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Contents of Course

Modeling with stochastic state space models.

Bayesian theory of optimal filtering.

Gaussian approximations: Derivation of Kalman, extended

Kalman and unscented Kalman filters, Gauss-Hermite and

cubature Kalman filters from the general theory.

Monte Carlo methods: Particle filtering, Rao-Blackwellized

filtering.

Optimal smoothing: Bayesian theory of optimal smoothing

and related Kalman (=Gaussian) and particle type

methods.

Various illustrative applications to backup the theory.

Various exercises to practice modeling and estimation.
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Some History

In 40’s, Wiener’s work on stochastic analysis and optimal

filtering (and “cybernetics”)

In late 50’s, state space models, Bellman’s dynamic

programming, Swerling’s filter.

In early 60’s, Kalman filter and Kalman-Bucy filter, stability

analysis of linear state space models (mostly by Kalman).

In mid 60’s, Rauch-Tung-Striebel smoother, extended

Kalman filters (EKF).

In late 60’s, Bayesian approach to optimal filtering, first

practical applications (e.g. Apollo program).

In 70’s and 80’s, first particle filters, square root Kalman

filters, new algorithms and applications.

In 90’s, rebirth of particle filters, sigma-point and

unscented Kalman filters (UKF), new applications.

In 00’s, new algorithm variations and applications.
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Recursive Estimation of Dynamic Process

f(t)

Dynamic, that is, time varying

phenomenon - for example the motion

state of a car.

The phenomenon is measured - for

example by a radar or by acceleration

and angular velocity sensors.

The purpose is to compute the state of

the phenomenon when only the

measurements are observed.

The solution should be recursive,

where the information in new

measurements is used for updating the

old information.
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Bayesian Modeling of Dynamics

f(t)

The laws of physics, biology, epidemiology etc. are

typically differential equations.

Uncertainties and unknown sub-phenomena are modeled
as stochastic processes:

Physical phenomena: differential equations + uncertainty
⇒ stochastic differential equations.

Discretized physical phenomena: Stochastic differential

equations ⇒ stochastic difference equations.
Naturally discrete-time phenomena: Systems jumping from

step to another.

Stochastic differential and difference equations can be

represented in stochastic state space form.
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Bayesian Modeling of Measurements

Mittalaite

(x1,x2)

The relationship between measurements and phenomenon

is mathematically modeled as a probability distribution.

The measurements could be (in ideal world) computed if

the phenomenon was known (forward model).

The uncertainties in measurements and model are

modeled as random processes.

The measurement model is the conditional distribution of

measurements given the state of the phenomenon.
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Why Bayesian Approach?

Theory of optimal filtering can be formulated in many ways:

1 Least squares optimization framework ⇒ hard to extend

recursive estimation beyond linear models, uncertainties
cannot be modeled.

2 Maximum likelihood framework ⇒ the theoretical basis of
dynamic models is somewhat heuristic, uncertainties

cannot be modeled.
3 Bayesian framework ⇒ theory is quite complete, but the

computational complexity can be unbounded.
4 Other approaches ⇒ typically applicable to restricted

special cases.

For practical “engineering” reasons, Bayesian approach is

used here (because it works!).

Kalman filter (1960) was originally derived in least squares

framework

Non-linear filtering theory has been Bayesian from the

beginning (about 1964).
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Bayesian Estimation of Dynamic Process

Time-varying process and noisy measurements from it:
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Mathematical Model of Dynamic Process

Generally, Markov model for the state:

xk ∼ p(xk |xk−1).

Likelihood distribution of the measurement:

yk ∼ p(yk |xk ).

In principle, we could simply use the Bayes’ rule

p(x1, . . . ,xT |y1, . . . ,yT )

=
p(y1, . . . ,yT |x1, . . . ,xT )p(x1, . . . ,xT )

p(y1, . . . ,yT )
,

Curse of computational complexity: complexity grows more

than linearly with number of measurements.
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Optimal Filter

y1 y2 y3 y4 ... Optimal
filter

x1 x2 x3 x4 ...

The classical recursive (efficient) solution to the dynamic

estimation problem is called the optimal filter.

The optimal filter computes the (marginal) posterior

distribution of the state given the measurements:

p(x(tk ) |y1, . . . ,yk ).

The “filtered” state x̂(tk ) typically is the posterior mean

x̂(tk ) = E(x(tk ) |y1, . . . ,yk ).

The solution is called filter for historical reasons.
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Optimal Filtering, Prediction and Smoothing

Recursively computable marginal distributions:

Filtering distributions:

p(xk | y1, . . . , yk ), k = 1, . . . ,T .

Prediction distributions:

p(xk+n | y1, . . . , yk ), k = 1, . . . ,T , n = 1, 2, . . . ,

Smoothing distributions:

p(xk | y1, . . . , yT ), k = 1, . . . ,T .

The mean can be computed exactly, as well as marginal

moments, but cross-moments need extra effort.
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Optimal Filtering, Prediction and Smoothing (cont.)
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Algorithms for Computing the Solutions

Kalman filter is the classical optimal filter for

linear-Gaussian models.

Extended Kalman filter (EKF) is linearization based

extension of Kalman filter to non-linear models.

Unscented Kalman filter (UKF) is sigma-point

transformation based extension of Kalman filter.

Gauss-Hermite and Cubature Kalman filters (GHKF/CKF)

are numerical integration based extensions of Kalman filter.

Particle filter forms a Monte Carlo representation (particle

set) to the distribution of the state estimate.

Grid based filters approximate the probability distributions

by a finite grid.

Mixture Gaussian approximations are used, for example, in

multiple model Kalman filters and Rao-Blackwellized

Particle filters.
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Navigation of Lunar Module

The navigation system of Eagle lunar

module AGC was based on an optimal

filter - this was in the year 1969.

The dynamic model was Newton’s

gravitation law.

The measurements at lunar landing

were the radar readings.

On rendezvous with the command ship

the orientation was computed with

gyroscopes and their biases were also

compensated with the radar.

The optimal filter was an extended

Kalman filter.
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Satellite Navigation (GPS)

The dynamic model in GPS receivers is

often the Newton’s second law where

the force is completely random, that is,

the Wiener velocity model.

The measurements are time delays of

satellite signals.

The optimal filter computes the position

and the accurate time.

Also the errors caused by multi path

can be modeled and compensated.

Acceleration and angular velocity

measurements are sometimes used as

extra measurements.
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Spread of Disease
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Spreading of a disease in population

can be modeled by differential

equations.

Modeling the unknown parameters and

phenomena as random processes

leads to stochastic dynamic model.

The measurements in this case are the

number of dead or recovered

individuals.

Optimal filter is used for computing the

unknown parameters and the number

of susceptible and infected individuals.

It is also possible to predict when the

maximum of the epidemic and how

many casualties there will be.
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Other Applications
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Target tracking, where one or many

targets are tracked with many passive

sensors - air surveillance.

Time series prediction where the model

parameters are estimated from the

measured time series and the unknown

part is predicted using these

parameters.

Analysis and restoration of audio

signals.

Telecommunication systems - optimal

receivers, signal detectors.

State estimation of control systems -

chemical processes, auto pilots, control

systems of cars.
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Generic Probabilistic State Space Model

General form of probabilistic state space models:

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk )

x0 ∼ p(x0).

xk is the generalized state at time step k , including all

physical state variables and parameters.

yk is the vector of measurements obtained at time step k .

The dynamic model p(xk |xk−1) models the dynamics of

the state.

The measurement model p(yk |xk ) models the

measurements and their uncertainties.

The prior distribution p(x0) models the information known

about the state before obtaining any measurements.
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Linear Gaussian State Space Models

General form of linear Gaussian state space models:

xk = A xk−1 + qk−1, qk−1 ∼ N(0,Q)

yk = H xk + rk , rk ∼ N(0,R)

x0 ∼ N(m0,P0).

In probabilistic notation the model is:

p(yk |xk ) = N(yk |H xk ,R)

p(xk |xk−1) = N(xk |A xk−1,Q).

Surprisingly general class of models – linearity is from

measurements to estimates, not from time to outputs.
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Non-Linear State Space Models

General form of non-linear Gaussian state space models:

xk = f(xk−1,qk−1)

yk = h(xk , rk ).

qk and rk are typically assumed Gaussian.

Functions f(·) and h(·) are non-linear functions modeling

the dynamics and measurements of the system.

Equivalent to the generic probabilistic models of the form

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk ).
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Modeling with State Space Models

Probabilistic state space models are very general – every

finite dimensional Bayesian estimation problem has a state

space representation.

The most difficult task is figure out how to formulate an

estimation problem in state space form.

Formulating state space representations of physical

problems is engineering in its basic form.

Best way to learn this engineering is by examples and

practical work – in this lecture we shall give examples.
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Linear and Linear in Parameters Models

Basic linear regression model with noise ǫk :

yk = a0 + a1 xk + ǫk , k = 1, . . . ,N.

First rename xk to e.g. sk to avoid confusion:

yk = a0 + a1 sk + ǫk , k = 1, . . . ,N.

Define matrix Hk = (1 sk ) and state x = (a0 a1)
T :

yk = Hk x + ek , k = 1, . . . ,N.

For notation sake we can also define xk = x such that

xk = xk−1:

xk = xk−1

yk = Hk xk + ek .

Thus we have a linear Gaussian state space model,

solvable with the basic Kalman filter.
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Linear and Linear in Parameters Models (cont.)

More general linear regression models:

yk = a0 + a1 sk ,1 + · · ·+ ad sk ,d + ǫk , k = 1, . . . ,N.

Defining matrix Hk = (1 sk ,1 · · · sk ,d) and state

xk = x = (a0 a1 · · · ad)
T gives linear Gaussian state

space model:

xk = xk−1

yk = Hk xk + ǫk .

Linear in parameters models:

yk = a0 + a1 f1(sk ) + · · · + ad fd(sk ) + ǫk .

Definitions Hk = (1 f1(sk ) · · · fd (sk )) and

xk = x = (a0 a1 · · · ad)
T again give linear Gaussian state

space model.
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Non-Linear and Neural Network Models

Non-linearity in measurements models arises in

generalized linear models, e.g.

yk = g−1(a0 + a1 sk ) + ǫk .

The measurement model is now non-linear and if we

define x = (a0 a1)
T and h(x) = g−1(x1 + x2 sk ) we get

non-linear Gaussian state space model:

xk = xk−1

yk = h(xk ) + ǫk .

Neural network models such as multi-layer perceptron

(MLP) models can be also transformed into the above

form.

Instead of basic Kalman filter we need extended Kalman

filter or unscented Kalman filter to cope with the

non-linearity.
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Adaptive Filtering Models

In digital signal processing, a commonly used signal model

is the autoregressive model

yk = w1 yk−1 + · · ·+ wd yk−d + ǫk ,

In adaptive filtering the weights wi are estimated from data.

If we define matrix Hk = (yk−1 · · · yk−d ) and state as

xk = (w1 · · · wd)
T , we get linear Gaussian state space

model:

xk = xk−1

yk = Hk xk + ǫk .

The estimation problem can be solved with Kalman filter.

The LMS algorithm can be interpreted as approximate

version of this Kalman filter.
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Adaptive Filtering Models (cont.)

In time varying autoregressive models (TVAR) models the

weights are time-varying:

yk = w1,k yk−1 + · · ·+ wd ,k yk−d + ǫk ,

Typical model for the time dependence of weights:

wi ,k = wi ,k−1 + qk−1,i , qk−1,i ∼ N(0, σ2), i = 1, . . . ,d .

Can be written as linear Gaussian state space model with

process noise qk−1 = (qk−1,1 · · · qk−1,d)
T :

xk = xk−1 + qk−1

yk = Hk xk + ǫk .

More general (TV)ARMA models can be handled similarly.
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Spectral and Covariance Models

Time series can be often modeled in terms of spectral

density

S(ω) = {some function of angular velocity ω}.

Or in terms of mean and covariance function:

m(t) = E[x(t)]

C(t , t ′) = E[(x(t)− m(t)) (x(t ′)− m(t ′))T ]

Such Gaussian processes have representations as outputs

of linear Gaussian systems driven by white noise.

We often can construct a linear Gaussian state space

model with a given spectral density or covariance function.

If spectral density is a rational function, this is possible.
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Stochastic Differential Equation Models

Physical systems can be often modeled as differential

equations with random terms such as

dx(t)

dt
= f(x, t) + L(t)w(t),

where w(t) is a continuous-time white noise process.

The noise process can be used for modeling the deviation

from the ideal solution dx(t)/dt = f(x, t).

For example, locally (short term) linear functions, almost

periodic functions, etc.

The dynamic model has to be dicretized somehow in

computations.

Typically, measurements are assumed to be obtained at

discrete instances of time:

yk = h(x(tk )) + rk ,
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Time Series Prediction: CATS Benchmark (1/3)

An artificial time series with 5 000 data points was given.

Within those 100 values were missing:
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The purpose was to predict the 100 missing values based

on the other data.

The performance criterion was the mean square error.

Simo Särkkä Lecture 1: Overview of Course Topic



Time Series Prediction: CATS Benchmark (2/3)

Model was build based on the following principles:

Long term behaviour was modeled with locally linear model:

d2x(t)

dt2
= w(t),

The dynamic model is equivalent to the linear difference

equation model

(
xk

ẋk

)

=

(
1 ∆t

0 1

)(
xk−1

ẋk−1

)

+

(
qx

1,k−1

qx
2,k−1

)

,

The measurement model was simply

yk = xk + r x
k , r x

k ∼ N(0, σ2
x ).

The remaining residual periodicity was modeled with TVAR
model (see the previous slides).
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Time Series Prediction: CATS Benchmark (3/3)

The parameters of linear state space models were

estimated with cross-validation.

Final prediction result was computed with Kalman filter and

Rauch-Tung-Striebel smoother:
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This linear filtering solution worked better than any of the

non-linear neural network estimators and won the

competition!
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Dynamic Model for a Car [1/3]

f(t)

The dynamics of the car in 2d

(x1, x2) are given by the Newton’s

law:

f(t) = m a(t),

where a(t) is the acceleration, m is

the mass of the car, and f(t) is a

vector of (unknown) forces acting

the car.

We shall now model f(t)/m as a 2-dimensional white noise

process:

d
2x1/dt2 = w1(t)

d
2x2/dt2 = w2(t).
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Dynamic Model for a Car [2/3]

If we define x3(t) = dx1/dt , x4(t) = dx2/dt , then the model

can be written as a first order system of differential

equations:

d

dt







x1

x2

x3

x4







=







0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0







︸ ︷︷ ︸

F







x1

x2

x3

x4







+







0 0

0 0

1 0

0 1







︸ ︷︷ ︸

L

(
w1

w2

)

.

In shorter matrix form:

dx

dt
= F x + L w.
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Dynamic Model for a Car [3/3]

If the state of the car is measured (sampled) with sampling

period ∆t it suffices to consider the state of the car only at

the time instances t ∈ {0,∆t ,2∆t , . . .}.

The dynamic model can be discretized, which leads to the

linear difference equation model

xk = A xk−1 + qk−1,

where xk = x(tk ), A is the transition matrix and qk is a

discrete-time Gaussian noise process.
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Measurement Model for a Car

Mittalaite

(x1,x2) Assume that the position of the car

(x1, x2) is measured and the

measurements are corrupted by

Gaussian measurement noise

e1,k ,e2,k :

y1,k = x1,k + e1,k

y2,k = x2,k + e2,k .

The measurement model can be now written as

yk = H xk + ek , H =

(
1 0 0 0

0 1 0 0

)
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Model for Car Tracking

The dynamic and measurement models of the car now

form a linear Gaussian filtering model:

xk = A xk−1 + qk−1

yk = H xk + rk ,

where qk−1 ∼ N(0,Q) and rk ∼ N(0,R).

The posterior distribution is Gaussian

p(xk |y1, . . . ,yk ) = N(xk |mk ,Pk ).

The mean mk and covariance Pk of the posterior

distribution can be computed by the Kalman filter.
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Re-Entry Vehicle Model [1/3]
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Gravitation law:

F = m a(t) = −
G m M r(t)

|r(t)|3
.

If we also model the friction and uncertainties:

a(t) = −
G M r(t)

|r(t)|3
− D(r(t)) |v(t)|v(t) + w(t).
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Re-Entry Vehicle Model [2/3]

If we define x = (x1 x2
dx1
dt

dx2
dt

)T , the model is of the form

dx

dt
= f(x) + L w(t).

where f(·) is non-linear.

The radar measurement:

r =
√

(x1 − xr )2 + (x2 − yr )2 + er

θ = tan−1

(
x2 − yr

x1 − xr

)

+ eθ,

where er ∼ N(0, σ2
r ) and eθ ∼ N(0, σ2

θ ).
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Re-Entry Vehicle Model [3/3]

By suitable numerical integration scheme the model can be

approximately written as discrete-time state space model:

xk = f(xk−1,qk−1)

yk = h(xk , rk ),

where yk is the vector of measurements, and

qk−1 ∼ N(0,Q) and rk ∼ N(0,R).

The tracking of the space vehicle can be now implemented

by, e.g., extended Kalman filter (EKF), unscented Kalman

filter (UKF) or particle filter.
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Further State Space Models

Multiple target tracking (remote surveillance)

Target dynamics are modeled with stochastic difference or

differential equations.
The measurements arrive at irregular intervals.

The number of targets in unknown.

Data association indicators are also unknown latent
variables.

Bus and bus stop tracking

Bus dynamics are modeled with stochastic difference or
differential equations.

Measurements from GPS, odometer, gyroscope and

acceleration sensors.
The index of the current bus stop is an unknown variable to

be estimated.
The known order of bus stops is used as additional

information in form of hidden Markov model (HMM).
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Further State Space Models (cont.)

Tracking of objects in images

Object position and pose can be modeled with difference or
differential equations.

Data representation can be, e.g., spline approximation of
the object contour.

The measurement model is a complicated likelihood, which

depends on object identification algorithm etc.

Monitoring of chemical processes

Reaction kinetics are modeled with stochastic differential

equations.

The measurements can be highly non-linear functions of
the state.

Processes typically contain unknown physical parameters.
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Summary

The purpose of is to estimate the state of a time-varying

system from noisy measurements obtained from it.

The linear theory dates back to 50’s, non-linear Bayesian

theory was founded in 60’s.

The efficient computational solutions can be divided into

prediction, filtering and smoothing.

Applications: tracking, navigation, telecommunications,

audio processing, control systems, etc.

The formal Bayesian estimation equations can be

approximated by e.g. Gaussian approximations, Monte

Carlo or Gaussian mixtures.

Formulating physical systems as state space models is a

challencing engineering topic as such.
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Matlab Demo: EKF/UKF Toolbox

http://www.lce.hut.fi/research/mm/ekfukf/
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