## Lecture 5: Further Topics; Series Expansions, Feynman–Kac, Girsanov Theorem, Filtering Theory

#### Simo Särkkä

Aalto University Tampere University of Technology Lappeenranta University of Technology Finland

November 22, 2012

#### Series expansions



Solving Boundary Value Problems with Feynman–Kac

#### Girsanov theorem



#### Summary

#### Karhunen–Loeve expansions [1/2]

 On a fixed time interval [t<sub>0</sub>, t<sub>1</sub>] the standard Brownian motion has a Karhunen–Loeve series expansion

$$\beta(t) = \sum_{i=1}^{\infty} z_i \int_{t_0}^t \phi_i(\tau) \, \mathrm{d}\tau.$$

- $z_i \sim N(0, 1), i = 1, 2, 3, ...$  are independent random variables.
- {φ<sub>i</sub>(t)} is an orthonormal basis of the Hilbert space with inner product

$$\langle f, g \rangle = \int_{t_0}^{t_1} f(\tau) g(\tau) d\tau.$$

• In fact, this is just a Fourier series and thus:

$$Z_i = \int_{t_0}^t \phi_i(\tau) \ \mathrm{d}\beta(\tau).$$

## Karhunen–Loeve expansions [2/2]

We could now consider approximating the SDE

$$\mathrm{d} x = f(x,t) \, \mathrm{d} t + L(x,t) \, \mathrm{d} \beta.$$

by using a finite expansion

$$\mathrm{d}\beta(t) = \sum_{i=1}^{N} z_i \,\phi_i(t) \,\,\mathrm{d}t.$$

However, this converges to the Stratonovich SDE

$$\mathrm{d} x = f(x,t) \, \mathrm{d} t + L(x,t) \, \circ \mathrm{d} \beta.$$

• That is, we can approximate the Stratonovich SDE with

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x,t) + L(x,t) \sum_{i=1}^{N} z_i \phi_i(t).$$

• A special case of Wong–Zakai approximations.

Let's consider the infinite expansion

$$\mathrm{d} x = f(x,t) \, \mathrm{d} t + L(x,t) \, \sum_{i=1}^{\infty} z_i \, \phi_i(t) \, \mathrm{d} t,$$

• The solution can be seen as a function (or functional) of the form

$$x(t)=U(t;z_1,z_2,\ldots).$$

- It is now possible to form a Fourier–Hermite series expansion of RHS in the variables z<sub>1</sub>, z<sub>2</sub>,....
- Leads to a polynomial series expansion which is called Wiener chaos expansion or polynomial chaos.

## Feynman–Kac formulae and parabolic PDEs [1/5]

- Feynman–Kac formula gives a link between parabolic partial differential equations (PDEs) and SDEs.
- Consider the following PDE for function u(x, t):

$$\frac{\partial u}{\partial t} + f(x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2} = 0$$
$$u(x,T) = \Psi(x).$$

• Let's define a process x(t) on the interval [t', T] as follows:

$$\mathrm{d}\mathbf{x} = f(\mathbf{x}) \,\mathrm{d}t + \sigma(\mathbf{x}) \,\mathrm{d}\beta, \qquad \mathbf{x}(t') = \mathbf{x}'.$$

### Feynman–Kac formulae and parabolic PDEs [2/5]

• Using Itô formula for u(x, t) gives:

$$du = \frac{\partial u}{\partial t} dt + \frac{\partial u}{\partial x} dx + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} dx^2$$
  
=  $\frac{\partial u}{\partial t} dt + \frac{\partial u}{\partial x} f(x) dt + \frac{\partial u}{\partial x} \sigma(x) d\beta + \frac{1}{2} \frac{\partial^2 u}{\partial x^2} \sigma^2(x) dt$   
=  $\underbrace{\left[\frac{\partial u}{\partial t} + f(x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2}\right]}_{=0} dt + \frac{\partial u}{\partial x} \sigma(x) d\beta$   
=  $\frac{\partial u}{\partial x} \sigma(x) d\beta.$ 

## Feynman–Kac formulae and parabolic PDEs [3/5]

We now have

$$\mathrm{d} u = \frac{\partial u}{\partial x} \,\sigma(x) \,\,\mathrm{d} \beta.$$

Integrating from t' to T now gives

$$u(x(T), T) - u(x(t'), t') = \int_{t'}^T \frac{\partial u}{\partial x} \sigma(x) \, \mathrm{d}\beta,$$

• Substituting the initial and terminal terms we get:

$$\Psi(x(T)) - u(x',t') = \int_{t'}^T \frac{\partial u}{\partial x} \sigma(x) \, \mathrm{d}\beta.$$

## Feynman–Kac formulae and parabolic PDEs [4/5]

• Take expectations from both sides

$$\mathsf{E}\left[\Psi(x(T)) - \left[u(x',t')\right] = \underbrace{\mathsf{E}\left[\int_{t'}^{T} \frac{\partial u}{\partial x} \sigma(x) \, \mathrm{d}\beta\right]}_{=0}$$

leads to

$$u(x',t') = \mathsf{E}[\Psi(x(T))].$$

Thus we can solve the value of u(x', t') for arbitrary x' and t' as follows:



$$\mathrm{d} x = f(x) \, \mathrm{d} t + \sigma(x) \, \mathrm{d} \beta$$

The value of u(x', t') is the expected value of  $\Psi(x(T))$  over the process realizations.

## Feynman–Kac formulae and parabolic PDEs [5/5]

• Can be generalized to equations of the form

$$\frac{\partial u}{\partial t} + f(x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2} - r u = 0$$
$$u(x, T) = \Psi(x),$$

The SDE is the same and the corresponding solution is

$$u(x',t') = \exp(-r(T-t')) \mathsf{E}[\Psi(x(T))]$$

Can be generalized in various ways: multiple dimensions, r(x), constant terms, etc.

# Solving Boundary Value Problems with Feynman–Kac [1/3]

Consider the following boundary value problem for u(x) on Ω:

$$f(x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2} = 0$$
  
$$u(x) = \Psi(x), x \in \partial\Omega.$$

• Again, define a process *x*(*t*) as follows:

$$\mathrm{d} x = f(x) \, \mathrm{d} t + \sigma(x) \, \mathrm{d} \beta, \qquad x(t') = x'.$$

Application of Itô formula to u(x) gives

$$du = \underbrace{\left[f(x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^{2}(x)\frac{\partial^{2}u}{\partial x^{2}}\right]}_{=0} dt + \frac{\partial u}{\partial x}\sigma(x) d\beta$$
$$= \frac{\partial u}{\partial x}\sigma(x) d\beta.$$

# Solving Boundary Value Problems with Feynman–Kac [2/3]

- Let  $T_e$  be the first exit time of x(t) from  $\Omega$ .
- Integration from t' to  $T_e$  gives

$$u(x(T_e)) - u(x(t')) = \int_{t'}^{T_e} \frac{\partial u}{\partial x} \sigma(x) \, \mathrm{d}\beta.$$

• But the value of u(x) on the boundary is  $\Psi(x)$  and x(t') = x', which leads to:

$$\Psi(x(T_e)) - u(x') = \int_{t'}^{T_e} \frac{\partial u}{\partial x} \sigma(x) \, \mathrm{d}\beta.$$

Taking expectation and rearranging then gives

$$u(x') = \mathsf{E}[\Psi(x(T_e))].$$

# Solving Boundary Value Problems with Feynman–Kac [3/3]

Thus we can solve the boundary value problem

$$f(x)\frac{\partial u}{\partial x} + \frac{1}{2}\sigma^2(x)\frac{\partial^2 u}{\partial x^2} = 0$$
  
$$u(x) = \Psi(x), x \in \partial\Omega.$$

at point x' as follows:

Start the following process from x':

$$\mathrm{d} x = f(x) \, \mathrm{d} t + \sigma(x) \, \mathrm{d} \beta.$$



2 Compute the following expectation at the positions  $x(T_e)$  of the first exit times from the domain  $\Omega$ :

$$u(x') = \mathsf{E}[\Psi(x(T_e))].$$

## Girsanov theorem [1/6]

 Let's denote the whole path of the Itô process x(t) on a time interval [0, t] as:

$$\mathscr{X}_t = \{ \mathbf{x}(\tau) : \mathbf{0} \le \tau \le t \}.$$

• Let **x**(*t*) be the solution to

$$\mathrm{d}\mathbf{x} = \mathbf{f}(\mathbf{x}, t) \, \mathrm{d}t + \mathrm{d}\boldsymbol{\beta}.$$

Formally define the probability density of the whole path as

$$p(\mathscr{X}_t) = \lim_{N\to\infty} p(\mathbf{x}(t_1),\ldots,\mathbf{x}(t_N)).$$

• Not normalizable, but we can define the following for suitable y:

$$\frac{\rho(\mathscr{X}_t)}{\rho(\mathscr{Y}_t)} = \lim_{N \to \infty} \frac{\rho(\mathbf{x}(t_1), \dots, \mathbf{x}(t_N))}{\rho(\mathbf{y}(t_1), \dots, \mathbf{y}(t_N))}.$$

- The Girsanov theorem is a way to make this kind of analysis rigorous.
- Connected to path integrals which can be considered as expectations of the form

$$\mathsf{E}[h(\mathscr{X}_t)] = \int h(\mathscr{X}_t) \, \mathsf{p}(\mathscr{X}_t) \, \mathrm{d}\mathscr{X}_t.$$

- This notation is purely formal, because the density p(Xt) is actually an infinite quantity.
- But the expectation (path integral) is indeed finite.

#### Likelihood ratio of Itô processes

Consider the Itô processes

$$d\mathbf{x} = \mathbf{f}(\mathbf{x}, t) dt + d\beta, \qquad \mathbf{x}(0) = \mathbf{x}_0,$$
  
$$d\mathbf{y} = \mathbf{g}(\mathbf{y}, t) dt + d\beta, \qquad \mathbf{y}(0) = \mathbf{x}_0,$$

where the Brownian motion  $\beta(t)$  has a non-singular diffusion matrix **Q**.

• The ratio of the probability laws of  $\mathscr{X}_t$  and  $\mathscr{Y}_t$  is given as

$$\frac{p(\mathscr{X}_t)}{p(\mathscr{Y}_t)} = Z(t)$$

$$\begin{split} \mathcal{Z}(t) &= \exp\left(-\frac{1}{2}\int_0^t [\mathbf{f}(\mathbf{y},\tau) - \mathbf{g}(\mathbf{y},\tau)]^\mathsf{T} \, \mathbf{Q}^{-1} \left[\mathbf{f}(\mathbf{y},\tau) - \mathbf{g}(\mathbf{y},\tau)\right] \, \mathrm{d}\tau \\ &+ \int_0^t [\mathbf{f}(\mathbf{y},\tau) - \mathbf{g}(\mathbf{y},\tau)]^\mathsf{T} \, \mathbf{Q}^{-1} \, \, \mathrm{d}\beta(\tau) \right) \end{split}$$

#### Likelihood ratio of Itô processes (cont.)

• For an arbitrary functional  $h(\bullet)$  of the path from 0 to t we have

$$\mathsf{E}[h(\mathscr{X}_t)] = \mathsf{E}[Z(t) h(\mathscr{Y}_t)],$$

 Under the probability measure defined through the transformed probability density

$$\tilde{p}(\mathscr{X}_t) = Z(t) \, p(\mathscr{X}_t)$$

the process

$$\tilde{\boldsymbol{\beta}} = \boldsymbol{\beta} - \int_0^t [\mathbf{f}(\mathbf{y}, \tau) - \mathbf{g}(\mathbf{y}, \tau)] \, \mathrm{d}\tau,$$

is a Brownian motion with diffusion matrix **Q**.

• Derivation on the blackboard follows.

## Girsanov theorem [5/6]

#### Girsanov I

Let  $\theta(t)$  be a process driven by a standard Brownian motion  $\beta(t)$  such that  $E\left[\int_0^t \theta^T(\tau) \,\theta(\tau) \,d\tau\right] < \infty$ , then under the measure defined by the formal probability density

$$\tilde{p}(\Theta_t) = Z(t) \, p(\Theta_t),$$

where  $\Theta_t = \{ \boldsymbol{\theta}(\tau) : \mathbf{0} \leq \tau \leq t \}$ , and

$$Z(t) = \exp\left(\int_0^t \theta^{\mathsf{T}}(\tau) \ \mathrm{d}eta - rac{1}{2}\int_0^t \theta^{\mathsf{T}}(\tau) \ \mathrm{d} au
ight),$$

the following process is a standard Brownian motion:

$$ilde{oldsymbol{eta}}(t) = oldsymbol{eta}(t) - \int_0^t oldsymbol{ heta}( au) \; \mathrm{d} au.$$

#### Girsanov II

Let  $\beta(\omega, t)$  be a standard *n*-dimensional Brownian motion under the probability measure  $\mathbb{P}$ . Let  $\theta : \Omega \times \mathbb{R}_+ \mapsto \mathbb{R}^n$  be an adapted process such that the process *Z* defined as

$$Z(\omega,t) = \exp\left\{\int_0^t \theta^{\mathsf{T}}(\omega,t) \,\mathrm{d}\beta(\omega,t) - \frac{1}{2}\int_0^t \theta^{\mathsf{T}}(\omega,t) \,\theta(\omega,t) \,\mathrm{d}t\right\},\,$$

satisfies  $E[Z(\omega, t)] = 1$ . Then the process

$$ilde{oldsymbol{eta}}(\omega,t) = oldsymbol{eta}(\omega,t) - \int_{oldsymbol{0}}^t oldsymbol{ heta}(\omega, au) \; \mathrm{d} au$$

is a standard Brownian motion under the probability measure  $\tilde{\mathbb{P}}$  defined via the relation  $\mathbb{E}\left[d\tilde{\mathbb{P}}/d\mathbb{P}(\omega) \middle| \mathscr{F}_t\right] = Z(\omega, t)$ , where  $\mathscr{F}_t$  is the natural filtration of the Brownian motion  $\beta(\omega, t)$ .

- Removal of drift: define  $\theta(t)$  in terms of the drift function suitably such that in the transformed SDE the drift cancels out.
- Weak solutions of SDEs: Select  $\theta(t)$  such that an easy process  $\tilde{\mathbf{x}}(t)$  solves the SDE with the constructed  $\tilde{\beta}(t)$ .
- Kallianpur–Striebel formula (Bayes' rule in continuous time) and stochastic filtering theory.
- Importance sampling and exact sampling of SDEs.

# Continuous-Time Stochastic Filtering Theory [1/3]

• Consider the following filtering model:

$$d\mathbf{x}(t) = \mathbf{f}(\mathbf{x}(t), t) dt + \mathbf{L}(\mathbf{x}, t) d\beta(t)$$
  
$$d\mathbf{y}(t) = \mathbf{h}(\mathbf{x}(t), t) dt + d\eta(t).$$

- Given that we have observed y(t), what can we say (in statistical sense) about the hidden process x(t)?
- The first equation defines dynamics of the system state and the second relates measurements to the state.
- Physical interpretation of the measurement model:

$$\mathbf{z}(t) = \mathbf{h}(\mathbf{x}(t), t) + \boldsymbol{\epsilon}(t),$$

where  $\mathbf{z}(t) = \mathrm{d}\mathbf{y}(t)/\mathrm{d}t$  and  $\epsilon(t) = \mathrm{d}\eta(t)/\mathrm{d}t$ .

For example, x(t) may contain position and velocity of a car and y(t) might be a radar measurement.

# Continuous-Time Stochastic Filtering Theory [2/3]

- The solution can be solved using Bayesian inference.
- This Bayesian solution is surpricingly old, as it dates back to work of Stratonovich around 1950.
- The aim is to compute the filtering (posterior) distribution

 $p(\mathbf{x}(t) | \mathscr{Y}_t).$ 

where  $\mathscr{Y}_t = \{\mathbf{y}(\tau) : \mathbf{0} \le \tau \le t\}.$ 

- The solutions are called the Kushner–Stratonovich equation and the Zakai equation.
- The solution to the linear Gaussian problem is called Kalman–Bucy filter.

#### Remark on notation

If we define a linear operator  $\mathscr{A}^*$  as

$$\mathscr{A}^{*}(\bullet) = -\sum_{i} \frac{\partial}{\partial x_{i}} [f_{i}(x,t)(\bullet)] + \frac{1}{2} \sum_{ij} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} \{ [\mathbf{L}(\mathbf{x},t) \mathbf{Q} \mathbf{L}^{\mathsf{T}}(\mathbf{x},t)]_{ij}(\bullet) \}.$$

Then the Fokker–Planck–Kolmogorov equation can be written compactly as

$$\frac{\partial p}{\partial t} = \mathscr{A}^* p.$$

#### Kushner–Stratonovich equation

The stochastic partial differential equation for the filtering density  $p(\mathbf{x}, t \mid \mathscr{Y}_t) \triangleq p(\mathbf{x}(t) \mid \mathscr{Y}_t)$  is

$$d\boldsymbol{p}(\mathbf{x}, t \mid \mathscr{Y}_t) = \mathscr{A}^* \boldsymbol{p}(\mathbf{x}, t \mid \mathscr{Y}_t) dt + (\mathbf{h}(\mathbf{x}, t) - \mathsf{E}[\mathbf{h}(\mathbf{x}, t) \mid \mathscr{Y}_t])^{\mathsf{T}} \mathbf{R}^{-1} (d\mathbf{y} - \mathsf{E}[\mathbf{h}(\mathbf{x}, t) \mid \mathscr{Y}_t] dt) \boldsymbol{p}(\mathbf{x}, t \mid \mathscr{Y}_t),$$

where  $dp(\mathbf{x}, t \mid \mathscr{Y}_t) = p(\mathbf{x}, t + dt \mid \mathscr{Y}_{t+dt}) - p(\mathbf{x}, t \mid \mathscr{Y}_t)$  and

$$\mathsf{E}[\mathbf{h}(\mathbf{x},t) \mid \mathscr{Y}_t] = \int \mathbf{h}(\mathbf{x},t) \, \rho(\mathbf{x},t \mid \mathscr{Y}_t) \, \mathrm{d}\mathbf{x}.$$

#### Zakai equation

Let  $q(\mathbf{x}, t \mid \mathscr{Y}_t) \triangleq q(\mathbf{x}(t) \mid \mathscr{Y}_t)$  be the solution to Zakai's stochastic partial differential equation

$$\mathrm{d} \boldsymbol{q}(\mathbf{x},t \mid \mathscr{Y}_t) = \mathscr{A}^* \, \boldsymbol{q}(\mathbf{x},t \mid \mathscr{Y}_t) \, \mathrm{d} t + \mathbf{h}^\mathsf{T}(\mathbf{x},t) \, \mathbf{R}^{-1} \, \mathrm{d} \mathbf{y} \, \boldsymbol{q}(\mathbf{x},t \mid \mathscr{Y}_t),$$

where  $dq(\mathbf{x}, t \mid \mathscr{Y}_t) = q(\mathbf{x}, t + dt \mid \mathscr{Y}_{t+dt}) - q(\mathbf{x}, t \mid \mathscr{Y}_t)$ . Then we have

$$p(\mathbf{x}(t) | \mathscr{Y}_t) = \frac{q(\mathbf{x}(t) | \mathscr{Y}_t)}{\int q(\mathbf{x}(t) | \mathscr{Y}_t) \, \mathrm{d}\mathbf{x}(t)}.$$

## Kalman–Bucy filter

The Kalman–Bucy filter is the exact solution to the linear Gaussian filtering problem

$$d\mathbf{x} = \mathbf{F}(t) \mathbf{x} dt + \mathbf{L}(t) d\beta$$
$$d\mathbf{y} = \mathbf{H}(t) \mathbf{x} dt + d\eta.$$

#### Kalman–Bucy filter

The Bayesian filter, which computes the posterior distribution  $p(\mathbf{x}(t) | \mathscr{Y}_t) = N(\mathbf{x}(t) | \mathbf{m}(t), \mathbf{P}(t))$  for the above system is

$$\begin{split} \mathbf{K}(t) &= \mathbf{P}(t) \, \mathbf{H}^{\mathsf{T}}(t) \, \mathbf{R}^{-1} \\ \mathrm{d}\mathbf{m}(t) &= \mathbf{F}(t) \, \mathbf{m}(t) \, \mathrm{d}t + \mathbf{K}(t) \, \left[\mathrm{d}\mathbf{y}(t) - \mathbf{H}(t) \, \mathbf{m}(t) \, \mathrm{d}t\right] \\ \frac{\mathrm{d}\mathbf{P}(t)}{\mathrm{d}t} &= \mathbf{F}(t) \, \mathbf{P}(t) + \mathbf{P}(t) \, \mathbf{F}^{\mathsf{T}}(t) + \mathbf{L}(t) \, \mathbf{Q} \, \mathbf{L}^{\mathsf{T}}(t) - \mathbf{K}(t) \, \mathbf{R} \, \mathbf{K}^{\mathsf{T}}(t). \end{split}$$

- Monte Carlo approximations (particle filters).
- Series expansions of processes.
- Series expansions of probability densities.
- Gaussian process approximations (non-linear Kalman filters).

- Brownian motion can be expanded into Karhunen–Loeve series.
- The series can be substituted into SDE leading to a class of Wong–Zakai approximations or to Wiener Chaos Expansions.
- Feynman–Kac formulae can be used to solve PDEs by simulating solutions of SDEs.
- Girsanov theorem is related to computation of likelihood ratios of processes.
- Applications of Girsanov theorem include removal drifts, solving SDEs and deriving results and methods for stochastic filtering theory.
- Filtering theory is related to Bayesian reconstruction of a hidden stochastic process x(t) from an observed stochastic process y(t).