size At.
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Taylor series [1/2]

@ The ODE system can be integrated to give

t
x(t) =x(fp) + [ f(x(7r),7)dr.
fo
@ Recall from the previous lecture that we used a Taylor series
expansion for the solution of the ODE

X(t) = x(to) + f(x(%), ko) (t — to)

+ %Ef(x(fo); o) (t = o)?

1
+3 L2H(x(to), to) (t — 10)> + ...
@ We used the linear operator

£(e) = %(-HZ:E%(-)

Arno Solin (Aalto) Lecture 5: Stochastic Runge—Kutta Methods November 25, 2014 8/50



Taylor series [2/2]

@ In other words, the series expansion is equal to

x(t) = x(to) + f(x(t), to) (t — 1)
+ % {aﬁtf(x(to), fo) + Z f:.(x(ty), to) %f(x(to), to)} (t— t5)?

I

1 (Lt Sttt ALHCe- B
+ ...

@ If we were only to consider the terms up to At, we would recover
the Euler method.
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Derivation of a higher-order method [1/4]

@ However, here we wish to get hold of higher-order methods.

@ For the sake of simplicity, we now stop at the term
(t—1)* = (At)>.
@ We get

X(t + At) ~ x(f) + f(x(o), o) At
+3 {gt (o). o) +Zf (f), tO) ( (To),to)}(At)z.

@ We aim to get rid of the derivatives and be able to write the
expression in terms of the function f(-, -) evaluated at various
points.
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Derivation of a higher-order method [2/4]

@ We now seek a form with an extra stage:

X(fo + At) = x(ty) + Af(X(ty), l) At
+ Bf(x(f) + Cf(x(h), bo) At, ty + D At) At,
where A, B, D, and D are unknown.

@ In the last term, we can consider the truncated Taylor expansion

(linearization) around f(x(ty), &) with the chosen increments as
follows:

f(X(to) + Cf(X(to), to) At fh + DAt) = f(X(to), to)

+C (Z fi(x(fo), to) %f(x(lb)’ to)) At + DW At
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Derivation of a higher-order method [3/4]

@ Combining the previous two equations gives:

X(fo + At) = x(t) + (A+ B) f(x(fp), b)) At

+B [c Zf ‘9 (x(to) to) + D%] (A2,

@ If we now compare the above equation to the original truncated
Taylor expansion, we get the following conditions for our
coefficients:

A+B=1, B= C=1, and D=1.

1
27
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Derivation of a higher-order method [4/4]

@ We derived here is a two-stage method (known as Heun’s
method):

N At . -
x(tO + At) = x(tO) + ?{f(x'l? tO) + f(x27 fo+ At)}7
where the supporting values are given by

i1 = X(to),
Xo = X(to) + f()N(1, to) At.

@ The method (in practice the finite differences) are determined by
the choices we did in truncating the series expansion.

@ This method is of order 2.
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A general Runge—Kutta method

Algorithm: Runge—Kutta method

Start from X(#) = x(%) and divide the integration interval [y, t] into n
steps fhp <ty < b <...<t, =tsuchthat At =t 1 — l. The
integration method is defined by its Buicher tableau:

c| A
aT

On each step k approximate the solution as follows:

x(tk+1 tk + Zal xlatl

where t = t, + ¢;At and X; = X(tc) + 2}11 Aij f()'“(j,'l“j) At.
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Butcher tableau

@ Ordinary Runge—Kutta methods are commonly expressed in terms
of a table called the Butcher tableau:

Cr | A
Co | Azt Ao

Cs AS 1 A372 . e As S
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Example: Forward Euler

Example (Forward Euler)
The forward Euler scheme has the Butcher tableau:

0|0
1

which gives the recursion X(t.1) = X(t) + f(X(t), t) At.
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Example: RK4

Example (The fourth-order Runge—Kutta method)

The well-known RK4 method in Ch. 1 has the following Butcher
tableau:

o4 O O NI~
wl-{ O~
wl—f —

o4
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Implicit schemes [1/2]

@ We have considered this far so-called explicit schemes.

@ Numerical instability, when the solution includes rapidly varying
terms (stiff problems).

@ Explicit schemes use very small step sizes in order to not diverge
from a solution path (computationally demanding).

@ In implicit Runge—Kutta methods, the Buther tableau is no longer
lower-triangular.

@ On every step, a system of algebraic equations has to be solved
(computationally demanding, but more stabile).

Arno Solin (Aalto) Lecture 5: Stochastic Runge—Kutta Methods November 25, 2014 18/50



Implicit schemes [2/2]

@ The simplest implicit method is the backward Euler scheme.

Example (Backward Euler)

The implicit backward Euler scheme has the Butcher tableau:

11
1

which gives the recursion X(#11) = X(tx) + f(X(fk11), t + At) At.
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Example [1/2]

@ We study the two-dimensional non-linear ordinary differential
equation system

; 3
X1 =X1 — Xo — Xy,

Xo = X4 +X2—Xg,
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Example [2/2]

Heu

(8]

Backward Euler RK4
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Strong stochastic Runge—Kutta: Basic principles

@ A family of iterative methods for solving stochastic differential
equations.

@ Based on It6—Taylor series (see the previous lecture), ...
@ ... but are derivative-free.

@ Plug-and-play methods that only requires specification of the drift
and diffusion function of the SDE (at least ideally).

@ We divide the methods into strong and weak methods
(as we did for the Ité—Taylor series approximations).

@ A word of warning: Stochastic Runge—Kutta methods are not as
easy to grasp as the ordinary ones.
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[t6—Taylor series [1/1]

@ Recall the following multi-dimensional SDE formulation
dx = f(x(t), t)dt + L(x(1), 1) dB,  X(lo) ~ p(x(%)),

where the drift is defined by f: RY x R — RY and the diffusion
coefficients by L : RY x R — RY x R™.

@ The driving noise process

B(t) = (80(t), BA(t),.... 8™ (1))

is an m-dimensional standard Brownian motion.
@ Inintegral form the equation can be expressed as
t

t
x(t) = x(t) + : f(x(7),7)dr + t L(x(7),7)dB(7).
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[t6—Taylor series [1/2]

@ Applying the Itd formula to the terms f(x(t), t) and L(x(t), t) and
collecting the terms gives an It6—Taylor series expansion of the
solution (see the previous lecture):

X(t) = x(o) + f(x(t ) 0) (t — ) + L(x(t), o) (B(t) — B(l))
t
+/ Lf(x(7),7)drdr

+ZLL%, r) 48 (r) dr
" /t | LL(x(r).7) drd5i(r)

+3 / £5L(x(r), ) 48D (r) dB(r).
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[t6—Taylor series [1/3]

@ The first row in the equation is just the Euler—Maruyama scheme.

@ Similarly as we did in for the ordinary RK methods, we can
consider truncated series expansions of various degrees for each
of these terms.

@ The extra terms involving the iterated and cross-term It6 integrals
complicate the formulation.

@ To present a family of actual numerical methods, we consider the
following family of strong order 1.0 methods due to Andreas
RéBler...
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A class of SRK methods of strong order 1.0 [1/3]

@ Start from X(fp) = X(fp) and divide the integration interval [fy, ]
intonsteps fp < t; < b < ... <ty = tsuch that At = tx11 — .
The integration method is characterized by its extended Butcher
tableau:

c© | AO) | B(O)

ch A | B
al [ [y]T | [y@]T
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A class of SRK methods of strong order 1.0 [2/3]

@ On each step k approximate the solution trajectory as follows:

R(tey1) = Za, &9t + Ot At

+ZZ(7,(1)A,B,((”) YEVAH LD, 4 + VAt

i=1 n=1

Arno Solin (Aalto) Lecture 5: Stochastic Runge—Kutta Methods November 25, 2014 28/50



A class of SRK methods of strong order 1.0 [3/3]

@ With the supporting values

1

%@ = x(t) +ZA(0)f Xt + ¢V At) At

+ZZB,°) L', g+ cVan ap,
j=1 I=1

%" = (1) +ZA(1)f Ot + ¢V At) At

B(/n
+ZZB L <’)t+c“)m) L
j=1 I1=1 o

fori=1,2,...,sandn=1,2,...,m.

Arno Solin (Aalto) Lecture 5: Stochastic Runge—Kutta Methods November 25, 2014 29/50



The increments [1/2]

@ The increments in the algorithm are given by the It6 integrals:

. fict1 .
AR = / " 40 (r)  and

I

(l’j /tk /tk dg(ry)dY) (1),

@ The increments Aﬂ,((i) are independent normally distributed
random variables
ABY ~ N(0, At).
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The increments [2/2]

@ The iterated stochastic It6 integrals AB,((”j) are ftrickier.

@ For these methods, when i = j, the multiple 1té integrals can be

rewritten as :
ag" = 5 (18897 - at),

@ Exact simulation from the integrals Aﬁ,({"’j), when j # J, is not
possible, but can be approximated.
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Example: Euler—-Maruyama

Example (Euler—Maruyama Butcher tableau)
The Euler—-Maruyama method has the extended Butcher tableau:

0|0

0

0|0

0

1

1

0

and as we recall from the previous chapter, it is of strong order 0.5.
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Example: A strong order 1.0 method

Example (Strong order 1.0 SRK due to RéBler)
@ Consider a stochastic Runge—Kutta method with the following

extended Butcher tableau:

@ The (rather lengthy) algorithm is written out in the lecture notes

(Alg. 6.3).

0
1)1 0
0/0 0 0 0
0
11 1
111 0 1.0
3 3 01 00]0 -3

Arno Solin (Aalto)
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Higher-order methods

@ Higher-order methods by considering more terms in the I[t6—Taylor
expansion.

@ Not very practical in general (heavy and complicated).

@ For models with some special structure this might still be feasible:

@ One-dimensional models.

o Additive noise models.

o Diagonal noise models.

o Models with commutative noise.
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Example: Duffing van der Pol oscillator [1/4]

@ Consider a simplified version of a Duffing van der Pol oscillator
X+x—(a—x®)x=xw(t), a>0,

driven by multiplicative white noise w(t) with spectral density qg.

@ The corresponding two-dimensional, x(t) = (x, x), It6 stochastic
differential equation is

(0) = (e 22y =) 20 () 25

where 5(t) is a one-dimensional Brownian motion.

@ Consider different initializations with g = 0 and g = 0.5°. Use the
same realizations of noise for each initialization. Use o = 1 and
At =275,
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Example: Duffing van der Pol oscillator [2/4]

X2

o
S

X1

¢
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Example: Duffing van der Pol oscillator [3/4]
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Example: Duffing van der Pol oscillator [4/4]

X
—x1(0)
8+ x2(t)
6 B
4 B
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Weak stochastic Runge—Kutta methods

@ It is possible to form weak approximations to SDEs, where the
interest is not in the solution trajectories, but the distribution of
them.

@ We can replace weak Itd—Taylor approximations by Runge—Kutta
style approximations which avoid the use of derivatives of the drift
and diffusion coefficients.

@ The reasoning behind the methods is very much the same as for
strong SRK methods.

@ Here we consider a rather general class of weak order 2.0
methods by RéBler:
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A class of SRK methods of weak order 2.0 [1/3]

@ Start from X(fy) = x(%) and divide the integration interval [y, t]
intonsteps fp < t; < b < ... < tp = t such that At = 1 — .
The integration method is characterized by the following extended
Butcher tableau:

c©® | AO | BO

| a0 | B
@ | A® | B®
af | (YT | [y@)T

EINRERIE
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A class of SRK methods of weak order 2.0 [2/3]

@ On each step k approximate the solution by the following:

R(test) = X(t) +Za, %Ot + O At At

+ZZ%”L” W @) ag®

i=1 n=1
s m »(n,n)
@)y ns(n) (1) &y DBy
+ 33T AL, b+ el ar) —E—
i=1 n=1 At
@) Ln(x(m) 2)
+ZZV e+ cPat) Ag"
i=1 n=1
+ZZ’Y(4)'—" " b+ P at) VAL,
i=1 n=1
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A class of SRK methods of weak order 2.0 [3/3]

@ With supporting values
%9 = x(t) + ZA(O) (%%, 1 + c” At) At

S m
LS BOUGD, b+ an) A0,

j=1 I=1
s
D= x(t) + > AV, b+ ¢ ab) At
s m
1) 1 1 A(,n
+ 3 STEDUED, b+ VAt A",
j=1 I=1

X = x(t) + ZA(Z) (%X, t + c” At) At

DS SIIX 0 257
+ B® L( ) b + ¢! At) ,
j=1 I=1 " ! At

I#n
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The increments [1/2]

@ Again, the increments are given by the double [t6 integrals.
@ In the weak schemes we can use the following approximations:

(1889 239 — VATeD), i<

23 = 1850 839 + VBRD), i,

N[—

J(8B0F - a), i)

@ Here only 2m — 1 independent random variables are needed.
@ No problems with the cross-term integrals any more.
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The increments [2/2]

@ For example, we can choose AB,((’) such that they are independent
three-point distributed random variables:

P(ABY = £V3AL) = = and P(ABY) =0) =2

@ The supporting variables QA‘,((’ ) such that they are independent
two-point distributed random variables.
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Example: A weak order 2.0 method

Example (Weak order 2.0 SRK due to RéBler)

@ Consider a stochastic Runge—Kutta method with the following
extended Butcher tableau:

0
1)1 1
0|0 O 0 O
0
111 1
111 0 -1 0
0
11 1
111 0 -1 0
1 3 o[y ¢ ylo -3
1 1 1 1
2 4 4 2 2

@ The (rather lengthy) algorithm is written out in the lecture notes
(Alg. 6.5).

v
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Example: Weak SRK for Duffing van der Pol [1/2]

@ We are interested in characterizing the solution at t = 20 for the
initial condition of x(0) = (-3, 0).

@ We use the stochastic Runge—Kutta method of weak order 2.0.

@ Discretization interval: At =24,

@ We show the results as a histogram of x; (20) with 10,000
samples.

@ With a At this large, the Euler—-Maruyama method does not
provide plausible results.
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Example: Weak SRK for Duffing van der Pol [2/2]
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@ Stochastic Runge—Kutta methods are derivative-free methods for
solving SDEs.

@ They cannot be derived as simple extensions to ordinary
Runge—Kutta methods.

@ You cannot get rid of the iterated 1t6 integral.

@ The complexity of the methods grows with the approximation
order.

@ Higher order schemes can be practical for models with some
special structure (scalar, additive, commutative, etc.).

@ The choice between a weak and strong scheme depends on your
application.
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