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Particle Filtering: Principle

=⇒

Animation: Kalman vs. Particle Filtering:
Kalman filter animation

Particle filter animation

The idea is to form a weighted particle presentation

(x(i),w (i)) of the posterior distribution:

p(x) ≈
∑

i

w (i) δ(x − x(i)).

Approximates Bayesian optimal filtering equations with

importance sampling.

Particle filtering = Sequential importance sampling, with

additional resampling step.
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Monte Carlo Integration
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In Bayesian inference we often want to compute posterior

expectations of the form

E[g(x) |y1:T ] =

∫

g(x) p(x |y1:T ) dx

Monte Carlo: draw N independent random samples from

x(i) ∼ p(x |y1:T ) and estimate the expectation as

E[g(x) |y1:T ] ≈
1

N

N∑

i=1

g(x(i)).
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Importance Sampling: Basic Version [1/2]
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Weighted sample

In practice, we rarely can directly draw samples from the

distribution p(x |y1:T ).

In importance sampling (IS), we draw samples from an

importance distribution x(i) ∼ π(x |y1:T ) and compute

weights w̃ (i) such that

E[g(x) |y1:T ] ≈

N∑

i=1

w̃ (i) g(x(i))
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Importance Sampling: Basic Version [2/2]

Importance sampling is based on the identity

E[g(x) |y1:T ] =

∫

g(x)p(x |y1:T ) dx

=

∫ [

g(x)
p(x |y1:T )

π(x |y1:T )

]

π(x |y1:T ) dx

Thus we can form a Monte Carlo approximation as follows:

E[g(x) |y1:T ] ≈
1

N

N∑

i=1

p(x(i) |y1:T )

π(x(i) |y1:T )
g(x(i))

That is, the importance weights can be defined as

w̃ (i) =
1

N

p(x(i) |y1:T )

π(x(i) |y1:T )

Simo Särkkä Lecture 6: Particle Filtering — SIR and RBPF



Importance Sampling: Weight Normalization

The problem is that we need to evaluate the normalization

constant of p(x(i) |y1:T ) – often not possible.

However, it turns out that we get a valid algorithm if we

define unnormalized importance weights as

w∗(i) =
p(y1:T |x(i))p(x(i))

π(x(i) |y1:T )

and then normalize them:

w (i) =
w∗(i)

∑

j w∗(j)

The (weight-normalized) importance sampling

approximation is then

E[g(x) |y1:T ] ≈

N∑

i=1

w (i) g(x(i))
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Importance Sampling: Algorithm

Importance Sampling

Draw N samples from the importance distribution:

x(i) ∼ π(x |y1:T ), i = 1, . . . ,N.

Compute the unnormalized weights by

w∗(i) =
p(y1:T |x(i))p(x(i))

π(x(i) |y1:T )
,

and the normalized weights by

w (i) =
w∗(i)

∑N
j=1 w∗(j)

.
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Importance Sampling: Properties

The approximation to the posterior expectation of g(x) is

then given as

E[g(x) |y1:T ] ≈

N∑

i=1

w (i) g(x(i)).

The posterior probability density approximation can then

be formally written as

p(x |y1:T ) ≈

N∑

i=1

w (i) δ(x − x(i)),

where δ(·) is the Dirac delta function.

The efficiency depends on the choice of the importance

distribution.
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Sequential Importance Sampling: Idea

Sequential Importance Sampling (SIS) is concerned with

models

xk ∼ p(xk | xk−1)

yk ∼ p(yk | xk )

The SIS algorithm uses a weighted set of particles

{(w
(i)
k ,x

(i)
k ) : i = 1, . . . ,N} such that

E[g(xk ) |y1:k ] ≈

N∑

i=1

w
(i)
k g(x

(i)
k ).

Or equivalently

p(xk |y1:k) ≈

N∑

i=1

w
(i)
k δ(xk − x

(i)
k ),

where δ(·) is the Dirac delta function.

Uses importance sampling sequentially.
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Sequential Importance Sampling: Derivation [1/2]

Let’s consider the full posterior distribution of states x0:k

given the measurements y1:k .

We get the following recursion for the posterior distribution:

p(x0:k |y1:k) ∝ p(yk |x0:k ,y1:k−1)p(x0:k |y1:k−1)

= p(yk |xk )p(xk |x0:k−1,y1:k−1)p(x0:k−1 |y1:k−1)

= p(yk |xk )p(xk |xk−1)p(x0:k−1 |y1:k−1).

We could now construct an importance distribution

x
(i)
0:k ∼ π(x0:k |y1:k ) and compute the corresponding

(normalized) importance weights as

w
(i)
k ∝

p(yk |x
(i)
k )p(x

(i)
k |x

(i)
k−1)p(x

(i)
0:k−1 |y1:k−1)

π(x
(i)
0:k |y1:k)

.
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Sequential Importance Sampling: Derivation [2/2]

Let’s form the importance distribution recursively as

follows:

π(x0:k |y1:k) = π(xk |x0:k−1,y1:k )π(x0:k−1 |y1:k−1)

Expression for the importance weights can be written as

w
(i)
k ∝

p(yk |x
(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k)

p(x
(i)
0:k−1 |y1:k−1)

π(x
(i)
0:k−1 |y1:k−1)

︸ ︷︷ ︸

∝w
(i)
k−1

Thus the weights satisfy the recursion

w
(i)
k ∝

p(yk |x
(i)
k )p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k )

w
(i)
k−1
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Sequential Importance Sampling: Algorithm

Sequential Importance Sampling

Initialization: Draw N samples x
(i)
0 from the prior

x
(i)
0 ∼ p(x0)

and set w
(i)
0 = 1/N.

Prediction: Draw N new samples x
(i)
k from importance

distributions

x
(i)
k ∼ π(xk |x

(i)
0:k−1,y1:k)

Update: Calculate new weights according to

w
(i)
k ∝ w

(i)
k−1

p(yk |x
(i)
k ) p(x

(i)
k |x

(i)
k−1)

π(x
(i)
k |x

(i)
0:k−1,y1:k )
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Sequential Importance Sampling: Degeneracy

The problem in SIS is that the algorithm is degenerate

It can be shown that the variance of the weights increases

at every step

It means that we will always converge to single non-zero

weight w (i) = 1 and the rest being zero – not very useful

algorithm.

Solution: resampling!
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Sequential Importance Resampling: Resampling Step

Sequential Importance Resampling (SIR) algorithm adds

the following resampling step to SIS algorithm:

Resampling

Interpret each weight w
(i)
k as the probability of obtaining the

sample index i in the set {x
(i)
k | i = 1, . . . ,N}.

Draw N samples from that discrete distribution and replace the
old sample set with this new one.

Set all weights to the constant value w
(i)
k = 1/N.

There are many algorithms for implementing this –

stratified resampling is optimal in terms of variance.
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Sequential Importance Resampling: Effective Number

of Particles

A simple way to do resampling is at every step – but every

resampling operation increases variance.

We can also resample at, say, every K th step.

In adaptive resampling, we resample when the effective

number of samples is too low (say, N/10):

neff ≈
1

∑N
i=1

(

w
(i)
k

)2
,

In theory, biased, but in practice works very well and is

often used.
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Sequential Importance Resampling: Algorithm

Sequential Importance Resampling

Draw point x
(i)
k from the importance distribution:

x
(i)
k ∼ π(xk | x

(i)
0:k−1,y1:k), i = 1, . . . ,N.

Calculate new weights

w
(i)
k ∝ w

(i)
k−1

p(yk | x
(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(x
(i)
k | x

(i)
0:k−1,y1:k )

, i = 1, . . . ,N,

and normalize them to sum to unity.

If the effective number of particles is too low, perform

resampling.
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Sequential Importance Resampling: Bootstrap filter

In bootstrap filter we use the dynamic model as the

importance distribution

π(x
(i)
k | x

(i)
0:k−1,y1:k ) = p(x

(i)
k | x

(i)
k−1)

and resample at every step:

Bootstrap Filter

Draw point x
(i)
k from the dynamic model:

x
(i)
k ∼ p(xk | x

(i)
k−1), i = 1, . . . ,N.

Calculate new weights

w
(i)
k ∝ p(yk | x

(i)
k ), i = 1, . . . ,N,

and normalize them to sum to unity.

Perform resampling.
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Sequential Importance Resampling: Optimal

Importace Distribution

The optimal importance distribution is

π(x
(i)
k | x

(i)
0:k−1,y1:k) = p(x

(i)
k | x

(i)
k−1,yk )

Then the weight update reduces to

w
(i)
k ∝ w

(i)
k−1 p(yk | x

(i)
k−1), i = 1, . . . ,N.

The optimal importance distribution can be used, for

example, when the state space is finite.
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Sequential Importance Resampling: Importace

Distribution via Kalman Filtering

We can also form a Gaussian approximation to the optimal

importance distribution:

p(x
(i)
k | x

(i)
k−1,yk ) ≈ N(x

(i)
k | m̃

(i)
k , P̃

(i)
k ).

by using a single prediction and update steps of a

Gaussian filter starting from a singular distribution at x
(i)
k−1.

We can also replace above with the result of a Gaussian

filter N(m
(i)
k−1,P

(i)
k−1) started from a random initial mean.

A very common way seems to be to use the previous

sample as the mean: N(x
(i)
k−1,P

(i)
k−1).

A particle filter with UKF proposal has been given name

unscented particle filter (UPF) – you can invent new PFs

easily this way.
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Rao-Blackwellized Particle Filter: Idea

Rao-Blackwellized particle filtering (RBPF) is concerned

with conditionally Gaussian models:

p(xk |xk−1,θk−1) = N(xk |Ak−1(θk−1)xk−1,Qk−1(θk−1))

p(yk |xk ,θk ) = N(yk |Hk (θk )xk ,Rk (θk ))

p(θk | θk−1) = (any given form),

where

xk is the state

yk is the measurement

θk is an arbitrary latent variable

Given the latent variables θ1:T the model is Gaussian.

The RBPF uses SIR for the latent variables and computes

the conditionally Gaussian part in closed form with Kalman

filter.
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Rao-Blackwellized Particle Filter: Derivation [1/3]

The full posterior at step k can be factored as

p(θ0:k ,x0:k |y1:k ) = p(x0:k |θ0:k ,y1:k)p(θ0:k |y1:k )

The first term is Gaussian and computable with Kalman

filter and RTS smoother

For the second term we get the following recursion:

p(θ0:k |y1:k )

∝ p(yk |θ0:k ,y1:k−1)p(θ0:k |y1:k−1)

= p(yk |θ0:k ,y1:k−1)p(θk |θ0:k−1,y1:k−1)p(θ0:k−1 |y1:k−1)

= p(yk |θ0:k ,y1:k−1)p(θk |θk−1)p(θ0:k−1 |y1:k−1)
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Rao-Blackwellized Particle Filter: Derivation [2/3]

Let’s take a look at the terms in

p(yk |θ0:k ,y1:k−1)p(θk |θk−1)p(θ0:k−1 |y1:k−1)

The first term can be computed by running Kalman filter

with fixed θ0:k over the measurement sequence.

The second term is just the dynamic model.

The third term is the posterior from the previous step.
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Rao-Blackwellized Particle Filter: Derivation [3/3]

We can form the importance distribution recursively:

π(θ0:k |y1:k ) = π(θk |θ0:k−1,y1:k)π(θ0:k−1 |y1:k−1)

We then get the following recursion for the weights:

w
(i)
k ∝

p(yk |θ
(i)
0:k−1,y1:k−1)p(θ

(i)
k |θ

(i)
k−1)

π(θ
(i)
k |θ

(i)
0:k−1,y1:k )

w
(i)
k−1

Given the marginal posterior for θ0:k we can recover the

Gaussian part x0:k with Kalman filter and RTS smoother.

The optimal importance distribution takes the form

p(θk | y1:k ,θ
(i)
0:k−1) ∝ p(yk | θk ,θ

(i)
0:k−1)p(θk | θ

(i)
0:k−1,y1:k−1)
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Rao-Blackwellized Particle Filter: Algorithm [1/3]

Rao-Blackwellized Particle Filter

Perform Kalman filter predictions for each of the Kalman

filter means and covariances in the particles i = 1, . . . ,N
conditional on the previously drawn latent variable values

θ
(i)
k−1

m
−(i)
k = Ak−1(θ

(i)
k−1)m

(i)
k−1

P
−(i)
k = Ak−1(θ

(i)
k−1)P

(i)
k−1 AT

k−1(θ
(i)
k−1) + Qk−1(θ

(i)
k−1).

Draw new latent variables θ
(i)
k for each particle in

i = 1, . . . ,N from the corresponding importance

distributions

θ
(i)
k ∼ π(θk | θ

(i)
0:k−1,y1:k ).
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Rao-Blackwellized Particle Filter: Algorithm [2/3]

Rao-Blackwellized Particle Filter (cont.)

Calculate new weights as follows:

w
(i)
k ∝ w

(i)
k−1

p(yk |θ
(i)
0:k ,y1:k−1) p(θ

(i)
k |θ

(i)
k−1)

π(θ
(i)
k |θ

(i)
0:k−1,y1:k)

,

where the likelihood term is the marginal measurement

likelihood of the Kalman filter:

p(yk |θ
(i)
0:k ,y1:k−1)

= N
(

yk

∣
∣
∣Hk(θ

(i)
k )m

−(i)
k ,Hk (θ

(i)
k )P

−(i)
k HT

k (θ
(i)
k ) + Rk (θ

(i)
k )

)

.

Then normalize the weights to sum to unity.

Simo Särkkä Lecture 6: Particle Filtering — SIR and RBPF



Rao-Blackwellized Particle Filter: Algorithm [3/3]

Rao-Blackwellized Particle Filter (cont.)

Perform Kalman filter updates for each of the particles

conditional on the drawn latent variables θ
(i)
k

v
(i)
k = yk − Hk (θ

(i)
k )m−

k

S
(i)
k = Hk(θ

(i)
k )P

−(i)
k HT

k (θ
(i)
k ) + Rk(θ

(i)
k )

K
(i)
k = P

−(i)
k HT

k (θ
(i)
k )S−1

k

m
(i)
k = m

−(i)
k + K

(i)
k v

(i)
k

P
(i)
k = P

−(i)
k − K

(i)
k S

(i)
k [K

(i)
k ]T .

If the effective number of particles is too low, perform

resampling.
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Rao-Blackwellized Particle Filter: Properties

The Rao-Blackwellized particle filter produces a set of

weighted samples {w
(i)
k ,θ

(i)
k ,m

(i)
k ,P

(i)
k : i = 1, . . . ,N}

The expectation of a function g(·) can be approximated as

E[g(xk ,θk ) |y1:k ] ≈
N∑

i=1

w
(i)
k

∫

g(xk ,θ
(i)
k ) N(xk |m

(i)
k ,P

(i)
k ) dxk .

Approximation of the filtering distribution is

p(xk ,θk |y1:k ) ≈

N∑

i=1

w
(i)
k δ(θk − θ

(i)
k ) N(xk |m

(i)
k ,P

(i)
k ).

It is possible to do approximate Rao-Blackwellization by

replacing the Kalman filter with a Gaussian filter.

Simo Särkkä Lecture 6: Particle Filtering — SIR and RBPF



Rao-Blackwellization of Static Parameters

Rao-Blackwellization can sometimes be used in models of

the form

xk ∼ p(xk |xk−1,θ)

yk ∼ p(yk |xk ,θ)

θ ∼ p(θ),

where vector θ contains the unknown static parameters.

Possible if the posterior distribution of parameters θ

depends only on some sufficient statistics Tk :

Tk = Tk(x1:k ,y1:k)

We also need to have a recursion rule for the sufficient

statistics.

Can be extended to time-varying parameters.
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Particle Filter: Advantages

No restrictions in model – can be applied to non-Gaussian

models, hierarchical models etc.

Global approximation.

Approaches the exact solution, when the number of

samples goes to infinity.

In its basic form, very easy to implement.

Superset of other filtering methods – Kalman filter is a

Rao-Blackwellized particle filter with one particle.
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Particle Filter: Disadvantages

Computational requirements much higher than of the

Kalman filters.

Problems with nearly noise-free models, especially with

accurate dynamic models.

Good importance distributions and efficient

Rao-Blackwellized filters quite tricky to implement.

Very hard to find programming errors (i.e., to debug).
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Summary

Particle filters use weighted set of samples (particles) for

approximating the filtering distributions.

Sequential importance resampling (SIR) is the general

framework and bootstrap filter is a simple special case of it.

EKF, UKF and other Gaussian filters can be used for

forming good importance distributions.

In Rao-Blackwellized particle filters a part of the state is

sampled and part is integrated in closed form with Kalman

filter.
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Particle Filter: Demo

The discretized pendulum model:

(
x1

k

x2
k

)

=

(
x1

k−1 + x2
k−1 ∆t

x2
k−1 − g sin(x1

k−1)∆t

)

︸ ︷︷ ︸

f(xk−1)

+

(
0

qk−1

)

yk = sin(x1
k )

︸ ︷︷ ︸

h(xk)

+rk ,

⇒ Matlab demonstration
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