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Abstract. Many forms of reasoning about actions and planning can
be reduced to regression, the computation of the weakest precon-
dition a state has to satisfy to guarantee the satisfaction of another
condition in the successor state. In this work we formalize a general
syntactic regression operation for ground PDDL operators, show its
correctness, and define a composition operation based on regression.
As applications we present a very simple yet powerful algorithm for
computing invariants, as well as a generalization of the hn heuristic
of Haslum and Geffner to PDDL.

1 Introduction

Although it is well known that the expressivity of PDDL [13] is re-
quired for efficient modeling of many planning problems [14], most
planner implementations still restrict to the STRIPS language in
which action preconditions are conjunctions of (positive) literals and
all effects are unconditional. Anecdotal evidence tells that this is due
to the difficulty to reason about actions more general than STRIPS.

PDDL can often be efficiently reduced to STRIPS, but certain
classes of operators that have disjunctive preconditions or several
conditional effects with logically independent antecedents lead to an
exponential number of STRIPS operators. Furthermore, reduction to
STRIPS is impossible for many generalizations of classical planning:
in the presence of partial observability, splitting one operator to sev-
eral is in general incorrect because in execution time it may not be
possible to choose which operator to execute. This provides a strong
motivation for the generalization of STRIPS-based algorithms and
other planning techniques to more general languages such as PDDL.

Our work defines a regression operation for ground PDDL opera-
tors and demonstrates its applications to planning. Pednault [15] de-
fines regression for his ADL class of operators but his definition skips
over the concrete syntax of what is today known as ADL/PDDL,
The key component of the regression operation we define for ground
PDDL is Definition 3 that maps a PDDL operator and a state vari-
able to formulae describing the conditions under which the variable
becomes true and false. The basis of regression operations is the sub-
stitution of a variable by an expression that describes its new value.
This was used in the assignment axioms of the Hoare calculus [9]
and later by Dijkstra for computing weakest preconditions [4].

The structure of the paper is as follows. Section 2 defines the clas-
sical planning problem for ground PDDL, the regression operation
and the composition operation, and discusses their formal properties.
Section 3 gives applications to invariants and heuristics. Section 4 de-
fines regression for nondeterministic operators, Section 5 discusses
related work, and Section 6 concludes the paper.

2 Definitions
Definition 1 Let A be a set of state variables. An operator is a pair
〈p, e〉 where p is a propositional formula over A describing the pre-
condition, and e is an effect, defined recursively as follows.

1. a and ¬a for state variables a ∈ A are effects.
2. e1 ∧ · · · ∧ en is an effect if e1, . . . , en are effects.
3. c B e is an effect if c is a formula and e is an effect.

The meaning of conditional effects c B e is that effects e take
place if the condition c is true.

Definition 2 (Execution) Let 〈p, e〉 be an operator over A. Let s :
A→ {0, 1} be a state. The operator is executable in s if s |= p and
the set JeKs is consistent. This set is recursively defined as follows.

1. JaKs = {a} and J¬aKs = {¬a} for a ∈ A.
2. Je1 ∧ · · · ∧ enKs =

Sn
i=1JeiKs.

3. Jc B eKs = JeKs if s |= c and Jc B eKs = ∅ otherwise.

An operator 〈p, e〉 induces a partial functionR〈p, e〉 on states: states
s and s′ are related by R〈p, e〉 if s |= p and s′ is obtained from s by
making the literals in JeKs true and retaining the truth-values of state
variables not occurring in JeKs. Define exco(s) = s′ by sR(o)s′ and
exco1;...;on(s) = excon(. . . exco1(s) . . .).

The main application of regression is in backward-search in which
the basic step, computing a formula that represents the predecessor
states (the new subgoal), is regression. The key component of regres-
sion for PDDL-style operators is given next.

Definition 3 We recursively define the condition El(e) of literal l
made true by an operator with the effect e as follows.

El(l) =>
El(l′) =⊥ when l 6= l′ (for literals l′)

El(e1 ∧ · · · ∧ en) =El(e1) ∨ · · · ∨El(en)
El(c B e) = c ∧El(e)

The symbols> and⊥ denote true and false, respectively. The case
El(e1∧· · ·∧en) = El(e1)∨· · ·∨El(en) is defined as a disjunction
because it is sufficient that at least one effect makes l true.

Definition 4 Let A be the set of state variables. We define the con-
dition El(o) of operator o = 〈p, e〉 being executable so that literal l
is made true as p ∧El(e) ∧

V
a∈A ¬(Ea(e) ∧E¬a(e)).

The third conjunct in the formula requires that no state variable is
made both true and false. The formula El(e) indicates in which states
the literal l is made true by e. It is closely related to JeKs.



Lemma 5 Let A be the set of state variables, s a state on A, l a
literal on A, and o an operator with effect e. Then

1. l ∈ JeKs if and only if s |= El(e), and
2. exco(s) is defined and l ∈ JeKs if and only if s |= El(o).

The formula Ea(e) ∨ (a ∧ ¬E¬a(e)) expresses the truth of a ∈ A
after the execution of e in terms of truth-values of state variables
before the execution: either a becomes true, or a is true before and
does not become false.

Lemma 6 Let a ∈ A be a state variable, o = 〈p, e〉 ∈ O an opera-
tor, and s and s′ = exco(s) states. Then s |= Ea(e)∨ (a∧¬E¬a(e))
if and only if s′ |= a.

Definition 7 (Regression) Let φ be a propositional formula and
o = 〈p, e〉 an operator. The regression of φ with respect to o is
rgo(φ) = φr ∧p∧χ where χ =

V
a∈A ¬(Ea(e)∧E¬a(e)) and φr is

obtained from φ by replacing every a ∈ A byEa(e)∨(a∧¬E¬a(e)).
Define rge(φ) = φr ∧χ and rgo1;...;on

(φ) = rgo1(· · · rgon
(φ) · · · ).

The formula χ corresponds to the requirement that JeKs is consis-
tent for an operator to be executable.

The reason why regression is useful is that it allows to compute
the predecessor states by simple formula manipulation.

Next we formalize the important property of regression.

Theorem 8 Let φ be a formula overA, o an operator overA, and S
the set of all states i.e. valuations ofA. Then {s ∈ S|s |= rgo(φ)} =
{s ∈ S| exco(s) |= φ}.

Proof: We show that for any state s, s |= rgo(φ) if and only if
exco(s) is defined and exco(s) |= φ. By definition rgo(φ) = φr ∧
p ∧ χ for o = 〈p, e〉 where φr is obtained from φ by replacing each
a ∈ A byEa(e)∨(a∧¬E¬a(e)) and χ =

V
a∈A ¬(Ea(e)∧E¬a(e)).

First we show that s |= c ∧ χ if and only if exco(s) is defined.
s |= c ∧ χ iff s |= c and {a,¬a} 6⊆ JeKs for all a ∈ A

iff exco(s) is defined
The two equivalences are respectively by Lemma 5 and Definition 2.

Then we show that s |= φr if and only if exco(s) |= φ. This is
by structural induction over subformulae φ′ of φ and formulae φ′r
obtained from φ′ by replacing a ∈ A by Ea(e) ∨ (a ∧ ¬E¬a(e))

Induction hypothesis: s |= φ′r if and only if exco(s) |= φ′.
Base case 1, φ′ = >: Now φ′r = > and both are true in the

respective states.
Base case 2, φ′ = ⊥: Now φ′r = ⊥ and both are false in the

respective states.
Base case 3, φ′ = a for some a ∈ A: Now φ′r = Ea(e) ∨ (a ∧
¬E¬a(e)). By Lemma 6 s |= φ′r if and only if exco(s) |= φ′.

Inductive case 1, φ′ = ¬θ: By the induction hypothesis s |= θr
iff exco(s) |= θ. Hence s |= φ′r iff exco(s) |= φ′ by the truth-
definition of ¬.

Inductive case 2, φ′ = θ∨ θ′: By the induction hypothesis s |= θr
iff exco(s) |= θ, and s |= θ′r iff exco(s) |= θ′. Hence s |= φ′r iff
exco(s) |= φ′ by the truth-definition of ∨.

Inductive case 3 for φ′ = θ ∧ θ′ goes like the previous case. �

It may appear that for n consecutive regression steps the size of
the formula grows exponentially, as each variable occurrence may be
replaced by a bigger formula containing several variables. However,
if the formula is represented in the circuit form instead of a tree-
like formula, each variable occurs at most once. Hence a sequence

of regression steps only leads to a worst-case polynomial increase in
size. The circuits can often be simplified to keep them small, and in
special cases, like STRIPS operators, there is a constant upper bound
on the size of formulae/circuits.

In addition to being the basis of backward search, regression has
many other applications in reasoning about sequences of actions.
Central questions concern the relation between a given action and
a given sequence of actions: whether they are executable in exactly
the same states and whether they have the same effects. This is the
basis of computing macro-actions [10] and the elimination of redun-
dant actions [8]. Answering this question requires the composition
of a sequence of two or more operators. The composition o1 ◦ o2 of
o1 = 〈p1, e1〉 and o2 = 〈p2, e2〉 is an operator that behaves like
applying o1 followed by o2. For a to be true after o2 we can regress
a with respect to o2, obtaining Ea(e2) ∨ (a ∧ ¬E¬a(e2)). Condition
for this formula to be true after o1 is obtained by regressing with e1,
leading to

rge1(Ea(e2) ∨ (a ∧ ¬E¬a(e2)))
= rge1(Ea(e2)) ∨ (rge1(a) ∧ ¬rge1(E¬a(e2)))
= rge1(Ea(e2)) ∨ ((Ea(e1) ∨ (a ∧ ¬E¬a(e2))) ∧ ¬rge1(E¬a(e2))).

Since we want to define an effect φ B a of o1 ◦ o2 so that a becomes
true whenever o1 followed by o2 would make it true, the formula φ
does not have to represent the case in which a is true already before
the execution of o1 ◦o2. Hence we can simplify the above formula to

rge1(Ea(e2)) ∨ (Ea(e1) ∧ ¬rge1(E¬a(e2))).

An analogous formula is needed for making ¬a false. This leads to
the following definition.

Definition 9 (Composition) Let o1 = 〈p1, e1〉 and o2 = 〈p2, e2〉
be two operators on A. Then their composition o1 ◦ o2 is defined as*
p,

^
a∈A

((rge1(Ea(e2)) ∨ (Ea(e1) ∧ ¬rge1(E¬a(e2)))) B a)∧
((rge1(E¬a(e2)) ∨ (E¬a(e1) ∧ ¬rge1(Ea(e2)))) B ¬a)

+
where p = rgo1(p2) ∧

V
a∈A ¬ (Ea(e1) ∧E¬a(e1)).

Example 10 Consider o = 〈>, (¬b0 B b0) ∧ (¬b1 ∧ b0 B (b1 ∧
¬b0))∧(¬b2∧b1∧b0 B (b2∧¬b1∧¬b0)〉 which increments a 3-bit
binary number by 1.1 The composition of o with itself, representing
increment by 2, is (after applying the De Morgan laws)

〈>, ((¬b2 ∨ ¬b1) ∧ b0) ∨ (¬b0 ∧ b2 ∧ b1) B b0)∧
((¬b0 ∧ b1 ∧ ¬b2)∨
(((b2 ∧ b1) ∨ ¬b0) ∧ ((¬b1 ∨ (b0 ∧ ¬b2)) ∧ (¬b0 ∨ b1))) B ¬b0)∧
((((b2 ∧ b1) ∨ ¬b0) ∧ ((¬b1 ∨ (b0 ∧ ¬b2)) ∧ (¬b0 ∨ b1)))
∨(b0 ∧ ¬b1) B b1)∧
((¬b0 ∧ b1 ∧ ¬b2) ∨ (b0 ∧ ¬b2 ∧ b1) B ¬b1)∧
((¬b0 ∧ b1 ∧ ¬b2) ∨ (b0 ∧ ¬b2 ∧ b1) B b2)〉.

Further logical simplification and elimination of redundant condi-
tional effects and simplifying unnecessary conditions yields

〈>, (¬b0 ∧ b2 ∧ b1 B b0)∧
(¬b1 B b1)∧
(¬b2 ∧ b1 B ¬b1)∧
(¬b2 ∧ b1 B b2)〉. �

Theorem 11 Let o1 and o2 be operators and s a state. Then
exco1◦o2(s) is defined if and only if exco1;o2(s) is defined, and
exco1◦o2(s) = exco1;o2(s).

1 Notice that 111 is not incremented further.



3 Applications
3.1 Invariants
Very interestingly, the regression operation can be used as the main
component of a powerful and intuitive algorithm for computing in-
variants. An invariant property of a planning problem is satisfied by
every state that is reachable from the initial state(s). An equivalent in-
ductive definition states that a property is invariant if the initial states
satisfy it and every action preserves it.

Main applications of invariants are planning by SAT and CSPs
[11] in which invariants help to prune the search space, the valida-
tion of domain models in which invariants give information about
dependencies between state variables, inexpensive incomplete tests
for unreachability, and the computation of heuristics.

We generalize the inductive algorithm [16] to general opera-
tors. The novelty is the extremely simple structure of the algo-
rithm given the generality of the operator definition. The algorithm
invariants(A,I ,O,n) in Figure 1 computes invariants with at most n
literals for operators O and an initial state I over state variables A.
The runtimes increase quickly as n is increased and in practice one
can use n = 2 or n = 3. We define lits(l1∨· · ·∨ ln) = {l1, . . . , ln}.
The loop on line 5 is repeated until there are no o ∈ O and clauses
c ∈ C such that C ∪ {rgo(¬c)} is satisfiable.

Lemma 12 LetC be a set of clauses, φ a formula, and o an operator.
If C ∪ {rgo(¬φ)} is unsatisfiable, then exco(s) |= φ for all states s
such that s |= C and o is executable in s.

Proof: Easy corollary of Theorem 8. �

1: procedure invariants(A, I,O, n);
2: C := {a ∈ A|I |= a} ∪ {¬a|a ∈ A, I 6|= a};
3: repeat
4: C′ := C;
5: for each o ∈ O and c ∈ C s.t. C′ ∪ {rgo(¬c)} ∈ SAT do
6: C := C\{c};
7: if |lits(c)| < n then
8: begin (* Add weaker clauses. *)
9: C := C ∪ {c ∨ a | a ∈ A} ∪ {c ∨ ¬a | a ∈ A};

10: end
11: end do
12: until C = C′;
13: return C;

Figure 1. Algorithm for computing a set of invariant clauses

On lines 7 and 9, when a clause c is not guaranteed to hold, weaker
clauses c ∨ l may be, so replace c by all clauses that are weaker by
having one more literal. If these clauses don’t hold either, they will
be similarly removed and replaced by weaker ones.

Theorem 13 Let A be a set of state variables, I a state, O a
set of operators, and n ≥ 1 an integer. Then the procedure
invariants(A, I,O, n) returns a set C of clauses with at most n lit-
erals so that exco1;...;om(I) |= C for any sequence o1; . . . ; om of
operators from O.

Proof: Let C0 be the value assigned to the variable C on line 2 in the
procedure and C1, C2, . . . be the values of the variable in the end of
each iteration of the outermost repeat loop.

Induction hypothesis: for every {o1, . . . , oi} ⊆ O and c ∈ Ci,
exco1;...;oi(I) |= c.

Base case i = 0: excε(I) for the empty sequence is by definition
I itself, and by construction C0 consists of only formulae that are
true in the initial state.

Inductive case i ≥ 1: Take any {o1, . . . , oi} ⊆ O and c ∈ Ci.
Analyze two cases.

1. If c ∈ Ci−1, then by the induction hypothesis exco1;...;oi−1(I) |=
c. Since c ∈ Ci it must be that Ci−1∪{rgoi

(¬c)} is unsatisfiable.
Hence by Lemma 12 exco1;...;oi(I) |= c.

2. If c 6∈ Ci−1, it must be because Ci−1 ∪ {rgo′(¬c
′)} is satisfiable

for some o′ ∈ O and c′ ∈ Ci−1 such that c is obtained from c′ by
conjoining some literals to it and c′ |= c. Since c′ ∈ Ci−1, by the
induction hypothesis exco1;...;oi−1(I) |= c′. Since c′ |= c also
exco1;...;oi−1(I) |= c. Since Ci−1 ∪ {rgoi

(¬c)} is unsatisfiable,
exco1;...;oi(I) |= c by Lemma 12.

This finishes the induction proof. The iteration of the procedure
stops when Ci = Ci−1, meaning that the claim of the theorem holds
for arbitrarily long sequences o1; . . . ; om. �

To make the algorithm run in polynomial time the satisfiability and
logical consequence tests should be performed by algorithms that
approximate these tests in polynomial time. If restricted to STRIPS
operators, the inductive invariant computation [16] is obtained by im-
plementing the satisfiability test C∪{rgo(¬c)} as an incomplete test
by unit resolution. More generally, it may be useful to have a stronger
tractable satisfiability test. The proof of Theorem 13 remains valid as
long as the incomplete satisfiability test does not falsely indicate un-
satisfiability for a satisfiable set.

Inference of facts that hold at given time points was first consid-
ered in the GraphPlan algorithm of Blum and Furst in the form of
mutexes [1]. This planning graph construction, similarly to early al-
gorithms for computing invariants [5, 16] restricts to STRIPS opera-
tors. Later works have considered more general classes of operators
[6, 12] adopting the inductive definition definition of invariants first
used in [1, 16]. Gerevini and Schubert [6] consider conditional ef-
fects but no disjunctions. Lin [12] tries to find invariants for a class
of problems by looking at problem instances with a small state space
and eliminating candidate invariants if they are falsified by the cho-
sen problem instances.

3.2 Haslum and Geffner’s hn

Our invariant algorithm computes a generalization of Haslum &
Geffner’s hn heuristic [7] which is defined for STRIPS only. An esti-
mate for the distance of any formula φ (precondition or goal) is k if φ
is satisfiable with Ck but not with Ck−1 (an incomplete satisfiability
test can be used without sacrificing the admissibility of the heuris-
tic.) Haslum and Geffner’s estimate Gn(V ) for the distance of a set
V of variables from the initial state can be expressed in terms of our
sets Ci when our parameter n equals m: for V = {a1, . . . , am},
Gn(V ) = k iff there is ¬b1 ∨ · · · ∨ ¬bj ∈ Ck−1 such that
{b1, . . . , bj} ⊆ V and there is no such clause inCk, andGn(V ) = 0
if ¬a 6∈ C0 for all a ∈ V .

Haslum and Geffner define states as subsets of the set A of all
state variables. We will call this kinds of states h-states to distinguish
them from our definition of states. Haslum and Geffner define R(V )
as the set of pairs (B, o) such that the operator o reaches a h-state V
from a h-stateB. This is essentially a simple regression operation for
STRIPS. We ignore the operator o (because we don’t need it for costs



unlike Haslum and Geffner who consider non-unitary costs) and de-
fine R(V ) simply as all the minimal sets of variables that have to be
true for variables V to be true after executing one of the operators.
Now R(V ) has the following property.

Lemma 14 For all B ∈ R(V ),
V
a∈B a |= rgo(

V
a∈V a).

The definition of the heuristic is as follows. For V ⊆ A let

Gn(V ) = 0 if V ⊆ I
Gn(V ) = minB∈R(V )(1 +Gn(B)) if |V | ≤ n and V 6⊆ I
Gn(V ) = maxB⊂V,|B|=nG

n(B) if |V | > n.

Theorem 15 For a STRIPS problem, let Ci be the sets computed by
the algorithm in Figure 1 as explained in the proof of Theorem 13.
Let V ⊆ A be a set of variables. If Gn(V ) = k for any k ≥ 1, then
Ck−1∪V is unsatisfiable andCk∪V is satisfiable, andGn(V ) = 0
iff C0 ∪ V is satisfiable.

Proof: We give a proof sketch.
Induction hypothesis: for every i ≥ 0, for any V ⊆ A,

1. if Gn(V ) = i then Ci ∪ V is satisfiable,
2. ifGn(V ) = i then Cj ∪V is unsatisfiable for j ∈ {0, . . . , i−1}.

Base case i = 0: Let V ⊆ A be any set of variables.

1. If Gn(V ) = 0 then V ⊆ C0. Since C0 is satisfiable, also C0 ∪ V
is satisfiable.

2. Holds trivially because {0, . . . , i− 1} = ∅.

Inductive case i ≥ 1: Remark A. If Ci |= ¬a1 ∨ · · · ∨ ¬ak, then
¬b1 ∨ · · · ∨ ¬bm ∈ Ci for some {b1, . . . , bm} ⊆ {a1, . . . , ak}.

1. Assume Gn(V ) = i. Then there is an operator o that reaches
the h-state V from a h-state B such that Gn(B) = i − 1. Since
Gn(B) = i − 1, by the induction hypothesis Ci−1 ∪ B is sat-
isfiable. By Lemma 14

V
a∈B a |= rgo(

V
a∈V a). Hence also

Ci−1 ∪ {rgo(
V
a∈V a)} is satisfiable. Hence when constructing

Ci the algorithm removes all clauses ¬b1 ∨ · · · ∨ ¬bj such that
{b1, . . . , bj} ⊆ V . Hence by Remark A Ci ∪ V is satisfiable.

2. Assume Gn(V ) = i ≥ 1. Then Gn(B) ≥ i− 1 for all h-states B
and operators that reach V from B.
If i > 1, then by the induction hypothesisCi−2∪B is unsatisfiable
for any such B, and there is a clause ¬b1 ∨ · · · ∨ ¬bj ∈ Ci−2

such that {b1, . . . , bj} ⊆ B. Hence Ci−2 ∪ {rgo(
V
a∈V a)} is

unsatisfiable for every o ∈ O. Therefore the clauses in Ci−1 that
contradict V are not removed, and henceCi−1∪V is unsatisfiable.
If i = 1, then Gn(V ) > 0 because V 6⊆ I , and hence C0 ∪ V is
unsatisfiable.
Hence Ci−1 ∪ V is in both cases unsatisfiable.

�

4 Regression for Non-Deterministic Operators
Based on the regression operation for deterministic operators in
Definition 7 regression for a class of nondeterministic operators
can be defined. The operators’ effects have nondeterministic choice
e1| · · · |en between two or more deterministic effects e1, . . . , en.

Definition 16 Let φ be a formula and o = 〈p, e1| · · · |en〉 an opera-
tor where e1, . . . , en are deterministic. Define

rgnd
o (φ) = rg〈p,e1〉(φ) ∧ · · · ∧ rg〈p,en〉(φ).

Theorem 17 Let φ be a formula over A, o an operator over A, and
S the set of all states over A. Then for all s ∈ S, s |= rgnd

o (φ) if and
only if all possible successor states s′ of s satisfy φ.

Proof: This follows from the fact that each 〈p, ei〉 represents one
possible outcome the nondeterministic action may have, rg〈p,ei〉(φ)
represents all the states from which φ is reached by 〈p, ei〉, and the
intersection of these sets is exactly the set of states from which φ is
reached no matter which outcome is the actual one. �

Example 18 Let o = 〈d, b|¬c〉. Then

rgnd
o (b↔ c) = rg〈d,b〉(b↔ c) ∧ rg〈d,¬c〉(b↔ c)

= (d ∧ (> ↔ c)) ∧ (d ∧ (b↔ ⊥))
≡ d ∧ c ∧ ¬b.

�

Applications of the nondeterministic regression operation are sim-
ilar to the deterministic one. Most notably, backward-search algo-
rithms for planning with partial observability can be based on it.

5 Related Work
Regression is closely related to other forms of manipulation of for-
mulae for computing the images or preimages of sets of states. We
discuss some of the most closely related and some of the very recent
related work and contrast them to regression.

5.1 Symbolic Pre-Images
General forms of reasoning about actions by the computation of im-
ages and preimages, leading to logic-based algorithms for computing
sets of reachable states, has many applications and was originally in-
troduced in the context of computer-aided verification as a technique
for model-checking [3, 2]. Preimage computation is essentially re-
gression whereas images are successors of sets of states.

Let A = {a1, . . . , an}, A′ = {a′1, . . . , a′n} and A′′ =
{a′′1 , . . . , a′′n}. The variables in A refer to the values of state vari-
ables in a state and the variables in A′ to the values in a successor
state. Formulae φ overA∪A′ can represent arbitrary binary relations
on the set of all states.

The translation of a deterministic operator 〈p, e〉 into a formula is
τA(o) = p∧

V
a∈A ¬(Ea(e)∧E¬a(e))∧

V
a∈A(a′ ↔ (Ea(e)∨ (a∧

¬E¬a(e)))). The first two conjuncts express the conditions for the
executability of the operator (truth of the precondition and the con-
sistency of the effects) and the third conjunct expresses the new value
of each state variable in terms of the old values of state variables.

With respect to an operator o the successor or predecessor states
of a set of states, represented as a formula φ, can be computed by
syntactic manipulation of φ and τA(o). The basic logical step in this
computation is that of existential abstraction which eliminates the
occurrences of one variable in a formula. It is defined by ∃x.φ =
φ[>/x] ∨ φ[⊥/x] where φ[θ/x] means replacing all occurrences of
x in φ by θ.

Definition 19 Let o be an operator and φ a formula. Define

imgo(φ) = (∃A.(φ ∧ τA(o)))[A/A′]
preimgo(φ) = ∃A′.(τA(o) ∧ φ[A′/A])



Above φ[A′/A] denotes substitution of each a ∈ A in φ by the
corresponding variable a′ ∈ A′.

Not surprisingly, there is a close connection between preimages
and regression.

Theorem 20 rgo(φ) ≡ preimgo(φ).

Example 21 Let A = {a, b, c}. Let o = 〈c, a ∧ (a B b)〉. Then

rgo(a ∧ b) = c ∧ (> ∧ (b ∨ a)) ≡ c ∧ (b ∨ a).

The formula corresponding to o is

τA(o) = c ∧ a′ ∧ ((b ∨ a)↔ b′) ∧ (c↔ c′).

The preimage of a ∧ b with respect to o is represented by

∃a′b′c′.(τA(o) ∧ (a′ ∧ b′))≡∃a′b′c′.(c ∧ a′ ∧ ((b ∨ a)↔ b′)
∧(c↔ c′) ∧ a′ ∧ b′)

≡∃a′b′c′.(a′ ∧ b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡∃b′c′.(b′ ∧ c ∧ (b ∨ a) ∧ c′)
≡∃c′.(c ∧ (b ∨ a) ∧ c′)
≡ c ∧ (b ∨ a)

�

This connection between preimages and regression is best under-
stood based on the equivalence a′ ↔ (Ea(e)∨ (a∧¬E¬a(e))) in the
definition of τA(o): it corresponds to the substitution in the defini-
tion of regression. The advantage of regression is that no existential
abstraction is needed, and the disadvantage is that it is restricted to
operators/relations that can be represented as a conjunction of equiv-
alences

V
a∈A a

′ ↔ φa.

5.2 C-Filter of Shahaf and Amir
Shahaf and Amir [17] present C-Filtering for computing (an implicit
representation of) the image of a set of states with respect to a se-
quence of actions. Shahaf and Amir hint at a connection between C-
Filtering and regression but do not clarify it. The C-Filter is simply
the use of regression to test facts about a belief state B reached from
an initial belief state I by a sequence of actions o1, . . . , on. Instead
of explicitly constructing B by image computation, facts relating to
B are queried by regressing them to queries about the initial state.
For example, to test whether B ∩ B′ 6= ∅ for some belief state B′

expressed as a formula φ, test the non-emptiness of the intersection
by a satisfiability test of I ∧ rgo1;...;on

(φ).
Shahaf and Amir claim as the novelty of C-Filtering the incre-

mental construction of the substitutions rgo1;...;on
(a)/a as the action

sequence o1, . . . , on, . . . progresses as well as the representation of
the required formulae as Boolean circuits.

6 Conclusions
We have defined regression and composition operations for PDDL
operators and a regression operation for nondeterministic actions.
We have also discussed applications of general regression operations
in connection with macro-actions, elimination of irredundant opera-
tors, invariants and heuristics. In particular, we gave an algorithm for
computing invariants for a general definition of actions that includes
disjunctive preconditions and conditional effects. The algorithm is
powerful yet conceptually extremely simple, and its power can be
traded to efficiency by controlling the accuracy and asymptotic run-
time of approximate satisfiability tests. The algorithm also yields a
generalization of the hn heuristic [7].
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