
Temporal Planning with

Clock-Based SMT Encodings

Jussi Rintanen

Department of Computer Science
Aalto University
Helsinki, Finland

(Also affiliated with Griffith University, Brisbane, Australia, and the Helsinki Institute of Information Technology, Finland.)

August 2017

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 1 / 26

Temporal Planning

classical planning = choose action sequence to reach a goal

temporal planning = choose actions + schedule (with concurrency)

pioneering work by Shin & Davis (2005)

complex modeling language
effective representation in SAT modulo Theories (SMT) framework
SMT before used for classical planning with numeric variables
(Wolfman & Weld 1999)

Few follow-ups to Shin&Davis 2005: room for improvement

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 2 / 26

Temporal Planning

classical planning = choose action sequence to reach a goal

temporal planning = choose actions + schedule (with concurrency)

pioneering work by Shin & Davis (2005)

complex modeling language
effective representation in SAT modulo Theories (SMT) framework
SMT before used for classical planning with numeric variables
(Wolfman & Weld 1999)

Few follow-ups to Shin&Davis 2005: room for improvement

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 2 / 26

Temporal Planning by Constraints / Logic / SAT / SMT

Starting point: Shin & Davis 2005 (PDDL 2.1 → SMT)

Issue 1: ε-semantics of PDDL 2.1 → far too many steps
Issue 2: discretization to integer time not available

⇒ Poor scalability

Rintanen (IJCAI 2015): eliminate ε semantics; NDL instead of PDDL

Advantage 1: Number of steps often halved! Big performance gains.
Advantage 2: Reasoning about action dependencies easier

Rintanen (AAAI 2015): general discretization method

Advantage 1: Simpler encodings (often)
Advantage 2: Use SAT instead of SMT (many cases)
Advantage 3: Optimal makespan practical (when actions “short”)

This work:
1 Summarized steps: peformance gains through even fewer steps,
2 Clock-based delays: O(n) size vs. O(n2) by Shin&Davis 2005

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 4 / 26

Step-Based Encodings

Steps part of Kautz&Selman original work (1992)

Execution of a plan represented by states/steps s0, . . . , sn
Encoding expresses transitions si ⇒ si+1 for all i ∈ {0, . . . , n− 1}

Shin&Davis (2005): steps have a real-valued time

1

2

3

A step is needed for

every action starting point
every (discrete) change by action or other event

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 7 / 26

Variables needed in SMT encodings of Temporal Planning

Let 0, . . . , N be the steps. Following variables needed.

x@i Boolean state variable x is true i ∈ {0, . . . , N}
a@i action a is taken i ∈ {0, . . . , N}
τ@i absolute time at step i i ∈ {0, . . . , N}
∆@i = τ@i− τ@(i− 1) i ∈ {1, . . . , N}

Constraint: ∆@i > 0

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 8 / 26

Precondition axioms

If φ is the precondition of action a, we have the formula

a@i→ φ@i (1)

where φ@i is the formula obtained from φ by replacing each x by x@i.

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 9 / 26

Effect Axioms and Frame Axioms

causes(l)@i = disjunction of all triggers for l becoming true

Effect axioms

causes(x)@i→ x@i (2)

causes(¬x)@i→ ¬x@i (3)

Frame axioms

(x@i ∧ ¬x@(i− 1))→ causes(x)@i (4)

(¬x@i ∧ x@(i− 1))→ causes(¬x)@i (5)

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 10 / 26

Shin&Davis-style encoding of causes(x)@i

Effect triggers in the Shin & Davis encodings

Trigger for action a and effect x at t > 0 in causes(x)@i:

i−1∨
j=0

(a@j ∧ ((τ@i− τ@j) = t)) (6)

This is O(n2) size where n is the number of steps.

Step must exist

If action a has an effect at t, a step at relative time t must exist:

a@i→
N∨

j=i+1

(τ@j − τ@i = t). (7)

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 11 / 26

Clock-based encodings (Rintanen 2015)

Idea: every action has its own clock

Encoding

Let action a have effect x at t.

Clock is reset a@i→ ca@i = 0
Clock progresses ¬a@i→ ca@i = ca@(i− 1) + ∆@i
Must stop at t (ca@(i− 1) < t)→ (ca@i ≤ t)
Effect trigger ca@i = t

Encoding has a linear size. But, far too many real-valued variables. Slow!

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 12 / 26

Contribution 1: Summarized Effects

Summarize discrete changes from multiple time points in a single step

Shin & Davis AIJ’05

1

2

3

Rintanen IJCAI’17

1

2

3

Fewer steps ⇒ significant performance gain

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 14 / 26

Contribution 1: Implementation

1 No need for axioms requesting a step a specific time!!!

2 Trigger ca@i = t for effects at relative time t becomes:

(ca@(i− 1) < t) ∧ (ca@i ≥ t) (10)

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 15 / 26

Trade-offs: makespan vs. number of steps

4 steps, makespan 3

2 1

1 2

3 steps, makespan 4

2 1

1 2

Sometimes: shorter makespan ⇒ more steps

(Makespan – number of steps trade-off in all encodings when one long
action interchangeable with two short ones)

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 16 / 26

Contribution 2: Practical Encodings with Clocks

Rintanen AAAI’15: clock for every action ⇒ too many clocks ⇒ slow

New encodings: clocks shared by multiple actions

Idea:

associate clocks with a resources

resources represent exclusions of actions ⇒ same clock can represent
delays of exclusive actions

Why is this good?

Number of resources typically low (e.g. 30 resources vs. 1000 actions)

Number of clocks low ⇒ number of real variables low ⇒ fast

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 17 / 26

Contribution 2: Practical Encodings with Clocks

Common easy case

All actions a with resource R:

1 allocation from 0 to da
2 last effects at da

1

2

3

Clock cR for resource R can be used for all delays

1 action a can be taken if cR ≥ 0

2 action a sets cR := −da
3 effect at t triggered when da − cR = t

See paper: very general condition for the sufficiency of one clock
See paper: examples where one clock not enough

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 18 / 26

Contribution 2: Qualitative Clocks for Shared Clocks

A shared clock does not indicate which action is currently active.
Need qualitative (Boolean) clocks for every action.

The “clock” distinguishes between “qualitative” values:
1 start of action (action variable is true)
2 time points where action active but no effects
3 time points where action’s effects take place

Encode rules for transitions from one value to the next

Connect qualitative clock variables to real-valued clock variables

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 19 / 26

Experiments

1 SD – encoding of delays/steps as proposed by Shin&Davis

2 C – our new clock encoding

3 R – our new clock encoding + relaxed/summarized steps
4 ITSAT – leading temporal planner (Rankooh & Ghassem-Sani 2013, AIJ’15)

Reduction to untimed/classical planning
Solved with efficient classical SAT encodings (Rintanen et al. 2006)
If solution schedulable to correct plan, done.
Otherwise add constraints and try again.

SAT solver ignores metric time: scalability (often) good, plans not!

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 20 / 26

Experiments: Solved Instances

ITSAT SD C R
08-crewplanning 30 30 10 14 15
08-elevators 30 16 4 6 9
08-elevators-num 30 - 4 8 13 (numeric vars: ITSAT not applicable)
08-openstacks 30 30 4 5 7
08-pegsol 30 30 30 30 30
08-sokoban 30 17 17 17 16
08-transport 30 - 4 6 8 (numeric vars: ITSAT not applicable)
08-woodworking 30 - 16 15 23 (numeric vars: ITSAT not applicable)
08-openstacks-adl 30 - 3 5 8 (numeric vars: ITSAT not applicable)
08-openstacks-num-adl 30 - 5 9 18 (numeric vars: ITSAT not applicable)
11-floortile 20 20 20 20 20
11-matchcellar 10 10 10 10 10
11-parking 40 9 12 12 12
11-storage 20 10 0 0 0
11-tms 20 20 20 20 20
11-turnandopen 20 20 18 18 18
14-floortile 20 20 20 20 20
14-matchcellar 20 20 19 20 19
14-parking 20 18 19 19 19
14-tms 20 20 20 20 20
14-turnandopen 20 9 5 5 5
14-driverlog 30 4 0 0 0
total (w/o numeric) 410 303 228 236 240
total 560 303 260 279 310

Table: Instances solved in 1800 seconds by domain

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 21 / 26

Experiments: Summarization Improves Runtimes

 1

 10

 100

 1000

 1 10 100 1000

p
la

n
n

e
r

C

planner R

Runtime in seconds

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 22 / 26

Experiments: Summarization Can Worsen Makespans

 20

 40

 60

 80

 100

 120

 140

 20 40 60 80 100 120 140

p
la

n
n

e
r

C

planner R

Makespan

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 23 / 26

Experiments: Far Better Makespans than with ITSAT

 50

 100

 150

 200

 250

 50 100 150 200 250

IT
S

A
T

planner R

Makespan

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 24 / 26

Experiments: ITSAT’s Runtime Advantage Unsystematic

 1

 10

 100

 1000

 1 10 100 1000

IT
S

A
T

planner R

Runtime in seconds

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 25 / 26

Conclusion

First competitive clock-based encodings with clock-sharing and
resources

Summarization reduces number of steps ⇒ better scalability

Comparison to ITSAT:

On average, scalability still not as good
Often far superior plans (shorter makespan)

Jussi Rintanen (Aalto U, Dept of CS) IJAI 2017 26 / 26

