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Particle Filtering: Overview [1/3]

Demo: Kalman vs. Particle Filtering:

Kalman filter animation

Particle filter animation
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Particle Filtering: Overview [2/3]

=⇒

The idea is to form a weighted particle presentation

(x(i),w (i)) of the posterior distribution:

p(x) ≈
∑

i

w (i) δ(x − x(i)).

Particle filtering = Sequential importance sampling, with

additional resampling step.

Bootstrap filter (also called Condensation) is the simplest

particle filter.
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Particle Filtering: Overview [3/3]

The efficiency of particle filter is determined by the

selection of the importance distribution.

The importance distribution can be formed by using e.g.

EKF or UKF.

Sometimes the optimal importance distribution can be

used, and it minimizes the variance of the weights.

Rao-Blackwellization: Some components of the model are

marginalized in closed form ⇒ hybrid particle/Kalman filter.
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Bootstrap Filter: Principle

State density representation is set of samples

{x
(i)
k : i = 1, . . . ,N}.

Bootstrap filter performs optimal filtering update and

prediction steps using Monte Carlo.

Prediction step performs prediction for each particle

separately.

Equivalent to integrating over the distribution of previous

step (as in Kalman Filter).

Update step is implemented with weighting and

resampling.
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Bootstrap Filter: Algorithm

Bootstrap Filter

1 Generate sample from predictive density of each old

sample point x
(i)
k−1:

x̃
(i)
k ∼ p(xk | x

(i)
k−1).

2 Evaluate and normalize weights for each new sample point

x̃
(i)
k :

w
(i)
k = p(yk | x̃

(i)
k ).

3 Resample by selecting new samples x
(i)
k from set {x̃

(i)
k }

with probabilities proportional to w
(i)
k .
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Sequential Importance Resampling: Principle

State density representation is set of weighted samples

{(x
(i)
k ,w

(i)
k ) : i = 1, . . . ,N} such that for arbitrary function

g(xk ), we have

E[g(xk ) |y1:k ] ≈
∑

i

w
(i)
k g(x

(i)
k ).

On each step, we first draw samples from an importance

distribution π(·), which is chosen suitably.

The prediction and update steps are combined and consist

of computing new weights from the old ones w
(i)
k−1 → w

(i)
k .

If the “sample diversity” i.e the effective number of different

samples is too low, do resampling.
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Sequential Importance Resampling: Algorithm

Sequential Importance Resampling

1 Draw new point x
(i)
k for each point in the sample set

{x
(i)
k−1, i = 1, . . . ,N} from the importance distribution:

x
(i)
k ∼ π(xk | x

(i)
k−1,y1:k), i = 1, . . . ,N.

2 Calculate new weights

w
(i)
k = w

(i)
k−1

p(yk | x
(i)
k ) p(x

(i)
k | x

(i)
k−1)

π(x
(i)
k | x

(i)
k−1,y1:k )

, i = 1, . . . ,N.

and normalize them to sum to unity.

3 If the effective number of particles is too low, perform

resampling.
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Effective Number of Particles and Resampling

The estimate for the effective number of particles can be

computed as:

neff ≈
1

∑N
i=1

(

w
(i)
k

)2
,

Resampling

1 Interpret each weight w
(i)
k as the probability of obtaining

the sample index i in the set {x
(i)
k | i = 1, . . . ,N}.

2 Draw N samples from that discrete distribution and replace

the old sample set with this new one.

3 Set all weights to the constant value w
(i)
k = 1/N.
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Constructing the Importance Distribution

Use the dynamic model as the importance distribution ⇒
Bootstrap filter.

Use the optimal importance distribution

π(xk | xk−1,y1:k) = p(xk | xk−1,y1:k).

Approximate the optimal importance distribution by UKF ⇒
unscented particle filter.

Instead of UKF also EKF, SLF or any Gaussian filter can

be, for example, used.

Simulate availability of optimal importance distribution ⇒
auxiliary SIR (ASIR) filter.
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Rao-Blackwellized Particle Filtering: Principle [1/2]

Consider a conditionally Gaussian model of the form

sk ∼ p(sk |sk−1)

xk = A(sk−1)xk−1 + qk , qk ∼ N(0,Q)

yk = H(sk)xk + rk , rk ∼ N(0,R)

The model is of the form

p(xk ,sk |xk−1,sk−1) = N(xk |A(sk−1)xk−1,Q)p(sk |sk−1)

p(yk |xk ,sk ) = N(yk |H(sk ),R)

The full model is non-linear and non-Gaussian in general.

But given the values sk the model is Gaussian and thus

Kalman filter equations can be used.
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Rao-Blackwellized Particle Filtering: Principle [1/2]

The idea of the Rao-Blackwellized particle filter:

Use Monte Carlo sampling to the values sk

Given these values, compute distribution of xk with Kalman
filter equations.

Result is a Mixture Gaussian distribution, where each

particle consist of value s
(i)
k , associated weight w

(i)
k and the

mean and covariance conditional to the history s
(i)
1:k

The explicit RBPF equations can be found in the lecture

notes.

If the model is almost conditionally Gaussian, it is also

possible to use e.g. EKF, SLF or UKF instead of the linear

KF.
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Particle Filter: Advantages

No restrictions in model – can be applied to non-Gaussian

models, hierarchical models etc.

Global approximation.

Approaches the exact solution, when the number of

samples goes to infinity.

In its basic form, very easy to implement.

Superset of other filtering methods – Kalman filter is a

Rao-Blackwellized particle filter with one particle.
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Particle Filter: Disadvantages

Computational requirements much higher than of the

Kalman filters.

Problems with nearly noise-free models, especially with

accurate dynamic models.

Good importance distributions and efficient

Rao-Blackwellized filters quite tricky to implement.

Very hard to find programming errors (i.e., to debug).
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Multiple Model Kalman Filtering

Algorithm for estimating true mode(l) or its parameter from

a finite set of alternatives.

Assume that we are given N possible models/modes, and

one of them is true.

If s is the model or mode index, the problem can be written

in form:

P(s = i) = πi
0

xk = A(s)xk−1 + qk−1

yk = H(s)xk + rk ,

where qk−1 ∼ N(0,Q(s)) and rk ∼ N(0,R(s)).

Can be solved in closed form with s parallel Kalman filters.
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Switching Dynamic Linear Models

Assume that we have N possible models, but the true

model is assumed to change in time.

If the model index sk is modeled as Markov chain, we have:

P(s0 = i) = πi
0

P(sk = i | sk−1 = j) = Πij .

Given the model/mode sk we have linear Gaussian model:

xk = A(sk )xk−1 + qk−1

yk = H(sk )xk + rk ,

Closed form solution would require running Kalman filters

for each possible history s1:k ⇒ Nk filters, not feasible.
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Switching Dynamic Linear Models (cont.)

Retain huge number of hypotheses and prune ones with

lowest probabilities ⇒ multiple hypothesis tracking (MHT).

Use a Rao-Blackwellized particle filter (RBPF) or plain

particle filter.

Classical alternatives:

1st order Generalized pseudo-Bayesian (GPB1) filter uses

single Gaussian and one-step integration over modes.

2nd order Generalized pseudo-Bayesian (GPB2) filter uses
sum (mixture) of N Gaussians and two-step integration.

Interacting multiple models (IMM) filter uses sum of N

Gaussians, and mixing of Gaussians in prediction and

normal multiple model update.
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Variational Kalman Smoother

Variation Bayesian analysis based framework for

estimating the parameters of linear state space models.

Idea: Fix Q = I and assume that the joint distribution of

states x1, . . . ,xT and parameters A,H,R is approximately

separable:

p(x1, . . . ,xT ,A,H,R |y1, . . . ,yT )

≈ p(x1, . . . ,xT |y1, . . . ,yT )p(A,H,R |y1, . . . ,yT ).

The resulting EM-algorithm consist of alternating steps of

smoothing with fixed parameters and estimation of new

parameter values.

The general equations of the algorithm are quite

complicated and assume that all the model parameters are

to be estimated.

Simo Särkkä Lecture 6: Particle Filtering and Other Approximations



Recursive Variational Bayesian Estimation of Noise

Variances

Algorithm for estimating unknown time-varying

measurement variances.

Assume that the joint filtering distribution of state and

measurement noise variance is approximately separable:

p(xk , σ
2
k | y1, . . . , yk ) ≈ p(xk | y1, . . . , yk )p(σ2

k | y1, . . . , yk )

Variational Bayesian analysis leads to algorithm, where the

natural representation is

p(σ2
k | y1, . . . , yk ) = InvGamma(σ2

k |αk , βk )

p(xk | y1, . . . , yk ) = N(xk |mk ,Pk ).

The update step consists of a fixed-point iteration for

computing new αk , βk ,mk ,Pk from the old ones.
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Outlier Rejection and Multiple Target Tracking

Outlier Rejection / Clutter Modeling:

Probabilistic Data Association (PDA)
Monte Carlo Data Association (MCDA)

Multiple hypothesis tracking (MHT)

Multiple Target Tracking

Multiple hypothesis tracking (MHT)

Joint Probabilistic Data Association (JPDA)

Rao-Blackwellized Particle Filtering (RBMCDA) for Multiple
Target Tracking
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Continuous-Discrete Pendulum Model

Consider the pendulum model, which was first stated as

d2θ/dt2 = −g sin(θ) + w(t)

yk = sin(θ(tk )) + rk ,

where w(t) is "Gaussian white noise" and rk ∼ N(0, σ2).

With state x = (θ,dθ/dt), the model is of the abstract form

dx/dt = f(x) + w(t)

yk = h(x(tk )) + rk

where w(t) has the covariance (spectral density) Qc .

Continuous-time dynamics + discrete-time measurement =

Continuous-discrete (-time) filtering model.
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Discretization of Continuous Dynamics [1/4]

Previously we assumed that the measurements are

obtained at times tk = 0,∆t ,2∆t , . . .

The state space model was then Euler-discretized as

xk = xk−1 + f(xk−1)∆t + qk−1

yk = h(xk) + rk

But what should be the variance of qk?

Consistency: The same variance for single step of length

∆t , and 2 steps of length ∆t/2:

qk ∼ N(0,Qc ∆t)
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Discretization of Continuous Dynamics [2/4]

Now the Extended Kalman fiter (EKF) for this model is

Prediction:

m−

k = mk−1 + f(mk−1)∆t

P−

k = (I + F∆t)Pk−1 (I + F∆t)T + Qc ∆t

= Pk−1 + F Pk−1 ∆t + Pk−1 FT ∆t

+ F Pk−1 FT ∆t2 + Qc ∆t

Update:

Sk = H(m−

k )P−

k HT (m−

k ) + R

Kk = P−

k HT (m−

k )S−1
k

mk = m−

k + Kk [yk − h(m−

k )]

Pk = P−

k − Kk Sk KT
k
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Discretization of Continuous Dynamics [3/4]

But what happens if ∆t is not “small”, that is, if we get

measurements quite rarely?

We can use more Euler steps between measurements.

We can perform the EKF prediction on each step.
We can even compute the limit of infinite number of steps.

If we let δt = ∆t/n, the prediction becomes:

m̂0 = mk−1; P̂0 = Pk−1

for i = 1 . . . n

m̂i = m̂i−1 + f(m̂i−1) δt

P̂i = P̂i−1 + F P̂i−1 δt + P̂i−1 FT δt

+ F P̂i−1 FT δt2 + Qc δt

end

m−

k = m̂n; P−

k = P̂n.
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Discretization of Continuous Dynamics [4/4]

By re-arranging the equations in the for-loop, we get

(m̂i − m̂i−1)/δt = f(m̂i−1)

(P̂i − P̂i−1)/δt = F P̂i−1 + P̂i−1 FT + F P̂i−1 FT δt + Qc

In the limit δt → 0, we get the differential equations

dm̂/dt = f(m̂(t))

d P̂/dt = F(m̂(t)) P̂(t) + P̂(t)FT (m̂(t)) + Qc

The initial conditions are

m̂(0) = mk−1

P̂(0) = Pk−1

The final prediction is

m−

k = m̂(∆t)

P−

k = P̂(∆t)
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Continuous-Discrete EKF

Continuous-Discrete EKF

Prediction: between the measurements integrate the

following differential equations from tk−1 to tk :

dm/dt = f(m(t))

dP/dt = F(m(t))P(t) + P(t)FT (m(t)) + Qc

Update: at measurements do the EKF update

Sk = H(m−

k )P−

k HT (m−

k ) + R

Kk = P−

k HT (m−

k )S−1
k

mk = m−

k + Kk [yk − h(m−

k )]

Pk = P−

k − Kk Sk KT
k ,

where m−

k and P−

k are the results of the prediction step.
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Continuous-Discrete SLF, UKF, PF etc.

The equations

dm/dt = f(m(t))

dP/dt = F(m(t))P(t) + P(t)FT (m(t)) + Qc

actually generate a Gaussian process approximation

x(t) ∼ N(m(t),P(t)) to the solution of non-linear stochastic

differential equation (SDE)

dx/dt = f(x) + w(t)

We could also use statistical linearization or unscented

transform and get a bit different limiting differential

equations.

Also possible to generate particle approximations by a

continuous-time version of importance sampling (based on

Girsanov theorem).
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More general SDE Theory

The most general SDE model usually considered is of the

form

dx/dt = f(x) + L(x)w(t)

Formally, w(t) is a Gaussian white noise process with zero

mean and covariance function

E[w(t)wT (t ′)] = Qc δ(t
′ − t)

The distribution p(x(t)) is non-Gaussian and it is given by

the following partial differential equation:

∂p

∂t
= −

∑

i

∂

∂xi

(fi(x)p) +
1

2

∑

ij

∂2

∂xi∂xj

(

[L Q LT ]ij p
)

Known as Fokker-Planck equation or Kolmogorov forward

equation.
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More general SDE Theory (cont.)

In more rigorous theory, we actually must interpret the

SDE as integral equation

x(t)− x(s) =

∫ t

s

f(x)dt +

∫ t

s

L(x)w(t)dt

In Ito’s theory of SDE’s the second integral is defined as

stochastic integral w.r.t. Brownian motion β(t):

x(t)− x(s) =

∫ t

s

f(x)dt +

∫ t

s

L(x)dβ(t)

i.e., formally w(t)dt = dβ(t) or w(t) = dβ(t)/dt

However, Brownian motion is nowhere differentiable!

Brownian motion is also called as Wiener process.
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More general SDE Theory (cont. II)

In stochastics, the integral equation is often written as

dx(t) = f(x)dt + L(x)dβ(t)

In engineering (control theory, physics) it is customary to

formally divide with dt to get

dx(t)/dt = f(x) + L(x)w(t)

So called Stratonovich’s theory is more consistent with this

white noise interpretation than Ito’s theory.

In mathematical sense Stratonovich’s theory defines the

stochastic integral
∫ t

s
L(x)dβ(t) a bit differently – also the

Fokker-Planck equation is different.
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Cautions About White Noise

White noise is actually only formally defined as derivative

of Brownian motion.

White noise can only be defined in distributional sense –

for this reason non-linear functions of it g(w(t)) are not

well-defined.

For this reason, the following more general type of SDE

does not make sense:

dx(t)/dt = f(x,w)

We must also be careful in interpreting the multiplicative

term in the equation

dx(t)/dt = f(x) + L(x)w(t)
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Formal Optimal Continuous-Discrete Filter

Optimal continuous-discrete filter

1 Prediction step: Solve the Kolmogorov-forward

(Fokker-Planck) partial differential equation.

∂p

∂t
= −

∑

i

∂

∂xi
(fi(x)p) +

1

2

∑

ij

∂2

∂xi∂xj

(

[L Q LT ]ij p
)

2 Update step: Apply the Bayes’ rule.

p(x(tk ) |y1:k ) =
p(yk |x(tk ))p(x(tk ) |y1:k−1)

∫

p(yk |x(tk ))p(x(tk ) |y1:k−1) dx(tk )
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General Continuous-Time Filtering

We could also model the measurements as a

continuous-time process:

dx/dt = f(x) + L(x)w(t)

y = h(x) + n(t)

Again, one must be very careful in interpreting the white

noise processes w(t) and n(t).

The filtering equations become a stochastic partial

differential equation (SPDE) called Kushner-Stratonovich

equation.

The equation for the unnormalized filtering density is called

the Zakai equation, which also is a SPDE.

It is also possible to take the continuous-time limit of the

Bayesian smoothing equations (result is a PDE).
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Kalman-Bucy Filter

If the system is linear

dx/dt = F x + w(t)

y = H x + n(t)

we get the continuous-time Kalman-Bucy filter:

dm/dt = F m + K (y − H m)

dP/dt = F P + P FT + Qc − K R KT ,

where K = P HT R−1.

The stationary solution to these equations is equivalent to

the continuous-time Wiener filter.

Non-linear extensions (EKF, SLF, UKF, etc.) can be

obtained similarly to the discrete-time case.
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Solution of LTI SDE

Let’s return to linear stochastic differential equations:

dx/dt = F x + w

Assume that F is time-independent. For example, in

car-tracking model we had a model of this type.

Given x(0) we can now actually solve the equation

x(t) = exp(t F)x(0) +

∫ t

0

exp((t − s)F)w(s)ds,

where exp(.) is the matrix exponential function:

exp(tF) = I + tF +
1

2!
t2F2 +

1

3!
t3F3 + . . .

Note that we are treating w(s) as an ordinary function,

which is not generally justified!
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Solution of LTI SDE (cont.)

We can also solve the equation on predefined time points

t1, t2, . . . as follows:

x(tk ) = exp((tk − tk−1)F)x(tk−1) +

∫ tk

tk−1

exp((tk − s)F)w(s)ds

The first term is of the form A x(tk−1), where the matrix is a

known constant A = exp(∆t F).

The second term is a zero mean Gaussian random

variable and its covariance can be calculated as:

Q =

∫ tk

tk−1

exp((tk − s)F)Qc exp((tk − s)F)T ds

=

∫ ∆t

0

exp((∆t − s)F)Qc exp((∆t − s)F)T ds
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Solution of LTI SDE (cont. II)

Thus the continuous-time system is in a sense equivalent

to the discrete-time system

x(tk ) = A x(tk−1) + qk

where qk ∼ N(0,Q) and

A = exp(∆t A)

Q =

∫ ∆t

0

exp((∆t − s)F)Qc exp((∆t − s)F)T ds

An analogous equivalent discretization is also possible with

time-varying linear stochastic differential equation models.

A continuous-discrete Kalman filter can be always

implemented as a discrete-time Kalman filter by forming

the equivalent discrete-time system.
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Wiener Velocity Model

For example, consider the Wiener velocity model (= white

noise acceleration model):

d2x/dt2 = w(t),

which is equivalent to the state space model

dx/dt = F x + w

with F = (0 1; 0 0),x = (x ,dx/dt),Qc = (0 0; 0 q).

Then we have

A = exp(∆t F) =

(

1 ∆t

0 1

)

Q =

∫ ∆t

0

exp((∆t − s)F)Qc exp((∆t − s)F)T ds

=

(

∆t3/3 q ∆t2/2 q

∆t2/2 q ∆t q

)

which might look familiar.
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Mean and Covariance Differential Equations

Note that in the linear (time-invariant) case

dx/dt = F x + w

we could also write down the differential equations

dm/dt = F m

dP/dt = F P + P FT + Qc

which exactly give the evolution of mean and covariance.

The solutions of these equations are

m(t) = exp(t F)m0

P(t) = exp(t F)P0 exp(t F)T

+

∫ t

0

exp((t − s)F)Qc exp((t − s)F)T ds,

which are consistent with the previous results.
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Optimal Smoothing . . .

. . . the topic of next week.
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Optimal Control Theory

Assume that the physical system can be modeled with

differential equation with input u

dx/dt = f(x,u)

Determine u(t) such that x(t) and u(t) satisfy certain

constraints and minimize a cost functional.

For example, steer a space craft to moon such that the

consumed of fuel is minimized.

If the system is linear and cost function quadratic, we get

linear quadratic controller (or regulator).
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Stochastic (Optimal) Control Theory

Assume that the system model is stochastic:

dx/dt = f(x,u) + w(t)

yk = h(x(tk )) + rk

Given only the measurements yk , find u(t) such that x(t)
and u(t) satisfy the constraints and minimize a cost

function.

If linear Gaussian, we have

Linear Quadratic (LQ) controller + Kalman filter = Linear

Quadratic Gaussian (LQG) controller

In general, not simply a combination of optimal filter and

deterministic optimal controller.

Model Predictive Control (MPC) is a well-known

approximation algorithm for constrained problems.
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Spatially Distributed Systems

Infinite dimensional generalization of state space model is

the stochastic partial differential equation (SPDE)

∂x(t , r)

∂t
= Fr x(t , r) + Lr w(t , r),

where Fr and Lr are linear operators (e.g.

integro-differential operators) in r-variable and w(·) is a

time-space white noise.

Practically every SPDE can be converted into this form

with respect to any variable (which is relabeled as t).

For example, stochastic heat equation

∂x(t , r)

∂t
=

∂2x(t , r)

∂r2
+ w(t , r).
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Spatially Distributed Systems (cont.)

The solution to the SPDE is analogous to

finite-dimensional case:

x(t , r) = Ur (t)x(0, r) +

∫ t

0

Ur (t − s)Lr w(s, r)ds.

Ur (t) = exp(t Fr ) is the evolution operator – corresponds

to propagator in quantum mechanics.

Spatio-temporal Gaussian process models can be

naturally formulated as linear SPDE’s.

Recursive Bayesian estimation with SPDE models lead to

infinite-dimensional Kalman filters and RTS smoothers.

SPDE’s can be approximated with finite models by usage

of finite-differences or finite-element methods.
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Summary

Particle filters use weighted set of samples (particles) for

approximating the filtering distributions.

Sequential importance resampling (SIR) is the general

framework and bootstrap filter is a simple special case of it.

In Rao-Blackwellized particle filters a part of the state is

sampled and part is integrated in closed form with Kalman

filter.

Other filtering algorithms than EKF, SLF, UKF and PF are,

for example, multiple model Kalman filters and IMM

algorithm.

Specialized filtering algorithms exist also, e.g., for

parameter estimation, outlier rejection and multiple target

tracking.
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Summary (cont.)

In continuous-discrete filtering, the dynamic model is a

continuous-time process and measurement are obtained at

discrete times.

In continuous-discrete EKF, SLF and UKF the

continuous-time non-linear dynamic model is approximated

as a Gaussian process.

In continuous-time filtering, the both the dynamic and

measurements models are continuous-time processes.

The theories of continuous and continuous-discrete filtering

are tied to the theory of stochastic differential equations.
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