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What is a stochastic differential equation (SDE)?

At first, we have an ordinary differential equation (ODE):

dx
dt

= f(x, t).

Then we add white noise to the right hand side:

dx
dt

= f(x, t) + w(t).

Generalize a bit by adding a multiplier matrix on the right:

dx
dt

= f(x, t) + L(x, t) w(t).

Now we have a stochastic differential equation (SDE).
f(x, t) is the drift function and L(x, t) is the dispersion matrix.
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White noise

White noise

1 w(t1) and w(t2) are independent if
t1 6= t2.

2 t 7→ w(t) is a Gaussian process with
the mean and covariance:

E[w(t)] = 0

E[w(t) wT(s)] = δ(t − s) Q. 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Q is the spectral density of the process.
The sample path t 7→ w(t) is discontinuous almost everywhere.
White noise is unbounded and it takes arbitrarily large positive and
negative values at any finite interval.
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What does a solution of SDE look like?
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Left: Path of a Brownian motion which is solution to stochastic
differential equation

dx
dt

= w(t)

Right: Evolution of probability density of Brownian motion.
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What does a solution of SDE look like? (cont.)
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Realizations of SDE

Paths of stochastic spring model

d2x(t)
dt2 + γ

dx(t)
dt

+ ν2 x(t) = w(t).
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Einstein’s construction of Brownian motion

∆

︸︷︷︸

φ(∆)
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Langevin’s construction of Brownian motion

Random force
from collisions Movement is slowed

down by friction
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Noisy RC-circuit

w(t)
R

C v(t)

A

B
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Noisy Phase Locked Loop (PLL)

A sin( )

w(t)

K Loop filter

∫ t
0

θ1(t) φ(t)

−
θ2(t)
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Car model for navigation

w1(t)

w2(t)
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Noisy pendulum model
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Solutions of LTI SDEs

Linear time-invariant stochastic differential equation (LTI SDE):

dx(t)
dt

= F x(t) + L w(t), x(t0) ∼ N(m0,P0).

We can now take a “leap of faith” and solve this as if it was a
deterministic ODE:

1 Move F x(t) to left and multiply by integrating factor exp(−F t):

exp(−F t)
dx(t)

dt
− exp(−F t) F x(t) = exp(−F t) L w(t).

2 Rewrite this as
d
dt

[exp(−F t) x(t)] = exp(−F t) L w(t).

3 Integrate from t0 to t :

exp(−F t) x(t)− exp(−F t0) x(t0) =

∫ t

t0
exp(−F τ) L w(τ) dτ.
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Solutions of LTI SDEs (cont.)

Rearranging then gives the solution:

x(t) = exp(F (t − t0)) x(t0) +

∫ t

t0
exp(F (t − τ)) L w(τ) dτ.

We have assumed that w(t) is an ordinary function, which it is not.
Here we are lucky, because for linear SDEs we get the right
solution, but generally not.
The source of the problem is the integral of a non-integrable
function on the right hand side.
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Mean and covariance of LTI SDEs

The mean can be computed by taking expectations:

E [x(t)] = E [exp(F (t − t0)) x(t0)] + E
[∫ t

t0
exp(F (t − τ)) L w(τ) dτ

]

Recalling that E[x(t0)] = m0 and E[w(t)] = 0 then gives the mean

m(t) = exp(F (t − t0)) m0.

We also get the following covariance (see the exercises. . . ):

P(t) = E
[
(x(t)−m(t)) (x(t)−m)T

]
= exp (F t) P0 exp (F t)T

+

∫ t

0
exp (F (t − τ)) L Q LT exp (F (t − τ))T dτ.
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Mean and covariance of LTI SDEs (cont.)

By differentiating the mean and covariance expression we can
derive the following differential equations for the mean and
covariance:

dm(t)
dt

= F m(t)

dP(t)
dt

= F P(t) + P(t) FT + L Q LT.

For example, let’s consider the spring model:(
dx1(t)

dt
dx2(t)

dt

)
︸ ︷︷ ︸

dx(t)/dt

=

(
0 1
−ν2 −γ

)
︸ ︷︷ ︸

F

(
x1(t)
x2(t)

)
︸ ︷︷ ︸

x

+

(
0
1

)
︸︷︷︸

L

w(t).
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Mean and covariance of LTI SDEs (cont.)

The mean and covariance equations:( dm1
dt

dm2
dt

)
=

(
0 1
−ν2 −γ

)(
m1
m2

)
( dP11

dt
dP12

dt
dP21

dt
dP22

dt

)
=

(
0 1
−ν2 −γ

)(
P11 P12
P21 P22

)
+

(
P11 P12
P21 P22

)(
0 1
−ν2 −γ

)T

+

(
0 0
0 q

)
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Alternative derivation of mean and covariance

We can also attempt to derive mean and covariance equations
directly from

dx(t)
dt

= F x(t) + L w(t), x(t0) ∼ N(m0,P0).

By taking expectations from both sides gives

E
[

dx(t)
dt

]
=

d E[x(t)]

dt
= E [F x(t) + L w(t)] = F E[x(t)].

This thus gives the correct mean differential equation

dm(t)
dt

= F m(t)
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Alternative derivation of mean and covariance (cont.)

For the covariance we use
d
dt

[
(x−m) (x−m)T

]
=

(
dx
dt
− dm

dt

)
(x−m)T

+ (x−m)

(
dx
dt
− dm

dt

)T

Substitute dx(t)/dt = F x(t) + L w(t) and take expectation:
d
dt

E
[
(x−m) (x−m)T

]
= F E

[
(x(t)−m(t)) (x(t)−m(t))T

]
+ E

[
(x(t)−m(t)) (x(t)−m(t))T

]
FT

This implies the covariance differential equation
dP(t)

dt
= F P(t) + P(t) FT.

But this solution is wrong!
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Alternative derivation of mean and covariance (cont.)

Our mistake was to assume

d
dt

[
(x−m) (x−m)T

]
=

(
dx
dt
− dm

dt

)
(x−m)T

+ (x−m)

(
dx
dt
− dm

dt

)T

However, this result from basic calculus is not valid when x(t) is
stochastic.
The mean equation was ok, because its derivation did not involve
the usage of chain rule (or product rule) above.
But which results are right and which wrong?
We need to develop a whole new calculus to deal with this. . .
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Fourier domain solution of SDE

Consider the scalar SDE (Ornstein–Uhlenbeck process):
dx(t)

dt
= −λ x(t) + w(t)

Let’s take a formal Fourier transform (Warning: w(t) is not a
square-integrable function!):

(i ω) X (i ω) = −λX (i ω) + W (i ω)

Solving for X (i ω) gives

X (i ω) =
W (i ω)

(i ω) + λ

This can be seen to have the transfer function form

X (i ω) = H(i ω) W (i ω)

where the transfer function is

H(i ω) =
1

(i ω) + λ
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Fourier domain solution of SDE (cont.)

By direct calculation we get

h(t) = F−1[H(i ω)] = exp(−λ t) u(t),

where u(t) is the Heaviside step function.
The solution can be expressed as convolution, which thus gives

x(t) = h(t) ∗ w(t)

=

∫ ∞
−∞

exp(−λ (t − τ)) u(t − τ) w(τ) dτ

=

∫ t

0
exp(−λ (t − τ)) w(τ) dτ

provided that w(t) is assumed to be zero for t < 0.
Analogous derivation works for multidimensional LTI SDEs

dx(t)
dt

= F x(t) + L w(t)
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Spectral densities and covariance functions

A useful quantity is the spectral density which is defined as

Sx (ω) = E[|X (i ω)|2] = E[X (i ω) X (−i ω)].

What makes it useful is that the stationary-state covariance
function is its inverse Fourier transform:

Cx (τ) = E[x(t) x(t + τ)] = F−1[Sx (ω)]

For the Ornstein–Uhlenbeck process we get

Sx (ω) =
E[|W (i ω)|2]

|(i ω) + λ|2
=

q
ω2 + λ2 ,

and
C(τ) =

q
2λ

exp(−λ |τ |).
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Spectral densities and covariance functions (cont.)

In multidimensional case we have (joint) spectral density matrix:

Sx(ω) = E[X(i ω) XT(−i ω)],

The joint covariance matrix is its inverse Fourier transform

Cx(τ) = F−1[Sx(ω)].

For general LTI SDEs

dx(t)
dt

= F x(t) + L w(t),

we get

Sx(ω) = (F− (i ω) I)−1 L Q LT (F + (i ω) I)−T

Cx(τ) = F−1[(F− (i ω) I)−1 L Q LT (F + (i ω) I)−T].
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Problem with general solutions

We could now attempt to analyze non-linear SDEs of the form

dx
dt

= f(x, t) + L(x, t) w(t)

We cannot solve the deterministic case—no possibility for a “leap
of faith”.
We don’t know how to derive the mean and covariance equations.
What we can do is to simulate by using Euler–Maruyama:

x̂(tk+1) = x̂(tk ) + f(x̂(tk ), tk ) ∆t + L(x̂(tk ), tk ) ∆βk ,

where ∆βk is a Gaussian random variable with distribution
N(0,Q ∆t).
Note that the variance is proportional to ∆t , not the standard
deviation.
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Problem with general solutions (cont.)

Picard–Lindelöf theorem can be useful for analyzing existence
and uniqueness of ODE solutions. Let’s try that for

dx
dt

= f(x, t) + L(x, t) w(t)

The basic assumption in the theorem for the right hand side of the
differential equation were:

Continuity in both arguments.
Lipschitz continuity in the first argument.

But white noise is discontinuous everywhere!
We need a new existence theory for SDE solutions as well. . .
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Summary

Stochastic differential equation (SDE) is an ordinary differential
equation (ODE) with a stochastic driving force.
SDEs arise in various physics and engineering problems.
Solutions for linear SDEs can be (heuristically) derived in the
similar way as for deterministic ODEs.
We can also compute the mean and covariance of the solutions of
a linear SDE.
Fourier transform solutions to linear time-invariant (LTI) SDEs lead
to the useful concepts of spectral density and covariance function.
The heuristic treatment only works for some analysis of linear
SDEs, and for e.g. non-linear equations we need a new theory.
One way to approximate solution of SDE is to simulate trajectories
from it using the Euler–Maruyama method.
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Matlab demonstration

dx(t)
dt

= −λ x(t) + w(t), x(0) = x0,
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