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Overview of this lecture

Runge–Kutta methods for ODEs
Taylor series.
General Runge–Kutta schemes.
Explicit and implicit schemes.

Strong stochastic Runge–Kutta methods
Itô–Taylor series.
A family of strong order 1.0 schemes.
The iterated Itô integrals.

Weak stochastic Runge–Kutta methods
A family of weak order 2.0 schemes.
Approximating the iterated Itô integrals.
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Runge–Kutta: Basic principles

A family of iterative methods for solving differential equations.
Based on Taylor series (see the previous lecture), ...
... but are derivative-free.
Plug-and-play methods that only requires specification of the
differential equation (at least ideally).
There are other methods as well (not considered here):

Multistep methods (e.g. Adams methods)
Multiderivative methods
Higher-order methods (e.g. Nyström method)
Tailored methods (for specific problems)
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Runge–Kutta: Motivation

Consider a first-order non-linear ODE

dx(t)
dt

= f(x(t), t), x(t0) = given,

The simplest Runge–Kutta method is the (forward) Euler scheme.
It is based on sequential linearization of the ODE system:

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t .

Easy to understand and implement.
The global error of the method depends linearly on
the step size ∆t .
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Taylor series [1/2]

The ODE system can be integrated to give

x(t) = x(t0) +

∫ t

t0
f(x(τ), τ) dτ.

Recall from the previous lecture that we used a Taylor series
expansion for the solution of the ODE

x(t) = x(t0) + f(x(t0), t0) (t − t0)

+
1
2!
L f(x(t0), t0) (t − t0)2

+
1
3!
L2 f(x(t0), t0) (t − t0)3 + . . .

We used the linear operator

L(•) =
∂

∂t
(•) +

∑
i

fi
∂

∂xi
(•)
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Taylor series [2/2]

In other words, the series expansion is equal to

x(t) = x(t0) + f(x(t0), t0) (t − t0)

+
1
2!

{
∂

∂t
f(x(t0), t0) +

∑
i

fi(x(t0), t0)
∂

∂xi
f(x(t0), t0)

}
(t − t0)2

+
1
3!

{
∂[L f(x(t0), t0)]

∂t
+
∑

i

fi(x(t0), t0)
∂[L f(x(t0), t0)]

∂xi

}
(t − t0)3

+ . . .

If we were only to consider the terms up to ∆t , we would recover
the Euler method.
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Derivation of a higher-order method [1/4]

However, here we wish to get hold of higher-order methods.
For the sake of simplicity, we now stop at the term
(t − t0)2 = (∆t)2.
We get

x(t0 + ∆t) ≈ x(t0) + f(x(t0), t0) ∆t

+
1
2

{
∂

∂t
f(x(t0), t0) +

∑
i

fi(x(t0), t0)
∂

∂xi
f(x(t0), t0)

}
(∆t)2.

We aim to get rid of the derivatives and be able to write the
expression in terms of the function f(·, ·) evaluated at various
points.
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Derivation of a higher-order method [2/4]

We now seek a form with an extra stage:

x(t0 + ∆t) ≈ x(t0) + A f(x(t0), t0) ∆t
+ B f(x(t0) + C f(x(t0), t0) ∆t , t0 + D ∆t) ∆t ,

where A,B,D, and D are unknown.
In the last term, we can consider the truncated Taylor expansion
(linearization) around f(x(t0), t0) with the chosen increments as
follows:

f(x(t0) + C f(x(t0), t0) ∆t , t0 + D ∆t) = f(x(t0), t0)

+ C
(∑

i

fi(x(t0), t0)
∂

∂xi
f(x(t0), t0)

)
∆t + D

∂f(x(t0), t0)

∂t
∆t + · · ·
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Derivation of a higher-order method [3/4]

Combining the previous two equations gives:

x(t0 + ∆t) ≈ x(t0) + (A + B) f(x(t0), t0) ∆t

+ B
[
C
∑

i

fi(x(t0), t0)
∂

∂xi
f(x(t0), t0) + D

∂f(x(t0), t0)

∂t

]
(∆t)2.

If we now compare the above equation to the original truncated
Taylor expansion, we get the following conditions for our
coefficients:

A + B = 1, B =
1
2
, C = 1, and D = 1.
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Derivation of a higher-order method [4/4]

We derived here is a two-stage method (known as Heun’s
method):

x̂(t0 + ∆t) = x(t0) +
∆t
2
{

f(x̃1, t0) + f(x̃2, t0 + ∆t)
}
,

where the supporting values are given by

x̃1 = x(t0),

x̃2 = x(t0) + f(x̃1, t0) ∆t .

The method (in practice the finite differences) are determined by
the choices we did in truncating the series expansion.
This method is of order 2.
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A general Runge–Kutta method

Algorithm: Runge–Kutta method
Start from x̂(t0) = x(t0) and divide the integration interval [t0, t ] into n
steps t0 < t1 < t2 < . . . < tn = t such that ∆t = tk+1 − tk . The
integration method is defined by its Butcher tableau:

c A

αT

On each step k approximate the solution as follows:

x̂(tk+1) = x̂(tk ) +
s∑

i=1

αi f(x̃i , t̃i) ∆t ,

where t̃i = tk + ci∆t and x̃i = x̂(tk ) +
∑s

j=1 Ai,j f(x̃j , t̃j) ∆t .
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Butcher tableau

Ordinary Runge–Kutta methods are commonly expressed in terms
of a table called the Butcher tableau:

c1 A1,1
c2 A2,1 A2,2
...

...
. . .

cs As,1 As,2 . . . As,s
α1 α2 . . . αs
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Example: Forward Euler

Example (Forward Euler)
The forward Euler scheme has the Butcher tableau:

0 0
1

which gives the recursion x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t .
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Example: RK4

Example (The fourth-order Runge–Kutta method)
The well-known RK4 method in Ch. 1 has the following Butcher
tableau:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6
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Implicit schemes [1/2]

We have considered this far so-called explicit schemes.
Numerical instability, when the solution includes rapidly varying
terms (stiff problems).
Explicit schemes use very small step sizes in order to not diverge
from a solution path (computationally demanding).
In implicit Runge–Kutta methods, the Buther tableau is no longer
lower-triangular.
On every step, a system of algebraic equations has to be solved
(computationally demanding, but more stabile).
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Implicit schemes [2/2]

The simplest implicit method is the backward Euler scheme.

Example (Backward Euler)

The implicit backward Euler scheme has the Butcher tableau:

1 1
1

which gives the recursion x̂(tk+1) = x̂(tk ) + f(x̂(tk+1), tk + ∆t) ∆t .
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Example [1/2]

We study the two-dimensional non-linear ordinary differential
equation system

ẋ1 = x1 − x2 − x3
1 ,

ẋ2 = x1 + x2 − x3
2 ,
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Example [2/2]

Forward EulerHeun

Backward Euler RK4

�2 2

�2

2

x1

x2
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Strong stochastic Runge–Kutta: Basic principles

A family of iterative methods for solving stochastic differential
equations.
Based on Itô–Taylor series (see the previous lecture), ...
... but are derivative-free.
Plug-and-play methods that only requires specification of the drift
and diffusion function of the SDE (at least ideally).
We divide the methods into strong and weak methods
(as we did for the Itô–Taylor series approximations).
A word of warning: Stochastic Runge–Kutta methods are not as
easy to grasp as the ordinary ones.
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Itô–Taylor series [1/1]

Recall the following multi-dimensional SDE formulation

dx = f(x(t), t) dt + L(x(t), t) dβ, x(t0) ∼ p(x(t0)),

where the drift is defined by f : Rd × R→ Rd and the diffusion
coefficients by L : Rd × R→ Rd × Rm.
The driving noise process

β(t) = (β(1)(t), β(2)(t), . . . , β(m)(t))

is an m-dimensional standard Brownian motion.
In integral form the equation can be expressed as

x(t) = x(t0) +

∫ t

t0
f(x(τ), τ) dτ +

∫ t

t0
L(x(τ), τ) dβ(τ).
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Itô–Taylor series [1/2]

Applying the Itô formula to the terms f(x(t), t) and L(x(t), t) and
collecting the terms gives an Itô–Taylor series expansion of the
solution (see the previous lecture):

x(t) = x(t0) + f(x(t0), t0) (t − t0) + L(x(t0), t0) (β(t)− β(t0))

+

∫ t

t0

∫ τ

t0
Lt f(x(τ), τ) dτ dτ

+
∑

i

∫ t

t0

∫ τ

t0
Lβ,i f(x(τ), τ) dβ(i)(τ) dτ

+

∫ t

t0

∫ τ

t0
LtL(x(τ), τ) dτ dβ(τ)

+
∑

i

∫ t

t0

∫ τ

t0
Lβ,iL(x(τ), τ) dβ(i)(τ) dβ(τ).
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Itô–Taylor series [1/3]

The first row in the equation is just the Euler–Maruyama scheme.
Similarly as we did in for the ordinary RK methods, we can
consider truncated series expansions of various degrees for each
of these terms.
The extra terms involving the iterated and cross-term Itô integrals
complicate the formulation.
To present a family of actual numerical methods, we consider the
following family of strong order 1.0 methods due to Andreas
Rößler...

Arno Solin (Aalto) Lecture 5: Stochastic Runge–Kutta Methods November 25, 2014 26 / 50



A class of SRK methods of strong order 1.0 [1/3]

Start from x̂(t0) = x(t0) and divide the integration interval [t0, t ]
into n steps t0 < t1 < t2 < . . . < tn = t such that ∆t = tk+1 − tk .
The integration method is characterized by its extended Butcher
tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

αT [
γ(1)]T [

γ(2)]T
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A class of SRK methods of strong order 1.0 [2/3]

On each step k approximate the solution trajectory as follows:

x̂(tk+1) = x̂(tk ) +
s∑

i=1

αi f(x̃(0)
i , tk + c(0)

i ∆t) ∆t

+
s∑

i=1

m∑
n=1

(γ
(1)
i ∆β

(n)
k + γ

(2)
i

√
∆t) Ln(x̃(n)

i , tk + c(1)
i ∆t)
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A class of SRK methods of strong order 1.0 [3/3]

With the supporting values

x̃(0)
i = x̂(tk ) +

s∑
j=1

A(0)
i,j f(x̃(0)

j , tk + c(0)
j ∆t) ∆t

+
s∑

j=1

m∑
l=1

B(0)
i,j Ll(x̃(l)

j , tk + c(1)
j ∆t) ∆β

(l)
k ,

x̃(n)
i = x̂(tk ) +

s∑
j=1

A(1)
i,j f(x̃(0)

j , tk + c(0)
j ∆t) ∆t

+
s∑

j=1

m∑
l=1

B(1)
i,j Ll(x̃(l)

j , tk + c(1)
j ∆t)

∆β
(l,n)
k√
∆t

,

for i = 1,2, . . . , s and n = 1,2, . . . ,m.
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The increments [1/2]

The increments in the algorithm are given by the Itô integrals:

∆β
(i)
k =

∫ tk+1

tk
dβ(i)(τ) and

∆β
(i,j)
k =

∫ tk+1

tk

∫ τ2

tk
dβ(i)(τ1) dβ(j)(τ2),

The increments ∆β
(i)
k are independent normally distributed

random variables
∆β

(i)
k ∼ N(0,∆t).

Arno Solin (Aalto) Lecture 5: Stochastic Runge–Kutta Methods November 25, 2014 30 / 50



The increments [2/2]

The iterated stochastic Itô integrals ∆β
(i,j)
k are trickier.

For these methods, when i = j , the multiple Itô integrals can be
rewritten as

∆β
(i,i)
k =

1
2

([
∆β

(i)
k

]2 −∆t
)
,

Exact simulation from the integrals ∆β
(i,j)
k , when i 6= j , is not

possible, but can be approximated.
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Example: Euler–Maruyama

Example (Euler–Maruyama Butcher tableau)
The Euler–Maruyama method has the extended Butcher tableau:

0 0 0
0 0 0

1 1 0

and as we recall from the previous chapter, it is of strong order 0.5.
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Example: A strong order 1.0 method

Example (Strong order 1.0 SRK due to Rößler)
Consider a stochastic Runge–Kutta method with the following
extended Butcher tableau:

0
1 1 0
0 0 0 0 0
0
1 1 1
1 1 0 −1 0

1
2

1
2 0 1 0 0 0 1

2 −1
2

The (rather lengthy) algorithm is written out in the lecture notes
(Alg. 6.3).
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Higher-order methods

Higher-order methods by considering more terms in the Itô–Taylor
expansion.
Not very practical in general (heavy and complicated).
For models with some special structure this might still be feasible:

One-dimensional models.
Additive noise models.
Diagonal noise models.
Models with commutative noise.
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Example: Duffing van der Pol oscillator [1/4]

Consider a simplified version of a Duffing van der Pol oscillator

ẍ + ẋ − (α− x2) x = x w(t), α ≥ 0,

driven by multiplicative white noise w(t) with spectral density q.
The corresponding two-dimensional, x(t) = (x , ẋ), Itô stochastic
differential equation is(

dx1
dx2

)
=

(
x2

(x1(α− x2
1 )− x2

)
dt +

(
0
x1

)
dβ,

where β(t) is a one-dimensional Brownian motion.
Consider different initializations with q = 0 and q = 0.52. Use the
same realizations of noise for each initialization. Use α = 1 and
∆t = 2−5.
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Example: Duffing van der Pol oscillator [2/4]

�4 �2 2 4

�4

�2

2

4

6

8

x1

x2
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Example: Duffing van der Pol oscillator [3/4]

�4 �2 2 4

�4

�2

2

4

6

8

x1

x2
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Example: Duffing van der Pol oscillator [4/4]

2 4 6 8 10 12 14 16 18 20

�4

�2

2

4

6

8

t

x
x1.t/

x2.t/
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Weak stochastic Runge–Kutta methods

It is possible to form weak approximations to SDEs, where the
interest is not in the solution trajectories, but the distribution of
them.
We can replace weak Itô–Taylor approximations by Runge–Kutta
style approximations which avoid the use of derivatives of the drift
and diffusion coefficients.
The reasoning behind the methods is very much the same as for
strong SRK methods.
Here we consider a rather general class of weak order 2.0
methods by Rößler:
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A class of SRK methods of weak order 2.0 [1/3]

Start from x̂(t0) = x(t0) and divide the integration interval [t0, t ]
into n steps t0 < t1 < t2 < ... < tn = t such that ∆t = tk+1 − tk .
The integration method is characterized by the following extended
Butcher tableau:

c(0) A(0) B(0)

c(1) A(1) B(1)

c(2) A(2) B(2)

αT [
γ(1)]T [

γ(2)]T[
γ(3)]T [

γ(4)]T
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A class of SRK methods of weak order 2.0 [2/3]

On each step k approximate the solution by the following:

x̂(tk+1) = x̂(tk ) +
s∑

i=1

αi f(x̃(0)
i , tk + c(0)

i ∆t) ∆t

+
s∑

i=1

m∑
n=1

γ
(1)
i Ln(x̃(n)

i , tk + c(1)
i ∆t) ∆β̂

(n)
k

+
s∑

i=1

m∑
n=1

γ
(2)
i Ln(x̃(n)

i , tk + c(1)
i ∆t)

∆β̂
(n,n)
k√
∆t

+
s∑

i=1

m∑
n=1

γ
(3)
i Ln(x̄(n)

i , tk + c(2)
i ∆t) ∆β̂

(n)
k

+
s∑

i=1

m∑
n=1

γ
(4)
i Ln(x̄(n)

i , tk + c(2)
i ∆t)

√
∆t ,
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A class of SRK methods of weak order 2.0 [3/3]

With supporting values

x̃(0)
i = x̂(tk ) +

s∑
j=1

A(0)
i,j f(x̃(0)

j , tk + c(0)
j ∆t) ∆t

+
s∑

j=1

m∑
l=1

B(0)
i,j Ll (x̃(l)

j , tk + c(1)
j ∆t) ∆β̂

(l)
k ,

x̃(n)
i = x̂(tk ) +

s∑
j=1

A(1)
i,j f(x̃(0)

j , tk + c(0)
j ∆t) ∆t

+
s∑

j=1

m∑
l=1

B(1)
i,j Ll (x̃(l)

j , tk + c(1)
j ∆t) ∆β̂

(l,n)
k ,

x̄(n)
i = x̂(tk ) +

s∑
j=1

A(2)
i,j f(x̃(0)

j , tk + c(0)
j ∆t) ∆t

+
s∑

j=1

m∑
l=1
l 6=n

B(2)
i,j Ll (x̃(l)

j , tk + c(1)
j ∆t)

∆β̂
(l,n)
k√
∆t

,
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The increments [1/2]

Again, the increments are given by the double Itô integrals.
In the weak schemes we can use the following approximations:

∆β̂
(i,j)
k =



1
2

(
∆β̂

(i)
k ∆β̂

(j)
k −

√
∆t ζ̂(i)k

)
, if i < j ,

1
2

(
∆β̂

(i)
k ∆β̂

(j)
k +

√
∆t ζ̂(j)k

)
, if i > j ,

1
2

(
[∆β̂

(i)
k ]2 −∆t

)
, if i = j .

Here only 2m − 1 independent random variables are needed.
No problems with the cross-term integrals any more.
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The increments [2/2]

For example, we can choose ∆β̂
(i)
k such that they are independent

three-point distributed random variables:

P
(
∆β̂

(i)
k = ±

√
3 ∆t

)
=

1
6

and P
(
∆β̂

(i)
k = 0

)
=

2
3
,

The supporting variables ζ̂(i)k such that they are independent
two-point distributed random variables.

P
(
ζ̂
(i)
k = ±

√
∆t
)

=
1
2
.
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Example: A weak order 2.0 method

Example (Weak order 2.0 SRK due to Rößler)
Consider a stochastic Runge–Kutta method with the following
extended Butcher tableau:

0
1 1 1
0 0 0 0 0
0
1 1 1
1 1 0 −1 0
0
1 1 1
1 1 0 −1 0

1
2

1
2 0 1

2
1
4

1
4 0 1

2 − 1
2

− 1
2

1
4

1
4 0 1

2 − 1
2

The (rather lengthy) algorithm is written out in the lecture notes
(Alg. 6.5).
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Example: Weak SRK for Duffing van der Pol [1/2]

We are interested in characterizing the solution at t = 20 for the
initial condition of x(0) = (−3,0).
We use the stochastic Runge–Kutta method of weak order 2.0.
Discretization interval: ∆t = 2−4.
We show the results as a histogram of x1(20) with 10,000
samples.
With a ∆t this large, the Euler–Maruyama method does not
provide plausible results.
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Example: Weak SRK for Duffing van der Pol [2/2]

�2 �1:5 �1 �0:5 0 0:5 1 1:5 2
x1
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Summary

Stochastic Runge–Kutta methods are derivative-free methods for
solving SDEs.
They cannot be derived as simple extensions to ordinary
Runge–Kutta methods.
You cannot get rid of the iterated Itô integral.
The complexity of the methods grows with the approximation
order.
Higher order schemes can be practical for models with some
special structure (scalar, additive, commutative, etc.).
The choice between a weak and strong scheme depends on your
application.
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