
Complexity of Concurrent Temporal Planning

Jussi Rintanen
NICTA Ltd and the Australian National University

Canberra, Australia

Abstract

We consider the problem of temporal planning in which a
given goal is reached by taking a number of actions which
may temporally overlap and interfere, and the interference
may be essential for reaching the goals.
We formalize a general temporal planning problem, show that
its plan existence problem is EXPSPACE-complete, and give
conditions under which it is reducible to classical planning
and is therefore only PSPACE-complete. Our results are the
first to show that temporal planning can be computationally
more complex than classical planning. They also show how
and why a very large and important fragment of temporal
PDDL is reducible to classical planning.

Introduction
An important aspect of many real world application scenar-
ios is time. Actions’ and events’ effects take place over a
period of time, and the possibility of taking actions may
depend on events and other actions taking place simultane-
ously. These are characteristic differences separating tem-
poral planning from the classical planning problem.

• In temporal planning actions do not sequentially follow
each other, but may temporally overlap and interfere. The
possibility of taking an action may depend on whether
some other actions are being taken.
In classical planning actions are taken in a sequence, and
the possibility of taking an action is independent of earlier
(and later) actions, given the current state.

• In temporal planning the effects of an action may be a
complex function of the state and other simultaneous ac-
tions (Pinto 1998), whereas in classical planning they are
independent of other actions.

In this work we carry out one of the first analytic investi-
gations on temporal planning. Temporal planning seems to
be a radical departure from classical planning and the natural
question is whether there is an essential difference between
temporal and classical planning? Simple forms of temporal
planning are reducible to classical planning (Cushing et al.
2007) but it is not more generally known where the border
between classical and temporal planning is.

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Our answer to this question is twofold. First, temporal
planning can represent a wider class of problems than clas-
sical planning. This is because part of the world dynamics
is represented by the actions taking place and the state vari-
ables do not completely characterize the system state unlike
in classical planning. Second, the mechanisms for represent-
ing time in temporal planning have significantly more power
than anything in classical planning.

At the technical level, our first result shows that tempo-
ral planning is more powerful than classical planning by be-
ing able to represent a wide class of transition systems not
expressible as classical planning. Our second result shows
that our formalization of temporal planning is EXPSPACE-
complete, and therefore not in general reducible to classi-
cal planning (which is PSPACE-complete (Bylander 1994)).
The proof of this result directly points to restrictions that de-
crease the complexity to PSPACE and make a reduction to
classical planning possible.

The structure of the paper is as follows. In the next section
we give two formalizations of temporal planning, one enu-
merative in which states are atomic objects and one succinct
based on state variables (non-schematic, grounded). Then
we show that the latter is sufficiently powerful to represent
every problem instance in the former. The main section con-
sists of an analysis of the complexity of temporal planning,
showing it to be strictly more powerful than classical plan-
ning. As an application of our main results we show that
many temporal planning languages, including ones used in
the recent planning competitions, are polynomial-time re-
ducible to classical planning. We conclude the paper by dis-
cussing related works and future research.

Formal Definitions
Next we give two general formalizations of temporal plan-
ning with integer time. The first definition views states as
atomic objects and makes explicit only the possible state
sequences traversed when given sequences of actions are
taken. The second, more practical definition expresses the
same in terms of state variables so that states are associated
with valuations of state variables and actions indicate how
and when the values of the variables change.

The formalization with atomic states is very close to a for-
malization of classical planning. Apart from the possibility
of concurrent actions, the formalization is almost identical.

A remarkable feature of the formalization is that action du-
ration, which is an important concept in temporal planning,
does not explicitly show up at this level.

General Formulation without State Variables

Definition 1 A problem instance in temporal planning is
〈S, I,O,R,G〉 where

• S is a finite set of states,

• I ∈ S is the initial state,

• O is a finite set of actions,

• R : 2O → 2S×S assigns each set of actions a partial
function (a binary relation) on the states and fulfills the
property CUS explained below, and

• G ⊆ S is the set of goal states.

The function R associates possible sets of joint actions a
transition relation: a state s has the successor state s′ when
actions O1 are taken if (s, s′) ∈ R(O1). If there is no
(s, s′) ∈ R(O1) for a given state s, then it is not possible
to take the actions O1 in s.

We require that for every state the set of possible actions
is closed under subsets (CUS): for every s ∈ S, if there is
(s, s1) ∈ R(O1) for some s1 ∈ S, then for every O2 ⊆ O1

there is (s, s2) ∈ R(O2) for some s2. This means that taking
an action is never obligatory, no matter which other actions
are taken simultaneously or have been taken earlier.

An execution is a sequence s0, O0, . . . , sn−1, On−1, sn
of interleaved states and sets of actions so that si+1 =
R(Oi)(si) for all i ∈ {0, . . . , n− 1}.

General Formulation with State Variables

We base our definitions on a finite set A of state variables
and a finite set O of actions.

A valuation, representing a sequence of states, is v : N×
(A ∪ O) → {0, 1} which assigns to each state variable and
each action at each t ∈ N = {0, 1, . . .} the value 0 or 1.
For actions, 1 means that it is taken and 0 means that it is
not taken at that time point. All our results can be easily
extended to multi-valued variables with any finite domain.

Formulae about the temporally extended behavior of ac-
tions make references to different time points. For this
we use a temporal language L with operators [i..j]φ where
i, j ∈ {. . . ,−2,−1, 0, 1, 2, . . .} make a reference to time
points relative to the current one: φ is true at every time in
{i, . . . , j}. We use the short-hand [i]φ for [i..i]φ. Otherwise
L is like the classical propositional logic. Literals are a and
¬a for variables a ∈ A. Complements l of literals l are de-
fined by a = ¬a and ¬a = a. For sets L of literals we define
L = {l|l ∈ L}. The truth of formulae is defined as follows.

Definition 2 Let v be a valuation, a ∈ A any state variable,
o ∈ O any action, φ, φ1 and φ2 any formulae in L, and i, j
and k integers for time points such that j ≤ k.

v |=i a iff
{
i ≥ 0 and v(i, a) = 1 or
i < 0 and v(0, a) = 1

v |=i o iff i ≥ 0 and v(i, o) = 1
v |=i ¬φ iff v 6|=i φ
v |=i φ1 ∧ φ2 iff v |=i φ1 and v |=i φ2

v |=i φ1 ∨ φ2 iff v |=i φ1 or v |=i φ2

v |=i [j..k]φ iff v |=i+h φ for all h ∈ {j, . . . , k}

Before time point 0 no actions take place and the values of
all state variables are the same as in time point 0.

An action o is possible at a time point i iff v |=i φ where
φ ∈ L is the precondition of o.

Changes in the state of the world are described by rules
〈p, e〉 where p is a formula in L and e is a set of literals. If
v |=i p and l ∈ e then l is made true at i+1. The formulae p
can refer to actions and values of state variables at arbitrary
time points in the past. This makes it possible to describe
any dependence of changes on a bounded length history.

Since possibility of taking an action can only depend
on the past, action preconditions cannot refer to the fu-
ture. Similarly, the future is a function of the past, so p
in a rule 〈p, e〉 refers to the past. Hence we require that
times(φ) ⊆ {0,−1,−2, . . .} for action preconditions φ and
times(p) ⊆ {0,−1,−2, . . .} for rules 〈p, e〉, where

times(x) = {0} for all x ∈ A ∪O
times(¬φ) = times(φ)
times(φ1 ∧ φ2) = times(φ1) ∪ times(φ2)
times(φ1 ∨ φ2) = times(φ1) ∪ times(φ2)
times([i..j]φ) = {n+ k|i ≤ n ≤ j, k ∈ times(φ)}.

We express some rules more intuitively with time tags
[i] for effect literals in the rules, for example 〈[−5.. −
4]¬a, {[1]a, [2]¬b}〉. These rules can be easily reduced to
the basic form of rules: if there are more than one time tag
in the effect then split the rule to several, and then move the
time-origin of each so that the effects refer to time point 1.
The above rule hence reduces to the rules 〈[−5..−4]¬a, {a}〉
and 〈[−6..− 5]¬a, {¬b}〉. We will use this notation later in
some of the proofs.

Definition 3 A succinct problem instance in temporal plan-
ning is 〈A, I,O,R,D,G〉 where

• A is a finite set of state variables,
• I , the initial state, is a valuation of A,
• O is a finite set of actions,
• R : O → L assigns each action a precondition formula,
• D is a finite set of rules, and
• G ∈ L is the goal with times(G) ⊆ {0,−1,−2, . . .}.

This representation is succinct in the sense that an in-
stance of size n can represent a state space of size Θ(2n).
This is not possible with the representation in Definition 1.

Definition 4 A plan P : T → 2O over a set of actions O is
a mapping from a finite set T ⊆ N to sets of actions.

Definition 5 The execution of a plan P : T → 2O for a
problem instance 〈A, I,O,R,D,G〉 is a sequence of states
represented as a valuation which is obtained as follows, for
all o ∈ O, a ∈ A and i ≥ 0:
v(0, a)=I(a),
v(i, o) =1 iff o ∈ P (i),
v(i, a) =1 if there is 〈p, e〉 ∈ D with a ∈ e and v |=i−1 p,
v(i, a) =0 if there is 〈p, e〉 ∈ D with ¬a ∈ e and v |=i−1 p,
v(i, a) =v(i− 1, a) if there is no 〈p, e〉 ∈ D with

{a,¬a} ∩ e 6= ∅ such that v |=i−1 p.
This is only defined if v |=i R(o) for all i ≥ 0 and o ∈ P (i)
and there are no 〈p, e〉 and 〈p′, e′〉 ∈ D such that a ∈ e and
¬a ∈ e′ and v |=i p ∧ p′ for some i ≥ 0.

Our language can express durative actions, delayed ef-
fects, joint actions and actions with interfering effects.

Example 6 In traditional temporal planning languages a
central notion is that of action duration. Some actions can-
not temporally overlap. We can express that two actions
o1 and o2, respectively with durations 5 and 10, are not
allowed to overlap. This is handled by the preconditions
R(o1) = [−10..0]¬o2 and R(o2) = [−5..0]¬o1.

An action o1 with duration 5 can have an immediate effect
and an effect in the end of its duration. This is handled by
rule 〈o1, {[1]a1, [5]a2}〉.

An action o1 can only be taken simultaneously with o2

or o3, not alone, as required by the precondition R(o1) =
o2 ∨ o3.1

Two actions o1 and o2 have an effect if taken close to each
other at most 5 time points apart. This is expressed by the
rule 〈(o1 ∧ [−5..0]o2) ∨ (o2 ∧ [−5..1]o1), {a}〉. �

More generally, the change in the state of the world can
be an arbitrary function of the current and past values of
state variables and current and past actions, over a finite past
horizon. Any such function can be defined in terms of the
temporal formulae and the rules for expressing change.

Relation between Formulations
It is important that a language for a planning problem is
sufficiently expressive for expressing every instance of the
problem. It is easy to see that an action that changes the
value of a variable to 1 if it was 0 and to 0 if it was 1 can-
not be expressed in the classical STRIPS language. In this
sense STRIPS is not sufficient for classical planning. Some
more general classical languages can be reduced to STRIPS
if we allow one action to be represented by several STRIPS
actions, but this reduction is only applicable for planning
problems with full observability.

In this section we will show that the formalization in Def-
inition 3 is expressive enough for temporal planning. Most
temporal planning languages do not have this property.

Our benchmark for temporal planning with discrete time
is Definition 1: we will show that the language in Definition
3 can represent every problem instance representable as in
Definition 1, for an arbitrary assignment of valuations of

1This is not possible in Definition 1 because of CUS.

state variables to states and assuming that for some n any
two states can be distinguished by their length n histories.

In Definition 1 states can be viewed as encoding infor-
mation about actions which were started earlier and are still
continuing. Hence we do not want to assign each state dif-
ferent values of the state variables: two states might differ
only with respect to the actions that are being taken, but not
with respect to the state variables.

One consequence of Theorem 7 is that temporal plan-
ning problems can be formalized without state variables: the
bounded horizon system dynamics can be described exhaus-
tively by using only actions. Of course, state variables often
make more compact description possible.

Theorem 7 Let 〈S, I,O,R,G〉 be a problem instance in
temporal planning. Let A be a set of state variables and S′
the set of all valuations v : A→ {0, 1} ofA. Let x : S → S′

be an assignment of valuations to the states.
Let n be the length of the history needed for uniquely

identifying a state in S. Then there is a succinct problem
instance 〈A, x(I), O,R′, D,G′〉 that has exactly the same
set of plans and associated executions.

Proof: Brief sketch: The proof is based on the possibil-
ity of expressing any set of possible histories n steps back
as a temporal formula. This way the preconditions of ac-
tions in 〈A, x(I), O,R′, D,G′〉 can be made to correspond
exactly the situations in which the actions are possible in
〈S, I,O,R,G〉 (also observing which other actions are si-
multaneously taken), the actions can be made to have ex-
actly the desired effects, and the goal states can be exactly
expressed as temporal formulae. �

Computational Complexity
The main results of this work are a simulation of de-
terministic Turing machines (DTM) with an exponential
space bound by a temporal planning problem, showing the
EXPSPACE-hardness of the problem, and a solution of the
temporal planning problem by a nondeterministic Turing
machine (NDTM) with an exponential space bound, show-
ing its membership in EXPSPACE.

Definition 8 A nondeterministic Turing machine is a tuple
〈Σ, Q, δ, q0, g〉 where
• Q is a finite set of states (the internal states),
• Σ is a finite alphabet (the contents of tape cells),
• δ is a transition function δ : Q × Σ ∪ {|,�} →

2Σ∪{|}×Q×{L,N,R},
• q0 is the initial state, and
• g : Q→ {∃, accept, reject} is a labeling of the states.

Configurations of an NDTM consist of a working tape (a
sequence of cells each containing a symbol in Σ), the loca-
tion of the R/W head on the working tape, and an internal
state in Q. At each computation step an NDTM makes one
of the possible transitions as represented by δ: depending on
the current state and the symbol in the current cell, write a

symbol to the current cell, go to a new state, and move the
R/W head to the left, right or don’t move it.

The end-of-tape symbol | and the blank symbol � in the
definition of δ respectively refer to the beginning of the tape
and to the unwritten part of the tape. It is required that s = |
and m = R for all 〈s, q′,m〉 ∈ δ(q, |) for any q ∈ Q, that is,
at the left end of the tape the movement is always to the right
and the end-of-tape symbol |may not be changed. For s ∈ Σ
we restrict s′ in 〈s′, q′,m〉 ∈ δ(q, s) to s′ ∈ Σ which means
that | can be written only when the R/W head is on the end-
of-tape symbol. The NDTM computation terminates upon
reaching a state q ∈ Q such that g(q) ∈ {accept, reject}.

We use the notation σi for the ith symbol of the string σ.
The index of the first (leftmost) element is 1.

A deterministic Turing machine (DTM) is an NDTM with
|δ(q, s)| = 1 for all q ∈ Q and s ∈ Σ ∪ {|,�}.

PSPACE is the class of decision problems that are solv-
able by deterministic Turing machines that use a number of
tape cells bounded by a polynomial on the input length n for
all but a finite number of input strings. Hence no configura-
tion in the computation of the Turing machine has more than
a polynomial number of non-blank tape cells. Analogously
to PSPACE, EXPSPACE is the class of decision problems
with an exponential space bound.

A problem L is C-hard if for all problems L′ ∈ C there is
a function fL′ that can be computed in polynomial time on
the size of its input and fL′(x) ∈ L if and only if x ∈ L′. A
problem is C-complete if it belongs to C and is C-hard.

Plan Length
Unlike in the classical planning problem where only the cur-
rent state and not the past is relevant, in temporal planning
the consequences of actions and the possibility of taking
them depends on the past. References to past time points
[i] in the rules and action preconditions makes it possible to
refer to exponentially far in the past: exponentially in the
size of the problem description assuming that the constants
i in [i] are represented in binary (or any other base allowing
a logarithmic representation of integers.)

Hence the successor of a state is determined by the cur-
rent state and an exponential number of past states, which
yields a doubly exponential upper bound 22n

on the num-
ber of different situations, which is in stark contrast with the
2n upper bound for classical planning. We show that a plan
may indeed need to have this many actions.

Theorem 9 For succinct problem instances of size O(n),
the length of a shortest plan may be of the order 22n

.

Proof: The proof is based on forcing the plan to go through
a sequence of 22n · 2n states which consists of 22n

blocks
of 2n states, representing an increasing sequence of 2n bit
binary numbers. Least significant bits come first.

The construction uses the temporal operator [2n]B for re-
ferring to past values of B, where n is proportional to the
size of the problem instance. Let m = 2n be the number of
bits in the binary number which is being incremented.

The problem instance is 〈A, I,O,R,D,G〉 where:

• A = {S, F,B,C} where S is true in the initial state only,
F is true in states corresponding to the least significant
bit, B is the current bit, and C is the carry.

• I(S) = 1, I(F) = 1, I(B) = 0, I(C) = 0

• O = ∅
• R = ∅
• The rules describing the system dynamics are as follows.

D = { 〈S, {¬S}〉, 〈F, {¬F}〉,
〈[−m](F ∧ [1]¬S), {[0]F}〉,
〈[−m+ 1](F ∧ [1]¬S), {[0]C}〉,
〈[−1]C ∧ [−m]B, {[0]¬B}〉,
〈[−1]C ∧ [−m]¬B, {[0]B, [0]¬C}〉,
〈[−1]¬C ∧ [−m]B, {[0]B}〉,
〈[−1]¬C ∧ [−m]¬B, {[0]¬B}〉 }

The first rule makes S false at the time point 1. This vari-
able is used by the third rule which, together with the sec-
ond rule, makes F true exactly in those states which cor-
respond to the least significant bit. The fourth rule detects
that the current binary number has been processed and the
next follows: C is set to 1. The fifth and the sixth rule in-
crement the binary number by one: this is by replacing
some of the least significant bits 011..11 by 100..00 (there
is a 0 and zero or more 1s). The carryC indicates whether
we are changing the current 1s to 0s, and after encounter-
ing the first 0 it is turned to 1 and C is made 0. The last
two rules handle bits that don’t change.

• G = [−m+ 1..0]B

The values of B at time points km to km+m−1 for any
k ∈ {0, . . . , 22n − 1} is the binary representation of k.

We can modify the problem instance so that the only ac-
tion in O = {o} has to be taken at every time point so that
the plan consists of 22n

2n − 1 actions. �

The doubly exponential plan length is based on the possi-
bility of making references to state variables’ values at indi-
vidual time points exponentially far in the past. Essentially,
the current situation consists of the current values of the state
variables and also exponentially many of their past values.

If the past time horizon is restricted to be polynomial in
the problem size (for example if a unary encoding of i in
[i] is used), or if no references to an exponential number of
time points is made individually, only collectively, then the
plan lengths are only exponential.

One such restriction is that all past references have the
form [i..0]φ with i ≤ 0. The truth of [i..0]φ is determined
by the the number of time points since φ was false the last
time. This reduces the information in the current situation
to be only polynomial in the size of the problem instance.
This restriction still allows expressing constraints that for
example forbid or require overlapping of two actions.

Actions having delayed effects arbitrarily far in the future
can also be allowed by using a slightly more complex com-
bination of constraints: an action with delayed effects may
not overlap with another instance of itself and the effects
are conditional on the past only in terms of formulae [i]o

and [i..0]φ. In this case the delay and keeping track of the
truth of [i]o and [i..0]φ can again be implemented with only
a polynomial number of counters. An exponential number
of counters is needed if an exponential number of actions
can be active simultaneously. This condition is equivalent
to an action having at different time points an exponential
number of instances which overlap.

The restrictions which lead to O(2n) plan length also
lead to PSPACE-membership of the plan existence prob-
lem. In these cases temporal planning is not more complex
than classical planning. And indeed, under these restrictions
the temporal planning problem is reducible to classical plan-
ning. We give a reduction from temporal to classical plan-
ning later in the connection with temporal PDDL which is
closely related to a fragment of our planning language.

Difficulty of Planning
In the general case, with the possibility of doubly exponen-
tially long plans, the plan existence problem for temporal
planning is harder than for classical planning. The proof is
based on an idea similar to that of the proof of Theorem 9.

Theorem 10 The problem of testing whether a succinct
problem instance has a plan is EXPSPACE-hard.

Proof: We give a reduction of the halting problem of deter-
ministic Turing machines (DTM) with an exponential space-
bound to the plan existence question. The reduction can be
done in polynomial time.

The key idea in the proof is the representation of Tur-
ing machine configurations as exponentially long state se-
quences, with each tape cell represented by one state. Let
n be the length of the input and m = e(n) the exponential
space bound. States at time points 0 to e(n)−1 represent the
initial configuration, states at time points e(n) to 2e(n) − 1
represent the next configuration, and so on. Previous con-
tents of a cell can be accessed by [−e(n)].

The state variable H indicates the location of the R/W
head. The state variable S is true at time 0 but not later. The
state variable F indicates a violation of the space bound.

State variables q ∈ Q refer to the current TM state,
and they are only accessed at time points where H is true,
corresponding to the R/W head location. State variables
a ∈ Σ ∪ {|,�} indicate tape cell contents.

The idea of the reduction is by the following Turing ma-
chine execution in which the transition between the first two
configurations (m = 5) writes b, moves the R/W head to the
right, and changes the state from q0 to q1.

1st configuration 2nd configuration
0 1 2 3 4 5 6 7 8 9 . . .

S 1 0 0 0 0 0 0 0 0 0
F 0 0 0 0 0 0 0 0 0 0
H 0 1 0 0 0 0 0 1 0 0
a 0 1 0 0 0 0 0 0 0 0
b 0 0 1 0 0 0 1 1 0 0
� 0 0 0 1 1 0 0 0 1 1
| 1 0 0 0 0 1 0 0 0 0
q0 1 1 1 1 1 1 1 0 0 0
q1 0 0 0 0 0 0 0 1 1 1

Next we describe the DTM simulation in detail.

I(S) = 1 I(F) = 0
I(H) = 0 I(|) = 1
I(a) = 0 for all a ∈ Σ ∪ {�} I(q0) = 1
I(q) = 0 for all q ∈ Q\{q0}

The goal is G =
∨

q∈Q,g(q)=accept q ∧ ¬F which says
that the current configuration is an accepting configuration
and the space bound has not been violated. The initial con-
figuration is generated by the following rules.

〈S, {¬S, σ1,¬|, H}〉
〈S ∧ [1]¬S, {[i]σi, [i]¬H}〉 for all i ∈ {2, . . . , n}
〈S ∧ [1]¬S, {[i]¬σi−1}〉 for all i ∈ {2, . . . , n} st. σi6=σi−1

〈S ∧ [1]¬S, {[n+ 1]�, [n+ 1]¬σn}〉

The first rule says what the first input symbol on the tape
is and indicates that the R/W head is on the corresponding
cell. The second and the third rules represent the rest of
the input string. The fourth rule represents the rest of the
working tape with blank symbols � in it.

For every q ∈ Q and a ∈ Σ ∪ {|,�} with δ(q, a) =
〈a′, q′, d〉 the following rules simulate the movement of the
R/W head and the state transition of the TM.

〈[−m+ 2](H ∧ a ∧ q), {H, q′} ∪Q\{q′}〉 if d = L
〈[−m+ 1](H ∧ a ∧ q), {¬H}〉 if d = L

〈[−m](H ∧ a ∧ q), {H, q′} ∪Q\{q′}〉 if d = R
〈[−m− 1](H ∧ a ∧ q), {¬H}〉 if d = R

〈[−m+ 1](H ∧ a ∧ q), {H, q′} ∪Q\{q′}〉 if d = N
〈[−m](H ∧ a ∧ q), {¬H}〉 if d = N

The next rules respectively simulate writing a symbol to the
current cell and detect violations of the space-bound.

〈[−m+ 1](H ∧ a ∧ q), {a′} ∪ Σ ∪ {�, |}\{a′}〉
〈[−m+ 1](H ∧ a ∧ q) ∧ [−m+ 2]|, {F}〉 if d = R

Additionally, two rules say that the contents of tape cells
which are not under the R/W head do not change: for all
a ∈ Σ ∪ {�, |} we have

〈[−m+ 1](a ∧ ¬H), {a}〉
〈[−m+ 1](¬a ∧ ¬H), {¬a}〉.

It is easy to verify that the change between two consec-
utive blocks of m states corresponds to a transition of the
Turing machine, and therefore the simulation is faithful. �

That shortest plans cannot be longer than 22n

can be
shown by an argument similar to that for the 2n upper bound
for classical planning. Assume there are more than 22n

states in the execution of a shortest plan which reaches the
goals. Then there must be time points i and j so that their
histories 2n steps back are the same. Now a shorter execu-
tion and a shorter plan can be constructed by skipping every-
thing from i + 1 until j, which contradicts the assumption.
Hence shortest plans have length O(22n

).

Theorem 11 The problem of testing whether a succinct
problem instance has a plan is in EXPSPACE.

Proof: Sketch: We show that the problem can be solved by
a NDTM with an exponential space bound, and then use the
fact that EXPSPACE=NEXPSPACE.

The NDTM starts from the initial state and guesses a se-
quence of 22n

states. For counting the number of states en-
countered so far only O(2n) space is needed. For guaran-
teeing that the state sequence corresponds to a plan execu-
tion only an exponential size nwindow of the state sequence
has to be maintained. Here n is the maximum n such that
[−n− 1..m] occurs in the problem description.

The NDTM accepts when reaching a time point i such
that v |=i G and rejects when the counter exceeds 22n

. �

Implications to Temporal PDDL
The factors decreasing the complexity to PSPACE and re-
ducing plan lengths to O(2n) directly imply the reducibility
of large fragments of existing temporal planning languages
to classical planning.

A main difference between our language and temporal
PDDL (Fox & Long 2003) is that in the latter each action
has a duration, change can only occur in the starting and
ending points of actions, and the possibility of taking an ac-
tion is determined by facts at its starting and ending points
as well as during the action excluding the end points.

The main result of this section is a reduction from a large
fragment of temporal PDDL to classical planning. The frag-
ment, which we call discrete temporal PDDL, is character-
ized by the following restrictions.

• We ignore continuous change and continuous state vari-
ables because they easily lead to unsolvability (Helmert
2002) and are orthogonal to the temporal questions.

• No action can overlap with another instance of itself. This
is necessary so that only one counter for each action is
needed. Unrestricted overlapping would require an expo-
nential number of counters. The importance of this prop-
erty has never been understood before.

• Action durations are constant, i.e. independent of the state
in which the action is taken. This restriction could be
relaxed and we could allow a finite number of different
durations for every action, but for simplicity of represen-
tation we restrict to constant durations.

Further, we use a discrete time model. PDDL under the
above restrictions can always be discretized: there is a plan
iff there is a plan over integer time points only (under a suit-
able choice of unit time.)

Classical Target Language
Our target language is a classical planning language with
some syntactic sugar which is all reducible to standard
STRIPS planning in polynomial time and with only a rel-
atively small polynomial size increase, even when the vari-
ables represent exponentially high integer values.

We consider sets A of state variables that take their
values from a finite domain of integer values D =
{−1, 0, 1, . . . ,m}. Let s : A → D be a state. We use the

following atomic expressions about the values of state vari-
ables. They can be combined with the logical connectives.

• a means s(a) 6= 0 (some of the variables are used like
Boolean state variables: a means the value is non-zero
and ¬a means that it is zero.)

• a < k for an integer constant k means s(a) < k.

Based on the comparisons with < we can define syntactic
shorthands: a ≤ k means a < k+1, a > k means¬(a ≤ k),
and a ≥ k means ¬(a < k).

Effects are defined as follows.

• a := b+k means that a is assigned the value b+k where b
is a state variable and k is an integer constant. Overflows
and underflows result in the maximum and minimum val-
ues of the variable’s domain, respectively. We use simi-
larly assignments of constants a := k.

• a means a := 1, and ¬a means a := 0.

A classical action 〈p, e〉 consists of a precondition p (a
formula) and an effect e which is a set of pairs c B d where
c is a formula and d is an atomic effect or a set of atomic
effects. Each member of e expresses a conditional effect: if
c is true then execute d.

The Reduction
The idea of the reduction is simple: all the temporal aspects
of PDDL are reduced to counters for time points. The re-
duction uses three classes of classical actions.

• Actions for indicating which temporal actions start at the
current time point.

• One action for executing the at start effects of all actions
starting at the current time point and the at end effects of
all actions ending at the current time point. This action
is executable only if the indicated actions are indeed ex-
ecutable: they do not conflict with each other or active
actions that were started at earlier time points.

• Actions for progressing time: changing the values of all
relevant counters corresponding to the time passing until
a new temporal action is taken or until the end point of an
active temporal action is reached.

Let O = {o1, . . . , om} be the temporal actions. For a
temporal action o ∈ O, let AS(o) be the starting precondition
(at start), AE(o) be the end precondition (at end), and OA(o)
be the invariant condition (over all). These are all formulae.
Let SE(o) be the starting effect (at start) and EE(o) the end
effect (at end). These are sets of atomic effects. Let DU(o)
be the action’s duration (an integer).

We use state variables c1, . . . , cm for counting the time
remaining before an action ends. Their domain is from −1
to the maximum duration of any of the actions. When an
action is started, its counter is set to its duration. The counter
is decremented as time progresses. We use (Boolean) state
variables a1, . . . , an for representing the state variables of
the original temporal problem. Additionally, we have the
variable F for indicating that the actions that progress time
are free to execute (there are no action effects waiting to be
executed at the current time point).

In the initial state all the counters ci have value−1, F has
value false, and the remaining state variables have the same
initial values as in the original temporal problem.

The goal formula is the original goal formula.
Actions for indicating the start of temporal actions simply

set the corresponding counter to the action’s duration. The
action’s precondition guarantees that another instance of the
action is not already active.

〈ci = −1, {> B ci := DU(oi),> B ¬F}〉 for action i

After zero or more actions have been activated in the current
time point, their executability is tested, their at start effects
are executed, at end conditions of actions ending at the cur-
rent time point are tested, and the at end effects of earlier
actions ending in the current time point are executed. All
this is taken care of by one action.

• The precondition tests that the executability conditions of
the current and earlier actions are not violated.
The precondition consists of the following tests for each
of the original temporal actions oi.
If the action’s counter equals 0 then its at end condition
must be true and no variable in it is changed by another
action’s at start or at end effect at the current time point:
(ci = 0)→(AE(oi)∧φ). Here φ is conjunction of formu-
lae ¬(cj = 0) for actions oj with at end effect changing a
variable in the at end effect of oi (excluding oi itself) and
formulae ¬(cj = DU(oj)) for actions oj with at start
effect changing a variable in the at end effect of oi.
If the action’s counter equals its duration then its at start
condition must be true and no variable in it is changed by
another action’s at start or at end effect at the current time
point: this is analogous to the previous case for at end.
If the action’s counter is ≥ 1 then its over all condition
must be true2: ci ≥ 1→OA(oi).

• The action always makes F true with > B F .
For every action oi in the original temporal problem in-
stance the effect does the following.
If the action’s counter equals its duration then execute its
at start effects: ci = DU(oi) B SE(oi).
If the action’s counter equals 0 then execute its at end
effects: ci = 0 B EE(oi).

Actions for progressing time decrease the values of all
active counters with some amount. The preconditions of the
actions require that no end point of an active action is passed.

It is sufficient to have one action for progressing time by
1 but a more practical alternative is to use several with in-
crements 1, 2, 4, 8, ... so that only a logarithmic number of
actions is needed for progressing a long period of time.

We define an action for progressing time by t.

• The precondition tests that the effects for the current time
point have been executed and that every counter c satisfies
c ≤ 0 ∨ c ≥ t so that no action end points are skipped.
2PDDL does not handle over all conditions and at start/end

condition uniformly: for the former it suffices for them to be true
but for the latter it is additionally required that no variables occur-
ring in them change.

• The action effect adds −t to every counter (but values are
not decreased below −1) and further progression is pre-
vented if an end point of an action is encountered.

• The action is

〈F ∧
∧m

i=1(ci ≤ 0 ∨ ci ≥ t),
{ci := ci − t|1 ≤ i ≤ m} ∪ {ci = t B ¬F |1 ≤ i ≤ m}〉.

Theorem 12 Discrete temporal PDDL is polynomial-time
reducible to classical planning.

It is straightforward to extend the above translation to han-
dle the conditional effects in temporal PDDL.

An inspection of instances of temporal planning problems
described in research papers in the area and used in planning
competitions did not turn up any problem instance which re-
quires an action overlapping itself. Theorem 12 shows how
to reduce all of these problems to classical planning.

PDDL with Self-Overlapping Actions
The definition of temporal PDDL (Fox & Long 2003) does
not make it clear whether an action can overlap with an-
other instance of itself. Earlier we showed that tempo-
ral PDDL without such overlapping is polynomial-time re-
ducible to classical planning. For temporal PDDL with self-
overlapping this is not possible because the plan existence
problem is EXPSPACE-hard.

The simulation of EXPSPACE Turing machines in the
proof of Theorem 10 can be modified to the temporal PDDL
setting. For the simulation to be correct actions mapping the
current configuration to the next have to be forced to take
place at the right time intervals, corresponding to the rele-
vant tape cells.

Like in the proof of Theorem 10 in the beginning of the
interval of every tape cell actions for the changes to obtain
the next configuration have to be taken. This involves copy-
ing the current cell content if the cell is not under the R/W
head, writing new content to the current R/W location, and
indicating the new position of the R/W head. Similarly to
the proof of Theorem 10, one action needs to be executed
for the new contents of the cell and two actions for setting
the variable H for the R/W head position and the new inter-
nal state q ∈ Q. Additionally, other two actions respectively
preceding and succeeding the said three actions are taken to
enable the same steps for the next cell.

A small amount of book-keeping is needed to guarantee
that if some of the actions corresponding to one cell are
not taken, plan execution cannot proceed with actions cor-
responding to the next tape cell, to invalidate plans that do
not correspond to faithful Turing machine simulations.

This simulation shows that the plan existence for temporal
PDDL with self-overlapping actions is EXPSPACE-hard.

Related Work
Cushing et al. (2007) show that their temporally simple
languages can be reduced to plain classical planning in the
trivial sense that no concurrent (overlapping) actions are re-
quired. They also show that there is no same kind of simple

reduction of their temporally expressive languages to classi-
cal planning. However, their notion of reduction is very re-
strictive, and does not include unrestricted polynomial time
reductions. Our Theorem 12 shows for a very wide class of
temporal languages that they are easily reducible to classi-
cal planning. Reducibility in general is determined by the
possibility of having an exponential number of actions si-
multaneously active.

There are planning systems which implement different
forms of temporal planning in connection with numeric
state variables (Muscettola 1993; Penberthy & Weld 1994;
Laborie & Ghallab 1995). No analysis of the power and
complexity of these planning systems exists, apart from
the observation that a sufficiently strong language with un-
bounded integer or real variables is undecidable, even with-
out considering aspects related to planning (Helmert 2002).

Conclusions
We have analyzed temporal planning by identifying a bor-
der between PSPACE-complete and EXPSPACE-complete
planning problems which also indicates a border between
classical and more expressive temporal planning problems.

Important special cases of the temporal planning prob-
lem include those with restrictions on plan lengths. Tem-
poral planning with polynomial plan lengths can be easily
seen to be NP-complete (enabling a reduction to SAT), and
with exponentially long plans it is NEXPTIME-complete.
NEXPTIME-hardness can be shown by a variant of the proof
of Theorem 10. This proof can also be combined with some
of the proofs by Rintanen (2004). For example, it is easy
to show that nondeterministic temporal planning with full
observability is 2-EXPTIME-hard.

Interestingly, the complexity of temporal planning with
schematic operators coincides with that of schematic (non-
ground) classical planning: both are EXPSPACE-complete.

The work has implications on algorithm development for
temporal planning. First, the restrictions which force the
planning problem to PSPACE allow the use of classical plan-
ning algorithms: the temporal aspects of the planning prob-
lem can be reduced to the use of a polynomial number of
counters. Second, more expressive temporal planning re-
quires stronger techniques which may be different from the
currently existing ones.

The granularity of discretizations may have a strong im-
pact on the efficiency of plan search. The unit time in a prob-
lem instance with integer time may be impractically short
and problem instances with rational time may yield too fine
discretizations. An important research topic is the deriva-
tion of more practical discretizations, possibly in combina-
tion with altered action durations.

Although the reduction to classical planning is possible
with only Boolean state variables, it may be more efficient
if (bounded) integer-valued state variables can be used. This
underlines the close connection between temporal planning
and planning with numeric state variables. It seems that
efficient algorithms for planning with numeric state vari-
ables should also be quite efficient for temporal planning.
Most immediately interesting frameworks are integer pro-

gramming IP and extensions of SAT for handling numeric
variables.

Acknowledgements
This research was supported by NICTA in the framework
of the DPOLP project. NICTA is funded through the Aus-
tralian Government’s Backing Australia’s Ability initiative,
in part through the Australian National Research Council.

References
Bylander, T. 1994. The computational complexity of
propositional STRIPS planning. Artificial Intelligence
69(1-2):165–204.
Cushing, W.; Kambhampati, S.; Mausam; and Weld, D. S.
2007. When is temporal planning really temporal. In
Veloso, M., ed., Proceedings of the 20th International Joint
Conference on Artificial Intelligence, 1852–1859. AAAI
Press.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research 20:61–124.
Haslum, P., and Geffner, H. Heuristic planning with
time and resources. In Cesta, A., ed., Recent Advances
in AI Planning. Sixth European Conference on Plan-
ning (ECP’01), Lecture Notes in Artificial Intelligence.
Springer-Verlag. to appear.
Helmert, M. 2002. Decidability and undecidability re-
sults for planning with numerical state variables. In Ghal-
lab, M.; Hertzberg, J.; and Traverso, P., eds., Proceedings
of the Sixth International Conference on Artificial Intelli-
gence Planning and Scheduling (AIPS 2002), 303–312.
Laborie, P., and Ghallab, M. 1995. IxTeT: an integrated
approach for plan generation and scheduling. In 1995 IN-
RIA/IEEE Symposium on Emerging Technologies and Fac-
tory Automation: Proceedings, ETFA ’95, Paris, France,
October 10-13, 1995, 485–495.
Muscettola, N. 1993. HSTS: Integrating planning
and scheduling. Technical Report CMU-RI-TR-93-05,
Robotics Institute, Carnegie Mellon University.
Penberthy, J. S., and Weld, D. S. 1994. Temporal plan-
ning with continuous change. In Proceedings of the 12th
National Conference on Artificial Intelligence, 1010–1015.
Pinto, J. 1998. Concurrent actions and interacting ef-
fects. In Cohn, A. G.; Schubert, L. K.; and Shapiro,
S. C., eds., Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixth International Confer-
ence (KR ’98), 292–303. Morgan Kaufmann Publishers.
Rintanen, J. 2004. Complexity of planning with partial ob-
servability. In Zilberstein, S.; Koehler, J.; and Koenig, S.,
eds., ICAPS 2004. Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Scheduling,
345–354. AAAI Press.
Smith, D. E., and Weld, D. S. 1999. Temporal planning
with mutual exclusion reasoning. In Dean, T., ed., Proceed-
ings of the 16th International Joint Conference on Artificial
Intelligence, 326–337. Morgan Kaufmann Publishers.

