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We address two aspects of constructing plans efficiently by means of satisfiability testing: efficient encoding of the problem of existence of plans of a given number
t of time points in the propositional logic and strategies for finding plans, given these formulae for different values of t.

For the first problem we consider three semantics for plans with parallel operator application in order to make the search for plans more efficient. The standard
semantics requires that parallel operators are independent and can therefore be executed in any order. We consider a more relaxed definition of parallel plans which
was first proposed by Dimopoulos et al., as well as a normal form for parallel plans that requires every operator to be executed as early as possible. We formalize
the semantics of parallel plans emerging in this setting and present translations of these semantics into the propositional logic. The sizes of the translations are
asymptotically optimal. Each of the semantics is constructed in such a way that there is a plan following the semantics exactly when there is a sequential plan, and
moreover, the existence of a parallel plan implies the existence of a sequential plan with as many operators as in the parallel one.

For the second problem we consider strategies based on testing the satisfiability of several formulae representing plans of n time steps for several values of n
concurrently by several processes. We show that big efficiency gains can be obtained in comparison to the standard strategy of sequentially testing the satisfiability
of formulae for an increasing number of time steps.
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1. INTRODUCTION

In the simplest form of planning, traditionally called classical planning, the objective is to find a sequence of actions that leads
from a given initial state to one of the goal states. Planning as satisfiability [Kautz and Selman 1996] is a leading approach to
solve this kind of planning problems. The underlying idea is to encode the bounded plan existence problem, i.e. whether a plan of
a given length n exists, as a formula in the classical propositional logic. The formula for a given n is satisfiable if and only if there
is a plan of length n. Finding a plan reduces to testing the satisfiability of the formulae for different values of n.

An important factor in the efficiency of planning as satisfiability in finding non-optimal plans which do not necessarily have the
smallest possible number of operators is the notion of parallel plans [Blum and Furst 1997; Kautz and Selman 1996]. In a parallel
plan each time point may have more than one operator. The length parameter n restricts the number of time points but not directly
the number of operators. A parallel plan is a representation of one or more sequential plans, and the parallelism is not meant to
represent genuine temporal parallelism. Different notions of parallel plans can be defined, and for maintaining the connection to
sequential plans it is required that there is a parallel plan exactly when there is a sequential plan, and moreover, mapping a given
parallel plan to a sequential plan should be possible in polynomial time. In this paper we develop semantics for parallel plans that
have these properties. Results in Section 2 identify important tractable and intractable notions of parallel plans.

Parallel plans increase the efficiency of planning for two reasons. First, since several independent operators can be parallel at
one time point, it is unnecessary to consider all their total orderings during plan search, unlike with sequential plans. Second,
increased parallelism leads to a decreased number of time points. This reduces the number of propositional variables and the size
of formulae and makes satisfiability testing more efficient.

The standard state-based encoding of parallel plans [Kautz and Selman 1996] allows several operators at the same time point as
long as the operators are mutually non-interfering. This condition guarantees that any total ordering on the simultaneous operators
is a valid execution and that it leads to the same state in all cases. We formalize a generalization of this idea and call it the ∀-step
semantics of parallel plans, and give asymptotically optimal linear-size encodings of this semantics in the classical propositional
logic.

Our objective is to develop more efficient techniques for different forms of planning, and for this purpose we formalize further
two semantics of parallel plans and present efficient encodings of them in the propositional logic. Both of these semantics are
known from earlier research but the first, the process semantics, has not been considered in connection with planning, and the
second, the ∃-step semantics, has not been given efficient encodings in the propositional logic before.

The two new semantics considered in this paper are orthogonal refinements of the ∀-step semantics. The process semantics is
stricter than the ∀-step semantics in that it requires all actions to be taken as early as possible. Since there are less valid plans of
a given length according to the process semantics than the ∀-step semantics, the corresponding satisfiability problems are more
strongly constrained and plan search could be more efficient. Process semantics was first introduced for Petri nets; for an overview
see [Best and Devillers 1987]. Heljanko [2001] has applied this semantics to the deadlock detection of 1-safe Petri nets and has
demonstrated that it leads to big efficiency gains for many types of problems.

The idea of the ∃-step semantics was proposed by Dimopoulos et al. [1997]. They pointed out that it is not necessary that all
parallel operators are non-interfering as long as they can be executed in at least one order, which makes it possible to increase
the number of parallel operators still further. They also showed how certain planning problems can be modified to satisfy this
condition and that the reduction in the number of time points improves runtimes. Until now the application of ∃-step semantics
in planning as satisfiability was hampered by the cubic size of the obvious encodings. We give more compact encodings for this
semantics and show that this often leads to dramatic improvements in efficiency. Before the developments reported in this paper,
this semantics was never used in an automated planner that is based on a declarative language like the propositional logic. Our
most efficient encodings of this and the other semantics are more restrictive than the general definitions of these semantics. We
justify the restrictions by showing that the general definitions are intractable.

As a second contribution of this paper we demonstrate the strong potential of the planning as satisfiability approach to solve
non-optimal planning efficiently by proposing two new concurrent algorithms for controlling any planner that is based on testing
the existence of plans with different numbers of time points. These algorithms effectively avoid the expensive plan inexistence
(unsatisfiability) tests that dominate the runtimes of earlier planners. The speed-up of these algorithms over the standard sequential
algorithm can be arbitrarily high, and these algorithms are guaranteed to be only at most a constant factor slower than the standard
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sequential algorithm. An empirical investigation (Section 5) shows that for some classes of problems for which planning as
satisfiability had not earlier fared very well these algorithms lift the efficiency to a completely different level.

The results of this paper are also directly applicable to bounded model checking [Biere, Cimatti, Clarke, and Zhu 1999] of safety
properties in computer-aided verification. It is also possible to extend the results to model checking for arbitrary linear temporal
logic (LTL) properties. We do not pursue this topic further in this paper.

The structure of this paper is as follows. In Sections 2.1, 2.2, and 2.3 we define the standard ∀-step semantics, the process
semantics, and the ∃-step semantics, respectively. A main result of Section 2 is the identification of the border between tractable
and intractable notions of parallel plans, based on the distinction between polynomial-time and NP-hard decision problems.

In Section 3 we present encodings of classical planning under the different semantics of parallel plans in the classical propo-
sitional logic. Section 3.1 presents the part of the encodings shared by all the semantics, and Sections 3.2, 3.3 and 3.4 presents
encodings of the three semantics. A main result is the introduction of encodings that have a size that is asymptotically optimal.
Encodings of planning with this property have not been presented earlier.

Section 4 evaluates the efficiency of the different semantics for different kinds of planning problems. Section 4.3 makes a com-
parison in terms of runtimes and plan quality with difficult problems which are sampled from the space of all problem instances.
Section 4.4 makes a comparison with a number of standard benchmark problems.

Section 5 presents two new concurrent algorithms for controlling any planner that uses as the main subprocedure a test for the
existence of plans with a given number of time points. In Section 5.4 the properties of the algorithms are analytically investigated,
and in Section 5.5 their impact on planner runtimes is experimentally demonstrated.

Section 6 discusses related work and Section 7 concludes the paper.

1.1 Notation

We consider planning in a setting where the states of the world are represented in terms of a set A of Boolean state variables which
take the value true or false. Formulae are formed from the state variables with the connectives ∨, ∧ and ¬. The connectives→and
↔ are defined in terms of the other connectives. Each state is a valuation of A, which is an assignment s : A → {0, 1}. A literal
is a formula of the form a or ¬a where a ∈ A is a state variable. We define the complements of literals as a = ¬a and ¬a = a for
all a ∈ A. A clause is a disjunction l1 ∨ · · · ∨ ln of one or more literals. We also use the constant atoms > and ⊥ for denoting true
and false, respectively.

We use operators for expressing how the state of the world can be changed.

Definition 1.1 An operator on a set of state variables A is a triple 〈p, e, c〉 where

(1) p is a propositional formula on A (the precondition),
(2) e is a set of literals on A (the unconditional effects), and
(3) c is a set of pairs f B d (the conditional effects) where f is a propositional formula on A, and d is a set of literals on A.

For an operator 〈p, e, c〉 its active effects in state s are

[o]s = e ∪
⋃
{d|f B d ∈ c, s |= f}.

The operator is executable in s if s |= p and its set of active effects in s is consistent (does not contain both a and ¬a for any
a ∈ A.) If this is the case, then we define appo(s) as the unique state that is obtained from s by making [o]s true and retaining
the values of the state variables not occurring in [o]s. For sequences o1; o2; . . . ; on of operators we define appo1;o2;...;on(s) as
appon(· · · appo2(appo1(s)) · · ·). For sets S of operators and states s we define appS(s): the result of simultaneously applying all
operators o ∈ S. We require that appo(s) is defined for every o ∈ S and that the set [S]s =

⋃
o∈S [o]s of active effects of all

operators in S is consistent. For operators o = 〈p, e, c〉 and atomic effects l of the form a and ¬a (for a ∈ A) define the effect
precondition EPCl(o) = > if l ∈ e and otherwise EPCl(o) =

∨
{f |f B d ∈ c, l ∈ d} where the empty disjunction

∨
∅ is defined

as ⊥.

Lemma 1.2 For literals l, operators o and states s, l ∈ [o]s if and only if s |= EPCl(o).

We sometimes consider operators without conditional effects and disjunctivity in preconditions: 〈p, e, c〉 is a STRIPS operator
if c = ∅ and p is a conjunction of literals. Let π = 〈A, I,O,G〉 be a problem instance consisting of a set A of state variables,
a state I on A (the initial state), a set O of operators on A, and a formula G on A (the goal formula). A (sequential) plan for π
is a sequence σ = o1; . . . ; on of operators from O such that appσ(I) |= G. This means that applying the operators in the given
order starting in the initial state is defined (the precondition of every operator is true and the active effects are consistent when the
operator is applied) and produces a state that satisfies the goal formula. Sometimes we say that an operator sequence is a plan for
O and I when we simply want to say that the plan is executable starting from I without specifying the goal states.

In the rest of this paper we also consider plans that are sequences of sets of operators. The different semantics discussed in the
next sections impose further constraints on these sets.

2. DEFINITIONS OF PARALLEL PLANS

2.1 ∀-Step semantics

We formally present a semantics that generalizes the semantics used in most works on parallel plans, for example that of Kautz
and Selman [1996].
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Earlier definitions of parallel plans have been based on the notion of interference. The parallel application of a set of operators
is possible if the operators do not interfere. Lack of interference guarantees that the operators can be executed sequentially in any
total order and that the terminal state is independent of the ordering. As shown in Theorem 2.3, non-interference and executability
in any order coincide for STRIPS operators. Our definition of operators extends the definition of STRIPS operators considerably,
and instead of non-interference in Definition 2.1 we adopt the more abstract and intuitive order-independence as the basic principle
in the ∀-step semantics.

For the efficiency of plan search and plan validation it is important that the test whether a plan is executable and achieves the
goals is tractable. For this reason we investigate the tractability of our general definition of ∀-step semantics and then identify
restricted tractable classes of ∀-step plans. This investigation goes beyond earlier works like by Blum and Furst [1997] and Kautz
and Selman [1996, 1999] which restrict to STRIPS operators.

Definition 2.1 (∀-Step plans) For a set of operators O and an initial state I , a ∀-step plan for O and I is a sequence T =
〈S0, . . . , Sl−1〉 of sets of operators for some l ≥ 0 such that there is a sequence of states s0, . . . , sl (the execution of T ) such that

(1) s0 = I , and
(2) for all i ∈ {0, . . . , l − 1} and every total ordering o1, . . . , on of Si, appo1;...;on(si) is defined and equals si+1.

We show that this abstract definition yields the standard definition of parallel plans for STRIPS operators which requires that no
operator falsifies the precondition of any other operator that is applied simultaneously.

Lemma 2.2 Let T = 〈S0, . . . , Sl−1〉 be a ∀-step plan with execution s0, . . . , sl. Then the following hold.

(1) There is no i ∈ {0, . . . , l − 1} and {〈p, e, c〉, 〈p′, e′, c′〉} ⊆ Si and a ∈ A such that a ∈ e and ¬a ∈ e′.
(2) appo(si) is defined for every o ∈ Si.

PROOF. For (1) we derive a contradiction by assuming the opposite. Take an ordering of the operators such that 〈p, e, c〉 and
〈p′, e′, c′〉 are the last operators in this order. Hence si+1 |= ¬a. But the ordering in which the two operators are the other way
round leads to a state s′i+1 such that s′i+1 |= a. This contradicts the assumption that T is a ∀-step plan. Hence (1) holds.

Consider any operator o ∈ Si and any ordering in which o is the first operator. For the operators to be executable in this order,
o has to be executable in si. Therefore (2).

For operators without conditional effects (including STRIPS operators) the above lemma means that for every set Si of parallel
operators appSi(si) is defined. With conditional effects sequential execution in any order is sometimes possible even when
simultaneous execution is not: consider for example {〈>, ∅, {(¬a∧¬b) B {a,¬b}, b B {a}}〉, 〈>, ∅, {(¬a∧¬b) B {¬a, b}, a B
{b}}〉} executed in a state that satisfies ¬a ∧ ¬b.

Theorem 2.3 Let O be a set of STRIPS operators, I a state, and T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l. Then T is a ∀-step plan for O and

I if and only if there is a sequence of states s0, . . . , sl such that

(1) s0 = I ,
(2) si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}, and
(3) for no i ∈ {0, . . . , l − 1} and two operators {〈p, e, ∅〉, 〈p′, e′, ∅〉} ⊆ Si there is m ∈ e such that m is one of the conjuncts

of p′.

PROOF. We first prove the only if part. Since T is a ∀-step plan, it has an execution s0, . . . , sl as in Definition 2.1. We show
that the three conditions on the right side of the equivalence are satisfied by this sequence of states.

By the definition of ∀-step plans, the first state of the execution is the initial state I . Hence we get (1).
By (1) of Lemma 2.2 for all i ∈ {0, . . . , l − 1} the sets Ei = [Si]si =

⋃
{e|〈p, e, ∅〉 ∈ Si} are consistent. By (2) of the same

lemma the preconditions of all operators in Si are true in si. Hence the state appSi(si) is defined. The changes made by any
total ordering of Si equal Ei because the effects of no operator in Si override any effect of another operator in Si. Therefore
si+1 = appSi(si). This establishes (2).

For the sake of argument assume that there is literal m and i ∈ {0, . . . , l − 1} so that m ∈ e for some 〈p, e, ∅〉 ∈ Si and
m is a conjunct of the precondition p′ of some other 〈p′, e′, ∅〉 ∈ Si. Then in every total ordering of the operators in which
〈p, e, ∅〉 immediately precedes 〈p′, e′, ∅〉 the latter would not be executable. This, however, contradicts the definition of ∀-step
plans. Therefore (3).

Then we prove the if part. Assume there is a sequence s0, . . . , sl satisfying (1), (2) and (3). We show that T and s0, . . . , sl
satisfy Definition 2.1 of ∀-step plans.

That s0 = I is directly by our assumption (1).
We show that appo1;...;on(si) = appSi(si) for all i ∈ {0, . . . , l − 1} and all total orderings o1, . . . , on of Si. Since appSi(si)

is defined, the precondition of every o ∈ Si is true in si and Ei =
⋃
{e|〈p, e, ∅〉 ∈ Si} is consistent. Take any total ordering

o1, . . . , on of Si. By (3) no operator in Si can disable another operator in Si. Hence appo1;...;on(si) is defined. Since Ei is
consistent, effects of no operator can be overridden by another operator in Si. Hence appSi(si) = si+1 = appo1;...;on(si). Since
this holds for any total ordering of Si, the definition of ∀-step plans is fulfilled.
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Testing whether a sequence of sets of STRIPS operators is a ∀-step plan can be done in polynomial time. A simple quadratic
algorithm tests the operators pairwise for occurrences of a literal and its complement in the effects of the two operators and in the
effect of one and in the precondition of the other. Computing the successor states is similarly polynomial time computation.

In the general case, however, the definition of ∀-step plans is computationally rather complex. The next theorem gives the
justification for restricting to a narrow class of ∀-step plans in the following. The proof of the theorem shows that co-NP-hardness
holds even when operators have no conditional effects. Hence the high complexity emerges merely from disjunctivity in operator
preconditions.

Theorem 2.4 Testing whether a sequence of sets of operators is a ∀-step plan is co-NP-hard.

PROOF. The proof is by reduction from TAUT. Let φ be any propositional formula. Let A = {a1, . . . , an} be the set of propo-
sitional variables occurring in φ. The set of state variables is A. Let oz = 〈φ, ∅, ∅〉. Let S = {〈>, {a1}, ∅〉, . . . , 〈>, {an}, ∅〉, oz}.
Let s and s′ be states such that s 6|= a and s′ |= a for all a ∈ A. We show that φ is a tautology if and only if T = 〈S〉 is a ∀-step
plan for S and s.

Assume φ is a tautology. Now for any total ordering o0, . . . , on of S the state appo0;...,on(s) is defined and equals s′ because all
preconditions are true in all states, and the set of effects of all operators is A (the set is consistent and making the effects true in s
yields s′.) Hence T is a ∀-step plan.

Assume T is a ∀-step plan. Let v be any valuation. We show that v |= φ. Let Sv = {〈>, {a}, ∅〉|a ∈ A, v |= a}. The operators
S can be ordered to o0, . . . , on so that the operators Sv = {o0, . . . , ok} precede oz and S\(Sv ∪ {oz}) follow oz . Since T is a
∀-step plan, appo0;...;on(s) is defined. Since also appo0;...;ok;oz (s) is defined, the precondition φ of oz is true in v = appo0;...;ok(s).
Hence v |= φ. Since this holds for any valuation v, φ is a tautology.

Membership in co-NP is easy to show. There is a nondeterministic polynomial-time algorithm that can determine that a sequence
of sets of operators is not a ∀-step plan. It first guesses an index i and a total ordering for the first i−1 steps and two total orderings
for step i and then computes the two states that are reached by applying the operators in the first i− 1 steps followed by one total
ordering of step i. If the states differ or if not all operators are executable, then the definition of ∀-step plans is not fulfilled.

To obtain a tractable notion of ∀-step plans for all operators we can generalize the notion of interference used for STRIPS
operators to arbitrary operators. Lack of interference is a sufficient but not necessary condition for a set of operators to be
executable in every order with the same results. First we define positive and negative occurrences of state variables a ∈ A in a
formula inductively as follows.

Definition 2.5 (Positive and negative occurrences) We say that a state variable a occurs positively in φ if positive(a, φ) is true.
Similarly, a occurs negatively in φ if negative(a, φ) is true.

positive(a, a) = true, for all a ∈ A
positive(a, b) = false, for all {a, b} ⊆ A such that a 6= b

positive(a, φ ∧ φ′) = positive(a, φ) or positive(a, φ′)
positive(a, φ ∨ φ′) = positive(a, φ) or positive(a, φ′)

positive(a,¬φ) = negative(a, φ)

negative(a, b) = false, for all {a, b} ⊆ A
negative(a, φ ∧ φ′) = negative(a, φ) or negative(a, φ′)
negative(a, φ ∨ φ′) = negative(a, φ) or negative(a, φ′)

negative(a,¬φ) = positive(a, φ)

A state variable a occurs in φ if it occurs positively or occurs negatively in φ.

Below we also consider positive and negative occurrences of state variables in effects. A state variable a occurs positively as
an effect in operator 〈p, e, c〉 if a ∈ e or if there is f B d ∈ c so that a ∈ d. A state variable a occurs negatively as an effect in
operator 〈p, e, c〉 if ¬a ∈ e or there is f B d ∈ c such that ¬a ∈ d.

Definition 2.6 (Interference) Let A be a set of state variables. Operators o = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉 over A interfere if
there is a ∈ A that

(1) occurs positively as an effect in o and occurs in f for some f B d ∈ c′ or occurs negatively in p′,
(2) occurs positively as an effect in o′ and occurs in f for some f B d ∈ c or occurs negatively in p,
(3) occurs negatively as an effect in o and occurs in f for some f B d ∈ c′ or occurs positively in p′, or
(4) occurs negatively as an effect in o′ and occurs in f for some f B d ∈ c or occurs positively in p.

Proposition 2.7 Testing whether two operators interfere can be done in polynomial time in the size of the operators.

There are simple examples of valid ∀-step plans in which operators interfere according to the above definition. Hence the
restriction to steps without interfering operators rules out many plans covered by the general definition (Definition 2.1.)
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Example 2.8 Consider a set A of state variables and any set S of operators of the form

〈>, ∅, {a B {¬a}|a ∈ A′} ∪ {¬a B {a}|a ∈ A′}〉

where A′ is any subset of A (dependent on the operator.) Hence each operator reverses the values of a certain set of state variables.
Executing the operators in any order results in the same state in every case. Hence 〈S〉 is a ∀-step plan according to Definition 2.1
but any two operators affecting the same state variable interfere. �

Before formally connecting the notion of interference to plans that satisfy the ∀-step semantics we define a more relaxed notion
of interference that is dependent on the state. In Section 3 we primarily use the state-independent notion of interference.

Definition 2.9 (Interference in a state) Let A be a set of state variables. Operators o = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉 over A
interfere in a state s if there is a ∈ A so that

(1) a ∈ [o]s and a occurs in d for some d B f ∈ c′ or occurs negatively in p′,
(2) a ∈ [o′]s and a occurs in d for some d B f ∈ c or occurs negatively in p,
(3) ¬a ∈ [o]s and a occurs in d for some d B f ∈ c′ or occurs positively in p′, or
(4) ¬a ∈ [o′]s and a occurs in d for some d B f ∈ c or occurs positively in p.

Lemma 2.10 Let s be a state and o and o′ two operators. If o and o′ interfere in s, then o and o′ interfere.

PROOF. Definition of interference has the form that o and o′ interfere if there is an effect (conditional or unconditional) that
fulfils some property. Interference in s is the same, except that a restriction to the subclass of effects active in s is made.

As an example we consider one case. Other cases are analogous. So assume o and o′ interfere in s because (case (1)) there is
a ∈ A such that a ∈ [o]s and a occurs negatively in the precondition of o′. Now case (1) of the definition of interference is fulfilled
because there is a ∈ A that is an active effect of o and occurs negatively in the precondition of o′.

Lemma 2.11 Let s be a state and S a set of operators so that appS(s) is defined and no two operators interfere in s. Then
appS(s) = appo1;...;on(s) for any total ordering o1, . . . , on of S.

PROOF. Let o1, . . . , on be any total ordering of S. We prove by induction on the length of a prefix of o1, . . . , on the following
statement for all i ∈ {0, . . . , n − 1} by induction on i: s |= a if and only if appo1;...;oi(s) |= a for all state variables a occurring
in an antecedent of a conditional effect or a precondition of operators oi+1, . . . , on.

Base case i = 0: Trivial.
Inductive case i ≥ 1: By the induction hypothesis the antecedents of conditional effects of oi have the same value in s and

in appo1;...;oi−1
(s), from which follows [oi]s = [oi]appo1;...;oi−1

(s). Since oi does not interfere in s with operators oi+1, . . . , on,
no state variable occurring in [oi]s occurs in an antecedent of a conditional effect or in the precondition of oi+1, . . . , on. Hence
these state variables do not change. Since [oi]s = [oi]appo1;...;oi−1

(s), this also holds when oi is applied in appo1;...;oi−1
(s). This

completes the induction proof.
Since appS(s) is defined, the precondition of every o ∈ S is true in s and [o]s is consistent. Based on the fact we have established

above, the precondition of every o ∈ S is true also in appo1;...;ok(s) and [o]appo1;...;ok
(s) is consistent for any {o1, . . . , ok} ⊆ S\{o}.

Hence any total ordering of the operators is executable. Based on the fact we have established above, [o]s = [o]appo1;...;ok
(s) for

every {o1, . . . , ok} ⊆ S\{o}. Hence every operator causes the same changes no matter what the total ordering is. Since appS(s)
is defined, no operator in S undoes the effects of another operator. Hence the same state s′ = appS(s) is reached in every case.

Theorem 2.12 Let I be a state, O a set of operators, and T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l such that there is a sequence s0, s1, . . . , sl

of states with s0 = I and si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}. If for no i ∈ {0, . . . , l − 1} and {o, o′} ⊆ Si such that
o 6= o′ the operators o and o′ interfere in si, then T is a ∀-step plan for O and I .

PROOF. Directly by Lemma 2.11.

Theorem 2.13 Let I be a state, O a set of operators, and T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l such that there is a sequence s0, s1, . . . , sl

of states with s0 = I and si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}. If for no i ∈ {0, . . . , l − 1} and {o, o′} ⊆ Si such that
o 6= o′ the operators o and o′ interfere, then T is a ∀-step plan for O and I .

PROOF. By Lemma 2.10 and Theorem 2.12.

The state-dependent definition of interference in some cases allows more parallelism than the state-independent definition.

Example 2.14 Consider S = {〈>, ∅, {a B {¬b}}〉, 〈>, ∅, {b B {¬a}}〉}. The operators interfere according to Definition 2.6.
However, the operators do not interfere in states s such that s |= ¬a ∧ ¬b because no effect is active. �

A still more relaxed notion of interference that allows changing shared state variables as long as the preconditions do not become
false nor the values of antecedents of conditional effects change leads to high complexity because states other than the current one
have to be considered. Even if none of the operators change the values of antecedents of conditional effects or preconditions in
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the current state, they may do this in states reachable by applying another operator. For example, the operator 〈a∨ b, {c}, ∅〉 is not
disabled by 〈>, {¬a}, ∅〉 nor 〈>, {¬b}, ∅〉 alone, but in states reached by one of these operators the other operator disables it.

The source of the high complexity of the general definition is that on different execution orders, all of which must result in
the same state, a different sequence of intermediate states is visited, and it seems unavoidable to make these intermediate states
explicit when reasoning about the executions.

2.2 Process semantics

The idea of the process semantics is that we only consider those ∀-step plans that fulfil the following condition. There is no
operator o applied at time t + 1 with t ≥ 0 such that the sequence of sets of operators obtained by moving o from time t + 1 to
time t would be a ∀-step plan that leads to the same state.

As an example consider a set S of operators that are all initially executable and no two operators interfere or have contradicting
effects. If we have time points 0 and 1, we can apply each operator alternatively at 0 or at 1. The resulting state at time point 2 will
be the same in all cases. So, under ∀-step semantics the number of equivalent plans on two time points is 2|S|. Process semantics
says that no operator that is executable at 0 may be applied later than at 0. Hence under process semantics there is only one plan
instead of 2|S|.

The idea of the process semantics was previously investigated in connection with Petri nets [Best and Devillers 1987]. It can
be seen as a way of canonizing ∀-step executions into a normal form in which each operator of the ∀-step plan occurs as early
as possible. This canonical normal form is similar to the Foata normal form in the theory of Mazurkiewicz traces [Diekert and
Métivier 1997; Heljanko 2001].

Definition 2.15 (Process plans) For a set of operators O and an initial state I a process plan for O and I is a ∀-step plan
〈S0, . . . , Sl−1〉 forO and I with the execution s0, . . . , sl such that there is no i ∈ {1, . . . , l−1} and o ∈ Si so that 〈S0, . . . , Si−1∪
{o}, Si\{o}, . . . , Sl−1〉 is a ∀-step plan for O and I with the execution s′0, . . . , s

′
l such that sj = s′j for all j ∈ {0, . . . , i− 1, i+

1, . . . , l}.

Note that it is possible that o ∈ Si−1, and when transforming a ∀-step plan to a corresponding process plan, the number of
operators in the plan may decrease. It is possible to define an alternative process semantics so that moving an operator earlier is
possible only if the total number of operators is preserved.

The important property of process semantics is that even though the additional condition reduces the number of valid plans,
whenever there is a plan with t time steps under ∀-step semantics, there is also a plan with at most t time steps under process
semantics that leads to the same final state. From any ∀-step plan a plan satisfying the process condition is obtained by repeatedly
moving operators violating the condition one time point earlier.

Theorem 2.16 Let π = 〈A, I,O,G〉 be a problem instance and 〈S0, . . . , Sl−1〉 a ∀-step plan for π. Then there is a process plan
〈S′0, . . . , S′l−1〉 for π.

PROOF. Define a mapping ρ from plans to plans: plan ρ(T ) is obtained from T by moving one operator earlier according
to Definition 2.15 if possible, and otherwise ρ(T ) = T . Define the function f(〈S0, . . . , Sl−1〉) =

∑l−1
i=0(i · |Si|). Note that

f(ρ(T )) < f(T ) if ρ(T ) 6= T . Since f can take only positive values, only finitely many moves are possible. When f(ρ(T )) =
f(T ), T is a process plan. Hence a process plan is obtained after finitely many moves.

Theorem 2.17 Testing whether a sequence of sets of operators is a process plan is polynomial-time reducible to testing whether
a sequence of sets of operators is a ∀-step plan.

PROOF. The definition of process plans gives a procedure for doing the test. Consider 〈S0, . . . , Sl−1〉. For every operator in
S1 ∪ · · · ∪ Sl−1 we have to test the process condition. There are |S1|+ · · ·+ |Sl−1| such tests.

We will later concentrate on ∀-step plans in which no two simultaneous operators interfere, and hence it is convenient to define
an alternative notion of process plans that is compatible with this narrower class of ∀-step plans.

Definition 2.18 (i-Process plans) For a set of operators O and an initial state I an i-process plan for O and I is a ∀-step plan
〈S0, . . . , Sl−1〉 for O and I with no i ∈ {0, . . . , l − 1} and {o, o′} ∈ Si such that o 6= o′ and o and o′ interfere and with the
execution s0, . . . , sl such that there is no i ∈ {1, . . . , l− 1} and o ∈ Si so that 〈S0, . . . , Si−1 ∪{o}, Si\{o}, . . . , Sl−1〉 is a ∀-step
plan for O and I with the execution s′0, . . . , s

′
l such that sj = s′j for all j ∈ {0, . . . , i − 1, i + 1, . . . , l} and additionally, for no

i ∈ {0, . . . , l − 1} and {o, o′} ∈ Si such that o 6= o′ the operators o and o′ interfere.

2.3 ∃-Step semantics

We present a general formalization of a notion of parallel plans that was first considered by Dimopoulos et al. [1997].

Definition 2.19 (∃-Step plans) For a set O of operators and an initial state I , a ∃-step plan is T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l

together with a sequence of states s0, . . . , sl (the execution of T ) for some l ≥ 0 such that

(1) s0 = I , and
(2) for every i ∈ {0, . . . , l − 1} there is a total ordering o1 < . . . < on of Si such that si+1 = appo1;...;on(si).
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The difference to ∀-step semantics is that instead of requiring that each step Si can be ordered to any total order, it is sufficient
that there is one order that maps state si to si+1. Unlike in ∀-step semantics, the successor si+1 of si is not uniquely determined
solely by Si, as the successor depends on the implicit ordering of Si. Hence the definition has to make the execution s0, . . . , sl
explicit. There are also other important technical differences between ∃-step and ∀-step semantics, most notably the fact that the
properties given in Lemma 2.2 for ∀-step semantics do not hold for ∃-step semantics.

The more relaxed definition of ∃-step plans sometimes allows much more parallelism than the definition of ∀-step plans.

Example 2.20 Consider a row of n Russian dolls, each slightly bigger than the preceding one. We can nest all the dolls by putting
the first inside the second, then the second inside the third, and so on, until every doll except the biggest one is inside another doll.

For four dolls this can be formalized as follows.

o1 = 〈out1 ∧ out2 ∧ empty2, {1in2,¬out1,¬empty2}, ∅〉
o2 = 〈out2 ∧ out3 ∧ empty3, {2in3,¬out2,¬empty3}, ∅〉
o3 = 〈out3 ∧ out4 ∧ empty4, {3in4,¬out3,¬empty4}, ∅〉

The shortest ∀-step plan that nests the dolls is 〈{o1}, {o2}, {o3}〉. The ∃-step plan 〈{o1, o2, o3}〉 nests the dolls in one step. �

Theorem 2.21 (i) Each ∀-step plan is a ∃-step plan, and (ii) for every ∃-step plan T there is a ∀-step plan whose execution leads
to the same final state as that of T .

PROOF. (i) Consider a ∀-step plan T = 〈S0, . . . , Sl−1〉. Any total ordering of Si, i ∈ {0, . . . , l − 1} takes state si to the same
si+1. Hence, T is a ∃-step plan. (ii) For a ∃-step plan T = 〈S0, . . . , Sl−1〉, a ∀-step plan whose execution leads to the same final
state as that of T is {o01}, . . . , {o0n0

}, . . . , {ol−11 }, . . . , {ol−1nl−1
} where for every i ∈ {0, . . . , l − 1}, the sequence {oi1}, . . . , {oini}

is a total ordering of Si given by Condition 2 of Definition 2.19.

Next we identify restricted intractable and tractable classes of ∃-step plans.

Theorem 2.22 Let O be a set of operators and I a state. Testing whether T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l is a ∃-step plan for O and

I with some execution s0, . . . , sl is NP-hard, even when the set of atomic effects of operators in Si for every i ∈ {0, . . . , l − 1} is
consistent.

PROOF. By reduction from SAT. Let φ be any propositional formula. Let A be the set of propositional variables occurring in φ.
Let s and s′ be states such that s 6|= a for all a ∈ A and s′ |= a for all a ∈ A. We claim that φ is satisfiable if and only if 〈S〉 with
S = {〈>, {a}, ∅〉|a ∈ A} ∪ {〈φ, ∅, ∅〉} is a ∃-step plan with execution s, s′.

So assume φ is satisfiable and v : A → {0, 1} is a valuation satisfying φ. Then for any total order on S such that exactly the
operators Sv = {〈>, {a}, ∅〉|a ∈ A, v(a) = 1} precede oφ = 〈φ, ∅, ∅〉 satisfies the definition of ∃-step plans because executing
Sv produces the state/valuation v that satisfies the precondition of oφ.

Assume 〈S〉 is a ∃-step plan. Hence there is a total ordering o1, . . . , on of S such that appo1;...;on(s) is defined. Hence
appo1;...;oj (s) |= φ where o1, . . . , oj are the operators preceding oφ. Therefore φ is satisfiable.

The preceding theorem (Theorem 2.22) and the following (Theorem 2.23) can be strengthened so that all operators in Si are
executable in si. This shows that our later restriction to sets Si so that appSi(si) is defined does not directly reduce complexity.

From the above proof we see that NP-hardness holds even when there are no conditional effects and the effects of the operators
are not in conflict with each other. However, the proof assumes disjunctivity in preconditions because φ may be any formula. The
question arises if the problem is easier for STRIPS operators.

Theorem 2.23 Let O be a set of STRIPS operators and I a state. Testing whether T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l is a ∃-step plan

for O and I with some execution s0, . . . , sl is NP-hard.

PROOF. We reduce the NP-complete problem SAT to testing whether a sequence of sets of operators is a ∃-step plan. Let C be
a set of clauses, n = |C| and P the set of propositional variables occurring in C. Assign an index i ∈ {1, . . . , n} to each clause.
The state variables are A = {c1, . . . , cn} ∪ {Ua|a ∈ P}. Define

o+a = 〈Ua, {¬Ua, cia+1
, . . . , cia+ma+

}, ∅〉 for all a ∈ P,
where ia+1 , . . . , ia+ma+ are the indices of clauses in which a occurs positively

o−a = 〈Ua, {¬Ua, cia−1 , . . . , cia−ma−
}, ∅〉 for all a ∈ P,

where ia−1 , . . . , ia−ma− are the indices of clauses in which a occurs negatively
om = 〈c1 ∧ · · · ∧ cn, {Ua|a ∈ P}, ∅〉, and
S = {o+a |a ∈ P} ∪ {o−a |a ∈ P} ∪ {om}.

Let s and s′ be states such that s |= ¬c1 ∧ · · · ∧¬cn ∧
∧
a∈P Ua and s′ |= c1 ∧ · · · ∧ cn ∧

∧
a∈P ¬Ua. We show that 〈S〉 is a ∃-step

plan with execution s, s′ if and only if C is satisfiable. Assume that v : P → {0, 1} is a valuation that satisfies C. Take any total
ordering < of S such that for all a ∈ P , o+a < om iff v(a) = 1 and o−a < om iff v(a) = 0. Applying the operators preceding om
makes the state variables c1, . . . , cn true (because v is a valuation that satisfies C) and the state variables Ua, a ∈ P false. Now
om is executable and its application makes all Ua, a ∈ P true again. Then the remaining operators are executable, making every
Ua, a ∈ P false. Hence that total ordering satisfies the definition of ∃-step plans for 〈S〉 with execution s, s′.
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1: procedure linearize(s,S)
2: while S 6= ∅ do
3: if there is o = 〈p, e, ∅〉 ∈ S
4: such that s |= p and e ∩ {l|l ∈ p′} = ∅ for all 〈p′, e′, ∅〉 ∈ S\{o}
5: then S := S\{o}
6: else return false;
7: s := appo(s);
8: end while
9: return true;

Fig. 1. Algorithm for testing whether a set of non-conflicting STRIPS operators can be linearized

For the other direction, assume that 〈S〉 is a ∃-step plan with execution s, s′ which means that the operators can be applied in
some order < to obtain s′ from s. Since for every a ∈ P the operators o+a and o−a have Ua as the precondition and both make Ua
false and only om can make Ua true, it must be that o+a < om < o−a or o−a < om < o+a . Define v : P → {0, 1} by v(a) = 1 iff
o+a < om. For om to be executable c1 ∧ · · · ∧ cn must be true. Hence the operators applied before om correspond to a valuation v
that satisfies every clause in C. Therefore v |= C.

Restrictions of the previous two theorems separately do not yield tractability, but together they do.

Theorem 2.24 Let O be a set of STRIPS operators and I a state. Testing whether T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l with no Si

containing operators with mutually conflicting effects, is a ∃-step plan for O and I with some execution s0, . . . , sl is polynomial
time.

PROOF. Since no two simultaneous operators have effects that conflict each other the execution of the plan – if one exists –
is unambiguously determined by the sets of effects of operators of S0, . . . , Sl−1: s0 = I and si+1 = app{〈>,e,∅〉|〈p,e,∅〉}(si) for
all i ∈ {0, . . . , l − 1}. The question that we must answer in polynomial time is whether the operators at each time point can be
ordered so that the precondition is satisfied when an operator is applied.

The test is performed by the procedure calls linearize(si, Si) for all i ∈ {0, . . . , l − 1}. This procedure is given in Figure 1. It
runs in polynomial time in the size of S because the number of iterations of the while loop is bounded by the cardinality of S and
all the computation in one iteration is polynomial time in the size of S. We show that the procedure returns true if and only if an
executable ordering of S exists.

Assume linearize(s,S) returns true. Hence there is a sequence of states s′0, . . . , s
′
|S| and a sequence o′0, . . . , o

′
|S|−1 of operators

such that s′0 = s and s′i+1 = appo′i(s
′
i) for every i ∈ {0, . . . , |S| − 1}. Hence appo′0;...;o′|S|−1

(s) = appS(s) which satisfies the
conditions a set S has to satisfy in the definition of ∃-step plans.

Assume linearize(s,S) returns false. We show that no execution exists. Since false is returned, for every 〈p, e, ∅〉 ∈ S′ ⊆ S
either s′ 6|= p (where S′ and s′ are the last values the variables S and s have obtained) or e falsifies the precondition of at least one
of the operators in S′\{〈p, e, ∅〉}. Let o1, . . . , on be any total ordering of S. We show that appo1;...;on(s) is not defined, and hence
the total ordering does not satisfy Definition 2.19.

Take the operator oi = 〈pi, ei, ∅〉 ∈ S′ that comes earliest in the ordering o1, . . . , on.
If s′i = appo1;...;oi−1

(s) is not defined (because the precondition of one of the operators is false when the operator is applied),
then also appo1;...;on(s) is not defined. So assume s′i = appo1;...;oi−1

(s) is defined.
Since linearize(s,S) returns false, either s′ 6|= pi or oi falsifies the precondition of at least one of S′\{oi}.
In the first case, as none of the operators in S\S′ falsifies any literal in the precondition of any operator in S′, it must be that

s 6|= pi. Since s′ 6|= pi, there is at least one conjunct (a literal) of pi that is not made true by any operator in S\S′. Since
{o1, . . . , oi−1} ⊆ S\S′, this literal is also not true in s′i and hence s′i 6|= pi.

In the second case, as oi is the first operator of Si in the ordering, one of the literals in the precondition of at least one operator
in S′\{oi} becomes false when oi is applied. Since the operators in S are pairwise non-conflicting, there is no operator that
could make this literal and precondition true again (here we use the assumption that S consists of STRIPS operators.) Hence
appo1;...;on(s) is not defined, and the definition of ∃-step plans is not satisfied.

To obtain a tractable notion of ∃-step plans for operators in general we introduce, similarly to ∀-step semantics, a syntactic
notion characterizing dependencies between operators that leads to a simple graph-theoretic test for plans.

Our quest for tractable notions of ∃-step plans is motivated by the need to effectively encode the planning problem in the
propositional logic (Section 3.) Even though Theorem 2.24 allows ∃-step plans in which the preconditions of some of the operators
in Si are false in si, we will not consider encodings of this generality. Allowing this would seem to require making the implicit
intermediate states explicit, which would directly contradict the motivation of studying parallel encodings in the first place.

Definition 2.25 (Affect) Let A be a set of state variables and o = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉 operators over A. Then o affects
o′ if there is a ∈ A such that

(1) a ∈ (e ∪
⋃
{d|f B d ∈ c}) and a occurs in f for some f B d ∈ c′ or occurs negatively in p′, or

(2) ¬a ∈ e or ¬a ∈ d for some f B d ∈ c and a occurs in f for some f B d ∈ c′ or occurs positively in p′.

This is like Definition 2.6 but considers only one direction of interference: if o and o′ interfere, then either o affects o′ or o′

affects o.



· 10

Lemma 2.26 Let o1 < · · · < on be an ordering of a set S of operators so that if o < o′ then o does not affect o′. Let s be a state
so that s |= p and [o]s is consistent for every 〈p, e, c〉 ∈ S. Then the following hold.

(1) appo1;...;oi(s) |= pj for every i ∈ {1, . . . , n− 1} and j ∈ {i+ 1, . . . , n} where pj is the precondition of oj .
(2) [oj ]s = [oj ]appo1;...;oi

(s) for every i ∈ {1, . . . , n− 1} and j ∈ {i+ 1, . . . , n}.
(3) For every i ∈ {1, . . . , n}, if app{o1,...,oi}(s) is defined, then appo1;...;oi(s) = app{o1,...,oi}(s).

PROOF. By induction on i.
Base case i = 0: Trivial.
Inductive case i ≥ 1: First we note that appo1;...;oi(s) is defined because by the induction hypothesis for case (1) the precondition

of oi is true in appo1;...;oi−1
(s), and by the assumptions and the induction hypothesis for case (2) [oi]appo1;...;oi−1

(s) is consistent.
Now consider any j ∈ {i+ 1, . . . , n}.
Case (1): By the induction hypothesis appo1;...;oi−1

(s) |= pj . Since oi does not affect oj , oi does not falsify pj . Hence
appo1;...;oi(s) |= pj .

Case (2): By the induction hypothesis [oj ]s = [oj ]appo1;...;oi−1
(s). Since oi does not affect oj , oi does not change the value of

any state variable occurring in the antecedent of a conditional effect of oj . Hence [oj ]s = [oj ]appo1;...;oi
(s).

Case (3): By the induction hypothesis, if app{o1,...,oi−1}(s) is defined, then appo1;...;oi−1
(s) = app{o1,...,oi−1}(s). So assume

also app{o1,...,oi}(s) is defined, that is, [oi]s does not contradict [{o1, . . . , oi−1}]s. By (2) [oi]s = [oi]appo1;...;oi−1
(s). Since the

effects of oi do not override the effects of any operator earlier in the sequence, we get appo1;...;oi(s) = app{o1,...,oi}(s).

Theorem 2.27 Let O be a set of operators, I a state, T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l, and s0, . . . , sl a sequence of states. If

(1) s0 = I ,
(2) for every i ∈ {0, . . . , l − 1} there is a total ordering < of Si such that if o < o′ then o does not affect o′, and
(3) si+1 = appSi(si) for every i ∈ {0, . . . , l − 1},

then T is a ∃-step plan for O and I .

PROOF. Since by assumption appSi(si) is defined, the preconditions of all operators in Si are true in si and [o]si is consistent
for every o ∈ Si. Hence the assumptions of Lemma 2.26 are satisfied and by (3) appo1;...;on(si) = appSi(si) for some total
ordering o1, . . . , on of Si.

For STRIPS operators the subclass of ∃-step plans definable by using the notion of affects in Theorem 2.27 is not very restrictive.
In comparison to arbitrary ∃-step plans, the only restrictions are that sets S of simultaneous operators have no contradicting effects
and all operators are executable in the current state s, or in other words, that appS(s) is defined. This is stated in the following
theorem.

Theorem 2.28 Let π = 〈A, I,O,G〉 be a problem instance so that every operator in O is a STRIPS operator and let T =
〈S0, . . . , Sl−1〉 be a ∃-step plan for π with execution s0, . . . , sl so that s0 = I and si+1 = appSi(si) for every i ∈ {0, . . . , l− 1}.
Then for every i ∈ {0, . . . , l − 1} there is a total ordering < of Si such that if o < o′ then o does not affect o′.

PROOF. For STRIPS operators an operator o affects o′ if and only if o has an effect m and m is one of the conjuncts in the
precondition of o′. The result follows from the proof of Theorem 2.24. The procedure linearize repeatedly selects an operator that
does not affect any of the remaining operators.

Even though the class of ∃-step plans based on affects is narrower than the class sanctioned by Definition 2.19, much more
parallelism is still possible in comparison to the class of ∀-step plans satisfying the non-interference condition. For instance,
nesting of Russian dolls in Example 2.20 belongs to this class.

Similarly to the notion of interference in a state (Definition 2.9), we could define a state-specific notion of affects. This would
lead to a slightly more relaxed but still efficient test of whether ∃-step semantics is fulfilled.

It is possible to combine the ∃-step semantics and the process semantics, but we leave this to future work.

3. PLANNING AS SATISFIABILITY

Planning as satisfiability was introduced by Kautz and Selman [1992]. In addition to being a powerful approach to planning, it is
also the basis of bounded model checking [Biere, Cimatti, Clarke, and Zhu 1999]1.

In this section we present encodings of the different semantics of parallel plans in the propositional logic. A basic assumption
in all these encodings is that for sets S of simultaneous operators applied in state s the state appS(s) is defined, that is, all the
preconditions are true in s and the set of active effects of the operators is consistent. Given this assumption, the encodings of all
the semantics share a common part which is described next.

1Bounded model checking was developed at CMU after Alessandro Cimatti gave there a seminar talk on the techniques used in the 1998 AIPS planning competition
in which the BLACKBOX planner by Kautz and Selman participated [Cimatti 2003].
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3.1 The base encoding

Planning can be performed by propositional satisfiability testing as follows. Produce formulae φ0, φ1, φ2, . . . such that φl is
satisfiable iff there is a plan of length l. The formulae are tested for satisfiability in the order of increasing plan length, and from
the satisfying assignment that is found a plan is constructed. The encodings of the different semantics for parallel plans differ only
in the formulae that restrict the simultaneous application of operators. Next we describe the part of the encodings that is shared by
all of the semantics.

For the problem instance π = 〈A, I,O,G〉 let the (Boolean) state variables be A = {a1, . . . , an} and the operators O =
{o1, . . . , om}. For every state variable a ∈ A we have the propositional variables at which express the value of a at different time
points t ∈ {0, . . . , l}. Similarly, for every operator o ∈ O we have ot for expressing whether o is applied at t ∈ {0, . . . , l − 1}.
For formulae φ about the values of the state variables we denote the formula with all state variables subscripted with the index to
a time point t by φt.

Given a problem instance π = 〈A, I,O,G〉, a formula Φπ,l is generated to answer the following question. Is there an execution
of a sequence of l sets of operators fromO that reaches a state satisfyingG from the initial state I? The formula Φπ,l is conjunction
of I0 (formula describing the initial state with propositional variables subscripted by time point 0), Gl, and the formulae described
below, instantiated with all t ∈ {0, . . . , l − 1}.

First, for every o = 〈p, e, c〉 ∈ O there are the following formulae. The precondition p has to be true when the operator is
applied.

ot→pt (1)

If o is applied, then its unconditional effects e are true at the next time point.

ot→et+1 (2)

Here we view sets e of literals as conjunctions of literals. For every f B d ∈ c the effects d will be true if f is true at the preceding
time point.

(ot ∧ ft)→dt+1 (3)

Second, the value of a state variable does not change if no operator that changes it is applied. Hence for every state variable a we
have two formulae, one expressing the conditions for the change of a from true to false,

(at ∧ ¬at+1)→((o1t ∧ (EPC¬a(o1))t) ∨ · · · ∨ (omt ∧ (EPC¬a(om))t)), (4)

and another from false to true,

(¬at ∧ at+1)→((o1t ∧ (EPCa(o1))t) ∨ · · · ∨ (omt ∧ (EPCa(om))t)). (5)

These formulae can be simplified by using the obvious equivalences when EPC¬a(o) = ⊥.
The formulae Φπ,l, just like the definition of appS(s), allow sets of operators in parallel that do not correspond to any sequential

plan. For example, the operators 〈a, {¬b}, ∅〉 and 〈b, {¬a}, ∅〉 may be executed simultaneously resulting in a state satisfying
¬a ∧ ¬b, even though this state is not reachable by the two operators sequentially. Plans following the three semantics of parallel
plans can always be executed sequentially. Further formulae that are discussed in the next sections are needed for capturing the
three semantics.

Theorem 3.1 Let π = 〈A, I,O,G〉 be a problem instance. Then there is T = 〈S0, . . . , Sl−1〉 ∈ (2O)
l so that s0, . . . , sl are states

so that I = s0, sl |= G, and si+1 = appSi(si) for all i ∈ {0, . . . , l − 1} if and only if there is a valuation satisfying the formula
Φπ,l.

PROOF. For the proof from left to right, we construct a valuation v as follows. For all i ∈ {0, . . . , l} and all state variables
a ∈ A define v(ai) = si(a). For all i ∈ {0, . . . , l − 1} and all operators o ∈ O define v(oi) = 1 iff o ∈ Si.

We show that v |= Φπ,l. From this it directly follows that v |= I0 ∧ Gl. It remains to show satisfaction of instances of the
schemata (1), (2), (3), (4) and (5).

(1) Consider any i ∈ {0, . . . , l − 1} and o = 〈p, e, c〉 ∈ O. If o 6∈ Si, then v 6|= oi and immediately v |= oi→pi (Formula 1).
So assume o ∈ Si. By assumption si is a state such that appSi(si) is defined. Hence the precondition of o is true in si. Hence
v |= oi→pi (Formula 1).

(2) Consider any i ∈ {0, . . . , l−1} and o = 〈p, e, c〉 ∈ O. If o 6∈ Si, then v 6|= oi and immediately v |= oi→ei+1 (Formula 2).
So assume o ∈ Si. As o ∈ Si, the unconditional effects e of o are true in si+1 = appSi(si). Hence v |= oi→ei+1 (Formula 2).

(3) Consider any i ∈ {0, . . . , l − 1} and o = 〈p, e, c〉 ∈ O and f B d ∈ c. If o 6∈ Si, then v 6|= oi and immediately
v |= (oi ∧ fi)→ ei+1 (Formula 2). So assume o ∈ Si. Now v |= (oi ∧ fi)→ di+1 (Formula 3) because if si |= f then the
literals d are active effects and are true in si+1 and consequently v |= di+1.

(4) Consider any i ∈ {0, . . . , l − 1} and a ∈ A. According to the definition of si+1 = appSi(si), a can be true in si and false
in si+1 only if ¬a ∈ [o]si for some o ∈ Si. By Lemma 1.2 ¬a ∈ [o]si if and only if si |= EPC¬a(o), where o = 〈p, e, c〉. So
if the antecedent of (ai ∧¬ai+1)→((o1i ∧ (EPC¬a(o1))i)∨ · · · ∨ (omi ∧ (EPC¬a(om))i)) is true, then one of the disjuncts of
the consequent is true, where O = {o1, . . . , om}. This yields the truth of instances of Formula 4.
Proof for Formula 5 is analogous.



· 12

For the proof from right to left, assume v is a valuation satisfying the formula Φπ,l. We construct a plan 〈S0, . . . , Sl−1〉 and a
corresponding execution s0, . . . , sl.

Define for all i ∈ {0, . . . , l} the state si as the valuation of A such that si(a) = v(ai) for every a ∈ A. Define Sj = {o ∈
O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}.

Obviously I = s0 and sl |= G. We show that si+1 = appSi(si) for all i ∈ {0, . . . , l − 1}.
The precondition p of every operator o ∈ Si is true in si because v |= oi and v |= oi→pi ∈ Φπ,l (Formula 1).
si+1 |= [o]si for every o ∈ Si because v |= oi and v |= oi→ ei+1 ∈ Φπ,l for the unconditional effects e of o (Formula 2) and

v |= (oi ∧ fi)→di+1 for conditional effects f B d of o. This also means that [Si]si is consistent and appSi(si) is defined.
For state variables a not occurring in [Si]si we have to show that si(a) = si+1(a). Since a does not occur in [Si]si , for every

o ∈ {o1, . . . , om} = O either o 6∈ Si or both a 6∈ [o]si and¬a 6∈ [o]si . Hence either v 6|= oi or (by Lemma 1.2) v |= ¬(EPCa(o))i∧
¬(EPC¬a(o))i. This together with the assumptions that v |= (ai∧¬ai+1)→((o1i ∧ (EPC¬a(o1))i)∨· · ·∨ (omi ∧ (EPC¬a(om))i))
(Formula 4) and v |= (¬ai ∧ ai+1) → ((o1i ∧ (EPCa(o1))i) ∨ · · · ∨ (omi ∧ (EPCa(om))i)) (Formula 5) implies v |= (ai →
ai+1) ∧ (¬ai→¬ai+1). Therefore every a ∈ A not occurring in [Si]si remains unchanged. Hence si+1 = appSi(si).

Proposition 3.2 The size of the formula Φπ,l is linear in l and in the size of π.

Theorem 3.1 says that a sequence of operators fulfilling certain conditions exists if and only if a given formula is satisfiable.
The theorems connecting certain formulae to certain notions of plans (Theorems 3.3, 3.6, 3.11, 3.12, 3.13) provide an implication
only in one direction: whenever the formula for a given value of parameter l is satisfiable, a plan of l time points exists. The
other direction is missing because the formulae in general only approximate the respective semantics and there is no guarantee
that the formula for a given l is satisfiable when a plan with l time points exists. However, the formula with some higher value
of l is satisfiable. This follows from the fact that whenever a ∀-step or ∃-step plan 〈S0, . . . , Sl−1〉 with n = |S0| + · · · + |Sl−1|
occurrences of operators exists, there is a plan consisting of n singleton sets, and the corresponding formulae Φπ,n ∧ ΦxO,n are
satisfiable. The formulae ΦxO,n encode the parallel semantics x for formulae O.

An exact match between the ∀-step semantics and its encodings holds for problem instances with STRIPS operators only
(Theorem 3.4.)

The implications of the approximative nature of the ∀-step semantics encodings for process semantics are more serious. For
STRIPS operators the encodings for process semantics are exact: the formula for n time points is satisfiable if and only if a process
plan of length n exists. However, in the general case the inexactness of the underlying ∀-step encoding leads to a mismatch between
process semantics and the formulae. The problem is that the movement of an operator to an earlier time point may be prevented
by the too strict ∀-step semantics encoding even when it is allowed by Definition 2.1. Hence the process semantics has to be
understood in relation to particular classes of ∀-step plans: an operator has to be moved earlier only if there is a corresponding
∀-step plan belonging to the subclass in question, for example, the subclass of ∀-step plans in which no two parallel operators
interfere. This is the reason why we introduced the notion of i-process plans in Definition 2.18.

In planning as satisfiability it is often useful to use constraints that do not affect the set of satisfying valuations but help pruning
the set of incomplete solutions encountered during satisfiability testing and therefore speed up plan search. The most important
type of such constraints for many planning problems is invariants which are formulae that are true in all states reachable from
the initial state. Typically, one uses only a restricted class of invariants that are efficient (polynomial time) to identify. There are
efficient algorithms for finding many invariants that are 2-literal clauses [Blum and Furst 1997; Rintanen 1998]. Theorem 3.1
does not hold if invariants are included because they contain information about the set of states that are not reachable by any
sequential plan. For example, the formula a ∨ b is an invariant that would rule out states satisfying ¬a ∧ ¬b that are reachable
from any state satisfying a ∧ b by simultaneous application of 〈a, {¬b}, ∅〉 and 〈b, {¬a}, ∅〉 but not sequentially reachable by
these operators. However, the additional constraints in the following sections which restrict the parallel application of operators
guarantee that only sequentially reachable states are considered. Therefore in the presence of the additional constraints for the
different semantics invariants do not affect the set of satisfying valuations.

3.2 ∀-Step semantics

We have showed in Section 2.1 that the classes of ∀-step plans definable in terms of the notions of interference and interference in
a state are tractable, in contrast to the general definition that is co-NP-hard.

In this section we present two encodings of the subclass of plans following ∀-step semantics in which no two parallel operators
interfere. The first encoding is similar to the one used by Kautz and Selman in the BLACKBOX planner [Kautz and Selman 1999]
and has a size that is quadratic in the number of the operators. The size of the second encoding is linear in the size of the operators.
Encodings for the more relaxed notion of interference in a state can be given, including an encoding with a linear size, but we do
not discuss them in detail in this work.

3.2.1 A quadratic encoding. The simplest encoding of the interference condition in Definition 2.6 is by formulae

¬ot ∨ ¬o′t (6)

for every pair of interfering operators o and o′. Note that according to our definition, operators that could never be applied simul-
taneously (because of conflicting preconditions or effects) may interfere. The formulae (6) for these kinds of pairs of operators are
of course superfluous. Define Φ∀step,1

O,l as the conjunction of the formulae (6) for all time points t ∈ {0, . . . , l− 1} and for all pairs
of interfering operators {o, o′} ⊆ O that could be applied simultaneously. There are O(ln2) such formulae for n operators.

Theorem 3.3 Let π = 〈A, I,O,G〉 be a problem instance. There is a ∀-step plan of length l for π if Φπ,l ∧ Φ∀step,1
O,l is satisfiable.
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Fig. 2. A linear-size encoding of interference constraints

PROOF. Directly by Theorems 2.13 and 3.1.

A similar quadratic-size encoding can also be given for state-dependent interference. The state-dependence is easy to encode
by a formula that has a size proportional to the two operators: the simultaneous execution is allowed if none of the operators has
an active effect that changes a state variable in the precondition or antecedent of a conditional effect of the other. Note that for
STRIPS operators the state-dependent and state-independent notions of interference coincide, and even further, the above encoding
of the ∀-step semantics is perfectly accurate.

Theorem 3.4 Let π = 〈A, I,O,G〉 be a problem instance where O is a set of STRIPS operators. There is a ∀-step plan of length
l for π if and only if Φπ,l ∧ Φ∀step,1

O,l is satisfiable.

PROOF. The if direction is by Theorem 3.3. It remains to show the only if direction. So assume there is a ∀-step plan T =
〈S0, . . . , Sl−1〉. By Theorem 3.1 there is a valuation v such that v |= Φπ,l. We show that also v |= Φ∀step,1

O,l , that is, any conjunct

¬oi ∨ ¬o′i of Φ∀step,1
O,l for i ∈ {0, . . . , l − 1} and {o, o′} ⊆ O is satisfied by v.

Since ¬oi ∨ ¬o′i is in Φ∀step,1
O,l , o and o′ interfere. By Definition 2.6 this means for operators without conditional effects that

there is a literal m such that m is an effect of o and m is a conjunct of the precondition of o′, or the other way round. Hence by
Theorem 2.3 {o, o′} 6⊆ Si. By the construction of v in the proof of Theorem 3.1 v |= ¬oi ∨ ¬o′i. Hence every conjunct of Φ∀step,1

O,l

is satisfied by v.

3.2.2 A linear encoding. As the size of Φπ,l is linear in l and the size of π, the quadratic encoding of the interference constraints
may dominate the size of Φπ,l ∧ Φ∀step,1

O,l . We give a linear-size encoding for the interference constraints.
The idea of the encoding is to order all operators that may make a state variable p ∈ A false (respectively true) or that have

a positive (respectively negative) occurrence of p in the precondition or any occurrence in an antecedent of a conditional effect
arbitrarily as o1, . . . , on. Whenever an operator o that falsifies p is applied, a sequence of implications prevents the application of
every operator o′ preceding or following o whenever o′ has positive occurrences of p in the precondition or any occurrences in the
antecedents of conditional effects. One chain of implications, through a set of auxiliary propositional variables, goes to the right
in the ordering and another chain to the left.

We define a formula for every literal m ∈ A ∪ {¬p|p ∈ A} for preventing the simultaneous application of operators that falsify
m and operators that requirem to remain true. Let o1, . . . , on be any fixed ordering of the operators. LetEm be the set of operators
that may falsify m, and let Rm be the set of operators that may require m to remain true.

The formula is the conjunction of chain(o1, . . . , on;Em;Rm;m1) and chain(on, . . . , o1;Em;Rm;m2) for all literals m where

chain(o1, . . . , on;E;R;m) =
∧
{oit→aj,mt |i < j, oi ∈ E, oj ∈ R, {oi+1, . . . , oj−1} ∩R = ∅}
∪{ai,mt →aj,mt |i < j, {oi, oj} ⊆ R, {oi+1, . . . , oj−1} ∩R = ∅}
∪{ai,mt →¬oit|oi ∈ R}.

The parameter m is needed to make the names of the auxiliary variables unique. The m1 and m2 are two names distinguishing the
auxiliary variables for the two sets of formulae for literal m.

Example 3.5 Consider the following operators.

o1 = 〈x, {¬x, y}, ∅〉
o2 = 〈x, {¬x, z}, ∅〉
o3 = 〈z, {¬x}, ∅〉
o4 = 〈x, {z}, ∅〉
o5 = 〈x, {¬x}, ∅〉

The formulae that encode the constraints on the simultaneous application for these operators and the state variable x are depicted
in Figure 2. �

The number of 2-literal clauses in chain(o1, . . . , on;Em;Rm;mi) is at most three times the number of operators in which m
occurs and hence the number of 2-literal clauses in

chain(o1, . . . , on;Em;Rm;m1) ∧ chain(on, . . . , o1;Em;Rm;m2)
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is at most six times the number of operators. Since we have these formulae for every literal m, the number of 2-literal clauses is
linearly bounded by the size of the set of operators. Let Φ∀step,2

O,l be the conjunction of the above formulae for all literals m and
time points t ∈ {0, . . . , l − 1}.

Theorem 3.6 Let π = 〈A, I,O,G〉 be a problem instance. Φπ,l ∧Φ∀step,1
O,l is satisfiable if and only if Φπ,l ∧Φ∀step,2

O,l is satisfiable.

Hence there is a ∀-step plan for π of length l if Φπ,l ∧ Φ∀step,2
O,l is satisfiable.

PROOF. Let v be a valuation such that v |= Φ∀step,1
O,l . We construct a valuation v′ that satisfies Φ∀step,2

O,l . For all variables

occurring in Φ∀step,1
O,l we have v′(x) = v(x). Additionally, v′ assigns values to the auxiliary variables ai,m

1

t and ai,m
2

t occurring

only in Φ∀step,2
O,l .

Let v′(aj,m
1

t ) = 1 iff there is oi ∈ Em such that i < j and v(oit) = 1. Let v′(aj,m
2

t ) = 1 iff there is oi ∈ Em such that i > j
and v(oit) = 1.

We consider only the components of the first conjunct of chain(o1, . . . , on;Em;Rm;m1) ∧ chain(on, . . . , o1;Em;Rm;m2).
The second conjunct is analogous.

Consider oit→aj,m
1

t such that i < j, oi ∈ Em, oj ∈ Rm, {oi+1, . . . , oj−1} ∩ Rm = ∅. If v′(oit) = 1, then by the definition of
v′ also v′(aj,m

1

t ) = 1 because i < j and v′(oit) = 1.
Consider ai,m

1

t →aj,m
1

t such that i < j, {oi, oj} ⊆ Rm, {oi+1, . . . , oj−1} ∩ Rm = ∅. If v(ai,m
1

t ) = 1, then there is oi
′ ∈ Em

such that i′ < i and v′(oi
′

t ) = 1. Therefore by the definition of v′ we have v′(aj,m
1

t ) = 1.
Consider ai,m

1

t →¬oit such that oi ∈ Rm. If v(ai,m
1

t ) = 1, then there is oi
′ ∈ Em such that i′ < i and v′(oi

′

t ) = 1. Since
v′ |= ¬oi′t ∨ ¬oit, it must be that v′ |= ¬oit.

Hence all conjuncts of chain(o1, . . . , on;Em;Rm;m1) are true in v′.
For the other direction, let v be a valuation such that v |= Φ∀step,2

O,l . We show that v |= Φ∀step,1
O,l . Take any conjunct ¬ot ∨ ¬o′t of

Φ∀step,1
O,l . If v 6|= ot, then the truth immediately follows. Assume v |= ot. Since o = 〈p, e, c〉 and o′ = 〈p′, e′, c′〉 interfere, there is

a state variable a ∈ A that occurs as a negative effect of o and either in d for some f B d ∈ c′ or positively in p′ (or, the roles of o
and o′ are the other way around, or the polarity of the occurrences of a is complementary: the proofs of these cases are analogous.)
Now o ∈ Ea and o′ ∈ Ra. We assume that the index o is lower than that of o′. The case with a higher index is analogous: instead
of chain(o1, . . . , on;Ea;Ra; a1) we consider chain(on, . . . , o1;Ea;Ra; a2).

We show that because v |= chain(o1, . . . , on;Ea;Ra; a1)t, also v |= ¬o′t.
The formula chain(o1, . . . , on;Ea;Ra; a1)t contains a sequence of implications o′t→aj1,at →aj2,at →· · ·→ajk,at →¬ojkt where

ojk = o′. Since these implications are true in v, v 6|= o′t. Therefore v |= ¬ot ∨ ¬o′t. Since this holds for all conjuncts of Φ∀step,1
O,l ,

we have v |= Φ∀step,1
O,l . Since v |= Φπ,l ∧ Φ∀step,1

O,l by Theorem 3.3 there is a ∀-step plan of length l for π.

The number of auxiliary propositional variables is linearly proportional to the number of operators and state variables. Hence
this linear-size encoding of the interference constraints may lead to formulae with a much higher number of propositional variables
than with the quadratic size encoding of the constraints. The higher number of propositional variables may negatively affect the
runtimes of satisfiability algorithms.

A compromise between the size of the constraints and the number of propositional variables is possible. There is an encoding of
the constraints with only a logarithmic number of new propositional variables and with only O(n log n) clauses which improves
the quadratic encoding with respect to the number of clauses and the linear encoding with respect to the number of propositional
variables. We describe the idea of the encoding without formalizing it and proving it correct.

The idea of the encoding is similar to that of chain(o1, . . . , on;Em;Rm;) in that an arbitrary ordering is imposed on the operators
and the application of an operator prevents the application of operators later in the ordering. For each literal m we encode a binary
number between 0 and |Rm| − 1 in a logarithmic number of state variables. Then there is a formula for each operator o in Em
stating that the binary number for m has a value that is at least as high as the index of the first operator in Rm that follows o. For
each operator o′ in Rm there is similarly a formula that says that o′ is not applied if the value of the binary number is lower than
the index of o′. Hence no operator in Rm following an applied operator in Em is applied.

The linear-size encoding and the above n log n-size encoding can both be made state-dependent by observing the application of
o with respect to the constraints related to literal m only if m is an active effect of o.

3.3 Process semantics

The encoding of process semantics extends the encoding of ∀-step semantics. We take all formulae for the latter (for example
Φπ,l ∧ Φ∀step,2

O,l ) and have further formulae specific to process semantics.
The encoding of the underlying ∀-step semantics encoding and the additional constraints for process semantics are tightly

coupled: when the constraints force the movement of an operator to the preceding time point, the ∀-step semantics constraints for
the preceding time points must be compatible with the move. In this section we discuss the encoding of the process constraints for
the subclass of ∀-step plans based on interference (Definition 2.6 and Section 3.2.) Constraints compatible with broader classes of
∀-step plans (for example based on Definition 2.9) are more complicated.

The formulae for process semantics prevent the application of an operator o at time t + 1 if moving o to time t also resulted in
a valid ∀-step plan according to Definition 2.1 and the state at time t+ 2 stayed the same.

An operator o may be applied at time t+ 1 only if at least one of the following conditions hold.
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—The precondition of o became true at t+ 1 (and is false at t.)
—The operator o interferes with an operator at time point t (Definition 2.6.)

This includes the following pairwise tests.
—Could one operator falsify the precondition of the other?
—Could one operator change the set of active effects of the other. In other words, could it change the value of the antecedent of

a conditional effect of the other?
Note that if none of the operators at t interfere with the operator at t+ 1 then the operator would have the same effects at t as it
has at t+ 1.

—The active effects of o are in conflict with the active effects of an operator at t.

We give a linear-size encoding of these conditions. Let the set of state variables be A = {a1, . . . , an}. We introduce the
following auxiliary propositional variables.

—The variables ai,1t denote that an operator at time t+ 1 makes (may make) ai true, and hence a justification for not moving the
operator earlier is that
—there is an operator at t with a negative occurrence of ai in its precondition, or
—there is an operator at t with an occurrence of ai in the lhs of a conditional effect,

—The variables ai,¬1t denote that an operator at time t + 1 makes (may make) ai false, and hence a justification for not moving
that operator earlier is that
—there is an operator at t with a positive occurrence of ai in its precondition, or
—there is an operator at t with an occurrence of ai in the lhs of a conditional effect.

—The variables ai,2t denote that an operator at time t + 1 has an occurrence of ai in the antecedent of a conditional effect, and
hence a justification for not moving that operator earlier is that there is an operator at t that changes the value of ai.

—The variables ai,3t denote that an operator at time t+1 has a positive occurrence of ai in the precondition, and hence a justification
for not moving that operator earlier is that there is an operator at t that makes (may make) ai false.

—The variables ai,¬3t denote that an operator at time t + 1 has a negative occurrence of ai in the precondition, and hence a
justification for not moving that operator earlier is that there is an operator at t that makes (may make) ai true.

—The variables ai,4t denote that an operator at time t + 1 (actually) makes ai true, and hence a justification for not moving that
operator earlier is that there is an operator at t that (actually) makes ai false.

—The variables ai,¬4t denote that an operator at time t+ 1 (actually) makes ai false, and hence a justification for not moving that
operator earlier is that there is an operator at t that (actually) makes ai true.

Note that the definition of interference in Definition 2.6 is about occurrences of a state variable in the effects of one operator and
in the precondition or in the antecedents of conditional effects of another operator. This is the reason why in the above description
we have stated that an operator may make a state variable true or false. Below we make this more explicit.

We need the following formulae for each state variable ai and all t ∈ {0, . . . , l − 1}.

ai,1t+1→(o1t ∨ · · · ∨ ont ) (7)

where o1, . . . , on are all the operators o that have an occurrence of ai in the lhs of a conditional effect, or a negative occurrence of
ai in the precondition.

ai,¬1t+1 →(o1t ∨ · · · ∨ ont ) (8)

where o1, . . . , on are all the operators o that have a positive occurrence of ai in the precondition, or an occurrence of ai in the lhs
of a conditional effect.

ai,2t+1→(o1t ∨ · · · ∨ ont ) (9)

where o1, . . . , on are all the operators in which ai occurs in an effect.

ai,3t+1→(o1t ∨ · · · ∨ ont ) (10)

where o1, . . . , on are all the operators o that have the effect ¬ai (possibly conditional).

ai,¬3t+1 →(o1t ∨ · · · ∨ ont ) (11)

where o1, . . . , on are all the operators o that have the effect ai (possibly conditional).
Additionally, for each operator o ∈ O we need a formula that lists all the possible justifications for not moving the operator one

step earlier. These formulae are

ot→(¬pt−1 ∨ φ) (12)

where p is the precondition of o and φ is the disjunction of the propositional variables

—ai,1t such that ai is an effect (possibly conditional) of o,
—ai,¬1t such that ¬ai is an effect (possibly conditional) of o,
—ai,2t such that ai occurs in the antecedent of a conditional effect of o,
—ai,3t such that ai occurs positively in the precondition of o, and
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—ai,¬3t such that ai occurs negatively in the precondition of o.

For the variables ai,4t and ai,¬4t we replace each positive occurrence of ait in the consequent of the implication of Formula 3 by
(ait ∧ a

i,4
t ∧ a

i,¬4
t−1 ) and each occurrence of ¬ait by (¬ait ∧ a

i,¬4
t ∧ ai,¬4t−1 ) for all t ∈ {1, . . . , l− 1}. This is to indicate that ai or ¬ai

is an active effect of the operator at time t.
The variables ai,2t , ai,3t and ai,¬3t and the associated formulae are not needed if all operators are STRIPS operators. For STRIPS

operators the use of variables ai,4t and ai,¬4t could be replaced by the use ai,1t and ai,¬1t .
Let the formula ΦprocessO,l be a conjunction of all the above formulae. The size of ΦprocessO,l is linear in the size of the set O of

operators because there are at most 2l variable occurrences for every state variable occurrence in every operator.

Theorem 3.7 Let π = 〈A, I,O,G〉 be a problem instance. There is i-process plan T of length l for π if Φπ,l ∧Φ∀step,2
O,l ∧ΦprocessO,l

is satisfiable.

PROOF. Assume v is a valuation such that v |= Φπ,l ∧ Φ∀step,2
O,l ∧ ΦprocessO,l . Define for all i ∈ {0, . . . , l} the state si as the

valuation of A such that si(a) = v(ai) for every a ∈ A. Define Sj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. By
Theorem 3.6 T = 〈S0, . . . , Sl−1〉 is a ∀-step plan.

Assume that T is not an i-process plan because for some i ∈ {1, . . . , l−i} and ox ∈ Si, T ′ = 〈S0, . . . , Si−1∪{ox}, Si\{ox}, . . . , Sl−1〉
is a ∀-step plan in which no two simultaneous operators interfere. We show that this leads to a contradiction with the assumption
that v |= ΦprocessO,l .

Consider oxi → (¬pxi−1 ∨ j1 ∨ · · · ∨ jn). Assume that v satisfies this formula. Since v |= oxi (as ox ∈ Si), at least one of the
disjuncts in the right side is true in v. It cannot be that v |= ¬pxi−1 where px is the precondition of ox because otherwise ox would
not be executable at time i− 1 in T ′.

So some other disjunct of j1 ∨ · · · ∨ jn must be satisfied by v. This leads to a long and tedious case analysis. We only give
as an example the proof for the disjunct aq,1i for a state variable aq that is a positive effect of ox. If v |= aq,1i , then because
v |= aq,1i → (o1i−1 ∨ · · · ∨ oni−1) where o1, . . . , on are all the operators that have an occurrence of aq in the lhs of a conditional
effect or a negative occurrence in the precondition. Hence there is an operator oy ∈ Si−1 that has an occurrence of aq in the lhs
of a conditional effect or a negative occurrence in the precondition. Hence ox and oy interfere, and both are at i− 1 in T ′, which
contradicts our assumptions.

Therefore it must be the case that T is an i-process plan.

3.4 ∃-Step semantics

We give three encodings of the constraints that guarantee that the plans follow the ∃-step semantics. The first two (Sections 3.4.2
and 3.4.3) exactly encode the acyclicity test, allowing maximum parallelism with respect to a given disabling graph (as defined in
Section 3.4.1). However, the first of these encodings has a cubic size and the second involves guessing a topological ordering for
the set of operators, and therefore these encodings would not appear to be practical. The third encoding (Section 3.4.4) is based
on assigning a fixed ordering on the operators and allowing the simultaneous application of a subset of the operators only if none
of the operators affects the operators later in the ordering. The size of this encoding is linear in the size of the set of operators, but
it sometimes allows less parallelism than the first two encodings. However, in our experiments this encoding has turned out to be
very efficient.

To improve the efficiency of the encodings we consider a method for utilizing the structural properties of planning problems
in the form of disabling graphs in Section 3.4.1. The idea is to identify operators for which the existence of a total ordering
required by the ∃-step semantics can be guaranteed, no matter in which state the set of operators is simultaneously applied. The
set of operators is partitioned to subsets of operators potentially involved in a cycle that cannot be totally ordered for execution.
Constraints guaranteeing the ordering property need to be given only for such subsets. The decomposition method in some cases
splits the set of all operators to singleton subsets. If all sets are singleton, the ordering property is guaranteed for any subset of
operators applied simultaneously, and there is no need to introduce further constraints on operator application. The technique
improves all the three encodings of the ∃-step semantics on many types of structured problems.

3.4.1 Disabling graphs. The motivation for using disabling graphs is the following. Define a circularly disabled set as a set of
operators that is executable in some state and on all total orderings of the operators at least one operator affects an operator later
in the ordering. Now any set-inclusion minimal circularly disabled set is a subset of a strong component (or strongly connected
component, abbreviated as SCC) of the disabling graph.

Definition 3.8 Let π = 〈A, I,O,G〉 be a problem instance. A graph 〈O,E〉 is a disabling graph for π when E ⊆ O × O is the
set of directed edges so that 〈o, o′〉 ∈ E if

(1) there is a state s such that s is reachable from I by operators in O and app{o,o′}(s) is defined, and
(2) o affects o′.

For a given set of operators there are typically several disabling graphs because the graph obtained by adding an edge to a disabling
graph is also a disabling graph. Also the complete graph 〈O,O×O〉 is a disabling graph. For every set of operators there is a unique
minimal disabling graph, but computing minimal disabling graphs is NP-hard because of the consistency tests and PSPACE-hard
because of the reachability tests of s in Condition 1. Computing non-minimal disabling graphs is easier because the consistency
and reachability tests may be approximated.
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We may allow the simultaneous application of a set of operators from the same SCC if the subgraph of the disabling graph
induced by those operators does not contain a cycle.2

Lemma 3.9 Let O be a set of operators and G = 〈O,E〉 a disabling graph for O. Let C1, . . . , Cm be the strong components
of G. Let s be a state. Let O′ be a set of operators so that appO′(s) is defined. If for every i ∈ {1, . . . ,m} the subgraph
〈Ci ∩ O′, E ∩ ((Ci ∩ O′) × (Ci ∩ O′))〉 of G induced by Ci ∩ O′ is acyclic, then there is a total ordering o1, . . . , on of O′ such
that appo1;...;on(s) = appO′(s).

PROOF. Let the indices of C1, . . . , Cm be such that for all i ∈ {1, . . . ,m − 1} and j ∈ {i + 1, . . . ,m} there are no edges
from an operator in Ci to an operator in Cj . Such a numbering exists because the sets Ci are strong components of G (the strong
components always form a tree.) Since the subgraph induced by Ci ∩ O′ is acyclic for every i ∈ {1, . . . ,m}, we can impose an
ordering o1 <i . . . <i oni on Ci ∩O′ so that if o <i o′ then there is no edge from o to o′, that is, o does not affect o′.

Now we can construct a total order o1 < · · · < on on O′ as follows. For all {o, o′} ∈ O′, o < o′ if {o, o′} ⊆ Ci for some
i ∈ {1, . . . ,m} and o <i o′, or o ∈ Ci and o′ ∈ Cj and i < j. Now for all {o, o′} ⊆ O′, if o < o′ then o does not affect o′. Hence
appo1;...;on(s) = appO′(s) by Lemma 2.26.

Note that acyclicity is a sufficient but not a necessary condition for a set of operators to be executable in some order, even
for minimal disabling graphs. This is because the edges are independent of the state, exactly like the notion of interference in
Definition 2.6. As in Example 2.14 two operators may form a cycle in the disabling graph but can nevertheless be executed in
any order with the same results. However, for STRIPS operators and minimal disabling graphs acyclicity exactly coincides with
executability in some order, as we show in Lemma 3.10. This fact was implicitly used in Theorem 2.28.

Lemma 3.10 Let π = 〈A, I,O,G〉 be a problem instance and 〈O,E〉 a disabling graph for π such that 〈o, o′〉 ∈ E only if o
affects o′. Let s be a state reachable from I by some sequence of operators in O and let S = {o1, . . . , on} be a set of STRIPS
operators so that appo1;...;on(s) and appS(s) are defined for some ordering o1, . . . , on of S. Then the subgraph of 〈O,E〉 induced
by S is acyclic.

PROOF. Fact A: Since appS(s) is defined, there are no {〈p, e, ∅〉, 〈p′, e′, ∅} ⊆ S and a ∈ A so that a ∈ e and ¬a ∈ e′.
Since appo1;...;on(s) is defined, there are no i ∈ {1, . . . , n− 1} and j ∈ {i+ 1, . . . , n} such that oi affects oj . If there were, oi

would make one of the literals in the precondition of oj false and by Fact A no operator ok, k ∈ {i + 1, . . . , j − 1} could make
the precondition true again, and hence appo1;...;oj (s) would not be defined. As no operator in S affects a later operator, and there
is an edge from an operator to another only if the former affects the latter, the subgraph of 〈O,E〉 induced by S is acyclic.

Next we discuss three ways of deriving constraints that guarantee that operators occupying one SCC of a disabling graph can
be totally ordered to a valid plan.

3.4.2 Encoding of size O(n3). We can exactly test that the intersection of one SCC and a set of simultaneous operators does
not form a cycle. The next encoding allows the maximum parallelism with respect to a given disabling graph, but it is expensive
in terms of formula size.

We use auxiliary propositional variables ci,jt for all operators with indices i and j indicating that the operators oi, o1, o2, . . . , on, oj

are applied and each operator affects its immediate successor in the sequence. Let oi and oi
′

belong to the same SCC of the dis-
abling graph and let there be an edge from oi to oi

′
. Then we have the formulae (oit ∧ oi

′

t )→ ci,i
′

t and (oit ∧ c
i′,j
t )→ ci,jt for all j

such that i′ 6= j 6= i. Further we have formulae ¬(oit ∧ c
i′,i
t ) for preventing the completion of a cycle.

There is a cubic number of formulae, each having a constant size (two or three variable occurrences). The number of propo-
sitional variables ci,jt is quadratic in the number of operators in an SCC. Some problems have SCCs of hundreds or thousands of
operators, and this would mean millions or billions of formulae, which makes the encoding impractical.

Theorem 3.11 Let π = 〈A, I,O,G〉 be a problem instance. There is a ∃-step plan of length l for π if Φπ,l ∧Φ∃step,1
O,l is satisfiable.

PROOF. Let v be a valuation such that v |= Φπ,l ∧ Φ∃step,1
O,l . Define for all i ∈ {0, . . . , l} the state si as the valuation of A such

that si(a) = v(ai) for every a ∈ A. Define Sj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. By Theorem 3.1 we only have to
test the condition that for 〈S0, . . . , Sl−1〉, its execution s0, . . . , sl and every i ∈ {0, . . . , l − 1} there is a total ordering o1, . . . , on
of Si such that appo1;...;on(si) = appSi(si).

By Lemma 3.9 it suffices to show that the subgraph of the disabling graph induced by Si ∩ C for every SCC C of the disabling
graph is acyclic. For the sake of argument assume that the subgraph has a cycle. Hence there are operators o′1, . . . , o′m in Si such
that o′j affects o′j+1 for all j ∈ {1, . . . ,m− 1} and o′m affects o′1. But the formulae

o′m−1i ∧ o′mi →cm−1,mi , o′m−2i ∧ cm−1,mi →cm−2,mi , . . . , o′1i ∧ c
2,m
i →c1,mi ,¬(o′mi ∧ c

1,m
i )

together with o′1i , . . . , o
′m
i are inconsistent. Since these formulae are conjuncts of Φ∃step,1, there can be no cycle in the subgraph

induced by Si ∩ C.

2In ∀-step semantics simultaneous application is allowed only if the subgraph induced by all applied operators does not have any edges.
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3.4.3 Encoding of size O(e log2 n). A more compact encoding is obtained by assigning a log2 n-bit binary number to each of
the n operators and by requiring that the number of operator o is lower than that of o′ if there is an edge from o′ to o in the disabling
graph.3 The size of the encoding is O(e log2 n) where e is the number of edges in the disabling graph and n is the number of
operators.

For every operator o and time point t we introduce the propositional variables io,0t , . . . io,kt where k = dlog2 ne− 1 for encoding
o’s index at time point t.

So, for any operators o and o′ so that o′ affects o use the following formula for guaranteeing that the edges are always from an
operator with a higher index to a lower index.

(ot ∧ o′t)→GT (io
′,0
t , . . . , io

′,k
t ; io,0t , . . . , io,kt ) (13)

Above GT (io
′,0
t , . . . , io

′,k
t ; io,0t , . . . , io,kt ) is a formula comparing two k-bit binary numbers. There are such formulae that have a

size that is linear in the number of bits.

Theorem 3.12 Let π = 〈A, I,O,G〉 be a problem instance. There is a ∃-step plan of length l for π if Φπ,l ∧Φ∃step,2
O,l is satisfiable.

PROOF. Similarly to the proof of Theorem 3.11, we have to show that the subgraph induced by every set of simultaneous
operators is acyclic. Formula 13 guarantees that the index of an operator to which there is an edge from another operator is lower
than the index of the latter. The existence of a cycle would mean that there are also edges from an operator with a lower index to
an operator to a higher index but as such edges do not exist, there are no cycles in the graph.

Note that given a set of literals describing which operators are applied at a given time point, for the encoding in Section 3.4.2
unit resolution is sufficient for determining whether there is a cycle, but not for the encoding in Section 3.4.3.

3.4.4 A linear-size encoding based on a fixed ordering of operators. Our third encoding does not allow all the parallelism
allowed by the preceding encodings but it leads to small formulae and seems to be very efficient in practice. With this encoding
the set of formulae constraining parallel application is a subset of those for the less permissive ∀-step semantics. One therefore
receives two benefits simultaneously: possibly much shorter parallel plans and formulae with a smaller size / time points ratio.

The idea is to impose beforehand an (arbitrary) ordering on the operators o1, . . . , on in an SCC and to allow parallel application
of two operators oi and oj such that oi affects oj only if i ≥ j. Of course, this restriction to one fixed ordering may rule out many
sets of parallel operators that could be applied simultaneously according to some other ordering than the fixed one.

A trivial implementation of this idea (similar to the ∀-step semantics encoding in Section 3.2.1) has a quadratic size because of
the worst-case quadratic number of pairs of operators that may not be simultaneously applied. However, we may use one half of
the implications in the linear-size encoding for ∀-step semantics from Section 3.2.2. The linear-size encoding for the constraints
for ∃-step semantics is thus simply the conjunction of formulae

chain(o1, . . . , on;Em;Rm;m)

for every literalmwhereEm is the set of operators that may falsifym (m occurs as an atomic effect) andRm is the set of operators
that may require m to remain true (m occurs in the antecedent of a conditional effect or positively in the precondition).

Theorem 3.13 Let π = 〈A, I,O,G〉 be a problem instance. There is a ∃-step plan of length l for π if Φπ,l ∧Φ∃step,3
O,l is satisfiable.

PROOF. Let v be a valuation such that v |= Φπ,l ∧ Φ∃step,3
O,l . Define for all i ∈ {0, . . . , l} the state si as the valuation of A such

that si(a) = v(ai) for every a ∈ A. Define Sj = {o ∈ O|v(oj) = 1} for all j ∈ {0, . . . , l − 1}. Consider an SCC C of the
disabling graph and the fixed ordering o′1, . . . , o′n

′
of the operators in C ∩ Si for some i ∈ {0, . . . , l − 1}.

The formulae chain(o1, . . . , on;Em;Rm;m) in Φ∃step,3
O,l for all literals m guarantee that if o′j affects o′k, then k < j. By

Lemma 2.26 appSi(si) = appo′1;...;o′n′ (si). Hence the definition of ∃-step plans is satisfied.

4. EXPERIMENTS

The shortest encodings of the three semantics in Sections 3.2.2, 3.3 and 3.4.4 have sizes that are linear in the size of the problem
instance and the number of time points, and are therefore asymptotically optimal. The question arises whether the potentially
much smaller number of time points makes ∃-step semantics more efficient than ∀-step semantics and whether the potentially
much smaller number of plans makes the process semantics more efficient than ∀-step semantics. In this section we answer these
questions by comparing the different encodings of the three semantics with respect to a number of planning problems.

We consider two problem classes. First, as a way of measuring the efficiency of the encodings on “average” problem instances,
we sample problem instances from the space of all problem instances characterized by certain parameter values, following Bylan-
der [1996] and Rintanen [2004b]. The problem instances we consider are rather small, 40 state variables and up to 280 operators,
but rather challenging in the phase transition region.

Second, we consider some of the benchmarks used by the planning community. These problem instances have a simple interpre-
tation in terms of real-world planning tasks, like simple forms of transportation planning. In contrast to the problem instances in
the phase transition study, the numbers of state variables and operators in these problems are much higher (up to several thousands
of state variables and tens of thousands of operators), and most of these problems can be solved rather easily by domain-specific
polynomial time algorithms when no optimality criteria (for example minimal number of operators in a plan) have to be satisfied.

3This encoding has also been independently discovered by Victor Khomenko [2005a].
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4.1 Implementation details

We briefly discuss details of the implementation of our translator from the planning domain description language PDDL [McDer-
mott 1998] into propositional formulae in conjunctive normal form.

The planning domain description language PDDL allows describing schematic operators that are instantiated with a number of
objects. For some of the standard benchmark problems the number of operators produced by a naı̈ve instantiation procedure is
astronomic, and indeed all practical planner implementations rely on heuristic techniques for avoiding the generation of ground
operators that could never be part of a plan because no state satisfying the precondition of the operator can be reached.

After instantiating the schematic PDDL operators, we perform a simple polynomial-time reachability analysis for the possible
values of state variables to identify operators that can never be applied. For example, in the 1998 and 2000 AIPS planning
competition logistics problems there are operators for driving trucks between locations outside the truck’s home city, but the truck
can never leave its home city. Hence the state variables indicating that the truck’s location is a non-home city can never be true.
This analysis allows eliminating many irrelevant operators and it is similar to the reachability analysis performed by the GraphPlan
[Blum and Furst 1997] and BLACKBOX [Kautz and Selman 1999] planners.

Similarly to BLACKBOX [Kautz and Selman 1999] and other implementations of satisfiability planning, our translation in-
cludes formulae lt ∨ l′t for invariants l∨ l′ as produced by the algorithm by Rintanen [1998]. This algorithm is defined for STRIPS
operators only but can be generalized to arbitrary operators [Rintanen 2005].

In the experiments we use disabling graphs that are not necessarily minimal but can be computed in polynomial time. The test
of whether two operators can be simultaneously applied in some state is not exact: we only test whether the unconditional effects
contradict directly or through an invariant and whether the preconditions have conjuncts that are complementary literals or con-
tradict through an invariant. For STRIPS operators the graphs are minimal whenever the invariants are sufficient for determining
whether a state in which two operators are both executable is reachable.

The orderings in the ∃-step encoding of Section 3.4.4 were the ones in which the operators came out of our PDDL front-end.
Better orderings that minimize the number of pairs of operators o and o′ such that o precedes and affects o′ could be produced by
heuristic methods. They can potentially increase parallelism and improve runtimes.

The AIPS 2000 planning competition Schedule benchmarks contain conditional effectsm B m, sometimes simultaneously with
effectsm. The purpose of this is apparently to make it difficult for planners like GraphPlan [Blum and Furst 1997] or BLACKBOX
[Kautz and Selman 1999] to apply several operators in parallel. Replacing effects m B m by preconditions m whenever also m
is an unconditional effect and by effects m whenever m is not an unconditional nor a conditional effect of the operator, is a
transformation that preserves the semantics of the operators exactly and for this benchmark allows much more parallelism. The
front-end of our translator performs this transformation.

The SAT solvers we use only accept formulae in conjunctive normal form (CNF) as input. Therefore all the propositional
formulae have to be transformed to CNF. We use a simple scheme for doing this. For any subformula of the form (φ1 ∧ φ2) ∨ ψ
we introduce an auxiliary variable x, replace the subformula by x ∨ ψ and add x→φ1 and x→φ2 to our set of formulae. Note
that almost all of the formulae in our encodings are already in CNF (modulo equivalences like ¬(φ∧ψ)↔ ¬φ∨¬ψ.) Exceptions
to this are the precondition axioms for operators with disjunctive preconditions and effect axioms for operators with conditional
effects.

For effect axioms ot → et we only include those effects in e that are not consequences of other effects and invariants. For
example, many operators in the standard benchmarks have effects at(A,L1)∧¬at(A,L2) for representing the movement of an object
from location 2 to location 1. Then ¬at(A,L1)∨¬at(A,L2) is an invariant that is included in the problem encoding. Since ¬at(A,L2)
is a consequence of the invariant together with at(A,L1), the effect axiom 2 does not have to state this explicitly. This reduces the
size of the formulae slightly and has a small effect on runtimes.

4.2 Experimental setting

For the experiments we use a 3.6 GHz Intel Xeon processor with 512 KB internal cache and the Siege SAT solver version 4 by
Ryan of the Simon Fraser University.

In addition to Siege V4, we ran tests with the May 13, 2004 version of zChaff. The runtimes are close to the ones for Siege, often
worse but in some cases slightly better. We could solve some of the biggest structured instances (Section 4.4) in a reasonable time
only with Siege. BerkMin and some of the best solvers in the 2005 SAT solver competition are also rather good on the planning
problems.

As Siege V4 uses randomization, its runtimes vary, in some cases considerably. For the structured problems the tables give the
average runtimes over 100 runs and 95 percent confidence intervals for the average runtimes. As it is not known what the distri-
bution of Siege runtimes on a given instance is, we calculate the confidence intervals by using a standard bootstrapping procedure
[Efron and Tibshirani 1986; Efron and Tibshirani 1993]. From the sample of 100 runtimes we resample (with replacement) 4000
times a sample of 100 runtimes and then look at the distribution of these averages. The 95 percent confidence interval is obtained
as the 2.5 and 97.5 percentiles of this distribution.

4.3 Problem instances sampled from the phase transition region

We considered problem instances with |A| = 40 state variables, corresponding to state spaces with 240 ∼ 1012 states, and
STRIPS operators with 3 literals in the preconditions and 2 literals in the effect, following Model A of Rintanen [2004b] in which
precondition literals are chosen randomly and independently, and effect literals are chosen randomly so that each propositional
variable has about the same number of occurrences in an atomic effect, both negatively and positively. In the initial state all state
variables are false and in the unique goal state all state variables are true. Problem instances of this size are very hard for existing
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Fig. 3. Runtimes of ∃-step, ∀-step and process semantics on problem instances with 40 state variables sampled from the phase transition region.
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Fig. 4. Numbers of operators in plans for ∃-step, ∀-step and process semantics on problem instances with 40 state variables sampled from the phase transition
region.

planning algorithms; see further discussion in Section 6.3. We generated about 1000 soluble problem instances for ratios |O||A| of
operators to state variables varying from 1.85 to 5 at an interval of about 0.3. The number of operators then varied from 74 to
280. To find 1000 soluble instances for the smaller ratios we had to generate up to 45000 instances most of which are insoluble.
Since we did not have a complete insolubility test, we do not know how many of the instances that we could not solve within our
limits on plan length (60 time points) and CPU time (3 minutes per formula) are really insoluble. For the ∀-step and the process
semantics the number of instances solved within the time limit was slightly smaller than for the ∃-step semantics, so the actual
performance difference is slightly bigger than what the diagram suggests.

Figure 3 depicts the average runtimes of Siege with the ∃-step (the linear-size encoding from Section 3.4.4), ∀-step (the linear-
size encoding from Section 3.2.2) and process semantics (the linear-size encoding from Section 3.3 based on the linear-size ∀-step
encoding from Section 3.2.2). There are two sources of imprecision in the runtime comparison, the variation of runtimes of Siege
due to randomization and the random variation in the properties of problem instances sampled from the space of all problem
instances. For this reason we give estimates on the accuracy of the averages of runtimes. The diagrams depicting the runtimes give
error bars indicating the 95 percent confidence intervals for the runtimes. Note that the scale of the runtime diagram is logarithmic.

Figure 4 depicts the average numbers of operators in the plans. Figure 5 depicts the average number of time points in the plans.
The process and ∀-step semantics share the curve because the shortest number of time points of a plan for any problem instance is
the same for both.

As is apparent from the diagrams, the ∃-step semantics is by far the most efficient of the three. The efficiency is directly related
to the fact that with ∃-step semantics the shortest plans often have less time points than with the ∀-step and process semantics. The
encoding for the process semantics is the slowest, most likely because of the higher number of propositional variables and clauses
and the ineffectiveness of the process constraints on these problems.
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instance len val ∃-step process ∀-step ∀-step l.
log-16-0 7 F 0.01 0.01

0.01

log-16-0 8 T 0.03 0.03
0.04

log-16-0 12 F 0.62 0.57
0.67 0.30 0.27

0.33 0.79 0.73
0.86

log-16-0 13 T 7.46 6.96
7.98 1.35 1.19

1.52 2.27 2.04
2.50

log-17-0 8 F 0.15 0.14
0.15

log-17-0 9 T 0.02 0.02
0.02

log-17-0 13 F 3.06 2.93
3.19 1.97 1.89

2.05 2.25 2.15
2.35

log-17-0 14 T 14.40 13.71
15.11 3.22 2.93

3.55 4.48 4.07
4.91

log-18-0 8 F 0.13 0.13
0.14

log-18-0 9 T 0.33 0.26
0.40

log-18-0 14 F 8.18 7.74
8.67 5.83 5.50

6.17 6.77 6.47
7.08

log-18-0 15 T – 7.84 6.78
9.09 14.95 13.13

16.78

log-19-0 8 F 0.23 0.22
0.25

log-19-0 9 T 0.33 0.22
0.46

log-19-0 14 F 10.23 9.54
10.95 11.22 10.47

11.98 13.39 12.68
14.12

log-19-0 15 T – 29.10 25.33
33.05 –

log-20-0 8 F 0.25 0.24
0.26

log-20-0 9 T 0.88 0.64
1.17

log-20-0 14 F 12.30 11.76
12.83 10.63 9.96

11.32 12.01 11.36
12.67

log-20-0 15 T – – 41.17 36.81
45.80

Table I. Runtimes of Logistics problems

Interestingly, the number of operators in the ∃-step and ∀-step plans is almost exactly the same despite the fact that the ∀-step
semantics needs more time points. On the other hand, process semantics imposes stricter constraints on the plans than the ∀-step
semantics, and the number of operators is therefore slightly smaller.

4.4 Structured problem instances

We evaluate the different semantics on a number of benchmarks from the AIPS planning competitions of years 1998, 2000 and
2002. For a discussion of these benchmarks and their properties see Section 5.5. We also tried the benchmarks from the year
2004 competition, but, although most of them are easy to solve, they result in very big formulae, and the relative behavior of the
encodings of the different semantics on them is similar to the benchmarks we report in this paper. Hence we did not run exhaustive
tests with them.

For all other benchmarks we use the STRIPS version, but for the Schedule benchmark we use the ADL version because with
the STRIPS version our translator has problems with the very high number of operators. However, the simplification mentioned
in Section 4.1 transforms also these operators to STRIPS operators.

In Tables I, X, XI, XII, XIII XIV, XV, XVI and XVII (all but the first are in the appendix) we present for each problem instance
the runtimes for the formulae corresponding to the highest number of time points without a plan (truth value F) and the first
satisfiable formula corresponding to a plan (truth value T). The rows marked with the question mark indicate that none of the runs
successfully terminated and we therefore do not know whether the formulae are satisfiable or unsatisfiable. The column ∃-step
is for the ∃-step semantics encoding in Section 3.4.4, the column process for the process semantics encoding in Section 3.3, the
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instance len ∃-step process ∀-step ∀-step l.
depot-16-4398 8 53.00 53

53 43.22 36
48 43.40 38

50 38.97 35
44

driver-4-4-8 9 54.19 50
61

driver-4-4-8 11 55.45 50
61 52.32 50

58 51.47 50
58

gripper-3 8 23.21 23
24

gripper-3 15 23.00 23
23 23.00 23

23 23.00 23
23

log-16-0 8 122.74 105
131

log-16-0 13 146.47 125
167 123.91 106

141 125.32 108
143

freecell5-4 13 32.99 30
35 32.65 30

33 34.02 31
35 32.46 30

33

elev-str-f24 17 58.38 51
63

elev-str-f24 32 40.00 40
40 40.00 40

40 40.00 40
40

satel-17 4 191.55 82
274

satel-17 6 95.00 83
106 122.14 92

158 96.73 85
105

sched-30-0 11 43.88 40
50 50.79 45

53 45.06 39
53 41.63 38

46

zeno-5-10 4 34.36 34
35

zeno-5-10 6 43.32 38
48 46.80 38

58 40.63 35
46

Table II. Numbers of operators in plans

column ∀-step for the worst-case quadratic ∀-step semantics encoding in Section 3.2.1, and the column ∀-step l. for the linear
∀-step semantics encoding in Section 3.2.2.

Runtimes for ∃-step semantics are in most cases reported on their own lines because its shortest plan lengths differ from the
other semantics. Each runtime is followed by the upper and lower bounds of the 95 percent confidence intervals. We indicate by a
dash - the formulae for which not all runs finished within 180 seconds.

In Table II we compare the semantics in terms of the number of operators in plans. Blocks World problems are sequential (only
one operator can be applied at a time) and numbers of operators equal numbers of time points. The average number of operators
is followed by the lowest and the highest number of operators any plan we found had.

In Table III we present data on formula sizes.

4.4.1 ∃-step semantics vs. ∀-step semantics. The lowest runtimes are usually obtained with the ∃-step semantics. It is often
one or two orders of magnitude faster. For problem instances that are more difficult than those depicted in the tables the runtime
differences are still bigger. Most of the benchmark problems allow parallelism, and in most of these cases ∃-step semantics allows
more operators in parallel than the ∀-step semantics. For example in many of the problems involving transportation of objects by
vehicles, with ∃-step semantics a vehicle can leave a location simultaneously with loading or unloading an object to or from the
vehicle. The smaller parallel plan lengths directly lead to much faster planning.

For the Schedule benchmark ∃-step semantics does not allow more parallelism than the ∀-step semantics. The linear-size
∃-step semantics is as efficient as the linear-size ∀-step semantics encoding and slightly less efficient than the quadratic-size ∀-
step semantics encoding as far as the unsatisfiable formulae are concerned. Interestingly, the relative efficiency of the encodings
reverses for satisfiable formulae corresponding to plans. As shown in Table IV, for satisfiable formulae the SAT solver runtimes
more closely reflect the relative sizes of the encodings: the linear-size ∃-step encoding is the fastest, followed by the linear-size
∀-step encoding and the quadratic size ∀-step encoding.

Numbers of operators in plans for the different encodings do not seem to follow any regular pattern. In same cases the process
semantics plans have the most operators, in others the ∀-step or the ∃-step plans.

4.4.2 Process semantics vs. ∀-step semantics. Contrary to our expectations based on the earlier results by Heljanko [2001] on
Petri net deadlock detection problems, process semantics does not provide an advantage over ∀-step semantics on these problems
although there are often far fewer potential plans to consider. When showing the inexistence of plans of certain length, the
additional constraints could provide a big advantage similarly to symmetry-breaking constraints.

Differences to the results by Heljanko are likely to be because of differences between the application area and the type of SAT
solvers and encodings used. The problem with the planning problems would appear to be the high number of long clauses that
usually do not lead to pruning the search space and just add an overhead. In an earlier paper we rejected full process semantics
and only considered clauses with a length below a small constant [Rintanen, Heljanko, and Niemelä 2004]. In some cases the
constraints substantially improved runtimes, but in most cases there was no effect because of the very small number of additional
short clauses.

4.4.3 Linear vs. quadratic ∀-step encoding. It is interesting to make a comparison between the quadratic and linear size
encodings of the ∀-step semantics constraints respectively discussed in Sections 3.2.1 and 3.2.2. Even though the worst-case
formula sizes are smaller with the linear encoding, this did not directly translate into smaller formulae and improved runtimes.
First of all, even though the encoding from Section 3.2.1 is worst-case quadratic, the number of clauses ¬o ∨ ¬o′ is often small
because not all pairs of operators interfere. Also many pairs of interfering operators cannot be simultaneously applied, and hence
the corresponding clauses are not needed.

The only benchmark series in which the linear-size encoding substantially improves on the worst-case quadratic-size encoding
is Schedule. This is because in this benchmark there is a very high number of pairs of interfering operators that can be applied
simultaneously, and the quadraticity therefore very clearly shows up. Hence the linear-size encoding leads to much smaller
formulae. Better runtimes are however obtained only for plan lengths higher than the shortest existing plans, as shown in Figure IV.
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instance len ∃-step process ∀-step ∀-step l.
P
103

C
103

MB P
103

C
103

MB P
103

C
103

MB P
103

C
103

MB
block-18-0 58 58.9 696.8 10.9 264.9 1218.8 24.9 58.9 696.8 10.9 201.0 1120.1 18.9
block-20-0 60 74.9 937.8 14.8 338.4 1607.2 32.9 74.9 937.8 14.8 257.7 1482.0 25.2
block-22-0 72 108.3 1431.0 22.9 490.5 2406.9 49.5 108.3 1431.0 22.9 374.6 2225.5 38.4
depot-17-6587 7 24.1 256.3 3.9 154.7 611.6 12.8 24.1 269.8 4.1 144.2 586.2 9.7
depot-18-1916 12 75.7 864.9 13.7 484.2 2052.0 45.4 75.7 899.4 14.2 457.7 1968.3 34.2
depot-15-4534 20 93.0 882.8 14.5 594.8 2360.2 53.7 93.0 918.8 15.0 550.2 2243.9 39.4
driver-2-3-6e 12 25.4 110.6 1.6 66.2 206.4 3.7 21.5 157.0 2.3 42.9 174.1 2.6
driver-3-3-6b 11 22.3 93.4 1.4 54.9 178.2 3.3 18.0 144.9 2.1 39.2 153.5 2.3
driver-4-4-8 11 48.5 210.7 3.3 117.0 401.3 7.7 37.7 382.5 5.8 89.4 352.3 5.4
gripper-2 11 1.0 4.7 0.1 2.9 8.8 0.1 1.0 5.3 0.1 1.5 7.2 0.1
gripper-3 15 1.8 8.7 0.1 5.0 16.1 0.3 1.8 9.7 0.1 2.7 13.2 0.2
gripper-4 17 2.4 12.5 0.2 6.9 23.1 0.4 2.4 13.9 0.2 3.7 19.0 0.3
log-16-0 13 18.7 105.4 1.5 46.6 174.3 3.1 18.7 139.1 2.0 27.0 146.3 2.2
log-20-0 15 29.1 174.8 2.5 72.4 284.6 5.1 29.1 236.6 3.5 42.5 240.6 3.6
log-24-0 15 37.8 240.8 3.5 94.3 385.1 6.9 37.8 333.0 4.9 55.9 328.2 5.0
elev/str-f8 12 1.0 2.4 0.0 4.1 8.1 0.1 1.0 3.0 0.0 2.1 5.7 0.1
elev/str-f12 14 2.4 5.8 0.1 10.3 21.4 0.3 2.4 7.7 0.1 5.7 15.6 0.2
elev/str-f16 22 6.4 15.7 0.2 27.8 60.7 1.1 6.4 21.0 0.3 16.2 44.7 0.7
elev/str-f20 26 11.5 28.4 0.4 50.5 112.5 2.0 11.5 38.3 0.6 30.2 83.7 1.3
elev/str-f24 28 17.5 43.4 0.7 77.5 174.7 3.1 17.5 58.9 0.9 47.2 131.0 2.0
satel-14 8 37.7 129.6 2.0 108.1 347.0 6.7 37.7 267.0 4.1 98.5 309.4 4.8
satel-15 8 49.0 168.5 2.7 142.0 454.0 9.2 49.0 327.3 5.1 130.1 405.3 6.6
satel-16 6 46.8 161.5 2.6 136.6 430.1 8.6 46.8 333.7 5.2 125.7 386.3 6.3
satel-17 6 54.0 185.6 3.0 160.6 500.1 10.1 54.0 346.7 5.4 148.5 449.8 7.5
satel-18 8 31.7 108.5 1.7 91.3 290.2 5.5 31.7 221.1 3.4 82.4 258.1 4.0
sched-10-0 7 7.3 40.2 0.6 16.5 58.4 1.1 3.4 73.5 1.0 11.3 53.0 0.8
sched-20-0 9 18.2 101.5 1.6 40.7 148.4 3.0 8.4 285.0 3.9 28.5 134.8 2.1
sched-30-0 11 32.9 185.3 3.0 72.9 271.7 5.5 15.1 700.0 10.3 51.4 246.6 3.9
sched-40-0 15 58.8 334.3 5.4 129.6 492.4 10.9 27.0 1595.3 24.6 91.8 445.9 7.1
sched-50-0 17 82.7 480.3 7.8 182.0 704.7 15.9 38.0 2720.7 42.0 129.2 638.5 10.9
zeno-3-8b 6 9.1 49.0 0.7 42.0 139.4 2.6 9.1 144.1 2.0 39.5 130.7 2.0
zeno-5-10 6 39.2 220.8 3.6 195.2 653.8 13.9 39.2 814.8 12.3 190.1 618.9 10.5
zeno-5-15 6 59.0 332.7 5.5 291.0 979.0 21.1 59.0 1639.5 25.0 283.6 926.6 16.0
zeno-5-15b 6 78.0 309.5 5.5 391.9 1182.9 26.3 78.0 2111.3 32.6 383.6 1114.4 19.5

Table III. Sizes of formulae under the different encodings. The column P
103

gives the number of propositional variables in thousands, the column C
103

the
number of clauses in thousands, and the column MB the size of the DIMACS encoded formulae in CNF in megabytes. The data are on the satisfiable formulae
corresponding to the length of shortest existing plans under ∀-step semantics. The shortest ∃-step plans are in many cases shorter, and the required formulae then
correspondingly smaller.
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instance len val ∃-step ∀-step ∀-step l.
sched-35-0 13 T 3.43 2.65

4.33 3.86 3.13
4.65 3.14 2.46

3.95

sched-35-0 14 T 2.10 1.78
2.44 3.08 2.63

3.62 1.63 1.37
1.90

sched-35-0 15 T 1.39 1.20
1.57 2.81 2.41

3.26 1.83 1.58
2.13

sched-35-0 16 T 1.41 1.22
1.62 2.30 1.99

2.65 1.43 1.22
1.69

sched-35-0 17 T 1.28 1.13
1.43 3.08 2.66

3.53 1.43 1.24
1.63

sched-35-0 18 T 1.22 1.07
1.37 3.95 3.28

4.82 1.52 1.26
1.86

sched-35-0 19 T 1.20 1.04
1.37 5.62 4.73

6.56 1.40 1.25
1.54

sched-35-0 20 T 1.31 1.17
1.46 4.77 4.18

5.39 1.41 1.24
1.59

sched-35-0 21 T 1.04 0.90
1.19 4.80 4.26

5.36 1.07 0.93
1.24

sched-35-0 22 T 1.37 1.20
1.58 14.97 13.44

16.58 1.38 1.23
1.54

sched-35-0 23 T 1.16 1.02
1.31 6.17 5.36

7.05 1.26 1.10
1.44

sched-35-0 24 T 1.64 1.44
1.83 10.14 8.89

11.51 2.13 1.85
2.42

sched-35-0 25 T 1.68 1.47
1.90 20.52 18.31

22.69 1.83 1.58
2.12

sched-35-0 26 T 1.54 1.37
1.71 17.65 15.64

19.71 2.11 1.82
2.42

sched-35-0 27 T 1.77 1.53
2.02 13.46 11.74

15.36 1.56 1.34
1.80

sched-35-0 28 T 1.56 1.38
1.76 22.96 20.09

26.10 2.22 1.86
2.64

Table IV. Runtimes for the satisfiable formulae for different plan lengths

instance SCCs
block-34-0 2312 × 1
depot-22-1817 22252 × 1
gripper-5 98 × 1
elev/str-f60 3600 × 1
log-41-0 7812 × 1
satel-20 4437 × 1
zeno-5-25b 31570 × 1
driver-4-4-8 16 × 10 16 × 9 32 × 8 48 × 7 16 × 6 32 × 5 32 × 4 1312 × 1
sched-51-0 1 × 1173 1 × 51 1 × 1
freecell8-4 1 × 6882 99 × 1

Table V. Sizes of SCCs of Disabling Graphs: n×m means that there are n SCCs of size m.

On still bigger instances the differences are still more pronounced. These differences between the linear and quadratic size
encodings often mean much bigger differences in total runtimes on planners that use more sophisticated evaluation algorithms
than the standard sequential one, for example the algorithm we consider in Section 5.3.

4.4.4 Sizes of strong components of disabling graphs. Some of the sizes of SCCs of disabling graphs are depicted in Table V.
We only give the SCC sizes for one instance of each benchmark series because the SCC sizes for all instances of each series are
similar. For example, all SCCs of all instances of the Blocks World, Depot, Gripper, Elevator, Logistics, Satellite and ZenoTravel
have size 1. For the other benchmarks, the SCC sizes are a function of some of the problem parameters, like the number of
vehicles.

Only few or no constraints on parallel operators are needed if all the strong components of the disabling graphs are small. This
directly contributes to the small size of the formulae for the ∃-step semantics. However, it is not clear whether this per se is a
reason for the efficiency of ∃-step semantics. For problems in which shortest ∃-step and shortest ∀-step plans have the same length,
for example the blocks world problems, ∃-step encoding is not more efficient than the corresponding ∀-step semantics encoding.

4.4.5 Quadratic ∀-step encoding vs. the BLACKBOX encoding. The BLACKBOX planner by Kautz and Selman [1999] is
the best-known planner that implements the planning as satisfiability paradigm4. Our quadratic encoding of the ∀-step semantics
(Section 3.2.1) is closest to the planning graph based encoding used in the BLACKBOX planner. We give a comparison between
the runtimes for our quadratic ∀-step semantics encoding and the encoding used by BLACKBOX in Table VI,5 and between the
formula sizes in Table VII.

The planning graph [Blum and Furst 1997] is a data structure that represents constraints ¬ot ∨¬o′t for pairs of interfering oper-
ators, 2-literal invariants, as well as 1-literal and 2-literal clauses that indicate that certain values of state variables and application
of certain operators are not possible at given time points. The 2-literal clauses in planning graphs are called mutexes. A peculiarity
of planning graphs is the NO-OP operators which are used as a marker for the fact that a given state variable does not change
its value. The problem encoding used by BLACKBOX is based on translating the contents of planning graphs into 1-literal and
2-literal clauses.

For some of the easiest problems the BLACKBOX encoding is more efficient than the quadratic ∀-step semantics encoding (the
Logistics problems and some instances of the Depot problem), but in many cases it is much less efficient, most notably on the
Blocks World, Driver and Gripper problems. We believe that BLACKBOX’s efficiency on the easier problems is due to the explicit

4Surprisingly, the SAT encodings of planning by the SATPLAN04 planner of Kautz et al. (unpublished work) which participated in the 2004 planning competition
are for many benchmark problems much slower than the BLACKBOX encodings, and only in few cases it is somewhat faster.
5We were not able to test all the benchmarks with BLACKBOX because of certain bugs in BLACKBOX.
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instance len val ∀-step blackbox
block-12-1 33 F 0.06 0.06

0.06 0.20 0.20
0.21

block-12-1 34 T 0.05 0.05
0.05 0.22 0.21

0.23

block-14-1 35 F 0.35 0.34
0.35 18.02 16.91

19.29

block-14-1 36 T 0.12 0.11
0.14 5.65 4.97

6.39

block-16-1 53 F 0.65 0.63
0.68 33.38 31.10

35.66

block-16-1 54 T 0.38 0.36
0.40 13.85 12.52

15.25

block-18-0 57 F 2.29 2.22
2.36 –

block-18-0 58 T 1.07 0.98
1.17 24.15 21.61

26.90

log-17-0 13 F 1.97 1.89
2.05 0.42 0.40

0.44

log-17-0 14 T 3.22 2.91
3.56 1.06 0.91

1.22

log-18-0 14 F 5.83 5.50
6.18 3.25 2.98

3.55

log-18-0 15 T 7.84 6.74
9.07 2.21 1.86

2.59

log-19-0 14 F 11.22 10.52
12.01 4.55 4.30

4.82

log-19-0 15 T 29.10 25.25
33.00 13.74 11.99

15.53

log-20-0 14 F 10.63 9.96
11.36 7.88 7.52

8.26

log-20-0 15 T – 15.94 13.97
18.01

depot-14-7654 11 F 1.41 1.34
1.48 0.30 0.28

0.31

depot-14-7654 12 T 3.48 3.19
3.78 1.17 1.06

1.29

depot-16-4398 7 F 0.01 0.01
0.01 0.01 0.01

0.01

depot-16-4398 8 T 0.07 0.06
0.07 0.01 0.01

0.01

depot-18-1916 11 F 0.17 0.16
0.17 28.41 23.75

33.44

depot-18-1916 12 T – –
driver-2-3-6d 15 F 19.09 18.22

19.98 43.44 40.04
46.98

driver-2-3-6d 16 T 8.04 7.16
9.00 18.94 17.72

20.16

driver-2-3-6e 11 F 1.13 1.07
1.19 0.60 0.56

0.63

driver-2-3-6e 12 T 1.27 1.10
1.45 1.51 1.28

1.73

driver-3-3-6b 10 F 0.82 0.77
0.87 0.60 0.56

0.65

driver-3-3-6b 11 T 1.07 0.90
1.25 0.76 0.64

0.89

driver-4-4-8 10 F 1.30 1.26
1.33 0.56 0.52

0.61

driver-4-4-8 11 T 5.92 5.34
6.50 19.35 17.88

20.89

gripper-2 10 F 0.08 0.08
0.09 0.34 0.32

0.36

gripper-2 11 T 0.02 0.01
0.02 0.12 0.10

0.15

gripper-3 14 F 3.91 3.49
4.35 41.07 36.15

45.84

gripper-3 15 T 0.32 0.19
0.46 2.82 2.08

3.63

Table VI. Runtimes of the quadratic ∀-step semantics encoding vs. the BLACKBOX encoding

instance len ∀-step blackbox
P
103

C
103

MB P
103

C
103

MB
block-12-1 34 15.71 152.4 2.23 13.12 1035.3 14.80
block-14-1 36 22.44 233.7 3.47 24.88 2938.5 44.59
block-16-1 54 43.54 485.1 7.51 42.73 6012.7 94.72
block-18-0 58 58.88 696.8 10.92 61.79 11091.9 176.58
log-17-0 14 20.12 149.8 2.16 10.41 431.8 6.15
log-19-0 15 29.08 236.6 3.46 15.47 897.1 12.98
log-21-0 16 30.98 252.3 3.70 19.97 1301.6 19.43
log-23-0 16 40.22 355.1 5.29 24.13 1973.5 29.97
log-25-0 15 56.66 556.3 8.42 28.70 3419.9 52.70
depot-14-7654 12 30.99 357.5 5.52 12.79 1952.6 27.96
depot-16-4398 8 13.72 143.5 2.10 4.12 237.7 3.33
depot-18-1916 12 75.67 899.4 14.18 33.42 14599.4 230.82
driver-2-3-6d 16 23.00 168.5 2.51 15.60 1809.6 26.44
driver-2-3-6e 12 21.52 157.0 2.32 11.45 1432.2 20.47
driver-3-3-6b 11 17.97 144.9 2.12 8.86 972.9 13.87
driver-4-4-8 11 37.73 382.5 5.81 15.54 3406.7 49.92
gripper-2 11 1.01 5.3 0.06 1.15 15.2 0.19
gripper-3 15 1.76 9.7 0.12 2.13 36.7 0.48
gripper-4 19 2.72 15.5 0.20 3.39 71.6 0.97

Table VII. Formula sizes of the quadratic ∀-step semantics encodings vs. the BLACKBOX encoding
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Fig. 6. SAT solver runtimes for two problem instances and different plan lengths
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Fig. 7. SAT solver runtimes for two problem instances and different plan lengths

reachability information in the planning graph that with our ∀-step semantics encoding has to be inferred, and the inefficiency in
general is due to the bigger formulae BLACKBOX produces.

The BLACKBOX encoding results in much bigger formulae than the quadratic ∀-step encoding, for the biggest instances by
factors up to 25. The main reason for this is the very straightforward translation of planning graphs into propositional formulae
BLACKBOX uses. This includes many redundant interference mutexes for operators that can also be otherwise inferred not to be
simultaneously executable as well as many mutexes between NO-OPs and operators.

The ∀-step semantics formulae often have almost twice as many propositional variables as the BLACKBOX formulae. This is
due to the reachability information in the planning graphs that allows to infer that only certain operators are executable and that
only certain state variable values are possible at some of the early time points. Roughly the same reduction could be obtained
for our ∀-step semantics formulae by performing unit resolution and then eliminating all occurrences of propositional variables
occurring in a unit clause by subsumption.

We conclude that the BLACKBOX encoding is roughly comparable to our quadratic encoding for the ∀-step semantics and
hence in many cases much less efficient than our encoding for the ∃-step semantics. Further, the formulae for the BLACKBOX
encoding are often several times bigger.

5. EVALUATION ALGORITHMS FOR PLANNING AS SATISFIABILITY

Earlier research on classical planning that splits plan search into finding plans of given fixed lengths, for instance the GraphPlan
algorithm [Blum and Furst 1997] and planning as satisfiability [Kautz and Selman 1996] and related approaches [Rintanen 1998;
Kautz and Walser 1999; Wolfman and Weld 1999; van Beek and Chen 1999; Do and Kambhampati 2001], have without exception
adopted a sequential strategy for plan search. This strategy starts with (parallel) plan length 0, and if no such plans exist, continues
with length 1, length 2, and so on, until a plan is found.

This standard sequential strategy is guaranteed to find a plan with the minimal number of time points. If only one operator is
applied at every time point then the plans are also guaranteed to contain the minimal number of operators.

It seems that for finding a plan with the minimal number of time points the sequential strategy cannot in general be improved.
For example, a strategy that increases the plan length by more than one until a satisfiable formula is found and then performs a
binary search to find the shortest plan does not typically improve runtimes because the cost of evaluating the unsatisfiable formulae
usually increases exponentially as the plan length increases.

However, when the objective is to find any plan, not necessarily with the minimal number of time points, we can use more
efficient search strategies for plan search. The standard sequential strategy is often inefficient because the satisfiability tests for
the last unsatisfiable formulae are often much more expensive than for the first satisfiable formulae. Consider the diagrams in
Figures 6 and 7 that represent some standard benchmarks problems as well as the diagrams in Figure 8 that represent two difficult
problem instances with 20 state variable sampled from the phase transition region [Rintanen 2004b]. Each diagram shows the cost
of detecting the satisfiability or unsatisfiability of formulae that represent the existence of plans of different lengths. Black bars
depict unsatisfiable formulae and grey bars satisfiable formulae.

When the plan quality (the number of time points) is not a concern, we would like to run a satisfiability algorithm with the
satisfiable formula for which the runtime of the algorithm is the lowest. Of course, we do not know which formulae are satisfiable
and which have the lowest runtime. With an infinite number of processors we could find in the smallest possible time a satisfying
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Fig. 8. SAT solver runtimes for two problem instances and different plan lengths
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Fig. 9. Evaluation cost of the unsatisfiable formulae for plan lengths 1 to 6 and the satisfiable formulae for plan length 7 and higher. With 3 processes, process 1
finds the first plan (satisfying assignment) after evaluating the formulae for plan lengths 1, 4 and 7 in 0.1+1+0.5 = 1.6 seconds. This is 3× 1.6 = 4.8 seconds of
total CPU time. The sequential strategy needs 0.1 + 0.1 + 0.2 + 1 + 5 + 10 + 0.5 = 16.9 seconds. With 4 processes a plan would be found by process 3 in
0.2 + 0.5 = 0.7 seconds, which is 4× 0.7 = 2.8 seconds of total CPU time.

assignment for one of the formulae: let each processor i ∈ {0, 1, 2, . . .} test the satisfiability of the formula for i time points.
However, we do not have an infinite number of processors, and we cannot even simulate an infinite number of processors running
at the same speed by a finite number of processors. But we can approximate this scheme.

Our first algorithm uses a finite number n of processes/processors. Our second algorithm uses one process/processor to simulate
an infinite number of processes but the simulation runs the processes at variable rates so that for every formula φt and every k ≥ 0
there is a time point when k seconds of CPU time has been spent for testing the satisfiability of φt. If all processes were run at the
same rate, this property could not be fulfilled.

Except for the rightmost diagram in Figure 7 and the leftmost diagram in Figure 8, the diagrams depict steeply growing costs
of determining unsatisfiability of a sequence of formulae followed by small costs of determining satisfiability of formulae corre-
sponding to plans. This pattern could be abstracted as the diagram in Figure 9. The strategy implemented by our first algorithm
distributes the computation to n concurrent processes and initially assigns the first n formulae to the n processes. Whenever a
process finds its formula satisfiable, the computation is terminated. Whenever a process finds its formula unsatisfiable, the process
is given the first unevaluated formula to evaluate. This strategy can avoid completing the evaluation of many of the expensive
unsatisfiable formulae, thereby saving a lot of computation effort.

An inherent property of the problem is that unsatisfiable (respectively satisfiable) formulae later in the sequence are in general
more expensive to evaluate than earlier unsatisfiable (respectively satisfiable) formulae. The difficulty of the unsatisfiable formulae
increases as i increases because the formulae become less constrained, contradictions are not found as quickly, and search trees
grow exponentially. The increase in the difficulty of satisfiable formulae is less clear. For example, for the first satisfiable formula
φs there may be few plans while for later formulae there may be many plans, and the formulae would be less constrained and
easier to evaluate. However, as formula sizes increase, the possibility of getting lost in parts of the search space that do not contain
any solutions also increases. Therefore an increase in plan length also later leads to an increase in difficulty.

The new algorithms are useful if a peak of difficult formulae precedes easier satisfiable formulae, for example when it is easier
to find a plan of length n than to prove that no plans of length n− 1 exists, or if the first strongly constrained satisfiable formulae
corresponding to the shortest plans are more difficult to evaluate than some of the later less constrained ones. The experiments in
Section 5.5 show that for many problems one or both of these conditions hold.

We discuss the standard sequential algorithm and the two new algorithms in detail next.

5.1 Algorithm S: sequential evaluation

The standard algorithm for finding plans in the satisfiability and related approaches to planning tests the satisfiability of formulae
for plan lengths 0, 1, 2, and so on, until a satisfiable formula is found [Blum and Furst 1997; Kautz and Selman 1996]. This
algorithm is given in Figure 10. This algorithm, like the ones discussed next, can be extended so that it terminates whenever no
plans exist. This is by the observation that with n Boolean state variables there are at most 2n reachable states and hence if a plan
exists, then a plan of length less than 2n exists. This, however, provides only an impractical termination test. More practical tests
exist [Sheeran, Singh, and Stålmarck 2000; McMillan 2003; Mneimneh and Sakallah 2003].
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1: procedure AlgorithmS()
2: i := 0;
3: repeat
4: test satisfiability of φi;
5: if φi is satisfiable then terminate;
6: i := i+ 1;
7: until 1=0;

Fig. 10. Algorithm S

1: procedure AlgorithmA(n)
2: P := {φ0, . . . , φn−1};
3: uneval := n;
4: repeat
5: P ′ := P ;
6: for each φ ∈ P ′ do
7: continue evaluation of φ for ε seconds;
8: if φ was found satisfiable then goto finish;
9: if φ was found unsatisfiable then

10: P := P ∪ {φuneval}\{φ};
11: uneval := uneval + 1;
12: end if
13: end do
14: until 0=1
15: finish:

Fig. 11. Algorithm A

5.2 Algorithm A: multiple processes

The first new algorithm (Figure 11) which we call Algorithm A is based on parallel or interleaved evaluation of a fixed number
n of formulae by n processes. As the special case n = 1 we have Algorithm S. Whenever a process finishes the evaluation of
a formula, it is given the first unevaluated formula to evaluate. The constant ε determines the coarseness of CPU time division
during the evaluation. The for each loop in this algorithm and in the next algorithm can be implemented so that several processors
are used in parallel.

There is a simple improvement to the algorithm: when formula φi is found unsatisfiable, the algorithm terminates the evaluation
of all φj for j < i because they must all be unsatisfiable. However, this modification does not usually have any effect because of
the monotonically increasing evaluation cost of the unsatisfiable formulae: φj would already have been found unsatisfiable when
φi with i > j is found unsatisfiable. We ignore this improvement in the following.

5.3 Algorithm B: geometric division of CPU use

In Algorithm A the choice of n is determined by the (assumed) width and height of the peak preceding the first satisfiable formulae,
and our experiments indicate that small differences in n may make a substantial difference in the runtimes: consider for example
the problem instance logistics39-0 in Figure 6 for which runtime of Algorithm A with n = 1 is more than 10 times the runtime
with n = 2.

Our second algorithm which we call Algorithm B addresses the difficulty of choosing the value n in Algorithm A. Algorithm
B evaluates in an interleaved manner an unbounded number of formulae. The amount of CPU given to each formula depends on
its index: if formula φk is given t seconds of CPU during a certain time interval, then a formula φi, i ≥ k is given γi−kt seconds.
This means that every formula gets only slightly less CPU than its predecessor, and the choice of the exact value of the constant
γ ∈]0, 1[ is far less critical than the choice of n for Algorithm A.

Algorithm B is given in Figure 12. Variable t, which is repeatedly increased by δ, characterizes the total CPU time t
1−γ

available so far. As the evaluation of φi proceeds only if it has been evaluated for at most tγi − ε seconds, CPU is actually
consumed less than t

1−γ , and there will be at time t
1−γ only a finite number j ≤ logγ

ε
t of formulae for which evaluation has

commenced.
In a practical implementation of the algorithm, the rate of increase δ of t is increased as the computation proceeds; otherwise the

inner foreach loop would later often be executed without evaluating any of the formulae further. We could choose δ for example
so that the first unfinished formula φi is evaluated further at every iteration (δ = ε

γi ).
The constants n and γ respectively for Algorithms A and B are roughly related by γ = 1− 1

n : of the CPU capacity 1
n = 1− γ

is spent evaluating the first unfinished formula, and the lower bound for Algorithm B is similarly related to the lower bound for
Algorithm A. Algorithm S is the limit of Algorithm B when γ goes to 0.

5.4 Properties of the algorithms

We analyze the properties of the algorithms.

Definition 5.1 (Speed-up) The speed-up of an algorithm X (with respect to Algorithm S) is the ratio of the runtimes of Algorithm
S and the Algorithm X.

If the speed-up is greater than 1, then the algorithm is faster than Algorithm S.
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1: procedure AlgorithmB(γ)
2: t := 0;
3: for each i ≥ 0 do done[i] = false;
4: for each i ≥ 0 do time[i] = 0;
5: repeat
6: t := t+ δ;
7: for each i ≥ 0 such that done[i] = false do
8: if time[i] + nε ≤ tγi for some maximal n ≥ 1 then
9: continue evaluation of φi for nε seconds;

10: if φi was found satisfiable then goto finish;
11: time[i] := time[i] + nε;
12: if φi was found unsatisfiable then done[i] := true; end if
13: end if
14: end do
15: until 0=1
16: finish:

Fig. 12. Algorithm B
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Fig. 13. Illustration of two runs of Algorithm B. When γ = 0.5 most CPU time is spent evaluating the first formulae, and when the first satisfiable formula is
detected also the unsatisfiability of most of the preceding unsatisfiable formulae has been detected. With γ = 0.8 more CPU is spent for the later easier satisfiable
formulae, and the expensive unsatisfiability tests have not been completed before finding the first satisfying assignment.
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In our analysis we assume that the constant ε in Algorithm A is infinitesimally small, and hence, after a process finishes with
one formula, the evaluation of the next formula starts immediately, and the algorithm terminates immediately after a satisfiable
formula is found.

If there is no peak because the last unsatisfiable formulae are not more difficult than some of the first satisfiable ones, then
Algorithm A with n ≥ 2 may need n times more CPU than Algorithm S because n − 1 satisfiable formulae are evaluated
unnecessarily. We formally establish worst-case bounds for Algorithm A.

Theorem 5.2 The speed-up of Algorithm A with n processes is at least 1
n . This lower bound is strict.

PROOF. The worst case 1
n can show up in the following situation. Assume the first satisfiable formula is evaluated in time t, the

preceding unsatisfiable formulae are evaluated in time 0, and the following satisfiable formulae are evaluated in time ≥ t. Then
the total runtime of Algorithm A is tn, while the total runtime of Algorithm S is t.

Assume the runtimes (CPU time) for the formulae are t0, t1, . . . , ts, . . ., and φs is the first satisfiable formula. The total runtime
of Algorithm S is

∑s
i=0 ti. This is also an upper bound on the CPU time consumed by Algorithm A on φ0, . . . , φs. Additionally,

Algorithm A may spend CPU evaluating φs+1, φs+2, . . .. The evaluation of these formulae starts at the same time or later than
the evaluation of the first satisfiable formula φs. As n − 1 processes may spend all their time evaluating these formulae after the
evaluation of φs has started, the total CPU time spent evaluating them may be at most (n− 1)ts. Hence Algorithm A spends CPU
time at most

s∑
i=0

ti + (n− 1)ts

in comparison to
s∑
i=0

ti

with Algorithm S. The speed-up is therefore at least∑s
i=0 ti∑s

i=0 ti + (n− 1)ts
=

1

1 + (n− 1) ts∑s
i=0 ti

≥ 1

1 + n− 1
=

1

n
.

In the other direction, there is no finite upper bound on the speed-up of Algorithm A in comparison to Algorithm S for any
number of processes n ≥ 2. Consider a problem instance with evaluation time t0, t1 and t2 respectively for the first three
formulae, the first two of which are unsatisfiable and the third satisfiable. Let t0 = t2 and t1 = ct2. The constant c could be
arbitrarily high. Algorithm S runs in (c+ 2)t2 time, while Algorithm A with n = 2 runs in 2t2 time. Hence the speed-up c+2

2 can
be arbitrarily high.

Next we analyze the properties of Algorithm B assuming that the constants δ and ε are infinitesimally small and the evaluation
of all of the formulae φi therefore proceeds continuously at rate γi.

Theorem 5.3 The speed-up of Algorithm B is at least 1− γ. This lower bound is strict.

PROOF. As with Algorithm A the worst case is reached when all unsatisfiable formulae preceding the first satisfiable formula φs
are evaluated and the evaluation of many of the satisfiable ones has proceeded far. The disadvantage in comparison to Algorithm
S is the unnecessary evaluation of many of the satisfiable formulae. Hence Algorithm B spends CPU time at most

s∑
i=0

ti +
∑
i≥1

tsγ
i =

s∑
i=0

ti +
1

1− γ
ts − ts

in comparison to
s∑
i=0

ti

with Algorithm S. The speed-up is therefore at least∑s
i=0 ti∑s

i=0 ti+
1

1−γ ts−ts
= 1

1+
1

1−γ ts−ts∑s
i=0

ti

≥ 1

1+
1

1−γ ts−ts
ts

= 1
1+ 1

1−γ−1
= 1− γ.

This lower bound is strict: if φi is satisfiable, evaluation times for φj , j < i are 0, and evaluation times for φi, i > 1 are not lower
than that of φ1, then the speed-up is only 1− γ.

The worst-case speed-ups of these algorithms are the same if we observe the equation γ = 1− 1
n relating their parameters.

Algorithm B does not have plan quality guarantees but Algorithm A has.

Theorem 5.4 If a plan exists, Algorithm A with parameter n ≥ 1 is guaranteed to find a plan that is at most n − 1 steps longer
than the shortest existing one.
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PROOF. So assume Algorithm A finds a plan with t steps. This means that the process for formula φt determined that the
formula is satisfiable. There are at most n − 1 processes for formulae φs with s < t, and all formulae φs for s < t for which a
process terminated are unsatisfiable.

All formulae preceding an unsatisfiable formula are unsatisfiable. Consider formula φt−n.
If the process evaluating φt−n has terminated, the formula must have been unsatisfiable, and hence the plan from φt is at most

n− 1 steps longer than the shortest existing one which much have length over t− n.
If the process evaluating φt−n has not terminated, then the evaluation of one of the n − 1 formulae φt−n+1, . . . , φt−1 must

already have been terminated, because there are n processes and two of them were evaluating φt−n and φt. Since φt was the first
one found satisfiable, one of the formulae φt−n+1, . . . , φt−1 that was evaluated was unsatisfiable, and hence the formula φt−n
must also be unsatisfiable, yielding the same lower bound for the plan length.

5.5 Experiments

Algorithms A and B increase efficiency for problem instances sampled from the set of all problem instances (Section 4.3). The
improvements in comparison to Algorithm S are biggest for easy problem instances right of the hardest part of the phase transition
region with 100 state variables or more. For the most difficult instances in the middle of the phase transition region the satisfiable
formulae are often as difficult as the unsatisfiable ones and hence Algorithms A and B do not seem to bring as much benefit. We
did not carry out exhaustive experimentation because of the extremely high computational resource consumption and the difficulty
to derive exact characterizations of the performance improvement when most of the problem instances could not be practically
solved by using Algorithm S.

We illustrate properties of the algorithms on a collection of problems from the AIPS planning competitions. Plans for most of
these problems can be found in polynomial time by simple domain-specific algorithms, and planners using heuristic search [Bonet
and Geffner 2001] have excelled on these problems, while they had been considered difficult for planners based on satisfiability
testing or CSP techniques. In this section we demonstrate that the new algorithms change this situation.

Many of these benchmark problems follow the same scheme in which objects are transported with vehicles from their ini-
tial locations to their target locations (Logistics, Depots, DriverLog, ZenoTravel, Gripper, Elevator), with one of them (Depots)
combining transportation with stacking objects as in the well-known Blocks World problem. Some others (Satellite, Rovers) are
variations of the transportation scenario in which different locations are visited to carry out some tasks. Some of the benchmark
problems have the form of a scheduling problem (Elevator, Schedule) but do not involve any restrictions on resource consumption
and therefore only test the property of feasibility which for these problems can be tested in low polynomial time by a simple
algorithm.

To demonstrate the usefulness of the algorithms for a wider range of problems, in addition to the planning competition problems
which are solvable by simple domain-specific algorithms in polynomial time, we also consider hard instances of an NP-hard
planning problem. The planning competition problems are easy because they do not make restrictions on resource consumption
and satisfying one subgoal never makes it more difficult to satisfy another. Hence we also consider a planning problem with critical
restrictions on resource consumption. We call this problem the Mechanic problem. The objective is to perform a maintenance
operation to a fleet of n aircraft. The aircraft fly according to some schedule and visit one of three airports five times during a
time period of t days. A mechanic/equipment can be present at one of the three airports on any given day, and can perform the
maintenance operation to all aircraft visiting that airport that day. This problem can be viewed as a form of a set covering problem
but we make it a sequential decision making problem so that we can talk about completing the maintenance within t′ ≤ t first
days of the time period. We solve the problem for a t = 30, 40, 50, ... and set n = 3t. With n = 3t the problem is rather strongly
constrained but still usually soluble. For low n it is easier to find a plan because there are only few aircraft, and for much higher n
there are too many aircraft and no plan necessarily exists.

For each problem instance we generate formulae for plan lengths up to 10 or 30 beyond the first (assumed) satisfiable formula
according to the ∃-step semantics encoding in Section 3.4.4. We use the linear-size encoding of the parallelism constraints if it
is less than half of the size of the quadratic encoding that does not require introducing auxiliary propositional variables to avoid
exceeding Siege’s upper bound of 524288 propositional variables.

Then we test the satisfiability of every formula and cancel the run if the satisfiability is not determined in 60 minutes of CPU
time. Like in the experiments in Section 4, we use the Siege V4 SAT solver by Lawrence Ryan of the Simon Fraser University on
a 3.6 GHz Intel Xeon computer.

Then we compute from the runtimes of all these formulae the total runtimes under algorithms A and B with different values for
the parameters n and γ. Algorithm S is the special case n = 1 of Algorithm A. The constants ε and δ determining the granularity
of CPU time division are set infinitesimally small. Formulae that are beyond the plan-length horizon or that take over 60 minutes to
evaluate are considered as having infinite evaluation time. The times do not include generation of the formulae. The two expensive
parts of the formula generation are the computation of the invariants and the disabling graph. For most of the benchmark problem
instances these both take a fraction of a second, but for some of the biggest instances of the Logistics, Depot, and Driver problems
10 or 20 seconds, and a total of 6 minutes for the biggest ZenoTravel instance and 3 minutes for the biggest Logistics instance. A
more efficient implementation would bring these times down to seconds.

The runtimes for a number of problems from the AIPS planning competitions of 1998, 2000 and 2002 and for the Mechanic
problem are given in Table VIII. For most benchmarks we give the runtimes of the most difficult problem instances, which in
some cases are the last ones in the series, as well as some of the easier ones. Most of the runtimes that are not given in the table
are below one second for every evaluation strategy. Some of the benchmark series cannot be solved until the end efficiently, and
we give data just for some of the most difficult instances that can be solved. We discuss these benchmark problems below.
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Algorithm A with n Algorithm B with γ easiest HSP FF
instance 1 2 4 8 16 0.5000 0.7500 0.8750 0.9375
block-18-0 8.6 7.8 7.6 5.8 6.6 8.0 7.9 7.7 9.3 0.1 6.4 –
block-20-0 11.3 12.2 13.8 16.9 15.5 13.0 16.5 20.1 18.3 0.2 82.1 0.0
block-22-0 122.4 106.9 96.7 77.0 35.4 106.0 62.2 33.5 27.0 0.3 79.6 0.5
block-24-0 2877.5 2675.7 1854.0 829.0 167.4 2087.3 583.3 284.8 246.8 0.7 – –
block-26-0 5347.5 5000.0 4640.1 3103.9 539.0 4116.7 1140.0 242.6 126.3 0.9 46.8 0.0
block-28-0 3447.8 3413.4 3246.8 1984.3 813.3 2867.0 1746.1 1027.6 336.4 1.1 – 27.2
block-30-0 – – 13949.9 7541.0 6349.1 13934.0 6577.4 1717.4 503.9 1.9 – 0.0
block-32-0 – – – 28695.4 14326.9 > 27h 36417.3 8182.8 2245.7 11.3 – 0.0
block-34-0 227.6 227.8 224.2 231.5 208.8 238.4 248.2 264.6 188.5 1.9 – 0.1
driver-4-4-8 0.5 0.6 0.3 0.5 0.8 0.6 0.6 0.7 1.1 0.1 2.9 0.1
driver-5-5-10 731.2 549.5 631.6 237.7 440.2 969.8 507.0 472.4 651.1 27.5 – –
driver-5-5-15 72.4 36.1 50.4 100.4 200.6 56.0 72.7 120.5 219.8 12.5 72.21 –
driver-5-5-20 1018.2 690.1 792.4 940.7 17.8 967.5 148.2 35.4 24.0 0.5 1428.0 –
driver-5-5-25 – 6433.9 2218.9 3542.3 4132.2 4553.4 4100.7 5800.5 7865.5 258.2 – 609.5
driver-8-6-25 – – 13333.9 11081.4 22162.6 27447.3 24120.5 22377.1 31375.3 1385.2 859.0 –
satel-12 31.1 5.1 1.4 1.8 2.7 4.0 2.5 3.1 4.6 0.2 3.3 0.1
satel-13 14.8 14.2 18.2 14.9 17.9 21.0 29.0 24.1 22.8 0.5 10.1 0.3
satel-19 45.1 28.4 21.6 5.0 5.6 42.3 13.1 9.4 10.1 0.3 8.8 0.3
satel-20 – 1806.4 266.6 33.0 35.0 187.1 69.3 55.3 63.5 2.1 23.2 4.9
gripper-5 3443.2 1053.7 35.5 7.2 5.0 31.7 16.2 2.1 0.9 0.0 0.0 0.0
gripper-6 – – 2679.6 23.4 10.4 121.9 45.6 4.1 1.7 0.0 0.0 0.0
gripper-7 – – – 491.3 28.3 1968.0 128.2 7.9 2.8 0.0 0.0 0.0
gripper-8 – – – 13285.5 293.1 57298.9 790.1 27.3 4.7 0.0 0.0 0.0
gripper-9 – – – – 832.6 > 27h 589.7 37.7 13.0 0.1 0.1 0.0
gripper-10 – – – – 216.3 31496.5 569.3 126.8 17.1 0.1 0.1 0.0
gripper-11 – – – – – > 27h 87479.2 2308.0 335.4 0.8 0.1 0.0
gripper-12 – – – – – > 27h > 27h 8306.4 1117.5 0.8 0.1 0.0
zeno-5-10 0.3 0.3 0.2 0.2 0.5 0.3 0.2 0.3 0.6 0.0 24.2 0.1
zeno-5-15 154.2 77.1 8.7 2.3 4.5 17.7 5.1 4.8 6.6 0.3 18.5 0.3
zeno-5-15b 40.5 25.3 7.1 9.4 9.1 24.4 14.6 17.6 17.7 0.5 104.5 0.4
zeno-5-20 – – 9036.9 6422.6 2896.0 16459.9 1364.2 126.8 64.8 1.1 188.4 1.4
zeno-5-20b – – – 10822.9 18744.6 87164.6 23385.8 21683.0 30471.3 1171.5 411.5 1.4
zeno-5-25 – – – 12987.1 25914.9 > 27h 37341.0 29810.9 39109.3 1619.7 332.4 4.4
sched-33-0 79.0 53.7 13.0 5.0 6.7 22.8 10.9 10.1 11.3 0.2 – 0.7
sched-35-0 2225.2 1435.5 19.5 3.6 2.9 14.3 7.8 4.9 5.2 0.2 – 0.7
sched-37-0 346.2 184.4 92.8 8.6 9.6 80.4 24.2 19.4 19.5 0.6 – 0.5
sched-39-0 – – – 592.2 140.3 5889.8 1084.6 437.6 221.9 1.9 – 1.7
sched-41-0 – – – 479.1 35.4 3040.7 237.1 91.7 80.7 1.3 – 1.0
sched-43-0 – 1565.2 23.9 11.6 17.4 47.3 20.0 21.4 23.7 0.4 – 2.2
sched-45-0 – – 1398.1 109.5 41.6 786.6 257.8 100.2 73.3 1.5 – 1.0
sched-47-0 – – – 14066.9 245.0 62768.3 1708.6 607.0 215.4 2.2 – 4.3
sched-49-0 – – – 9511.7 561.6 24913.2 2609.9 426.4 169.2 2.1 – 6.0
sched-51-0 – – – – 1151.2 > 27h 8327.0 1692.6 889.2 7.6 – 3.1
depot-09-5451 14.1 24.8 43.9 85.8 171.5 24.8 46.3 89.1 174.8 10.7 – 0.7
depot-12-9876 255.4 509.7 1018.6 2036.9 4073.6 509.9 1019.1 2037.5 4074.2 254.6 – 3.1
depot-15-4534 42.8 79.3 154.8 305.4 609.9 80.9 157.1 309.6 614.4 38.1 – 3.4
depot-18-1916 5.9 11.2 21.9 43.5 86.9 11.4 22.2 43.9 87.4 5.4 – 0.8
depot-19-6178 0.2 0.2 0.3 0.4 0.6 0.3 0.3 0.5 0.8 0.0 – 0.2
depot-20-7615 34.2 66.7 131.9 262.1 10.4 67.0 35.6 18.5 18.7 0.4 – 14.3
depot-21-8715 0.2 0.1 0.2 0.3 0.6 0.2 0.3 0.4 0.7 0.0 51.4 0.3
depot-22-1817 27.1 50.8 98.9 194.8 389.4 51.4 100.1 197.5 392.2 24.3 – 55.3
log-20-0 3.4 2.8 0.6 0.7 0.5 1.3 1.1 0.9 0.8 0.0 2.2 0.1
log-24-0 0.9 0.4 0.6 1.0 1.6 0.6 0.8 1.2 1.8 0.0 3.1 0.1
log-28-0 87.7 53.3 13.8 1.9 3.5 15.0 4.1 3.8 3.9 0.1 28.0 1.2
log-32-0 – 53.1 18.9 37.4 16.3 37.9 33.7 26.6 16.6 0.3 43.4 4.5
log-36-0 – 101.1 20.2 30.1 11.8 58.7 46.5 29.2 14.5 0.2 81.1 2.6
log-40-0 – – 111.2 4.6 7.2 37.5 10.6 9.9 13.5 0.4 267.8 4.5
log-41-0 – – 52.4 20.0 5.4 175.3 14.8 9.1 9.8 0.3 247.1 4.2
mechanic-30-90 0.5 0.4 0.3 0.4 0.3 0.4 0.4 0.4 0.5 0.0 4.1 0.1
mechanic-40-120 0.5 0.4 0.5 0.6 0.5 0.5 0.6 0.6 0.6 0.0 14.1 0.2
mechanic-50-150 1.1 1.0 1.0 1.7 2.9 1.2 1.4 2.0 2.7 0.1 226.7 0.4
mechanic-60-180 13.1 6.9 3.3 2.0 1.0 4.3 1.6 1.2 1.3 0.0 56.46 0.7
mechanic-70-210 4.5 2.9 2.4 1.0 1.3 3.3 1.8 1.5 1.8 0.1 – –
mechanic-80-240 2.0 3.0 1.1 1.5 2.4 2.4 1.7 2.0 2.8 0.1 213.9 3.1
mechanic-90-270 15.1 2.1 2.4 3.2 2.9 3.0 3.1 3.9 3.9 0.1 339.0 3.6
mechanic-100-300 77.0 47.2 52.2 17.3 8.0 64.5 37.5 25.6 14.7 0.2 – –
mechanic-110-330 162.0 192.5 117.8 81.4 42.2 164.7 90.2 64.6 40.3 0.6 – –
mechanic-120-360 991.4 717.5 273.5 61.3 30.6 185.8 72.8 56.6 62.4 0.9 – –

Table VIII. Runtimes of Algorithms A and B. Column n = 1 is Algorithm S. Dash indicates a missing upper bound on the runtime when some formulae were
not evaluated in 60 minutes. The best runtimes for Algorithms A and B are highlighted for each problem instance (sometimes this is the special case Algorithm
S.) The column “easiest” shows the lowest runtime for any of the satisfiable formulae.

Algorithm A with n Algorithm B with ε
instance 1 2 4 8 16 0.500 0.750 0.875 0.938
blocks-34-0 124 / 124 125 / 124 125 / 124 125 / 124 125 / 124 125 / 124 125 / 124 135 / 129 135 / 129
driver-8-6-25 – – 12 / 193 14 / 206 14 / 206 11 / 178 14 / 206 14 / 206 14 / 206
satell-20 – 10 / 230 11 / 166 12 / 285 17 / 321 11 / 166 12 / 285 15 / 309 15 / 309
gripper-10 – – – – 25 / 65 25 / 65 25 / 65 49 / 150 49 / 150
zeno-5-15b 5 / 87 5 / 87 7 / 98 9 / 140 14 / 191 7 / 98 7 / 98 14 / 191 14 / 191
sched-37-0 13 / 60 13 / 60 13 / 60 16 / 57 20 / 69 14 / 52 16 / 57 16 / 57 20 / 69
depot-19-6178 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98 10 / 98
depot-20-7615 14 / 153 14 / 153 14 / 153 14 / 153 23 / 170 14 / 153 23 / 170 23 / 170 29 / 193
log-20-0 9 / 176 10 / 151 11 / 199 12 / 163 20 / 249 11 / 199 12 / 163 20 / 249 20 / 249
log-28-0 9 / 243 10 / 298 11 / 288 13 / 309 15 / 340 13 / 309 13 / 309 13 / 309 24 / 443

Table IX. Numbers of time points and operators in plans found by Algorithms A and B. Column n = 1 is Algorithm S. Dash indicates missing data when some
formulae were not evaluated in 60 minutes.

The column “easiest” gives the shortest time it took to determine the satisfiability of any of the satisfiable formulae corresponding
to a plan. These times in almost all cases are very low, even when the total runtime of Algorithms S, A and B is high. Hence in
almost all cases the total runtime is strongly dominated by the unsatisfiability tests.

Table IX shows the numbers of time points and operators in the plans obtained for some of the benchmark problems reported
in Table VIII. In many cases the easiest satisfiable formulae are not the first ones, and these formulae typically have satisfying
assignments that correspond to plans having many useless operators, which for algorithms A and B can lead to plans with many
more operators than for algorithm S. However, the benchmarks have a simple structure and these plans with more operators are
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usually not genuinely different: the additional operators are either irrelevant for reaching the goals or contain pairs of operators
and their inverses. It would be easy to eliminate these types of useless operators by a simple postprocessing step.

The Movie, MPrime and Mystery benchmarks from the 1998 competition and Rovers from 2002 are very easy for every eval-
uation strategy (fraction of a second in most cases) but we cannot produce the biggest MPrime instance because of a memory
restriction.

The Logistics (1998 and 2000) and Satellite (2002) series are solved completely. Proving inexistence of plans slightly shorter
than the optimal plan length is in some cases difficult but the new evaluation algorithms handle this efficiently.

The Depots (2002) problems are also relatively easy but in contrast to the rest of the benchmarks the new evaluation algorithms
in some cases increase the runtimes up to the theoretical worst case.

The DriverLog and ZenoTravel (2002) problems are solved quickly except for some of the biggest instances. We cannot find
satisfiable formulae for the last ZenoTravel problem within our time limit6, and finding plans for the preceding two instances
of ZenoTravel and the last two of DriverLog is also slow. The difficulty lies in finding tight lower bounds for plan lengths by
determining the unsatisfiability of formulae.

Blocks World (2000) problems lead to very big formulae (size over 100 MB and over 524288 propositions), and we can solve
only two thirds of the series.

Elevator (2000), Schedule (2000) and Gripper (1998) are a challenge because only very loose lower bounds on plan length are
easy to prove. Finding plans corresponding to a given satisfiable formula is very easy (some seconds at most) but locating these
formulae is very expensive. Increasing parameters n and γ improves runtimes.

The formulae generated for FreeCell (2002) are too big (hundreds of megabytes) for the current SAT solvers to solve them
efficiently. This benchmark series along with the blocks world problems are the only ones that are not solved almost entirely.

All in all, it seems that a conservative use of the new algorithms (especially Algorithm B with γ ∈ [0.7..0.9]) leads to a general
improvement in the runtimes in comparison to Algorithm S.

Decrease in plan quality is indirectly related to decrease in runtime. This depends on whether the first satisfiable formulae
are the easiest ones. In general, satisfying valuations that are found for plan lengths much higher than the shortest plan length
correspond to plans with more operators, but not always.

6. RELATED WORK

6.1 Encodings of planning in the propositional logic

Kautz and Selman [1992] introduced the idea of doing planning by using satisfiability algorithms. Following the introduction of
the GraphPlan algorithm that successfully utilized parallel plans [Blum and Furst 1997], Kautz and Selman [1996, 1999] extended
their approach to parallel plans.

Ernst et al. [1997] investigated different encodings planning in the propositional logic. A difference to other works on planning
as satisfiability is that some of the encodings utilize the regularities that are obvious in the schematic representations of operators.

Following the work by Kautz and Selman, translations of planning into other formalisms have been proposed [Dimopoulos,
Nebel, and Koehler 1997; Kautz and Walser 1999; Wolfman and Weld 1999; van Beek and Chen 1999; Do and Kambhampati
2001] but all these works – with the exception of Dimopoulos et al. – use the notions of parallel and sequential plans already used
by Kautz and Selman.

Dimopoulos et al. [1997] noticed that the notion of parallel plans used by Blum and Furst [1997] can be relaxed to what we
have formalized as ∃-step semantics. They called this idea post-serializability and showed how to transform operators for some
planning problems to make them post-serializable. They did not propose a general translation from arbitrary planning problems
as we have done in this work. Rintanen [1998] implemented this idea in a constraint-based planner and Cayrol et al. [2001] in the
GraphPlan framework.

The preconditions-effects graphs of Dimopoulos et al. [1997] are a subclass of our disabling graphs. Dimopoulos et al. used
these graphs for defining a notion of plans similar to our ∃-step plans but did not use them for deriving efficient encodings of
planning problems. The definition of preconditions-effects graphs often requires many more edges than the definition of disabling
graphs does, and consequently the SCCs of the former may be much bigger than the SCCs of the latter. The small size of the SCCs
of disabling graphs is often critical for obtaining compact and efficient problem encodings.

Outside planning, an idea similar to ∃-step semantics has recently been used by Ogata and Tsuchiya [2004] in the context of
1-safe Petri nets. Khomenko et al. [2005b] have recently used an improved encoding for acyclicity tests as required for the ∃-step
semantics in Section 3.4.

The fact that the sequence of formulae that encode the plan existence problem for different plan lengths has a certain regularity
has been utilized in earlier research on bounded model checking [Eén and Sörensson 2003; Heljanko, Junttila, and Latvala 2005].

6.2 Evaluation algorithms

Algorithm B in Section 5 is new, and the idea of Algorithm A has independently been discovered by Nabeshima et al. and briefly
described but not formally analyzed in a short published abstract [2002]. The idea behind the algorithms has some resemblance to
parallelized Las Vegas algorithms, see for example the work by Luby and Ertel [1994], and randomized restarts in combinatorial
search [Gomes, Selman, Crato, and Kautz 2000], but the problems are not directly related. In our case, we have an infinite sequence
of problem instances (existence of a plan of length 0, 1, 2, . . .) with a certain presumed runtime profile (exponential growth in
runtimes of the unsatisfiable formulae preceding the satisfiable formulae), whereas in the other two works the question is about

6The number of propositions in formulae for plan lengths much higher than the presumed shortest plan length exceeds Siege’s upper bound 524288.
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Fig. 14. Percentage of problem instances with 40 state variables solved in 10 minutes by our planner, HSP and FF.

utilizing the properties of the distribution of runtimes of one problem instance with a randomized algorithm. The concurrent use
of several SAT solvers for solving a model checking problem has been considered earlier [Zarpas 2004] but was not analyzed as
in our work [Rintanen 2004a].

6.3 Heuristic state-space search planners

Heuristic state-space search has become a very popular approach to non-optimal classical planning [Bonet and Geffner 2001],
especially in the planning competition community. The last 8 years have seen the development of a collection of techniques to
make state-space search planners more efficient for the standard benchmark problems introduced in the AIPS/ICAPS planning
competitions. However, most of these techniques have been directly motivated by the benchmarks themselves, and have not
been shown to improve efficiency for computationally more challenging problems, for example ones having critical resource
constraints like in scheduling problems. The emphasis has been more in making the planners scalable to bigger instances of the
types of problems used in the planning competitions.

Since the emphasis in research on planning with SAT has been in the use of efficient general-purpose satisfiability algorithms, a
similar development specific to the standard planning benchmarks has been missing. However, some of the techniques introduced
for the planning competitions could be used in connection with a SAT-based planner just as well, for example the use of a fast
incomplete planner for solving the simplest problems, and only starting the more powerful general-purpose search algorithm if the
simpler incomplete planner has failed. Our experiments suggest that using a SAT-based planner and the techniques developed in
this paper could be more powerful for the second complete stage than a planner that uses heuristic state-space search.

We compare the planning as satisfiability approach with our improved problem encodings and new plan search algorithms to
two well-known heuristic state-space search planners, HSP by Bonet and Geffner [2001] and FF of Hoffmann and Nebel [2001].

HSP is a pure general-purpose planner for solving classical planning problems. It is not guaranteed to find shortest plans. It is
based on state-space search with heuristics that estimate the distances between states.

The basic approach in the FF planner is the same as in HSP, but to obtain a better performance it employs a search algorithm and
pruning techniques that were obtained by experimentation with the standard benchmark sets [Hoffmann and Nebel 2001]. This
approach for improving planner efficiency on the standard benchmarks is similar to many other recent planners proposed by the
planning competition community. Many of the techniques used by FF are not completeness-preserving and the planner therefore
switches to a more general and complete search algorithm if it is otherwise not able to find a plan. For many of the standard
benchmarks the specialized solution techniques are sufficient and lead to extremely good runtimes. However, these techniques
cannot be viewed as general-purpose planning techniques and, as we will see below, at least one of them seriously impairs FF’s
ability to solve problems with a different structure, even for some classes of very easy problem instances.

Figure 14 contains a comparison of our planner (Algorithm S from Section 5.1, encoding from Section 3.4.4), HSP and FF
with respect to problem instances from the phase transition region (Section 4.3). For the most difficult problem instances with
operators-to-state variables ratio between 2 and 2.5 our planner solves more than twice as many problem instances as HSP or
FF with a timeout of 10 minutes. Right of the hardest part of the phase transition region where the problem instances become
easier HSP’s performance quickly improves. FF, however, has a poor performance even with the very easy instances that have
operators-to-state-variables ratio 4 and more: our planner solves all instances in less than a second but FF does not solve up to
40 per cent of these instances in ten minutes. The performance of HSP and FF worsens further relative to our planner when the
number of state variables increases [Rintanen 2004b].

The last two columns in Table VIII give runtimes of HSP [Bonet and Geffner 2001] and FF [Hoffmann and Nebel 2001] for
some of the standard benchmark problems. These runtimes are not directly comparable to the runtimes of given for planning
as satisfiability with the Algorithms S, A and B in the same table because the latter runtimes do not include the time spent in
generating the propositional formulae (see Section 5.5 for details.) HSP performs worse than our planner with Blocks World,
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Schedule, Depot, Logistics and Mechanic. HSP seems to scale better only with Gripper and ZenoTravel. FF’s performance is
worse or incomparable with Blocks World, Driver and Mechanic. The Blocks World runtimes are better until instance 34 but
similarly to our planner FF is not able to solve the last third of the series. Performance of HSP and FF is worse also for some
problems that are not listed in the table, for example the Mystery benchmarks from the 1998 competition.

An important factor in the better performance of FF with respect to HSP is the helpful actions pruning heuristic that restricts
the computation of the heuristic values to only a subset of the successor states of a state [Hoffmann and Nebel 2001]. For this
technique to be useful the heuristic estimates have to be very good, which is the case for most of the standard benchmark problems
but certainly not for planning problems in general, especially for ones that are inherently difficult. The helpful actions pruning
technique is a main factor in the performance difference between FF and HSP for the problem instances in Table VIII because of
the high cost of computing the heuristic values for every state. However, it is also responsible for FF’s poor performance with
the problems in Figure 14: the technique eliminates actions and successor states that are necessary for finding a plan quickly.
A version of FF with the pruning technique disabled has a performance much closer to HSP’s performance. Hence FF’s good
performance on many of the standard computationally easy benchmarks has been bought at the price of a dramatically worse
performance on structurally more complex problems: the shortcuts FF takes are useful for problems for which the heuristics work
well but dramatically fail FF with more difficult problems.

Performance of our planner with Algorithm B and parameter B = 0.9375 in comparison to HSP is in most cases as good or
better. Performance in comparison to FF is worse on many of the standard benchmark problems but this is due to FF’s incomplete
techniques, not due to the performance of FF’s complete domain-independent search algorithm. FF scales much worse on much
smaller but more complex problems, for instance the Mechanic problem.

Results given in Table VIII and in Figure 14 show that planning as satisfiability can indeed be very competitive with heuristic
state-space planners. Also, none of the three planners dominate any other, and the strengths of the planners are in different types
of problems.

7. CONCLUSIONS

We have given translations of semantics for parallel planning into SAT and shown that one of them, for ∃-step semantics, is
very efficient, often one or two orders of magnitude faster than previous encodings. This semantics is superior because with our
encoding the number of time steps and parallelism constraints is small. Interestingly, the process semantics, a refinement of the
standard ∀-step semantics that imposes a further condition on plans, typically did not improve planning efficiency in our tests.

The ∃-step encoding combined with the novel strategies for finding satisfiable formulae that correspond to plans sometimes
leads to substantial improvements in efficiency of planning as satisfiability, and also demonstrate that the approach is for many
problems competitive with the fastest planners that are based on heuristic state-space search.
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APPENDIX

instance len val ∃-step process ∀-step ∀-step l.
gripper-2 5 F 0.01 0.01

0.01

gripper-2 6 T 0.01 0.01
0.01

gripper-2 10 F 0.14 0.13
0.15 0.08 0.08

0.09 0.12 0.12
0.13

gripper-2 11 T 0.04 0.03
0.04 0.02 0.01

0.02 0.05 0.04
0.05

gripper-3 7 F 0.23 0.23
0.24

gripper-3 8 T 0.17 0.16
0.18

gripper-3 14 F 9.39 8.43
10.47 3.91 3.48

4.35 8.84 7.84
9.93

gripper-3 15 T 1.72 1.18
2.34 0.32 0.19

0.47 0.69 0.36
1.08

gripper-4 9 F 12.87 11.61
14.26

gripper-4 10 T 0.85 0.70
1.02

gripper-4 16 F – – –
gripper-4 17 ? – – –
gripper-4 18 ? – – –
gripper-4 19 T – – –

Table X. Runtimes of Gripper problems

instance len val ∃-step process ∀-step ∀-step l.
satel-14 4 F 9.43 8.81

10.12

satel-14 5 T 1.79 1.66
1.91

satel-14 7 F 38.20 36.42
40.13 29.59 28.17

31.12 30.95 29.59
32.37

satel-14 8 T 6.20 5.83
6.61 4.38 4.06

4.73 5.82 5.31
6.37

satel-15 4 F 10.44 9.36
11.66

satel-15 5 T 1.60 1.45
1.75

satel-15 7 F 33.04 30.92
35.37 26.58 25.32

27.87 28.11 26.72
29.59

satel-15 8 T 7.53 7.17
7.90 4.83 4.58

5.10 6.23 5.93
6.55

satel-16 3 F 1.73 1.54
1.93

satel-16 4 T 3.36 3.16
3.57

satel-16 5 F 20.34 18.68
22.04 8.80 8.10

9.53 20.09 18.61
21.74

satel-16 6 ? – – –
satel-16 7 T 8.87 8.21

9.55 7.88 7.42
8.39 7.81 7.35

8.29

satel-17 3 F 0.28 0.25
0.30

satel-17 4 T 2.85 2.81
2.90

satel-17 5 F 2.74 2.46
3.08 1.45 1.32

1.63 1.72 1.66
1.78

satel-17 6 T 3.46 3.22
3.71 2.22 2.10

2.35 2.53 2.37
2.69

satel-18 4 F 0.07 0.07
0.07

satel-18 5 T 0.22 0.20
0.24

satel-18 7 F 0.60 0.57
0.63 0.30 0.29

0.31 0.54 0.52
0.57

satel-18 8 T 1.18 1.08
1.27 0.54 0.49

0.58 0.86 0.78
0.93

Table XI. Runtimes of Satellite problems
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instance len val ∃-step process ∀-step ∀-step l.
block-12-1 33 F 0.06 0.05

0.06 0.17 0.16
0.18 0.06 0.06

0.06 0.16 0.16
0.17

block-12-1 34 T 0.05 0.04
0.05 0.36 0.35

0.37 0.05 0.05
0.05 0.19 0.18

0.20

block-14-1 35 F 0.34 0.34
0.35 1.45 1.38

1.53 0.35 0.34
0.35 1.01 0.98

1.05

block-14-1 36 T 0.14 0.12
0.15 1.18 1.10

1.26 0.12 0.11
0.14 0.50 0.46

0.53

block-16-1 53 F 0.67 0.65
0.69 3.82 3.66

4.00 0.65 0.63
0.68 1.77 1.69

1.85

block-16-1 54 T 0.35 0.33
0.37 4.95 4.63

5.30 0.38 0.36
0.40 1.86 1.76

1.98

block-18-0 57 F 1.91 1.85
1.98 15.20 14.32

16.11 2.29 2.22
2.36 6.56 6.33

6.80

block-18-0 58 T 0.94 0.87
1.01 8.04 7.41

8.67 1.07 0.98
1.17 3.42 3.19

3.66

block-20-0 59 F 2.49 2.37
2.61 8.34 8.04

8.66 2.57 2.43
2.74 5.37 5.09

5.66

block-20-0 60 T 1.86 1.79
1.92 9.55 9.25

9.87 1.80 1.74
1.85 4.93 4.66

5.21

block-22-0 71 F 38.15 36.82
39.48 – 38.49 37.28

39.76 51.64 49.58
53.78

block-22-0 72 T 14.34 12.88
15.82 – 14.32 13.03

15.66 26.72 24.83
28.64

Table XII. Runtimes of Blocks World problems

instance len val ∃-step process ∀-step ∀-step l.
driver-2-3-6b 4 F 0.01 0.01

0.01

driver-2-3-6b 5 T 0.01 0.01
0.01

driver-2-3-6b 6 F 0.04 0.04
0.04 0.01 0.01

0.01 0.02 0.02
0.02

driver-2-3-6b 7 T 0.09 0.08
0.09 0.03 0.02

0.03 0.04 0.04
0.05

driver-2-3-6c 6 F 0.01 0.01
0.01

driver-2-3-6c 7 T 0.01 0.01
0.01

driver-2-3-6c 8 F 0.03 0.03
0.03 0.03 0.03

0.03 0.03 0.03
0.04

driver-2-3-6c 9 T 0.24 0.22
0.27 0.10 0.09

0.11 0.14 0.13
0.16

driver-2-3-6d 12 F 0.44 0.42
0.46

driver-2-3-6d 13 T 0.63 0.57
0.69

driver-2-3-6d 15 F 34.14 32.82
35.45 19.09 18.23

20.00 26.27 25.27
27.27

driver-2-3-6d 16 T 17.79 15.95
19.67 8.04 7.12

8.97 9.59 8.30
11.00

driver-2-3-6e 7 F 0.01 0.01
0.02

driver-2-3-6e 8 T 0.04 0.04
0.04

driver-2-3-6e 11 F 2.14 2.04
2.24 1.13 1.08

1.19 1.55 1.47
1.62

driver-2-3-6e 12 T 2.54 2.29
2.80 1.27 1.10

1.45 1.25 1.09
1.41

driver-3-3-6b 8 F 0.16 0.15
0.17

driver-3-3-6b 9 T 0.08 0.07
0.09

driver-3-3-6b 10 F 2.15 1.99
2.31 0.82 0.77

0.87 1.40 1.31
1.51

driver-3-3-6b 11 T 3.26 2.77
3.83 1.07 0.90

1.26 1.43 1.21
1.69

driver-4-4-8 8 F 0.14 0.13
0.15

driver-4-4-8 9 T 0.15 0.13
0.16

driver-4-4-8 10 F 4.68 4.49
4.87 1.30 1.26

1.33 2.84 2.75
2.94

driver-4-4-8 11 T 23.69 21.93
25.60 5.92 5.35

6.49 13.08 11.94
14.26

Table XIII. Runtimes of DriverLog problems

instance len val ∃-step process ∀-step ∀-step l.
sched-10-0 6 F 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

sched-10-0 7 T 0.01 0.01
0.01 0.07 0.05

0.10 0.01 0.01
0.01 0.01 0.01

0.01

sched-15-0 8 F 8.74 7.40
10.17 14.57 13.27

15.88 3.44 2.86
4.10 11.52 10.21

12.85

sched-15-0 9 T 0.16 0.12
0.22 0.23 0.19

0.27 0.14 0.11
0.16 0.36 0.27

0.44

sched-20-0 8 F 1.11 1.06
1.16 1.42 1.37

1.47 0.46 0.44
0.48 1.30 1.25

1.35

sched-20-0 9 T 0.14 0.11
0.18 0.24 0.21

0.28 0.19 0.19
0.20 0.10 0.09

0.11

sched-25-0 8 F 7.85 6.87
8.96 15.47 14.61

16.37 2.14 1.96
2.35 8.53 7.57

9.56

sched-25-0 9 T 0.29 0.23
0.35 0.68 0.55

0.82 0.19 0.18
0.21 0.69 0.56

0.84

sched-30-0 10 F – – 8.12 5.93
10.45 –

sched-30-0 11 T 1.05 0.78
1.36 2.63 2.22

3.04 1.07 0.88
1.29 0.90 0.65

1.19

sched-35-0 10 F 26.22 24.78
27.71 34.35 32.89

35.87 10.26 9.72
10.80 30.09 28.35

31.88

sched-35-0 13 T 3.43 2.66
4.37 3.53 3.02

4.09 3.86 3.15
4.68 3.14 2.49

3.96

Table XIV. Runtimes of Schedule problems
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instance len val ∃-step process ∀-step ∀-step l.
zeno-3-7b 3 F 0.01 0.01

0.01

zeno-3-7b 4 T 0.01 0.01
0.01

zeno-3-7b 5 F 0.10 0.10
0.10 0.02 0.02

0.02 0.05 0.05
0.06

zeno-3-7b 6 T 0.11 0.10
0.12 0.02 0.02

0.02 0.06 0.05
0.06

zeno-3-8 3 F 0.01 0.01
0.01

zeno-3-8 4 T 0.01 0.01
0.01

zeno-3-8 5 F 0.08 0.08
0.09 0.02 0.02

0.02 0.05 0.05
0.05

zeno-3-8 6 T 0.49 0.45
0.53 0.06 0.06

0.07 0.30 0.27
0.33

zeno-3-8b 3 F 0.01 0.01
0.01

zeno-3-8b 4 T 0.02 0.01
0.02

zeno-3-8b 5 F 0.17 0.16
0.17 0.03 0.02

0.03 0.11 0.11
0.12

zeno-3-8b 6 T 0.54 0.47
0.61 0.16 0.16

0.16 0.31 0.27
0.36

zeno-3-10 4 F 0.05 0.05
0.05

zeno-3-10 5 T 0.02 0.02
0.02

zeno-3-10 6 F 1.77 1.71
1.84 0.51 0.50

0.51 1.17 1.13
1.21

zeno-3-10 7 T 2.68 2.43
2.95 0.76 0.68

0.86 1.79 1.57
2.01

zeno-5-10 3 F 0.10 0.10
0.10

zeno-5-10 4 T 0.23 0.19
0.28

zeno-5-10 5 F 2.23 2.13
2.33 1.03 1.03

1.04 1.47 1.41
1.53

zeno-5-10 6 T 9.34 8.78
9.89 3.17 2.79

3.57 6.53 6.04
7.08

zeno-5-15 5 F –
zeno-5-15 6 T 21.34 17.83

25.10

zeno-5-15 5 F 3.52 3.30
3.75 1.76 1.75

1.76 2.32 2.18
2.48

zeno-5-15 6 ? – – –
zeno-5-15 7 T – 39.34 35.65

43.34 –

Table XV. Runtimes of ZenoTravel problems

instance len val ∃-step process ∀-step ∀-step l.
depot-13-5646 7 F 0.01 0.01

0.01

depot-13-5646 8 T 0.01 0.01
0.01

depot-13-5646 8 F 0.02 0.02
0.02 0.01 0.01

0.01 0.01 0.01
0.01

depot-13-5646 9 T 0.27 0.26
0.29 0.04 0.04

0.05 0.08 0.08
0.09

depot-14-7654 9 F 0.05 0.05
0.06

depot-14-7654 10 T 0.10 0.09
0.11

depot-14-7654 11 F 3.07 2.95
3.19 1.41 1.34

1.48 2.17 2.07
2.29

depot-14-7654 12 T 8.18 7.55
8.82 3.48 3.19

3.78 4.26 3.87
4.66

depot-16-4398 7 F 0.01 0.01
0.01

depot-16-4398 8 T 0.01 0.01
0.01

depot-16-4398 7 F 0.03 0.03
0.03 0.01 0.01

0.01 0.02 0.01
0.02

depot-16-4398 8 T 0.43 0.41
0.46 0.07 0.06

0.07 0.12 0.11
0.13

depot-17-6587 5 F 0.01 0.01
0.01

depot-17-6587 6 T 0.01 0.01
0.01

depot-17-6587 6 F 0.24 0.23
0.26 0.02 0.02

0.02 0.13 0.11
0.14

depot-17-6587 7 T 0.69 0.65
0.74 0.03 0.03

0.03 0.27 0.25
0.29

depot-18-1916 11 F 0.29 0.28
0.29

depot-18-1916 12 T 5.80 5.02
6.61

depot-18-1916 11 F 1.12 1.04
1.20 0.17 0.16

0.17 0.51 0.48
0.54

depot-18-1916 12 T – – –

Table XVI. Runtimes of Depot problems

instance len val ∃-step process ∀-step ∀-stepl.
freecell2-4 4 F 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01

freecell2-4 5 T 0.01 0.01
0.01 0.02 0.01

0.02 0.01 0.01
0.01 0.01 0.01

0.01

freecell3-4 7 F 0.45 0.43
0.47 0.77 0.74

0.81 0.25 0.25
0.25 0.53 0.50

0.55

freecell3-4 8 T 0.13 0.11
0.15 0.25 0.22

0.28 0.18 0.17
0.18 0.11 0.10

0.13

freecell4-4 6 F 0.01 0.01
0.01 0.01 0.01

0.01 0.01 0.01
0.01 0.01 0.01

0.01

freecell4-4 7 T 0.05 0.04
0.05 0.12 0.11

0.13 0.02 0.02
0.02 0.08 0.07

0.08

freecell5-4 12 F 13.60 12.94
14.29 17.34 16.54

18.14 6.75 6.39
7.17 9.19 8.84

9.55

freecell5-4 13 T 59.57 52.44
66.68 63.78 57.28

70.33 35.70 32.55
39.06 53.59 47.44

60.17

Table XVII. Runtimes of FreeCell problems


