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Introduction

@ We consider evaluation strategies for satisfiability Introduction
planning: find a (not necessarily shortest) plan.
Trade-off: quality vs. cost to produce.

@ Application domain: any approach to planning in
which basic step is finding a plan of a given length,
like planning as satisfiability, by CSP, by MILP,
Graphplan, ...

@ Significance: speed-ups of 0, 1, 2, 3, 4, ... orders of
magnitude in comparison to the standard sequential
evaluation strategy (as used in Graphplan,
BLACKBOX, ...)



Strengths of satisfiability planning (SATP)

Satisfiability planning (Kautz & Selman, 1992/96) is an
efficient approach for solving inherently difficult planning SAT planning
problems:

@ optimal solutions to otherwise easy problems
(Most of the standard planning benchmarks are
solvable non-optimally by simple poly-time
algorithms!!l)

@ hard problems in the phase transition region
[Rintanen, KR'04]

@ combinatorially difficult planning problems



SATP vs. heuristic state-space planning

Heuristic state-space search [Bonet & Geffner 2000] has
been considered stronger than SATP on many
non-optimal planning problems, but

@ apples vs. oranges: SATP planners give optimality
guarantees but planners like HSP do not, and

@ nobody has used SATP planners for non-optimal
planning.

Open question

How efficient SATP actually is when optimality is not
required?




SATP for non-optimal planning

Goal

Consequence SATP becomes extremely good on

Disclaimer

Non-optimal planning: relax all optimality
requirements, any plan will do!

standard big-and-easy benchmarks.

Problems that are very easy and very big
likely remain to be solved by more
specialized planning techniques:

After all, SAT solvers are general-purpose
problem solvers and cannot be as efficient
as more specialized techniques on all types
of problems.



The standard sequential evaluation algorithm

Formula ¢, represents the question Is there a plan of
length ;?

Algorithm S

PROCEDURE AlgorithmS()

1:=0;

REPEAT
test satisfiability of ¢;;
IF ¢; is satisfiable THEN terminate;
1:=1+1;

UNTIL 1=0;

Problem
This algorithm proves that the plan has optimal length!!!




Experimentation

@ How do runtime profiles of different benchmarks look
like?

@ benchmarks from planning competitions 1998, 2000,
2002 Experimentation

@ samples from the set of all instances [Rintanen
KR’04]

@ Tests were run with Siege SAT solver version 4 (by
Lawrence Ryan of University of Washington and
Synopsys).

This is one of the best SAT solvers for planning
problems.
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Examples

Evaluation times: depot15
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Difficult problems with 20 state variables

@ Sampled from the space of all problems instances
with 20 state variables, 40 or 42 STRIPS operators
each having 3 precondition literals and 2 effect Experimentation
literals.

@ This is in the phase transition region [Rintanen,

KR’'04].

@ We show here some of the most difficult instances.

@ Easier instances are solved (by satisfiability
planners) in milliseconds.
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Evaluation times: random6076
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The important insight

@ Characteristic shape:

@ Most of the difficulty is
in the last unsatisfiable
formulae.

Experimentation

cost of evaluation

1 2 3 4 5 6 7 8 9 planlength
12 3 1 2 3 1 (1) (1) runby proces

@ Devise evaluation
strategies that get to
evaluate the easier
satisfiable formulae
early!!



Algorithm A

@ n processes: evaluate n plan lengths simultaneously
(starting from lengths O to n — 1)

@ When a process finishes one length, in continues
with the first unallocated one.

Algorithm A

@ Special case n = 1 is Algorithm S.



Algorithm B

@ Evaluate all plan lengths simultaneously at different
rates.

@ If rate of length n is r, evaluate length n+ 1 at rate ~r.
visaconstant 0 < v < 1.

@ The CPU times allocated to the formulae form a
geometric sequence

Algorithm B

0ty 1
with a finite sum

l—n



Properties of Algorithm B

@ The first unfinished formula gets 1 — ~ of the CPU.
With v = 0.9 this is 5, with v = 0.5 it is 3.

@ Speed-up is between 1 — v and cc.

runtime with Algorithm S

Speed-Up = ime with Algorithm B

Algorithm B

Worst-case slow-down only a constant factor!
Speed-up can be arbitrarily high!! J




Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.9

Finding a plan for blocks22 with Algorithm B
45 T T T T T T T T T

40 | \ |
35 |

30 |
25 |
20 |
15 |
10 |

lllustration

time in secs

0 n | IR o e ELETEL
40 45 50 55 60 65 70 75 80 85 90

time points




Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm B with v = 0.5

Finding a plan for blocks22 with Algorithm B
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Algorithm A with n

instance 1 2 4 8 16
logistics-39-0 - - 542 8.7 5.4
logistics-39-1 -1 5649 842 156 5.3
logistics-40-0 | 1279.0 | 732.8 86.7 10.6 5.1
logistics-40-1 - - 599 427 8.3
logistics-41-0 - - 375.0 4.6 8.6
logistics-41-1 - - 138.3 18.8 7.7
Alg. S | Algorithm B with ~
instance 0.500 0.750 0.875 0.938
logistics-39-0 -1136.4 17.2 95 101
logistics-39-1 -] 862 116 7.8 8.9
logistics-40-0 | 1279.0 | 83.8 11.5 7.5 8.7
logistics-40-1 -1 206.3 295 156 157
logistics-41-0 - 709 139 111 137
logistics-41-1 -12192 260 142 145




Efficiency on standard benchmarks

Algorithm B with ~
instance 0.500 0.750 0.875 0.938
blocks-22-0 150.1 163.0 99.9 53.4 40.9
blocks-24-0 | 2355.8 1822.8 390.1 171.2 95.0
blocks-26-0 - | 4100.6 1919.6 547.1 243.0
blocks-28-0 - 2041.3 545.6 229.4 155.7
blocks-30-0 - | 22777.6 3573.0 1462.2 900.2
blocks-32-0 - >27h  >27h 75905 2637.2
blocks-34-0 219.4 231.0 2385 246.3 236.4

We can improve most of the runtimes on these slides to
fractions by considering only e.g. plan lengths
0, 10, 20, 30, .

Experiments




Efficiency on standard benchmarks

Algorithm B with ~
instance 0.500 0.750 0.875 0.938
gripper-3 0.5 0.5 0.2 0.2 0.3
gripper-4 14.2 3.6 1.4 0.5 0.4
gripper-5 710.1 10.4 1.8 0.6 0.4
gripper-6 - 28.6 4.7 2.3 2.3
gripper-7 - | 1600.4 82.6 10.8 3.8
gripper-8 -1 9786.4 393.0 421 175
gripper-9 - | >27h  2999.7 1179 26.6
gripper-10 -| >27rh 12027.4 183.3 347
gripper-11 - > 27h 3712.5 55.1 9.4
gripper-12 - > 27h 43813.2 198.9 194
gripper-13 - | >27h > 27h 761.4 119.6
gripper-14 - >27h >27h 20949.6 892.3
gripper-15 - | >27h >27h 34129 160.3

Experiments




Efficiency on standard benchmarks

Algorithm B with ~
instance 0.500 0.750 0.875 0.938
sched-47-1 -| 7153.6 3705 1132 925
sched-47-2 -| 1512.2 100.0 512 54.8
sched-48-0 - 380.3 1079 105.3 80.4
sched-48-1 - 252.0 509 259 277
sched-48-2 - 238.7 405 289 329
sched-49-0 - 1291784 802.6 103.0 59.7 SpalEiE
sched-49-1 - 22.2 139 171 26.6
sched-49-2 | 152.0 95.7 455 337 397
sched-50-0 | 140.1 27.8 145 135 148
sched-50-1 - >27h 48131 664.0 358.7
sched-50-2 - 104.3 351 275 324
sched-51-0 - >27h 2768.4 389.3 2129
sched-51-1 - | 30011.7 1033.0 209.6 1445
sched-51-2 - >27h 4236.0 825.8 605.7




Efficiency on standard benchmarks

Algorithm B with ~
instance 0.500 0.750 0.875 0.938
driver-4-4-8 0.3 0.4 0.6 0.9 1.6
driver-5-5-10 | 805.4 | 754.0 304.0 284.4 376.4
driver-5-5-15 83.1 | 111.1 136.5 170.3 272.9
driver-5-5-20 | 667.1 | 103.8 92.7 134.1 230.3
driver-5-5-25 - | >27h 24641.5 10817.7 10851.0
driver-8-6-25 - | >27h > 27h 17485.9 5429.7

Experiments




Efficiency on standard benchmarks

Algorithm B with ~
instance 0.500 0.750 0.875 0.938
depot-09-5451 12.5 21.4 39.1 74.7 145.8
depot-10-7654 0.1 0.1 0.1 0.2 0.2
depot-11-8765 0.4 0.6 0.7 11 1.8
depot-12-9876 | 148.1 3.2 2.9 3.9 6.0
depot-13-5646 0.1 0.1 0.1 0.2 0.2
depot-14-7654 0.2 0.3 0.5 0.8 1.4 Experiments
depot-15-4534 63.8 | 124.6 246.1 489.1 975.1
depot-16-4398 0.1 0.1 0.1 0.2 0.2
depot-17-6587 0.1 0.1 0.1 0.1 0.2
depot-18-1916 2.6 14 1.7 24 4.0
depot-19-6178 0.2 0.2 0.3 0.5 0.7
depot-20-7615 51.2 6.8 45 5.4 8.1
depot-21-8715 0.3 0.5 0.9 1.7 3.0
depot-22-1817 | 174.9 | 347.3 692.1 1381.8 2761.2




Conclusions

@ Our work makes the trade-off between plan quality
and planning difficulty in satisfiability planning
explicit.

@ Possibility of arbitrarily high performance gains is
obtained by accepting the possibility of a small
constant-factor slow-down and the loss of
guarantees for plan optimality.

@ A planner based on the new evaluation algorithms
and new efficient encodings [Rintanen, Heljanko &
Niemela 2005] outperforms Kautz & Selman’s
BLACKBOX by ..,3,4,5,6,... orders of magnitude on
many problems.

Conclusion
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