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0 Introduction

9 Stochastic processes in physics and engineering
e Heuristic solutions of linear SDEs

e Fourier analysis of LTI SDEs

e Heuristic solutions of non-linear SDEs

@ Summary and demonstration
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What is a stochastic differential equation (SDE)?

@ At first, we have an ordinary differential equation (ODE):

dx
Frie f(x, ).

@ Then we add white noise to the right hand side:

dx

T =f(x, t) + w(?).

@ Generalize a bit by adding a multiplier matrix on the right:

dx

5 = 1000 + Lix yw(e).

@ Now we have a stochastic differential equation (SDE).
@ f(x, t) is the drift function and L(x, t) is the dispersion matrix.
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White noise

@ w(t;) and w(t,) are independent if
t # b.

Q t— w(t)is a Gaussian process with
the mean and covariance:

Elw(t)]=0
E[w(t)w(s)] = d(t — s) Q.

@ Qs the spectral density of the process.

@ The sample path t — w(t) is discontinuous almost everywhere.

@ White noise is unbounded and it takes arbitrarily large positive and
negative values at any finite interval.
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What does a solution of SDE look like?

B(t)

p(B.)

@ Left: Path of a Brownian motion which is solution to stochastic

differential equation
dx

d_t =
@ Right. Evolution of probability density of Brownian motion.

w(t)
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What does a solution of SDE look like? (cont.)

Mean solution
= = =95% quantiles
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+ 2 x(t) = w(t).
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Einstein’s construction of Brownian motion
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Langevin’s construction of Brownian motion
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Noisy RC-circuit
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Noisy Phase Locked Loop (PLL)

w(t)

i
O—
x

O Asin()

Loop filter
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Car model for navigation
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Noisy pendulum model
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Solutions of LTI SDEs

@ Linear time-invariant stochastic differential equation (LTI SDE):
dx(t)
dt
@ We can now take a “leap of faith” and solve this as if it was a
deterministic ODE:

@ Move Fx(t) to left and multiply by integrating factor exp(—F t):
dx(t)
dt

=Fx(t) +Lw(t),  x(t) ~ N(mg, Po).

exp(—F1t) —exp(—F t)Fx(t) = exp(—F t) Lw(¢).

@ Reuwrite this as
dit [exp(—F t) x(t)] = exp(—F t) Lw(?).

@ Integrate from f, to t:

exp(—F ) x(1) — exp(—F to) X(fr) = /texp(—FT) Lw(r) dr.

fo
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Solutions of LTI SDEs (cont.)

@ Rearranging then gives the solution:

t
x(t) = exp(F (t — f)) x(to) +/t exp(F (t — 7)) Lw(r) dr.

@ We have assumed that w(t) is an ordinary function, which it is not.

@ Here we are lucky, because for linear SDEs we get the right
solution, but generally not.

@ The source of the problem is the integral of a non-integrable
function on the right hand side.
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Mean and covariance of LTI SDEs

@ The mean can be computed by taking expectations:

t
E[x(t)] = Elexp(F (t — )) x(t)] + E [/t exp(F(t—7))Lw(7) dT:|

@ Recalling that E[x(%))] = mo and E[w(t)] = 0 then gives the mean
m(t) = exp(F (f — ty)) mo.
@ We also get the following covariance (see the exercises. . .):
P(£) = E [(x(t) — m(t)) (x(t) — m)"]
=exp(Ft) Py exp(Ft)T

+ /texp(F(t— 7)) LQLT exp (F(t— 7)) dr.
0
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Mean and covariance of LTI SDEs (cont.)

@ By differentiating the mean and covariance expression we can
derive the following differential equations for the mean and

covariance:
dm(t) _
ar Fm(t)
%&” = FP(t) +P(t)FT + LQL.

@ For example, let’s consider the spring model:

() - (%) Gl () wo
— T X

dx(t)/dt F X L
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Mean and covariance of LTI SDEs (cont.)

The mean and covariance equations:
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Alternative derivation of mean and covariance

@ We can also attempt to derive mean and covariance equations
directly from

dx( )

D —Fx()+Lw(D),  x() ~ N(mo, o).

@ By taking expectations from both sides gives

e [d);(tt)] dEE;( 1] = E[Fx(t) + Lw(t)] = F E[x(1)].

@ This thus gives the correct mean differential equation

dm(t)
dt
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Alternative derivation of mean and covariance (cont.)

@ For the covariance we use
d T dx dm T
gt [0 m) oo myT] = (G ) -m)

dx dm\'
AL STty

@ Substitute dx(t)/dt = Fx(t) + Lw(t) and take expectation:
SE - m) - m)T] = F E [(x(0) — m(0)) (x(t) —~ m(t))]
+ E | (x() = m(1)) (x(t) - m(t))] FT

@ This implies the covariance differential equation
dP(t)
Sdt
@ But this solution is wrong!

= FP(t) + P(t)F.
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Alternative derivation of mean and covariance (cont.)

@ Our mistake was to assume

%[(x—m) (X—m)T} = (E‘E) (x—m)’

@ However, this result from basic calculus is not valid when x(t) is
stochastic.

@ The mean equation was ok, because its derivation did not involve
the usage of chain rule (or product rule) above.

@ But which results are right and which wrong?
@ We need to develop a whole new calculus to deal with this. . .

Simo Sarkka (Aalto) Lecture 1: Pragmatic Introduction to SDEs October 28, 2014 23/34



Fourier domain solution of SDE

@ Consider the scalar SDE (Ornstein—Uhlenbeck process):
dx(t) _

= = () + w()

@ Let’s take a formal Fourier transform (Warning: w(t) is not a
square-integrable function!):

(lw) X(fw) = =-AX(Iw) + W(iw)
@ Solving for X(iw) gives
W(iw)
(fw)+ A
@ This can be seen to have the transfer function form
X(iw) = H(iw) W(iw)
where the transfer function is

H(iw) =

X(iw) =

’
(fw)+ A
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Fourier domain solution of SDE (cont.)

@ By direct calculation we get
h(t) = Z 7 [H(iw)] = exp(—A t) u(t),

where u(t) is the Heaviside step function.
@ The solution can be expressed as convolution, which thus gives

x(t) = h(t) = w(t)
_ /oo exp(=A (t — 7)) u(t — 7) w(r) dr

—00

t
_ /O exp(=A(t — 7)) w(r) dr

provided that w(t) is assumed to be zero for t < 0.
@ Analogous derivation works for multidimensional LTI SDEs
dx(t)

= = X+ Lw()
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Spectral densities and covariance functions

@ A useful quantity is the spectral density which is defined as
Sx(w) = E[|X(iw)[?] = E[X(iw) X(—iw)].

@ What makes it useful is that the stationary-state covariance
function is its inverse Fourier transform:

Cx(r) = Elx(t) x(t + 7)) = 7' [Sx(w)]

@ For the Ornstein—Uhlenbeck process we get

_E[W(@w)P] _ g
Sx(w) = [(iw) + X2~ w2+ A2’
and g
C(r) = 55 exp(=Al7).
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Spectral densities and covariance functions (cont.)

@ In multidimensional case we have (joint) spectral density matrix:
Sx(w) = EX(iw) X" (=iw)],
@ The joint covariance matrix is its inverse Fourier transform
Cx(7) = 7 '[Sx(w)]-
@ For general LTI SDEs

dx(t) _
= = Fx() + Lw(),

we get
Sx(w) = (F—(iw)D) " LQLT (F+ (iw))T
Cx(7) = Z "[(F—(iw)) ' LQLT (F+ (iw))"].
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Problem with general solutions

@ We could now attempt to analyze non-linear SDEs of the form

dx

Fri =f(x,t) + L(x, t)w(t)

@ We cannot solve the deterministic case—no possibility for a “leap
of faith”.

@ We don’t know how to derive the mean and covariance equations.
@ What we can do is to simulate by using Euler—Maruyama:

X(ti1) = X(tc) + F(X(t), t) At + L(X(t), t) ABk,
where Apjy is a Gaussian random variable with distribution
N(0,Q At).

@ Note that the variance is proportional to At, not the standard
deviation.
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Problem with general solutions (cont.)

@ Picard-Lindelof theorem can be useful for analyzing existence
and uniqueness of ODE solutions. Let’s try that for

dx

- =f(x,t) + L(x, t)w(t)

@ The basic assumption in the theorem for the right hand side of the
differential equation were:

o Continuity in both arguments.
o Lipschitz continuity in the first argument.

@ But white noise is discontinuous everywhere!
@ We need a new existence theory for SDE solutions as well. ..
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@ Stochastic differential equation (SDE) is an ordinary differential
equation (ODE) with a stochastic driving force.

@ SDEs arise in various physics and engineering problems.

@ Solutions for linear SDEs can be (heuristically) derived in the
similar way as for deterministic ODEs.

@ We can also compute the mean and covariance of the solutions of
a linear SDE.

@ Fourier transform solutions to linear time-invariant (LTl) SDEs lead
to the useful concepts of spectral density and covariance function.

@ The heuristic treatment only works for some analysis of linear
SDEs, and for e.g. non-linear equations we need a new theory.

@ One way to approximate solution of SDE is to simulate trajectories
from it using the Euler—Maruyama method.
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Matlab demonstration

d’;_(tt) = —Ax(t) + w(t), x(0)=xo,
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