# Lecture 7: Bayesian Optimal Smoother, Gaussian and Particle Smoothers

#### Simo Särkkä

Department of Biomedical Engineering and Computational Science Aalto University

March 1, 2012

Simo Särkkä Lecture 7: Bayesian, Gaussian and Particle Smoothers

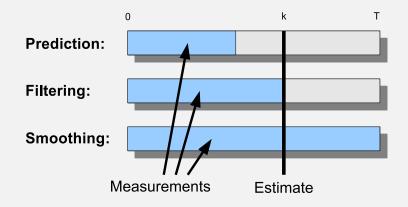
#### Contents



- What is Optimal Smoothing?
- 2 Bayesian Optimal Smoothing Equations
- 3 Rauch-Tung-Striebel Smoother
- Gaussian Approximation Based Smoothing
- 9 Particle Smoothing



## Filtering, Prediction and Smoothing



Simo Särkkä Lecture 7: Bayesian, Gaussian and Particle Smoothers

## Types of Smoothing Problems

- Fixed-interval smoothing: estimate states on interval [0, *T*] given measurements on the same interval.
- Fixed-point smoothing: estimate state at a fixed point of time in the past.
- Fixed-lag smoothing: estimate state at a fixed delay in the past.
- Here we shall only consider fixed-interval smoothing, the others can be quite easily derived from it.

### Examples of Smoothing Problems

- Given all the radar measurements of a rocket (or missile) trajectory, what was the exact place of launch?
- Estimate the whole trajectory of a car based on GPS measurements to calibrate the inertial navigation system accurately.
- What was the history of chemical/combustion/other process given a batch of measurements from it?
- Remove noise from audio signal by using smoother to estimate the true audio signal under the noise.
- Smoothing solution also arises in EM algorithm for estimating the parameters of a state space model.

# **Optimal Smoothing Algorithms**

- Linear Gaussian models
  - Rauch-Tung-Striebel smoother (RTSS).
  - Two-filter smoother.
- Non-linear Gaussian models
  - Extended Rauch-Tung-Striebel smoother (ERTSS).
  - Unscented Rauch-Tung-Striebel smoother (URTSS).
  - Statistically linearized Rauch-Tung-Striebel smoother (URTSS).
  - Gaussian Rauch-Tung-Striebel smoothers (GRTSS), cubature, Gauss-Hermite, Bayes-Hermite, Monte Carlo.
  - Two-filter versions of the above.
- Non-linear non-Gaussian models
  - Particle smoothers.
  - Rao-Blackwellized particle smoothers.
  - Grid based smoothers.

• Probabilistic state space model:

measurement model:  $\mathbf{y}_k \sim p(\mathbf{y}_k | \mathbf{x}_k)$ dynamic model:  $\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{x}_{k-1})$ 

- Assume that the filtering distributions p(x<sub>k</sub> | y<sub>1:k</sub>) have already been computed for all k = 0,..., T.
- We want recursive equations of computing the smoothing distribution for all k < T:</li>

$$p(\mathbf{x}_k \,|\, \mathbf{y}_{1:T}).$$

• The recursion will go backwards in time, because on the last step, the filtering and smoothing distributions coincide:

 $p(\mathbf{x}_T | \mathbf{y}_{1:T}).$ 

## Derivation of Formal Smoothing Equations [1/2]

The key: due to the Markov properties of state we have:

$$p(\mathbf{x}_k | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) = p(\mathbf{x}_k | \mathbf{x}_{k+1}, \mathbf{y}_{1:k})$$

• Thus we get:

$$p(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) = p(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k})$$

$$= \frac{p(\mathbf{x}_{k}, \mathbf{x}_{k+1} | \mathbf{y}_{1:k})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}$$

$$= \frac{p(\mathbf{x}_{k+1} | \mathbf{x}_{k}, \mathbf{y}_{1:k}) p(\mathbf{x}_{k} | \mathbf{y}_{1:k})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}$$

$$= \frac{p(\mathbf{x}_{k+1} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | \mathbf{y}_{1:k})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}.$$

## Derivation of Formal Smoothing Equations [2/2]

Assuming that the smoothing distribution of the next step p(x<sub>k+1</sub> | y<sub>1:T</sub>) is available, we get

$$p(\mathbf{x}_{k}, \mathbf{x}_{k+1} | \mathbf{y}_{1:T}) = p(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})$$
  
=  $p(\mathbf{x}_{k} | \mathbf{x}_{k+1}, \mathbf{y}_{1:k}) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})$   
=  $\frac{p(\mathbf{x}_{k+1} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | \mathbf{y}_{1:k}) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})}$ 

Integrating over x<sub>k+1</sub> gives

$$p(\mathbf{x}_k | \mathbf{y}_{1:T}) = p(\mathbf{x}_k | \mathbf{y}_{1:k}) \int \left[ \frac{p(\mathbf{x}_{k+1} | \mathbf{x}_k) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})} \right] \mathrm{d}\mathbf{x}_{k+1}$$

#### **Bayesian Optimal Smoothing Equations**

The Bayesian optimal smoothing equations consist of prediction step and backward update step:

$$p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \int p(\mathbf{x}_{k+1} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | \mathbf{y}_{1:k}) \, \mathrm{d}\mathbf{x}_{k}$$
$$p(\mathbf{x}_{k} | \mathbf{y}_{1:T}) = p(\mathbf{x}_{k} | \mathbf{y}_{1:k}) \int \left[ \frac{p(\mathbf{x}_{k+1} | \mathbf{x}_{k}) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})} \right] \, \mathrm{d}\mathbf{x}_{k+1}$$

The recursion is started from the filtering (and smoothing) distribution of the last time step  $p(\mathbf{x}_T | \mathbf{y}_{1:T})$ .

#### Linear-Gaussian Smoothing Problem

• Gaussian driven linear model, i.e., Gauss-Markov model:

$$\mathbf{x}_k = \mathbf{A}_{k-1} \, \mathbf{x}_{k-1} + \mathbf{q}_{k-1}$$
$$\mathbf{y}_k = \mathbf{H}_k \, \mathbf{x}_k + \mathbf{r}_k,$$

In probabilistic terms the model is

$$p(\mathbf{x}_k | \mathbf{x}_{k-1}) = \mathsf{N}(\mathbf{x}_k | \mathbf{A}_{k-1} \mathbf{x}_{k-1}, \mathbf{Q}_{k-1})$$
$$p(\mathbf{y}_k | \mathbf{x}_k) = \mathsf{N}(\mathbf{y}_k | \mathbf{H}_k \mathbf{x}_k, \mathbf{R}_k).$$

 Kalman filter can be used for computing all the Gaussian filtering distributions:

$$\rho(\mathbf{x}_k \,|\, \mathbf{y}_{1:k}) = \mathsf{N}(\mathbf{x}_k \,|\, \mathbf{m}_k, \mathbf{P}_k).$$

### **RTS: Derivation Preliminaries**

Gaussian probability density

$$N(\mathbf{x} \mid \mathbf{m}, \mathbf{P}) = \frac{1}{(2\pi)^{n/2} |\mathbf{P}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{m})^T \, \mathbf{P}^{-1} \, (\mathbf{x} - \mathbf{m})\right),$$

Let x and y have the Gaussian densities

$$p(\mathbf{x}) = \mathsf{N}(\mathbf{x} \mid \mathbf{m}, \mathbf{P}), \qquad p(\mathbf{y} \mid \mathbf{x}) = \mathsf{N}(\mathbf{y} \mid \mathbf{H} \mathbf{x}, \mathbf{R}),$$

Then the joint and marginal distributions are

$$\begin{aligned} \begin{pmatrix} \textbf{x} \\ \textbf{y} \end{pmatrix} &\sim N\left( \begin{pmatrix} \textbf{m} \\ \textbf{H} \textbf{m} \end{pmatrix}, \begin{pmatrix} \textbf{P} & \textbf{P} \textbf{H}^T \\ \textbf{H} \textbf{P} & \textbf{H} \textbf{P} \textbf{H}^T + \textbf{R} \end{pmatrix} \right) \\ \textbf{y} &\sim N(\textbf{H} \textbf{m}, \textbf{H} \textbf{P} \textbf{H}^T + \textbf{R}). \end{aligned}$$

### RTS: Derivation Preliminaries (cont.)

 If the random variables x and y have the joint Gaussian probability density

$$\begin{pmatrix} \textbf{x} \\ \textbf{y} \end{pmatrix} \sim \mathsf{N} \left( \begin{pmatrix} \textbf{a} \\ \textbf{b} \end{pmatrix}, \begin{pmatrix} \textbf{A} & \textbf{C} \\ \textbf{C}^T & \textbf{B} \end{pmatrix} \right),$$

 Then the marginal and conditional densities of x and y are given as follows:

$$\begin{split} & \mathbf{x} \sim \mathsf{N}(\mathbf{a}, \mathbf{A}) \\ & \mathbf{y} \sim \mathsf{N}(\mathbf{b}, \mathbf{B}) \\ & \mathbf{x} \,|\, \mathbf{y} \sim \mathsf{N}(\mathbf{a} + \mathbf{C} \, \mathbf{B}^{-1} \, (\mathbf{y} - \mathbf{b}), \mathbf{A} - \mathbf{C} \, \mathbf{B}^{-1} \mathbf{C}^{T}) \\ & \mathbf{y} \,|\, \mathbf{x} \sim \mathsf{N}(\mathbf{b} + \mathbf{C}^{T} \, \mathbf{A}^{-1} \, (\mathbf{x} - \mathbf{a}), \mathbf{B} - \mathbf{C}^{T} \, \mathbf{A}^{-1} \, \mathbf{C}). \end{split}$$

### Derivation of Rauch-Tung-Striebel Smoother [1/4]

By the Gaussian distribution computation rules we get

$$p(\mathbf{x}_{k}, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = p(\mathbf{x}_{k+1} | \mathbf{x}_{k}) p(\mathbf{x}_{k} | \mathbf{y}_{1:k})$$
  
= N(\mathbf{x}\_{k+1} | \mathbf{A}\_{k} \mathbf{x}\_{k}, \mathbf{Q}\_{k}) N(\mathbf{x}\_{k} | \mathbf{m}\_{k}, \mathbf{P}\_{k})  
= N\left( \begin{bmatrix} \mathbf{x}\_{k} \\ \mathbf{x}\_{k+1} \end{bmatrix} | \mathbf{m}\_{1}, \mathbf{P}\_{1} \right),

$$\mathbf{m}_1 = \begin{pmatrix} \mathbf{m}_k \\ \mathbf{A}_k \mathbf{m}_k \end{pmatrix}, \qquad \mathbf{P}_1 = \begin{pmatrix} \mathbf{P}_k & \mathbf{P}_k \mathbf{A}_k^T \\ \mathbf{A}_k \mathbf{P}_k & \mathbf{A}_k \mathbf{P}_k \mathbf{A}_k^T + \mathbf{Q}_k \end{pmatrix}$$

# Derivation of Rauch-Tung-Striebel Smoother [2/4]

By conditioning rule of Gaussian distribution we get

$$p(\mathbf{x}_k | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) = p(\mathbf{x}_k | \mathbf{x}_{k+1}, \mathbf{y}_{1:k})$$
$$= \mathsf{N}(\mathbf{x}_k | \mathbf{m}_2, \mathbf{P}_2),$$

$$\begin{split} \mathbf{G}_k &= \mathbf{P}_k \, \mathbf{A}_k^T \, (\mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T + \mathbf{Q}_k)^{-1} \\ \mathbf{m}_2 &= \mathbf{m}_k + \mathbf{G}_k \, (\mathbf{x}_{k+1} - \mathbf{A}_k \, \mathbf{m}_k) \\ \mathbf{P}_2 &= \mathbf{P}_k - \mathbf{G}_k \, (\mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T + \mathbf{Q}_k) \, \mathbf{G}_k^T. \end{split}$$

### Derivation of Rauch-Tung-Striebel Smoother [3/4]

The joint distribution of x<sub>k</sub> and x<sub>k+1</sub> given all the data is

$$p(\mathbf{x}_{k+1}, \mathbf{x}_k | \mathbf{y}_{1:T}) = p(\mathbf{x}_k | \mathbf{x}_{k+1}, \mathbf{y}_{1:T}) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})$$
  
= N(\mathbf{x}\_k | \mathbf{m}\_2, \mathbf{P}\_2) N(\mathbf{x}\_{k+1} | \mathbf{m}\_{k+1}^s, \mathbf{P}\_{k+1}^s)  
= N\left( \begin{bmatrix} \mathbf{x}\_{k+1} \\ \mathbf{x}\_k \end{bmatrix} | \mathbf{m}\_3, \mathbf{P}\_3 \right)

## Derivation of Rauch-Tung-Striebel Smoother [4/4]

The marginal mean and covariance are thus given as

$$\begin{split} \mathbf{m}_k^s &= \mathbf{m}_k + \mathbf{G}_k \left( \mathbf{m}_{k+1}^s - \mathbf{A}_k \, \mathbf{m}_k \right) \\ \mathbf{P}_k^s &= \mathbf{P}_k + \mathbf{G}_k \left( \mathbf{P}_{k+1}^s - \mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^T - \mathbf{Q}_k \right) \mathbf{G}_k^T. \end{split}$$

 The smoothing distribution is then Gaussian with the above mean and covariance:

$$\rho(\mathbf{x}_k \,|\, \mathbf{y}_{1:T}) = \mathsf{N}(\mathbf{x}_k \,|\, \mathbf{m}_k^s, \mathbf{P}_k^s),$$

#### Rauch-Tung-Striebel Smoother

Backward recursion equations for the smoothed means  $\mathbf{m}_{k}^{s}$  and covariances  $\mathbf{P}_{k}^{s}$ :

$$\mathbf{m}_{k+1}^{-} = \mathbf{A}_k \, \mathbf{m}_k$$
$$\mathbf{P}_{k+1}^{-} = \mathbf{A}_k \, \mathbf{P}_k \, \mathbf{A}_k^{T} + \mathbf{Q}_k$$
$$\mathbf{G}_k = \mathbf{P}_k \, \mathbf{A}_k^{T} \, [\mathbf{P}_{k+1}^{-}]^{-1}$$
$$\mathbf{m}_k^{s} = \mathbf{m}_k + \mathbf{G}_k \, [\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}]$$
$$\mathbf{P}_k^{s} = \mathbf{P}_k + \mathbf{G}_k \, [\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}] \, \mathbf{G}_k^{T}$$

- **m**<sub>k</sub> and **P**<sub>k</sub> are the mean and covariance computed by the Kalman filter.
- The recursion is started from the last time step T, with  $\mathbf{m}_T^s = \mathbf{m}_T$  and  $\mathbf{P}_T^s = \mathbf{P}_T$ .

## RTS Smoother: Car Tracking Example

The dynamic model of the car tracking model from the first & third lectures was:

$$\begin{pmatrix} x_k \\ y_k \\ \dot{x}_k \\ \dot{y}_k \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & 0 & \Delta t & 0 \\ 0 & 1 & 0 & \Delta t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}}_{\mathbf{A}} \begin{pmatrix} x_{k-1} \\ y_{k-1} \\ \dot{x}_{k-1} \\ \dot{y}_{k-1} \end{pmatrix} + \mathbf{q}_{k-1}$$

where  $\mathbf{q}_k$  is zero mean with a covariance matrix  $\mathbf{Q}$ :

$$\mathbf{Q} = \begin{pmatrix} q_1^c \,\Delta t^3/3 & 0 & q_1^c \,\Delta t^2/2 & 0 \\ 0 & q_2^c \,\Delta t^3/3 & 0 & q_2^c \,\Delta t^2/2 \\ q_1^c \,\Delta t^2/2 & 0 & q_1^c \,\Delta t & 0 \\ 0 & q_2^c \,\Delta t^2/2 & 0 & q_2^c \,\Delta t \end{pmatrix}$$

• Non-linear Gaussian state space model:

$$\mathbf{x}_k = \mathbf{f}(\mathbf{x}_{k-1}) + \mathbf{q}_{k-1}$$
$$\mathbf{y}_k = \mathbf{h}(\mathbf{x}_k) + \mathbf{r}_k,$$

 We want to compute Gaussian approximations to the smoothing distributions:

$$p(\mathbf{x}_k | \mathbf{y}_{1:T}) \approx \mathsf{N}(\mathbf{x}_k | \mathbf{m}_k^s, \mathbf{P}_k^s).$$

# Extended Rauch-Tung-Striebel Smoother Derivation

The approximate joint distribution of x<sub>k</sub> and x<sub>k+1</sub> is

$$p(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} | \mathbf{m}_1, \mathbf{P}_1\right),$$

where

 The rest of the derivation is analogous to the linear RTS smoother.

#### Extended Rauch-Tung-Striebel Smoother

The equations for the extended RTS smoother are

$$\mathbf{m}_{k+1}^{-} = \mathbf{f}(\mathbf{m}_k)$$
$$\mathbf{P}_{k+1}^{-} = \mathbf{F}_{\mathbf{x}}(\mathbf{m}_k) \mathbf{P}_k \mathbf{F}_{\mathbf{x}}^T(\mathbf{m}_k) + \mathbf{Q}_k$$
$$\mathbf{G}_k = \mathbf{P}_k \mathbf{F}_{\mathbf{x}}^T(\mathbf{m}_k) [\mathbf{P}_{k+1}^{-}]^{-1}$$
$$\mathbf{m}_k^s = \mathbf{m}_k + \mathbf{G}_k [\mathbf{m}_{k+1}^s - \mathbf{m}_{k+1}^{-}]$$
$$\mathbf{P}_k^s = \mathbf{P}_k + \mathbf{G}_k [\mathbf{P}_{k+1}^s - \mathbf{P}_{k+1}^{-}] \mathbf{G}_k^T$$

where the matrix  $\mathbf{F}_{\mathbf{x}}(\mathbf{m}_k)$  is the Jacobian matrix of  $\mathbf{f}(\mathbf{x})$  evaluated at  $\mathbf{m}_k$ .

# Statistically Linearized Rauch-Tung-Striebel Smoother Derivation

• With statistical linearization we get the approximation

$$\rho(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} \mid \mathbf{m}_1, \mathbf{P}_1\right),$$

- The expectations are taken with respect to filtering distribution of x<sub>k</sub>.
- The derivation proceeds as with linear RTS smoother.

#### Statistically Linearized Rauch-Tung-Striebel Smoother

The equations for the statistically linearized RTS smoother are

$$\mathbf{m}_{k+1}^{-} = \mathsf{E}[\mathbf{f}(\mathbf{x}_{k})]$$
$$\mathbf{P}_{k+1}^{-} = \mathsf{E}[\mathbf{f}(\mathbf{x}_{k}) \,\delta \mathbf{x}_{k}^{T}] \,\mathbf{P}_{k}^{-1} \,\mathsf{E}[\mathbf{f}(\mathbf{x}_{k}) \,\delta \mathbf{x}_{k}^{T}]^{T} + \mathbf{Q}_{k}$$
$$\mathbf{G}_{k} = \mathsf{E}[\mathbf{f}(\mathbf{x}_{k}) \,\delta \mathbf{x}_{k}^{T}]^{T} [\mathbf{P}_{k+1}^{-}]^{-1}$$
$$\mathbf{m}_{k}^{S} = \mathbf{m}_{k} + \mathbf{G}_{k} \,[\mathbf{m}_{k+1}^{S} - \mathbf{m}_{k+1}^{-}]$$
$$\mathbf{P}_{k}^{S} = \mathbf{P}_{k} + \mathbf{G}_{k} \,[\mathbf{P}_{k+1}^{S} - \mathbf{P}_{k+1}^{-}] \,\mathbf{G}_{k}^{T},$$

where the expectations are taken with respect to the filtering distribution  $\mathbf{x}_k \sim N(\mathbf{m}_k, \mathbf{P}_k)$ .

# Gaussian Rauch-Tung-Striebel Smoother Derivation

With Gaussian moment matching we get the approximation

$$p(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} \middle| \begin{bmatrix}\mathbf{m}_k\\\mathbf{m}_{k+1}\end{bmatrix}, \begin{bmatrix}\mathbf{P}_k & \mathbf{D}_{k+1}\\\mathbf{D}_{k+1}^T & \mathbf{P}_{k+1}^-\end{bmatrix}\right),$$

$$\begin{split} \mathbf{m}_{k+1}^{-} &= \int \mathbf{f}(\mathbf{x}_k) \operatorname{N}(\mathbf{x}_k \mid \mathbf{m}_k, \mathbf{P}_k) \, d\mathbf{x}_k \\ \mathbf{P}_{k+1}^{-} &= \int [\mathbf{f}(\mathbf{x}_k) - \mathbf{m}_{k+1}^{-}] \left[ \mathbf{f}(\mathbf{x}_k) - \mathbf{m}_{k+1}^{-} \right]^T \\ &\times \operatorname{N}(\mathbf{x}_k \mid \mathbf{m}_k, \mathbf{P}_k) \, d\mathbf{x}_k + \mathbf{Q}_k \\ \mathbf{D}_{k+1} &= \int [\mathbf{x}_k - \mathbf{m}_k] \left[ \mathbf{f}(\mathbf{x}_k) - \mathbf{m}_{k+1}^{-} \right]^T \operatorname{N}(\mathbf{x}_k \mid \mathbf{m}_k, \mathbf{P}_k) \, d\mathbf{x}_k. \end{split}$$

#### Gaussian Rauch-Tung-Striebel Smoother

The equations for the Gaussian RTS smoother are

$$\begin{split} \mathbf{m}_{k+1}^{-} &= \int \mathbf{f}(\mathbf{x}_{k}) \, \mathrm{N}(\mathbf{x}_{k} \, | \, \mathbf{m}_{k}, \mathbf{P}_{k}) \, d\mathbf{x}_{k} \\ \mathbf{P}_{k+1}^{-} &= \int [\mathbf{f}(\mathbf{x}_{k}) - \mathbf{m}_{k+1}^{-}] \, [\mathbf{f}(\mathbf{x}_{k}) - \mathbf{m}_{k+1}^{-}]^{T} \\ &\times \, \mathrm{N}(\mathbf{x}_{k} \, | \, \mathbf{m}_{k}, \mathbf{P}_{k}) \, d\mathbf{x}_{k} + \mathbf{Q}_{k} \\ \mathbf{D}_{k+1} &= \int [\mathbf{x}_{k} - \mathbf{m}_{k}] \, [\mathbf{f}(\mathbf{x}_{k}) - \mathbf{m}_{k+1}^{-}]^{T} \mathrm{N}(\mathbf{x}_{k} \, | \, \mathbf{m}_{k}, \mathbf{P}_{k}) \, d\mathbf{x}_{k} \\ \mathbf{G}_{k} &= \mathbf{D}_{k+1} \, [\mathbf{P}_{k+1}^{-}]^{-1} \\ \mathbf{m}_{k}^{s} &= \mathbf{m}_{k} + \mathbf{G}_{k} \, (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}) \\ \mathbf{P}_{k}^{s} &= \mathbf{P}_{k} + \mathbf{G}_{k} \, (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \, \mathbf{G}_{k}^{T}. \end{split}$$

#### Cubature Smoother Derivation [1/2]

Recall the 3rd order spherical Gaussian integral rule:

$$\int \mathbf{g}(\mathbf{x}) \, \mathsf{N}(\mathbf{x} \,|\, \mathbf{m}, \mathbf{P}) \, d\mathbf{x}$$
$$\approx \frac{1}{2n} \sum_{i=1}^{2n} \mathbf{g}(\mathbf{m} + \sqrt{\mathbf{P}} \, \boldsymbol{\xi}^{(i)}),$$

where

$$\boldsymbol{\xi}^{(i)} = \left\{ \begin{array}{ll} \sqrt{n} \mathbf{e}_i &, \quad i = 1, \dots, n\\ -\sqrt{n} \mathbf{e}_{i-n} &, \quad i = n+1, \dots, 2n, \end{array} \right.$$

where  $\mathbf{e}_i$  denotes a unit vector to the direction of coordinate axis *i*.

## Cubature Smoother Derivation [2/2]

We get the approximation

$$\rho(\mathbf{x}_k, \mathbf{x}_{k+1} | \mathbf{y}_{1:k}) = \mathsf{N}\left(\begin{bmatrix}\mathbf{x}_k\\\mathbf{x}_{k+1}\end{bmatrix} \middle| \begin{bmatrix}\mathbf{m}_k\\\mathbf{m}_{k+1}\end{bmatrix}, \begin{bmatrix}\mathbf{P}_k & \mathbf{D}_{k+1}\\\mathbf{D}_{k+1}^T & \mathbf{P}_{k+1}^-\end{bmatrix}\right),$$

$$\begin{aligned} \mathcal{X}_{k}^{(i)} &= \mathbf{m}_{k} + \sqrt{\mathbf{P}_{k}} \, \boldsymbol{\xi}^{(i)} \\ \mathbf{m}_{k+1}^{-} &= \frac{1}{2n} \sum_{i=1}^{2n} \mathbf{f}(\mathcal{X}_{k}^{(i)}) \\ \mathbf{P}_{k+1}^{-} &= \frac{1}{2n} \sum_{i=1}^{2n} [\mathbf{f}(\mathcal{X}_{k}^{(i)}) - \mathbf{m}_{k+1}^{-}] [\mathbf{f}(\mathcal{X}_{k}^{(i)}) - \mathbf{m}_{k+1}^{-}]^{T} + \mathbf{Q}_{k} \\ \mathbf{D}_{k+1} &= \frac{1}{2n} \sum_{i=1}^{2n} [\mathcal{X}_{k}^{(i)} - \mathbf{m}_{k}] [\mathbf{f}(\mathcal{X}_{k}^{(i)}) - \mathbf{m}_{k+1}^{-}]^{T}. \end{aligned}$$

### Cubature Rauch-Tung-Striebel Smoother [1/3]

#### Cubature Rauch-Tung-Striebel Smoother

Form the sigma points:

$$\mathcal{X}_k^{(i)} = \mathbf{m}_k + \sqrt{\mathbf{P}_k} \, \boldsymbol{\xi}^{(i)}, \qquad i = 1, \dots, 2n,$$

where the unit sigma points are defined as

$$\boldsymbol{\xi}^{(i)} = \begin{cases} \sqrt{n} \mathbf{e}_i &, i = 1, \dots, n \\ -\sqrt{n} \mathbf{e}_{i-n} &, i = n+1, \dots, 2n. \end{cases}$$

Propagate the sigma points through the dynamic model:

$$\hat{\mathcal{X}}_{k+1}^{(i)} = \mathbf{f}(\mathcal{X}_k^{(i)}), \quad i = 1, \dots, 2n.$$

### Cubature Rauch-Tung-Striebel Smoother [2/3]

#### Cubature Rauch-Tung-Striebel Smoother (cont.)

Compute the predicted mean m<sup>-</sup><sub>k+1</sub>, the predicted covariance P<sup>-</sup><sub>k+1</sub> and the cross-covariance D<sub>k+1</sub>:

$$\mathbf{m}_{k+1}^{-} = \frac{1}{2n} \sum_{i=1}^{2n} \hat{\mathcal{X}}_{k+1}^{(i)}$$
$$\mathbf{P}_{k+1}^{-} = \frac{1}{2n} \sum_{i=1}^{2n} (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-}) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^{T} + \mathbf{Q}_{k}$$
$$\mathbf{D}_{k+1} = \frac{1}{2n} \sum_{i=1}^{2n} (\mathcal{X}_{k}^{(i)} - \mathbf{m}_{k}) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^{T}.$$

# Cubature Rauch-Tung-Striebel Smoother [3/3]

#### Cubature Rauch-Tung-Striebel Smoother (cont.)

Compute the gain G<sub>k</sub>, mean m<sup>s</sup><sub>k</sub> and covariance P<sup>s</sup><sub>k</sub> as follows:

$$\mathbf{G}_{k} = \mathbf{D}_{k+1} [\mathbf{P}_{k+1}^{-}]^{-1} \mathbf{m}_{k}^{s} = \mathbf{m}_{k} + \mathbf{G}_{k} (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}) \mathbf{P}_{k}^{s} = \mathbf{P}_{k} + \mathbf{G}_{k} (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \mathbf{G}_{k}^{T}.$$

### Unscented Rauch-Tung-Striebel Smoother [1/3]

#### Unscented Rauch-Tung-Striebel Smoother

Form the sigma points:

$$\begin{aligned} \mathcal{X}_{k}^{(0)} &= \mathbf{m}_{k}, \\ \mathcal{X}_{k}^{(i)} &= \mathbf{m}_{k} + \sqrt{n+\lambda} \left[ \sqrt{\mathbf{P}_{k}} \right]_{i} \\ \mathcal{X}_{k}^{(i+n)} &= \mathbf{m}_{k} - \sqrt{n+\lambda} \left[ \sqrt{\mathbf{P}_{k}} \right]_{i}, \quad i = 1, \dots, n. \end{aligned}$$

Propagate the sigma points through the dynamic model:

$$\hat{\mathcal{X}}_{k+1}^{(i)} = \mathbf{f}(\mathcal{X}_k^{(i)}), \quad i = 0, \dots, 2n.$$

### Unscented Rauch-Tung-Striebel Smoother [2/3]

#### Unscented Rauch-Tung-Striebel Smoother (cont.)

Compute predicted mean, covariance and cross-covariance:

$$\mathbf{m}_{k+1}^{-} = \sum_{i=0}^{2n} W_i^{(m)} \hat{\mathcal{X}}_{k+1}^{(i)}$$
$$\mathbf{P}_{k+1}^{-} = \sum_{i=0}^{2n} W_i^{(c)} (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-}) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^T + \mathbf{Q}_k$$
$$\mathbf{D}_{k+1} = \sum_{i=0}^{2n} W_i^{(c)} (\mathcal{X}_k^{(i)} - \mathbf{m}_k) (\hat{\mathcal{X}}_{k+1}^{(i)} - \mathbf{m}_{k+1}^{-})^T,$$

## Unscented Rauch-Tung-Striebel Smoother [3/3]

#### Unscented Rauch-Tung-Striebel Smoother (cont.)

Compute gain smoothed mean and smoothed covariance: as follows:

$$\mathbf{G}_{k} = \mathbf{D}_{k+1} [\mathbf{P}_{k+1}^{-}]^{-1} \mathbf{m}_{k}^{s} = \mathbf{m}_{k} + \mathbf{G}_{k} (\mathbf{m}_{k+1}^{s} - \mathbf{m}_{k+1}^{-}) \mathbf{P}_{k}^{s} = \mathbf{P}_{k} + \mathbf{G}_{k} (\mathbf{P}_{k+1}^{s} - \mathbf{P}_{k+1}^{-}) \mathbf{G}_{k}^{T}.$$

### Other Gaussian RTS Smoothers

- Gauss-Hermite RTS smoother is based on multidimensional Gauss-Hermite integration.
- Bayes-Hermite or Gaussian Process RTS smoother uses Gaussian process based quadrature (Bayes-Hermite).
- Monte Carlo integration based RTS smoothers.
- Central differences etc.

### Particle Smoothing: Direct SIR

- The smoothing solution can be obtained from SIR by storing the whole state histories into the particles.
- Special care is needed on the resampling step.
- The smoothed distribution approximation is then of the form

$$\rho(\mathbf{x}_k | \mathbf{y}_{1:T}) \approx \sum_{i=1}^N w_T^{(i)} \delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}),$$

where  $\mathbf{x}_{k}^{(i)}$  is the *k*th component in  $\mathbf{x}_{1:T}^{(i)}$ .

• Unfortunately, the approximation is often quite degenerate.

## Particle Smoothing: Backward Simulation [1/2]

- In backward-simulation particle smoother we simulate individual trajectories backwards.
- The simulated samples are drawn from the particle filter samples.
- Uses the previous filtering results in smoothing ⇒ less degenerate than the direct SIR smoother.
- Idea:
  - Assume now that we have already simulated  $\tilde{\mathbf{x}}_{k+1:T}$  from the smoothing distribution.
  - From the Bayesian smoothing equations we get

$$p(\mathbf{x}_k \mid \tilde{\mathbf{x}}_{k+1}, \mathbf{y}_{1:T}) \propto p(\tilde{\mathbf{x}}_{k+1} \mid \mathbf{x}_k) p(\mathbf{x}_k \mid \mathbf{y}_{1:k}).$$

# Particle Smoothing: Backward Simulation [2/2]

#### Backward simulation particle smoother

Given the weighted set of particles  $\{w_k^{(i)}, \mathbf{x}_k^{(i)}\}$  representing the filtering distributions:

• Choose  $\tilde{\mathbf{x}}_T = \mathbf{x}_T^{(i)}$  with probability  $w_T^{(i)}$ .

• For 
$$k = T - 1, ..., 0$$
:

Compute new weights by

$$w_{k|k+1}^{(i)} \propto w_k^{(i)} p( ilde{\mathbf{x}}_{k+1} \,|\, \mathbf{x}_k^{(i)})$$

② Choose 
$$\tilde{\mathbf{x}}_k = \mathbf{x}_k^{(i)}$$
 with probability  $w_{k|k+1}^{(i)}$ 

Given *S* iterations resulting in  $\tilde{\mathbf{x}}_{1:T}^{(j)}$  for j = 1, ..., S the smoothing distribution approximation is

$$p(\mathbf{x}_{1:T} | \mathbf{y}_{1:T}) \approx \frac{1}{S} \sum_{j} \delta(\mathbf{x}_{1:T} - \tilde{\mathbf{x}}_{1:T}^{(j)}).$$

# Particle Smoothing: Reweighting [1/2]

 The reweighting particle smoother is based on computing new weights w<sup>(i)</sup><sub>k+1|T</sub> for the SIR filter particles such that:

$$p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T}) \approx \sum_{i} w_{k+1|T}^{(i)} \, \delta(\mathbf{x}_{k+1} - \mathbf{x}_{k+1}^{(i)}).$$

Recall the smoothing equation

$$p(\mathbf{x}_{k} | \mathbf{y}_{1:T}) = p(\mathbf{x}_{k} | \mathbf{y}_{1:k}) \int \left[ \frac{p(\mathbf{x}_{k+1} | \mathbf{x}_{k}) p(\mathbf{x}_{k+1} | \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} | \mathbf{y}_{1:k})} \right] \mathrm{d}\mathbf{x}_{k+1}$$

 We use SIR filter samples to form approximations (see booklet for details) as follows:

$$\int \frac{p(\mathbf{x}_{k+1} \,|\, \mathbf{x}_k) \, p(\mathbf{x}_{k+1} \,|\, \mathbf{y}_{1:T})}{p(\mathbf{x}_{k+1} \,|\, \mathbf{y}_{1:k})} \, d\mathbf{x}_{k+1} \approx \sum_{i} w_{k+1|T}^{(i)} \frac{p(\mathbf{x}_{k+1}^{(i)} \,|\, \mathbf{x}_k)}{p(\mathbf{x}_{k+1}^{(i)} \,|\, \mathbf{y}_{1:k})} \\p(\mathbf{x}_{k+1} \,|\, \mathbf{y}_{1:k}) \approx \sum_{i} w_k^{(j)} \, p(\mathbf{x}_{k+1} \,|\, \mathbf{x}_k^{(j)})$$

#### **Reweighting Particle Smoother**

Given the weighted set of particles  $\{w_k^{(i)}, x_k^{(i)}\}$  representing the filtering distribution, we can form approximations to the marginal smoothing distributions as follows:

- Start by setting  $w_{T|T}^{(i)} = w_T^{(i)}$  for i = 1, ..., n.
- For each k = T 1, ..., 0 do the following:

Compute new importance weights by

$$w_{k|T}^{(i)} \propto \sum_{j} w_{k+1|T}^{(j)} \frac{w_{k}^{(i)} \rho(\mathbf{x}_{k+1}^{(j)} | \mathbf{x}_{k}^{(i)})}{\left[\sum_{l} w_{k}^{(l)} \rho(\mathbf{x}_{k+1}^{(j)} | \mathbf{x}_{k}^{(l)})\right]}.$$

At each step k the marginal smoothing distribution can be approximated as

$$\boldsymbol{\rho}(\mathbf{x}_k \,|\, \mathbf{y}_{1:T}) \approx \sum_i w_{k|T}^{(i)} \,\delta(\mathbf{x}_k - \mathbf{x}_k^{(i)}).$$

## Rao-Blackwellized Particle Smoothing: Direct SIR

Recall the Rao-Blackwellized particle filtering model:

$$\begin{split} \mathbf{s}_k &\sim p(\mathbf{s}_k \,|\, \mathbf{s}_{k-1}) \\ \mathbf{x}_k &= \mathbf{A}(\mathbf{s}_{k-1}) \,\mathbf{x}_{k-1} + \mathbf{q}_k, \qquad \mathbf{q}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{Q}) \\ \mathbf{y}_k &= \mathbf{H}(\mathbf{s}_k) \,\mathbf{x}_k + \mathbf{r}_k, \qquad \mathbf{r}_k \sim \mathsf{N}(\mathbf{0}, \mathbf{R}) \end{split}$$

- The direct SIR based Rao-Blackwellized particle smoother:
  - During filtering store the whole sampled state and Kalman filter histories to the particles.
  - At the smoothing step, apply Rauch-Tung-Striebel smoothers to each of the Kalman filter histories.
- The smoothing distribution approximation:

$$p(\mathbf{x}_k, \mathbf{s}_k | \mathbf{y}_{1:T}) \approx \sum_{i=1}^N w_T^{(i)} \, \delta(\mathbf{s}_k - \mathbf{s}_k^{(i)}) \, \mathsf{N}(\mathbf{x}_k | \mathbf{m}_k^{s,(i)}, \mathbf{P}_k^{s,(i)}).$$

Also has the degeneracy problem.

## Rao-Blackwellized Particle Smoothing: Other Types

- The RB backward-sampling smoother can be implemented in many ways:
  - Sample both the components backwards (leads to a pure sample representation).
  - Sample the latent variables only requires quite complicated backward Kalman filtering computations.
  - Kim's approximation: just use the plain backward-sampling to the latent variable marginal.
- The RB reweighting particle smoothing is not possible exactly, but can be approximated using the above ideas.

#### Summary

- Optimal smoothing is used for computing estimates of state trajectories given the measurements on the whole trajectory.
- Rauch-Tung-Striebel (RTS) smoother is the closed form smoother for linear Gaussian models.
- Extended, statistically linearized and unscented RTS smoothers are the approximate nonlinear smoothers corresponding to EKF, SLF and UKF.
- Gaussian RTS smoothers: cubature RTS smoother, Gauss-Hermite RTS smoothers and various others
- Particle smoothing can be done by storing the whole state histories in SIR algorithm.
- Rao-Blackwellized particle smoother is a combination of particle smoothing and RTS smoothing.

### Matlab Demo: Pendulum [1/2]

Pendulum model:

$$\begin{pmatrix} x_{k}^{1} \\ x_{k}^{2} \end{pmatrix} = \underbrace{\begin{pmatrix} x_{k-1}^{1} + x_{k-1}^{2} \Delta t \\ x_{k-1}^{2} - g \sin(x_{k-1}^{1}) \Delta t \end{pmatrix}}_{\mathbf{f}(\mathbf{x}_{k-1})} + \begin{pmatrix} 0 \\ q_{k-1} \end{pmatrix}$$

$$y_{k} = \underbrace{\sin(x_{k}^{1})}_{\mathbf{h}(\mathbf{x}_{k})} + r_{k},$$

• The required Jacobian matrix for ERTSS:

$$\mathbf{F}_{x}(\mathbf{x}) = \begin{pmatrix} 1 & \Delta t \\ -g \cos(x^{1}) \, \Delta t & 1 \end{pmatrix}$$

## Matlab Demo: Pendulum [2/2]

The required expected value for SLRTSS is

$$\mathsf{E}[\mathbf{f}(\mathbf{x})] = \begin{pmatrix} m_1 + m_2 \,\Delta t \\ m_2 - g \,\sin(m_1) \,\exp(-P_{11}/2) \,\Delta t \end{pmatrix}$$

And the cross term:

$$\mathsf{E}[\mathbf{f}(\mathbf{x}) (\mathbf{x} - \mathbf{m})^T] = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix},$$

$$c_{11} = P_{11} + \Delta t P_{12}$$
  

$$c_{12} = P_{12} + \Delta t P_{22}$$
  

$$c_{21} = P_{12} - g \Delta t \cos(m_1) P_{11} \exp(-P_{11}/2)$$
  

$$c_{22} = P_{22} - g \Delta t \cos(m_1) P_{12} \exp(-P_{11}/2)$$