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Abstract. We investigate different evaluation strategies for plan-
ning problems represented as constraint satisfaction or satisfiability
problems. The standard evaluation strategy, evaluating the formulae
by sequentially increasing the length one step at a time, guarantees
that a plan corresponding to the first satisfiable formula is found first,
yet this is often not the best possible strategy in terms of runtime. We
present evaluation strategies based on parallel or interleaved eval-
uation of several formulae and show that with many problems this
leads to substantially improved runtimes, sometimes several orders
of magnitude. The cost of the improved runtimes is a possible de-
cline in plan quality because an optimality guarantee of the standard
evaluation strategy is lost.

1 INTRODUCTION

In this work we report new developments in satisfiability planning
emerging from a paradigm shift in evaluation strategies together with
important qualitative and quantitative improvements in satisfiability
algorithms that have been taking place in the last years, leading to
dramatically improved efficiency of satisfiability planning.

Earlier research on classical planning that split plan search into
finding plans of given fixed lengths, for instance the Graphplan al-
gorithm [1], planning as satisfiability [4], and related approaches
[7, 6, 11, 10, 3], have without exception adopted a sequential strat-
egy. This strategy starts with (parallel) plan length 1, and if no such
plans exist, continues with length 2, length 3, and so on, until a plan
is found. When every time step consists of exactly one operator, the
standard sequential strategy is guaranteed to find a plan that is opti-
mal with respect to plan length.

It seems that when we want to preserve this sequential optimality
property, the sequential strategy cannot in general be substantially
improved. For example, a strategy that increases the plan length by
more than one until a satisfiable formula is found and then performs
a binary search to find the shortest plan does not typically improve
runtimes because the cost of evaluating the unsatisfiable formulae
usually increases exponentially as the plan length increases.

However, when we want to find a plan of any quality, or when the
sequential optimality criterion loses its meaning because one time
step is allowed to contain several operators, we can use strategies
that take the exponentially growing cost of the unsatisfiable formulae
and the possibly much lower cost of the first satisfiable formulae into
account. The evaluation costs typically follow the pattern in Figure 1
(except that sometimes the first satisfiable formulae are not cheaper
than the preceding unsatisfiable ones, and the first satisfiable formula
may not be the least expensive of the satisfiable ones.)

This suggests a strategy that interleaves the evaluation of several
formulae. We want to detect the satisfiability of one of the formu-
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Figure 1. Evaluation cost of the unsatisfiable formulae for plan lengths 1
to 6 and the satisfiable formulae for plan length 7 and higher. With 3
processes, process 1 finds the first plan (satisfying assignment) after

evaluating the formulae for plan lengths 1, 4 and 7 in 0.1+1+0.5 = 1.6
seconds. This is3× 1.6 = 4.8 seconds of total CPU time. The sequential

strategy needs0.1 + 0.1 + 0.2 + 1 + 5 + 10 + 0.5 = 16.9 seconds. With 4
processes the plan would be found by process 3 in0.2 + 0.5 = 0.7 seconds

of CPU time, which is4× 0.7 = 2.8 seconds of total CPU time.

lae corresponding to a plan before having spent too much time de-
termining the unsatisfiability of earlier formulae. A strategy imple-
mented by our first algorithm distributes the computation ton con-
current processes and initially assigns the firstn formulae to then
processes. Whenever a process finds its formula satisfiable, the com-
putation is terminated. Whenever a process finds its formula unsat-
isfiable, the process is given the first unevaluated formula to evalu-
ate. As is shown by Figure 1, this strategy can avoid completing the
evaluation of many of the expensive unsatisfiable formulae, thereby
saving a lot of computation effort.

It is surprising that these simple and – as it turns out – extremely
effective strategies were not previously proposed for controlling a
planner. The effectiveness of these strategies follows from the pro-
file of runtimes for formulae for different parallel plan lengths. This
profile, it seems, previously received little attention and the effective-
ness of the strategies we present went unnoticed. The new evaluation
strategies extend the applicability of a wide range of CSP and SAT
based planning technologies to much more difficult problems. The
disadvantage of the strategies is that the optimality of parallel plan
lengths is lost, but, as optimal parallel plan length does not imply
optimal (sequential) plan length, optimality is often not a reason for
using the sequential strategy.

The structure of the paper is as follows. In Section 2 we formal-
ize the above ideas in two algorithms that can be used as the high-
level evaluation algorithm of a planner. Then we analytically inves-
tigate their computational properties in Section 3, and test them on
commonly used planning benchmarks in Section 4. In Section 5 we
discuss the meaning of the results for classical planning in general.
Finally, in Section 6 we consider further research topics.



2 EVALUATION ALGORITHMS

We propose two algorithms for evaluation of a sequence
φ0, φ1, φ2, . . . of SAT/CSP problems that has the property that for
some unknownj, all formulaeφi with i < j are unsatisfiable, and
all formulaeφk with k ≥ j are satisfiable. The goal is to find one of
the first satisfiable formulae as fast as possible. An inherent property
of the problem is that unsatisfiable (resp. satisfiable) formulae later
in the sequence are in general more expensive to evaluate than earlier
unsatisfiable (resp. satisfiable) formulae. The difficulty of the unsatis-
fiable formulae increases asi increases because the formulae become
less constrained, contradictions are not found as quickly, and search
trees grow exponentially. The exponential increase in difficulty of
satisfiable formulae is less clear. For example, for the first satisfiable
formula φs there may be few plans while for later formulae there
may be many plans, and the formulae would be less constrained and
easier to evaluate. However, as formula sizes increase, the possibility
of in getting lost in parts of the search space that do not contain any
solutions also increases. Therefore increase in plan length also later
leads to an increase in difficulty.

The new algorithms are useful if a peak of difficult formulae pre-
cedes some of the easier satisfiable formulae. For example, when it is
easier to find a plan of lengthn than to prove that no plans of length
n−1 exists, and, if the first strongly constrained satisfiable formulae
corresponding to the shortest plans are more difficult to evaluate than
some of the later less constrained ones. The experiments show that
with many problems one or both of these conditions hold.

We call the sequential evaluation algorithm Algorithm S. It first
tests whetherφ0 is satisfiable, and if not, repeatedly proceeds with
the next formula until a satisfiable formula is found. If the formu-
laeφi encode the sets of plans of lengthi, then the sequential algo-
rithm is guaranteed to find one of the shortest plans. As we will see,
the sequential algorithm may have a much higher runtime than the
non-sequential algorithms we propose. The new algorithms enable
trading plan quality guarantees to better runtimes.

The first algorithm is based on dividing the evaluation tasks of
different formulae to a fixed numbern of different processes, each
of which determines the satisfiability or unsatisfiability of one of the
formulae, after which it is assigned a new formula to evaluate.

The second algorithm is based on evaluating an unbounded num-
ber of formulae in an interleaved manner. Most of the CPU is ded-
icated to evaluating the formulaeφi with the smallest indicesi, ac-
cording to a parameterγ. This parameter plays a role similar to then
in the first algorithm. Because CPU time is a discrete resource, real
implementations of this scheme are actively evaluating only a small
finite number of formulae at any given moment.

2.1 Algorithm A: multiple processes

The first algorithm is based on parallel or interleaved evaluation of a
fixed numbern of formulae byn processes. As the special casen =
1 we have Algorithm S. Whenever a process finishes the evaluation
of a formula, it is given the first unevaluated formula to evaluate. The
algorithm is given in Figure 2.

There is a simple improvement to the algorithm: when formulaφi

is found unsatisfiable, the algorithm terminates the evaluation of all
φj for j < i because they must all be unsatisfiable. However, this
modification does not usually have any effect because of the mono-
tonically increasing evaluation cost of the unsatisfiable formulae:φj

would already have been evaluated whenφi with i > j is found
unsatisfiable. We ignore this improvement in the following.

PROCEDUREAlgorithmA(n)
P := {φ0, . . . , φn−1};
uneval :=n;
found := false;
REPEAT

P ′ := P ;
FOR EACHφ ∈ P ′ DO

continue evaluation ofφ for ε seconds;
IF evaluation ofφ terminatedTHEN

P := P ∪ {φuneval}\{φ};
uneval := uneval + 1;
IF φ is satisfiableTHEN found := true;END IF

END IF
END DO

UNTIL found

Figure 2. Algorithm A

2.2 Algorithm B: geometric division of CPU use

In Algorithm A the choice ofn is determined by the (assumed) width
and height of the peak preceding the first satisfiable formulae, and
our experiments indicate that small differences in the choice ofn may
make a substantial difference in the runtimes. Our second algorithm
addresses the difficulty of choosing the valuen in Algorithm A. Our
Algorithm B evaluates in an interleaved manner an unbounded num-
ber of formulae. The amount of CPU given to each formula depends
on its index: if formulaφk is givent seconds of CPU during a certain
time interval, then a formulaφi, i ≥ k is givenγi−kt seconds. This
means that every formula gets only slightly less CPU than its prede-
cessor, and the choice of the exact value of the constantγ ∈]0, 1[ is
far less critical than the choice ofn for Algorithm A.

Algorithm B is given in Figure 3. Variablet which is incrementally

PROCEDUREAlgorithmB(γ)
t := 0;
found := false;
FOR EACHi ≥ 0 DO done[i] = false;
FOR EACHi ≥ 0 DO time[i] = 0;
REPEAT

t := t + δ;
FOR EACHi ≥ 0 such that done[i] = falseDO

IF time[i] + nε ≤ tγi for some maximaln ≥ 1 THEN
continue evaluation ofφi for nε seconds;
time[i] := time[i] + nε;
IF evaluation ofφi terminatedTHENdone[i] := true;END IF
IF φi was found satisfiableTHEN found := true;END IF

END IF
END DO

UNTIL found

Figure 3. Algorithm B

increased byδ characterizes the total CPU timet
1−γ

available so far.
Because the evaluation ofφi proceeds only if it has been evaluated
for at mosttγi − ε seconds, CPU is actually consumed less than

t
1−γ

, and there will be at time t
1−γ

only a finite numberj ≤ logγ
ε
t

of formulae for which evaluation has commenced.
In a practical implementation of the algorithm, the rate of increase

δ of t is increased as the computation proceeds; otherwise the inner



foreachloop will later often be executed without evaluating any of
the formulae further. We could chooseδ for example so that the first
unfinished formulaφi is evaluated further at every iteration (δ = ε

γi ).

3 PROPERTIES OF THE ALGORITHMS

In this section we analyze the properties of the algorithms.

Definition 1 (Speed-up) Thespeed-upof an algorithm X (with re-
spect to Algorithm S) is the ratio of the runtimes of Algorithm S and
the Algorithm X.

If the speed-up is greater than 1, then the algorithm is faster than
Algorithm S.

In our analysis we assume that the constantε in Algorithm A is
infinitesimally small, and hence, after a process finishes with one
formula, the evaluation of the next formula starts immediately, and
the algorithm terminates immediately after a satisfiable formula is
found.

If there is no peak, that is, the last unsatisfiable formulae are not
more difficult than some of the first satisfiable ones, then Algorithm
A with n ≥ 2 may needn times more CPU than Algorithm S, be-
causen− 1 satisfiable formulae are evaluated unnecessarily. We for-
mally establish worst-case bounds for Algorithm A.

Theorem 2 The speed-up of Algorithm A withn processes is at least
1
n

. This lower bound is strict.

Proof: The worst case1
n

can show up in the following situation. As-
sume the first satisfiable formula is evaluated in timet, the preceding
unsatisfiable formulae are evaluated in time 0, and the following sat-
isfiable formulae are evaluated in time≥ t. Then the total runtime of
Algorithm A is tn, while the total runtime of Algorithm S ist.

Assume the runtimes (CPU time) of the formulae are
t0, t1, . . . , ts, . . ., andφs is the first satisfiable formula. The total
runtime of Algorithm S is

Ps
i=0 ti. This is also an upper bound on

the CPU time consumed by Algorithm A onφ0, . . . , φs. Addition-
ally, Algorithm A may spend CPU evaluatingφs+1, φs+2, . . .. The
evaluation of these formulae starts at the same time or later than the
evaluation of the first satisfiable formulaφs. Becausen−1 processes
may spend all their time evaluating these formulae after the evalua-
tion of φs has started, the total CPU time spent evaluating them may
be at most(n− 1)ts. Hence Algorithm A spends CPU time at most

sX
i=0

ti + (n− 1)ts

in comparison to
sX

i=0

ti

with Algorithm S. The speed-up is therefore at leastPs
i=0 tiPs

i=0 ti + (n− 1)ts
=

1

1 + (n− 1) tsPs
i=0 ti

≥ 1

1 + n− 1
=

1

n

�

In the other direction, there is no finite upper bound on the speed-
up of Algorithm A in comparison to Algorithm S for any number of
processesn ≥ 2. Consider a problem instance with evaluation time
t0, t1 and t2 respectively for the first three formulae, the first two
of which are unsatisfiable and the third satisfiable. Lett0 = t2 and

t1 = ct2. The constantc could be arbitrarily high. Algorithm S runs
in (c + 2)t2 time, while Algorithm A withn = 2 runs in2t2 time.
Hence the speed-upc+2

2
can be arbitrarily high.

Next we analyze the properties of Algorithm B assuming that the
constantsδ andε are infinitesimally small, that is, the evaluation of
all of the formulaeφi proceeds continuously at rateγi.

The constantsn andγ respectively for Algorithms A and B are
roughly related byγ = 1 − 1

n
: of the CPU capacity1

n
= 1 − γ is

spent evaluating the first unfinished formula, and the lower bound for
Algorithm B is similarly related to the lower bound for Algorithm A.
Algorithm S is the limit of Algorithm B whenγ goes to 0.

Theorem 3 The speed-up of Algorithm B is at least1−γ. This lower
bound is strict.

Proof: As with Algorithm A the worst case is achieved when all
unsatisfiable formulae preceding the first satisfiable formulaφs are
evaluated and, additionally, the evaluation of many of the satisfiable
ones has proceeded far. The disadvantage in comparison to Algo-
rithm S is the unnecessary evaluation of many of the satisfiable for-
mulae. Hence Algorithm B spends CPU time at most

sX
i=0

ti +
X
i≥1

tsγ
i =

sX
i=0

ti +
1

1− γ
ts − ts

in comparison to
sX

i=0

ti

with Algorithm S. The speed-up is therefore at least
Ps

i=0 tiPs
i=0 ti+

1
1−γ

ts−ts
= 1

1+

1
1−γ

ts−tsPs
i=0 ti

≥ 1

1+

1
1−γ

ts−ts

ts

= 1

1+ 1
1−γ

−1
= 1− γ.

This lower bound is strict: ifφi is satisfiable, evaluation times for
φj , j < i are 0, and evaluation times forφi, i > 1 are not lower than
that ofφ1, then the speed-up is only1− γ. �

4 EMPIRICAL EVALUATION

We illustrate properties of the new evaluation algorithms on a col-
lection of problems from the AIPS planning competitions. Plans for
most of these problems can be found in polynomial time by very sim-
ple domain-specific algorithms, and planners using heuristic search
[2] have excelled on these problems, while they had been consid-
ered difficult for planners based on satisfiability testing or CSP tech-
niques. On other types of problems satisfiability planning has had an
advantage over heuristic planners.

Each problem instance is mapped to a sequence of propositional
formulae according to a novel translation we have developed [9]. The
new translation often improves the Graphplan-based translation of
Kautz and Selman [5] by one or two orders of magnitude.

In running the experiments we use the Siege V4 SAT solver by
Lawrence Ryan from the Simon Fraser University on a 3.6 GHz Intel
Xeon computer to test the satisfiability of formulae. Then we com-
pute from these runtimes of individual formulae the total runtime
under algorithms A and B with different values for the parametersn
andγ. Algorithm S is the special casen = 1 of Algorithm A. The
constantsε andδ determining the granularity of CPU time division
are set infinitesimally small. For each problem instance we produced



at least 5 or 10 formulae beyond the first (assumed) satisfiable for-
mula, and the formulae after that are assumed to have infinite cost, as
are formulae which take over 20 minutes to evaluate. The times do
not include generation of the formulae.

The runtimes on a number of problems from the AIPS planning
competitions of 1998, 2000 and 2002 are given in Table 1. For most
benchmarks we give the runtimes of the most difficult problems,
which in some cases are the last ones in the series. A big fraction of
the runtimes not given are below one second for any evaluation strat-
egy. Some of the benchmark series cannot be efficiently solved until
the end, and we give data just some of the most difficult instances
that can be solved. We discuss these benchmarks below.

The Movie, MPrime and Mystery benchmarks from the 1998 com-
petition and Rovers from 2002 are very easy for every evaluation
strategy (fraction of a second in most cases) but we cannot produce
the biggest MPrime instance because of a memory restriction.

The Logistics (1998 and 2000) and Satellite (2002) series are
solved completely. Proving inexistence of plans slightly shorter than
the optimal plan length is in some cases difficult but the new evalua-
tion algorithms handle this efficiently.

The Depots (2002) problems are also relatively easy but in contrast
to most other benchmarks the new evaluation algorithms in some
cases increase runtimes substantially.

The DriverLog and ZenoTravel (2002) problems are solved
quickly except for some of the biggest instances. We cannot find
satisfiable formulae for the last two ZenoTravel problems within our
time limit, and finding plans for the preceding two instances of Zeno-
Travel and the second last of DriverLog is also slow. The last Driver-
Log instance cannot be solved with Siege V4 because of its restric-
tion to 524288 propositions.

Blocks World (2000) is basically easy to solve for the newest gen-
eration of SAT solvers but the high plan lengths lead to very big
formulae (size over 100 MB and over 524288 propositions), and we
can solve only two thirds of the series.

Elevator (2000), Schedule (2000) and Gripper (1998) are a chal-
lenge because only very loose lower bounds on plan length are easy
to prove. Finding plans corresponding to a given satisfiable formula
is very easy (some seconds at most) but locating these formulae is
very expensive. Increasing parametersn andγ improves runtimes.

The formulae generated for FreeCell (2002) are too big (hundreds
of megabytes) for the current SAT solvers to solve them efficiently.

Because for most of these benchmarks there is a high number of
easy satisfiable formulae corresponding to non-optimal plans, plans
could also be found by evaluating only every fifth or tenth formula,
thereby cutting the runtimes to a small fraction of the ones presented.
However, we do not think that this is a good strategy in general.

All in all, it seems that a conservative use of the new algorithms
(especially Algorithm B withγ ∈ [0.7..0.9]) leads to a general im-
provement in the runtimes in comparison to Algorithm S.

Plan quality sometimes decreases as total runtime decreases, but
not always. The biggest decrease is on the biggest Logistics in-
stances, with number of operators about 35 per cent higher for the
more efficient evaluation strategies. In some cases longer parallel
plan length yields slightly better plans in terms of the number of op-
erators. Interestingly, for the Gripper problem the easy satisfiable for-
mulae corresponding to plans much above optimum parallel length
still yield very good plans with very few unnecessary operators.

5 DISCUSSION

For many of the above problems the only domain-independent plan-
ners that have earlier quickly solved them are based on heuristic
search as proposed by Bonet and Geffner [2] and feature techniques
specifically targeting these benchmarks. Our results now indicate that
general-purpose techniques suffice and not even a planning-specific
heuristic is needed. Sophisticated satisfiability algorithms easily find
plans provided that the problem instance combined with a fixed plan
length does not result in a too tightly constrained satisfiability prob-
lem. Such loosely constrained satisfiability problems can often be
effectively found by simultaneously evaluating formulae correspond-
ing to several plan lengths, a task for which we proposed the Algo-
rithms A and B.

Until now, satisfiability planning had been considered a leading
approach for solving different types of inherently difficult problems,
for example difficult problems in the phase transition region [8] and
optimal planning for problems that are easy to solve by heuristic
search [2] when no optimality is required. Now our results show that,
in fact, satisfiability planning is also rather strong in solving planning
problems without the optimality requirement. The possible misper-
ception of the strength of satisfiability planning has largely been a
result of the use of the sequential strategy (Algorithm S). Of course,
important factors in the positive results of the present paper (when
compared to other types of algorithms) are also improvements in the
translation of planning into the propositional logic and improvements
in satisfiability algorithms in recent years, especially the emergence
of very efficient satisfiability solvers based on sophisticated clause
learning.

6 CONCLUSIONS

We have devised novel algorithms for managing the evaluation of
a sequence of subproblems of finding plans of given lengths, as in
satisfiability planning and the GraphPlan algorithm. The algorithms
interleave the evaluation of several formulae, and can avoid complet-
ing the evaluation of some of the very difficult unsatisfiable formulae
that would otherwise be responsible for very high runtimes. The cost
of improved runtimes is that we no more have a guarantee that plans
have optimal length.

The question arises whether the evaluation algorithms could be
claimed to be optimal under a suitable criterion. This in an important
topic for further research.
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