Technical Report 220
State-Space Traversal Techniques for Planning

Jussi Rintanen
Albert-Ludwigs-Universiat Freiburg, Institutdir Informatik
Georges-Khler-Allee, 79110 Freiburg im Breisgau
Germany

July 13, 2005

Foreword

These notes are based on the Al planning lectures at the Albert-Ludwigs-Uréivénstburg.

I would like to thank all the students who have participated in the planning course and given

comments, pointed out errors, and suggested other improvements, including Slawomir Grzonka,
Bernd Gutmann, Raimund Renner, Richard Schmidt, and Martin Wehrle. Also my teaching and

research assistants Marco Ragni and Dr. Markiligrigr have provided valuable feedback.

Contents

Foreword e [
Tableofcontents ii
1 Introduction 1
1.1 EarlyresearchonAlplanning, 1
1.2 OVeIVIEW e 3
2 Background 5
2.1 Transition Systems 5
2.1.1 Deterministic transition systems 6
2.1.2 Incidencematrices 7

2.2 Classical propositionallogic 8
2.2.1 Quantified Booleanformulae 10

2.3 Succincttransitionsystems e 11
2.3.1 Deterministic succinct transitionsystems 13
232 Extensions 14
2.3.3 Normal form for deterministicoperators 14
2.3.4 Normal forms for nondeterministic operators 16

3 Deterministic planning 18
3.1 State-spacesearch 18
3.1.1 Progressionandforwardsearch 19
3.1.2 Regressionand backwardsearch 19

3.2 Planning by heuristic search algorithms 25
3.3 Reachability 26
3.3.1 Distances 26
3.3.2 Invariants e 27

3.4 Approximations ofdistanceso 28
3.4.1 Admissible maxheuristic. o L0 29
3.4.2 Inadmissible additive heuristic 32
3.4.3 Relaxedplanheuristic 34

3.5 Algorithm for computing invariants, 37
3.5.1 Applications of invariants in planning by regression and satisfiability .40

3.6 Planning as satisfiability in the propositional logic 41
3.6.1 Actions as propositional formulae 41
3.6.2 Translation of operators into propositional logic 43

CONTENTS iii

3.6.3 Finding plans by satisfiability algorithms 44
3.6.4 Parallel application of operators 46
3.6.5 Partially-orderedplans L L 48
3.7 Literature e 51
4 Extensions to nondeterministic planning 53
4.1 Nondeterministicoperators 53
4.1.1 Regression for nondeterministicoperators 54
4.1.2 Translation of nondeterministic operators into propositional logic . . .54
4.2 Computing with transition relationsas formulae 57
4.2.1 Existential and universal abstraction, 57
4.2.2 Images and preimages as formula manipulation 58
4.2.3 An algorithm for constructing acyclicplans 61
4.3 Planning as satisfiability in the propositional logicand QBF 62
4.3.1 Advanced translation of nondeterministic operators into propositional I6gic
4.3.2 Finding plans by evaluationof QBF 65
4.4 Literature e 68
Bibliography 68
Index 75

Chapter 1

Introduction

Planning in Artificial Intelligence is a formalization ofecision makingabout theactionsto be

taken. Consider an intelligent robot. The robot is a computational mechanism that takes input
through its sensors that allow the robobiaservets environment and to build representatiorof

its immediate surroundings and parts of the world it has observed earlier. For a robot to be useful
it has to be able tact A robot acts through iteffectorswhich are devices that allow the robot to
move itself and other objects in its immediate surroundings. A robot resembling a human being
has hands and feet, or their muscles, as effectors.

At an abstract level, a robot is a mechanism that maps its observations, which are obtained
through the sensors, to actions which are performed by means of the effectors. Planning is the
decision making needed in producing a sequence of actions given a sequence of observations. The
more complicated the environment and the tasks of the robot are, the more intelligent the robot
has to be. For genuine intelligence it is important that the robot is able to plan its actions also in
challenging situations.

To reason about actions, action sequences and plans it is necessary to model the dynamics of
the world. Depending on the form of planning different kinds of world models are used. For more
physical planning tasks, like path and motion planning, representing the quantitative geometric
and physical properties of the world is necessary.

For planning at a more abstract level, with the physical properties of the world abstracted
away, the world can be represented in terms of the individual facts that hold and are relevant for
the planning task at hand. In this lecture the smallest components of the world are modtddd as
variables and individual world states are modeledvasuationsof state variables. An individual
state variable could for example indicate the location of an object, and for applications for which
only the locations of certain objects are relevant, a state would be unambiguously characterized by
the locations of all the objects.

As actions change the state of the world and the world is modeled in terms of state variables,
actions are most naturally modeled as objects that change the values of the state variables.

1.1 Early research on Al planning

Research that has lead to current Al planning started in the 1960’s in the form of programs that
tried to simulate problem solving abilities of human beings. One of the first programs of this kind
was the General Problem Solver (GPS) by Newell and SifRonstet al, 1969. GPS performed

2 CHAPTER 1. INTRODUCTION

world
| A

N S l

sensors effectors

sensor interpretation:
vision, speech, ...

Y

knowledge representation
learning

motion planning

task planning

Figure 1.1: Software architecture of an intelligent robot

state space search guided by estimated differences between the current state and the goal states.

At the end of 1960's Green proposed the use of theorem-provers for constructinf@itaas,

1969. However, because of the immaturity of theorem-proving techniques at that time, this ap-
proach was soon mostly abandoned in favor of specialized planning algorithms. There was theo-
retically oriented work on deductive planning which used different kinds of modal and dynamic
logics[Rosenschein, 198but these works had little impact on the development of efficient plan-
ning algorithms. Deductive and logic-based approaches to planning gained popularity again only
at the end of the 1990’s as a consequence of the development of more sophisticated programs for
the satisfiability problem of the classical propositional Iddgiautz and Selman, 1996

One of the most well known early planning systems is the STRIPS planner from the beginning
of the 1970’4 Fikes and Nilsson, 1971 The states in STRIPS are sets of formulae, and the opera-
tors change these state descriptions by adding and deleting formulae in the sets. Heuristics similar
to the ones used in the GPS system were used in guiding the search. The definition of operators,
with a preconditionas well asadd and deletelists, corresponding to the facts that respectively
become true and false, and the associated terminology, is still in common use, although restricted
to atomic facts, that is, the add list is simply the set of state variables that the action makes true,
and the delete list similarly consists of the state variables that become false.

Starting in the mid 1970’s the dominating approach to domain-independent planning was the
so-called partial-order, or causal link, or nonlinear planrii@gcerdoti, 1975; McAllester and
Rosenblitt, 199], which remained popular until the mid-1990’s and the introduction of the Graph-
plan plannefBlum and Furst, 1997vhich started the shift away from partial-order planning to
types of algorithms that had earlier been considered infeasible, even the then-notorious total-order
planners. The basic idea of partial-order planning is that a plan is incrementally constructed start-
ing from the initial state and the goals, by either adding an action to the plan so that one of the open
goals or operator preconditions is fulfilled, or adding an ordering constraint on operators already

1.2. OVERVIEW 3

in the plan in order to resolve a potential conflict between them. In contrast to the forward or back-
ward search strategies in Chapter 3 partial-order planners tried to avoid unnecessarily imposing
an ordering on operators. The main advantages of both partial-order planners and Graphplan are
present in the SAT/CSP approach to planning which is discussed in Section 3.6.

In parallel to partial-order planning, the notion of hierarchical planning emei§aderdoti,
1974, and it has been deployed in many real-world applications. The idea in hierarchical plan-
ning is that the problem description imposes a structure on solutions and restricts the number of
choices the planning algorithm has to make. A hierarchical plan consists of a main task which
is decomposed to smaller tasks which are recursively solved. For each task there is a choice
between solution methods. The less choice there is, the more efficiently the problem is solved.
Furthermore, many hierarchical planners allow the embedding of problem-specific heuristics and
problem-solvers to further speed up planning.

A collection of articles on Al planning starting from the late 1960’s has been edited by Allen
et al.[199d. Many of the papers are mainly of historical interest, and some of them outline ideas
that are still in use.

1.2 Overview

This lecture gives an overview of some of the main techniques currently used in Al planning for
finding action sequences. In the most basic planning problem with one initial state and determin-
istic actions, often calledlassical planningan algorithm that finds a sequence of actions from

the unique initial state to a goal state solves the planning problem. For more general forms of
planning, for example with nondeterministic actions, the required algorithms are far more compli-
cated, but many of the techniques introduced for classical planning can be generalized and used as
an implementation technique for subprocedures in the planning algorithms.

Chapter 2 presents a framework for formalizing different kinds of planning problems. Section
2.1 introduces the basic transition system model and its restriction to classical/deterministic prob-
lems that are the topic of Chapter 3. Section 2.3 introduces a representation of transition systems
that is based on state variables and operators. This representation is used in Chapter 3 and it is
closely related to the representations used in most planning research. With state variables and
operators very big transition systems can be represented compactly.

In Chapter 3 the emphasis is on two main strands of research that have emerged during the last
ten years of research on classical planning.

In 1995 the Graphplan planner of Blum and Fui€97 demonstrated the competitiveness of
a constraint-based approach to classical planning, earlier proposed by Kautz and [36&akin
a slightly different framework. The idea is to pose planning as a form of a constraint satisfaction
problem: find a plan and a corresponding state sequence consistirgiegs so that the first state
is the initial state, the last state is a goal state, and the changes in state variable values between two
consecutive time points correspond to the execution of some actions. The constraint-satisfaction
viewpoint together with powerful techniques for pruning search trees were a big improvement over
earlier planning algorithms.

Blum and Furst’s planner was based on ad hoc search algorithm with backward chaining. Soon
after the introduction of Graphplan Kautz and Selnia89d showed that an equally efficient
planner could be obtained by a translation of the planning problem into the propositional logic
and using a general purpose satisfiability algorithm. Main benefits of this approach are the repre-

4 CHAPTER 1. INTRODUCTION

sentation of the planning problem as propositional formulae, which allows the use of many kinds
of declarative information during the planning process, and the very fast development of more
efficient satisfiability algorithms and their implementation in the last ten years, improving the
problem-solving capability of this approach tremendously.

An important development outside the artificial intelligence is the emergence of verification
techniques that generalize Kautz and Selmfi92; 1996 idea to temporal logic model-check-
ing [Biere et al, 1999, making satisfiability testing a leading logic-based technique in model-
checking and increasingly replacing techniques based on binary decision diagram$§mB {4,

1992; Burchet al., 1994; Clarkeet al., 1994.

A completely different approach to planning gained popularity after the 1998 planning compe-
tition and the GPT planner by Bonet and Gefff001]. It is based on the use of general-purpose
heuristic search algorithms combined with heuristics automatically derived from the descriptions
of planning problems. Planners based on heuristic state-space search have shown very good per-
formance in finding non-optimal solutions to the kind of problems considered in the planning
competitions. The main benefit of the approach is the simplicity of the basic approach which al-
lows a lot of flexibility in incorporating problem-specific heuristics and pruning techniques in the
heuristic search algorithm.

In Chapter 4 we present generalizations of some of the logic-based techniques to nondetermin-
istic planning, and give an overview of a general framework of reasoning about states, state sets
and actions in the propositional logic, as first used in connection of model-checking in computer-
aided verification since the early 199QBurchet al,, 1994; Clarkeet al, 1994 and recently as
an implementation technique of algorithms for nondeterministic planning. These representations
have been calledymbolicin the verification community, in contrast to the more concrete enu-
merative representations used by model-checking algorithms that explicitly enumerate states in
the state space. Most often these techniques have been used in connection with binary decision
diagrams BDDgBryant, 1992 but the techniques are applicable to other classes of propositional
formulae just as well.

Chapter 2

Background

In this chapter we define the formal machinery needed in the rest of the lecture for describing
different planning problems and algorithms. We give the basic definitions related to the classical
propositional logic, and the definition of the transition system model that is the basis of most work
on planning and that are closely related to finite automata and transition systems in other areas of
computer science.

Section 2.1 defines transition systems and Section 2.1.1 their restriction to deterministic actions
and one initial state, which is used in classical/deterministic planning. The general transition
system definition is given a representation in terms of state variables and operators in Section 2.3,
and in Section 2.3.1 it is restricted to the classical/deterministic special case. This last definition
of transition systems is extensively used in Chapter 3.

2.1 Transition systems

We define transition systems in which states are atomic objects and actions are represented as
binary relations on the set of states.

Definition 2.1 A transition systenis a 5-tuplell = (S, I, O, G, P) where
1. S'is afinite set of states,
. I C Sis the set of initial states,
. O is afinite set of actions C S x S,

2
3
4. G C Sis the set of goal states, and
5

. P = (Cy,...,C,) is a partition of S to non-empty classes of observationally indistin-
guishable states satisfying{C1,...,C,} = S andC; N C; = 0 for all 4, such that
1<i<y<n.

Making an observation tells which s€t the current state belongs to. Distinguishing states
within a givenC;; is not possible by observations. If two states are observationally distinguishable
then plan execution can proceed differently for them.

The numbemn of components in the partitioR determines different classes of planning prob-
lems with respect to observability restrictions. nlf= |S| then every state is observationally

5

6 CHAPTER 2. BACKGROUND

distinguishable from every other state. This is cafidtobservability If n» = 1 then no observa-
tions are possible and the transition systemrisbservableThe general case € {1,...,|S]|} is
calledpartial observability

An actiono is applicablein states for which it associates at least one successor state. We define
imagesof states agmg,(s) = {s' € S|sos’'} and (weak)preimagesf states aspreimg,(s’) =
{s € S|sos'}. Generalization to sets of statesinsg,(7) = |J,.img,(s) andpreimg,(T') =
U,er Preimg,(s). For sequences, . . ., o, of actionsimg,,. ..., (T) = img,, (- --img,, (1) - - -)
andpreimg,,, (T") = preimg,, (- - - preimg,, (T) - - -). Thestrong preimagef a setl” of states
is the set of states for which all successor states arg aefined aspreimg (7)) = {s € S|s' €
T, sos',img,(s) C T'}.

Lemma 2.2 Images, strong preimages and weak preimages of sets of states are related to each
other as follows. Leb be any action and' and .S’ any sets of states.

1. spreimg(7") C preimg,(T")
img, (spreimg (7)) C T
If 7' C 7" thenimg(T) C img,(T").

preimg, (7" U T") = preimg,(T") U preimg,(T”).

a > w N

s’ € img,(s) if and only ifs € preimg,(s).
Proof:

1. spreimg(T) = {s € S|s' € T, sos',imgy(s) CT} C {s € S|s'" € T,s05'} = Uyep{s €
S|sos'} = Uy er Preimg,(s’) = preimg,(T).

2. Take anys’ € img,(spreimg(7")). Hence there is € spreimg(T") so thatsos’. As
s € spreimg(T), img,(s) C T. Sinces’ € img,(s), s’ € T.

3. AssumeT’ C T ands’ € img,(T). Hencesos’ for somes € T by definition of images.
Hencesos’ for somes € T" becausd’ C T". Hences’ € img,(7”) by definition of images.

4. preimg,(TUT") = Uyerur s € Slsos'} = Uger{s € Slsos'} UUycr{s € Slsos'} =
preimg,(7") U preimg,(T")

5. s’ €img,(s) iff sos’iff s € preimg,(s).

2.1.1 Deterministic transition systems

Transition systems which we use in Chapter 3 have only one initial state and deterministic actions.
For this subclass observability is irrelevant because the state of the transition system after a given
sequence of actions can be predicted exactly. We use a simpler formalization of them.

Definition 2.3 A deterministic transition systeis a 4-tuplell = (S, I, O, G) where

2.1. TRANSITION SYSTEMS 7

/—VB ABCDEF
A ‘\ Al01T 0000
Bl00O0OOO 1

D Ccloo1000

DI001000

F E E[01 0000
~_ 7 FIOOO0OO0OT10

Figure 2.1: The transition graph and the incidence matrix of a deterministic action

1. S is afinite set of states,

2. I € Sisthe initial state,

3. Ois afinite set of actions C S x S that are partial functions, and
4. G C Sis the set of goal states.

That the actions are partial functions means that forsaaayS ando € O there is at most one
states’ such thatsos’. We denote the unique successor statef a states in which operatoin
is applicable by’ = app,(s). For sequences;;. .. ; o, of operators we definapp,,o, (s) as

app,,, (- - appy, (s) - - -).

2.1.2 Incidence matrices

Actions and other binary relations can be represented in terms of incidence mafr{eg§acency
matrices) in which the element in roinand column; indicates whether a transition from state
to j is possible.

Figure 2.1 depicts the transition graph of an action and the corresponding incidence matrix.
The action can be seen to be deterministic because for every state there is at most one arrow going
out of it, and each row of the matrix contains at most one non-zero element.

For matricesM, ..., M,, which represent the transition relations of actiens. .., a, the
combined transition relation i/ = M; + My + --- + M,,. The matrix)M/ now tells whether a
state can be reached from another state by at least one of the actions.

Here-+ is the usual matrix addition that uses the Boolean addition for integers 0 and 1, which
is defined a$) + 0 = 0, andb + ¥ = 1if b = 1 or &’ = 1. Boolean addition is used because
in the presence of nondeterminism we could have 1 for both of two transitions from A to B and
from A to C. For probabilistic planning problems normal addition is used and matrix elements are
interpreted as probabilities of nondeterministic transitions.

The incidence matrix corresponding to first taking actignand thena, is M1 Ms. This is
illustrated by Figure 2.2 The inner product of two vectors in the definition of matrix product
corresponds to the reachability of a state from another state through all possible intermediate
states.

Now we can compute for all pairs s’ of states whethet' is reachable froms by a sequence
of actions. LetM be the matrix that is the (Boolean) sum of the matrices of the individual actions.

8 CHAPTER 2. BACKGROUND

O O O oflolo

o o ool
— o o ollollolm
o o o ool
X
oo~ OO
oo oo o~
coc oo o o0
— oo ooy
= N eNeNoNolles!
oo oo ol
Il
OO R MR OO
oo oo ool
oo oo o o0
cocooroly
— oo oo ol
O R OO O~

o~ o ool
o o o ollo|oll

RESESES! IS
RESESES IS
RISESES IS

Figure 2.2: Matrix product corresponds to sequential composition.

—8B C\ ABCDETF
A A[010000
Bl000O0O 1

D Ccloo1000

DI001000O

F_/E E[010000
FlO0OO0D010

Figure 2.3: A transition graph and the corresponding maltfix

Then define
RO = Inxn
Ri=Ri1+MR;_4 for ¢ > 1.

Heren is the number of states ard.,, is the unit matrix of sizex. By Tarski’s fixpoint theorem

R; = R; for some: > 0 and allj > i because of the monotonicity property that every element
that is 1 for somé is 1 also for allj > i. Matrix R; = M°UM'U---UM? represents reachability
by i actions or less.

2.2 Classical propositional logic

Let A be a set of propositional variables (atomic propositions). We define the set of propositional
formulae inductively as follows.

1. Foralla € A, a is a propositional formula.
2. If ¢ is a propositional formula, then so-isp.
3. If ¢ and¢’ are propositional formulae, then sodis/ ¢'.
4. If p and¢’ are propositional formulae, then sodis\ ¢'.
5

. The symbolsl and T, respectively denoting truth-values false and true, are propositional
formulae.

2.2. CLASSICAL PROPOSITIONAL LOGIC 9

B C
S ' ABCDEF
A A0 10001
D BlO0OOOT1T1
Cl0o01000
F E DI00100O00O0
\Q:jfy E/l01 0001
FI0O1 0010

Figure 2.4: A transition graph extended with composed paths of length 2 and the corresponding
matrix M + M?

/ 3 ¢ ABCDEF
A A0 100 11
\¥ D Blo010011
Cloo1000

F E:) D00 1000
<3&§ y El010011
FloO10011

Figure 2.5: A transition graph extended with composed paths of length 3 and the corresponding
matrix M + M? + M3

The symbols\, v and— areconnectivegespectively denoting thenjunction disjunctionand
negation We define the implicatiod — ¢’ as an abbreviation for¢ V ¢’, and the equivalence
¢ <« ¢’ as an abbreviation fdip — ¢') A (¢’ —).

A valuation of A is a functionv : A — {0,1} where 0 denotes false and 1 denotes true.
Valuations are also known assignmentsr models For propositional variables € A we define
v = aifand only ifv(a) = 1. A valuation of the propositional variables ihcan be extended to
a valuation of all propositional formulae ovdras follows.

1. v = ¢ ifand only ifv [~ ¢
2.vE¢Vv¢ifandonlyifv = ¢orv = ¢
.vE¢A¢ ifandonlyifv = ¢ andv | ¢
4. vET

5. v L

Computing the truth-value of a formula under a given valuation of propositional variables is
polynomial time in the size of the formula by the obvious recursive procedure.

10 CHAPTER 2. BACKGROUND

A propositional formulap is satisfiable(consistent if there is at least one valuatianso that
v | ¢. Otherwise it isunsatisfiable(inconsistent A finite setF’ of formulae is satisfiable if
/\¢€F ¢ is. A propositional formulap is valid or atautology if v = ¢ for all valuationsv. We
denote this by= ¢. A propositional formula is a logical consequenaeaf a propositional formula
¢, written ¢’ = ¢, if v |= ¢ for all valuationsv such thaty |= ¢’. A propositional formula that
is a proposition variable or a negated propositional variabte for somea € A is a literal. A
formula that is a disjunction of literals &sclause

A formula ¢ is in negation normal form(NNF) if all occurrences of negations are directly
in front of propositional variables. Any formula can be transformed to negation normal form by
applications of the De Morgan ruleg¢ V ¢') = ¢ A ¢’ and—(p A ¢') = —¢ VvV =¢/, the double
negation rule-—¢ = ¢. A formula¢ is in conjunctive normal forndCNF) if it is a conjunction of
disjunctions of literals. A formul@ is in disjunctive normal fornfDNF) if it is a disjunction of
conjunctions of literals. Any formula in CNF or in DNF is also in NNF.

2.2.1 Quantified Boolean formulae

There is an extension of the satisfiability and validity problems of the classical propositional logic
with quantification over the truth-values of propositional variab{@aantified Boolean formulae
(QBF) are like propositional formulae but there are two new syntactic rules for the quantifiers.

6. If ¢ is aformula and: € A, thenVa¢ is a formula.
7. If ¢ isaformula and: € A, thenda¢ is a formula.

Further, there is the requirement that every variable is quantified, that is, every occurrence of
a € Ain a QBF is in the scope of eithél or Va.

Define ¢[¢/x] as the formula obtained from by replacing occurrences of the propositional
variablex by .

We define the truth-value of QBF by reducing them to ordinary propositional formulae without
occurrences of propositional variables. The atomic formulae in these formulae are the constants
T and L. The truth-value of these formulae is independent of the valuation, and is recursively
computed by the Boolean functions associated with the connectjivesand .

Definition 2.4 (Truth of QBF) A formula3z¢ is true if and only if¢[T /x| v ¢[L/z] is true.
(Equivalently, if¢[T /z] is true or¢[L /x] is true.)

A formulavz¢ is true if and only ifp[T /x] A ¢[L/x] is true. (Equivalently, itp[T /z] is true
and¢[L/x] is true.)

A formulag with an empty prefix (and consequently without occurrences of propositional vari-
ables) is true if and only i is satisfiable (equivalently, valid: for formulae without propositional
variables validity coincides with satisfiability.)

Example 2.5 The formulae/z3y(x < y) and3xTJy(x A y) are true.
The formulaedaVy(z < y) andVazVy(x Vv y) are false. [|

Notice that a QBF with only existential quantifiers is true if and only if the formula without the
guantifiers is satisfiable. Similarly, truth of QBF with only universal quantifiers coincides with the
validity of the corresponding formulae without quantifiers.

2.3. SUCCINCT TRANSITION SYSTEMS 11

set formula
TUU TVU
TnU TANU
T -T
U TN-U
0 1

the universal set T

guestion about setbquestion about formulae

TCU? ET0U7?
TCcU? ET—UandEU—T?
T=U? =T o U?

Table 2.1: Correspondence between set-theoretical and logical operations

Changing the order of two consecutive variables quantified by the same quantifier does not
affect the truth-value of the formula. It is often useful to ignore the ordering in these cases and to
view each quantifier as quantifying a set of formulae, for example:,Vy1y2¢.

Quantified Boolean formulae are interesting because evaluating their truth-value is PSPACE-
completd Meyer and Stockmeyer, 19F2nd many computational problems that presumably can-
not be translated into the satisfiability problem of the propositional logic in polynomial time (as-
suming that NEEPSPACE) can be efficiently translated into QBF.

2.3 Succinct transition systems

It is often more natural to represent the states of a transition system as valuations of state variables
instead of enumeratively as in Section 2.1. The binary relations that correspond to actions can
often be represented compactly in terms of the changes the actions cause to the values of state
variables.

We represent states in terms of a detf Boolean state variables which take the valiuras or
false Eachstateis a valuation of4, that is, a functiors : A — {0, 1}.

Since we identify states with valuations of state variables, we can now identify sets of states
with propositional formulae over the state variables. This allows us to perform set-theoretic opera-
tions on sets as logical operations and test relations between sets by inference in the propositional
logic as summarized in Table 2.1

The actions of a succinct transition system are described by operators. An operator has two
components. The precondition describes the set of states in which the action can be taken. The
effect describes the successor states of each state in terms of the changes made to the values of the
state variables.

Definition 2.6 Let A be a set of state variables. Aperatoris a pair (c, e) wherec is a proposi-
tional formula overA (the precondition, ande is aneffectover A. Effects overd are recursively
defined as follows.

1. a and—a for state variables, € A are effects oved.

2. e1 A+ Neyis aneffectover if eq, . .., e, are effects over (the special case with = 0
is the empty effect.)

12 CHAPTER 2. BACKGROUND

3. ¢ > eis an effect oved if cis a formula overd ande is an effect over.
4. e1|---le, is an effect over if ey, ..., e, for n > 2 are effects oveH.

The compound effects, A - - - A e, denote executing all the effeats, . . ., e,, Simultaneously.
In conditional effects: > e the effecte is executed ifc is true in the current state. The effects
e1|---|e, denote nondeterministic choice between the effects. ., e,. Exactly one of these
effects is chosen randomly.

Operators describe a binary relation on the set of states as follows.

Definition 2.7 (Operator application) Let(c, e¢) be an operator overl. Lets be a state (a valu-
ation of A). The operator ispplicable ins if s = ¢ and every seE’ € [e]; is consistent. The set
[e]s is recursively defined as follows.

1. [a]s = {{a}} and[~a], = {{-a}} fora € A.
2. Je1 A Aenls = {UNy BilB1 € [edss -, B € [en]s).
3. [>els=le]sif s = and[¢ > e], = {0} otherwise.
4. Jer| - lenls = [e1]s U+~ U fenls

An operator{c, e) induces a binary relatio(c, e) on states as follows: statesinds’ are related
by R{c,e) if s = c ands’ is obtained froms by making the literals in som& € [e], true and
retaining the values of state variables not occurringtin

We define images and preimages for operatangerms ofR(o), for instance byreimg,(s) =
preimgg) (s).

Definition 2.8 A succinct transition systeim a 5-tuplell = (A, I, O, G, V') where
1. Ais afinite set of state variables,
2. I'is a formula overA describing the initial states,
3. O s afinite set of operators ovet,
4. G is a formula overA describing the goal states, and
5. V C Ais the set of observable state variables.

Succinct transition systems wilh = A arefully observableand succinct transition systems
with V' = () are unobservable Without restrictions orl/ the succinct transition systems are
partially observable

We can associate a transition system with every succinct transition system.

Definition 2.9 Given a succinct transition systeth= (A, I, O, G, V), construct the transition
systen¥(IT) = (S, I', O, G', P) where

1. Sis the set of all Boolean valuations df

2. I'={se S|s =1},

2.3. SUCCINCT TRANSITION SYSTEMS 13

3. 0" ={R(o0)|o € O},
4. G' ={s e S|s =G}, and

5. P = (Cy,...,C,) wherevy, ..., v, for n = 2IVI are all the Boolean valuations f and
Ci ={s € S|s(a) =vi(a) foralla € V}forallie {1,...,n}.

The transition system may have a size that is exponential in the size of the succinct transition
system. However, the construction takes only polynomial time in the size of the transition system.
2.3.1 Deterministic succinct transition systems

A deterministic operator has no occurrenceg of the effect. Further, in this special case the
definition of operator application is slightly simpler.

Definition 2.10 (Operator application) Let(c, ¢) be a deterministic operator ovet. Lets be a
state (a valuation ofd). The operator isapplicable ins if s |= c and the sefe]?*! is consistent.
The sefe]?! is recursively defined as follows.

1. [a]9¢t = {a} and[-a]9®! = {-a} for a € A.
2. [er Ao Nep)®t = Ui [ei] 4.

3. [¢ > e]det = [e]%tif s |= ¢ and [> €]% = () otherwise.

A deterministic operatofc, e) induces a partial functior?(c, e) on states as follows: two states
s and s’ are related byR({c, e) if s |= c and s’ is obtained froms by making the literals irje] ¢
true and retaining the truth-values of state variables not occurring]gf’.

We defineapp,(s) = s’ by sR(o0)s’ andapp,,.....,(s) = s’ by apm,,(...app,(s)...), just
like for non-succinct transition systems.
We formally define deterministic succinct transition systems.

Definition 2.11 A deterministic succinct transition systesm 4-tuplell = (A, I, O, G) where
1. Ais afinite set of state variables,
2. I is aninitial state,
3. O is afinite set of operators ovet, and
4. G is a formula overA describing the goal states.

We can associate a deterministic transition system with every deterministic succinct transition
system.

Definition 2.12 Given a deterministic succinct transition systéim= (A, I, O, G), define the
deterministic transition systei(II) = (S, I, 0’, G’) where

1. S isthe set of all Boolean valuations df,

2. O' = {R(o0)|o € O}, and

14 CHAPTER 2. BACKGROUND

3. G'={seS|s =G}

A subclass of operators considered in many early and recent works resBTdRI® Dperators.
An operator(c, e) is a STRIPS operator ifis a conjunction of state variables anid a conjunction
of literals. STRIPS operators do not allow disjunctivity in formulae nor conditional effects. This
class of operators is sufficient in the sense that any transition system can be expressed in terms of
STRIPS operators only if the identities of operators are not important: when expressing a transition
system in terms of STRIPS operators only some operators correspond to an exponential number
of STRIPS operators.

Example 2.13Let A = {ay,...,a,} be the set of state variables. leet= (T, ¢) where
e= (a1 > —-a1) A(mar > ap) A A(ap > —ap) A (may &> ay)).

This operator reverses the values of all state variables. As its set of active gff¢étis different
in every one oR" states, this operator correspondftcSTRIPS operators.

(may A —ag AN+ AN —oap, a1 Aag A A ay)
(ay N —ag A=+ A=ap,—ar Aag A+ Aay)

(may ANag A+ AN —ap, a1 A—ag A A ay)
= (a1 ANag A+ AN =ap,—a; A—ag A+ Aay)

0o
01
02
03
om_1 = {ar Nag N\ -+ N ap,-ay A—ag--- A\ —ay)

2.3.2 Extensions

The basic language for effects could be extended with further constructs. A natural construct is
sequential compositioof effects. Ife ande’ are effects, then alsg ¢’ is an effect that corresponds

to first executing: and there’. Definition 3.11 and Theorem 3.12 show how effects with sequential
composition can be reduced to effects without sequential composition.

2.3.3 Normal form for deterministic operators

Deterministic operators can be transformed to a particularly simple form without nesting of con-
ditionality > and with only atomic effects as antecedents of conditionals> . Normal forms
are useful as they allow concentrating on a particularly simple form of effects.

Table 2.2 lists a number of equivalences on effects. Their proofs of correctness with Definition
2.10 are straightforward. An effeetis equivalent toT A e, and conjunctions of effects can be
arbitrarily reordered without affecting the meaning of the operator. These trivial equivalences will
later be used without explicitly mentioning them, for example in the definitions of the normal
forms and when applying equivalences.

The normal form corresponds to moving all occurrences @iside A so that the consequents
of > are atomic effects.

Definition 2.14 A deterministic effect is in normal formif it is T or a conjunction of one or
more effects: > a andc > —a with at most one occurrence of atomic effecnd —a for any
a € A. An operator(c, e) is in normal form ife is in normal form.

2.3. SUCCINCT TRANSITION SYSTEMS 15

>(er A Nep) = (c>er) AN A(cD> ep) (2.1)
> (ca>e) = (g Neg) > (2.2)

(c1 > e) (ca>e)=(c1Ver)>e (2.3)
ANc>e)=e (2.4)

e=TrD>e (2.5)

e1 N\ (ea Nes) = (e1 Nea) ANes (2.6)

e1 Ney = ex A e (2.7)

c>T =T (2.8)

eNT =e (2.9)

Table 2.2: Equivalences on effects

Theorem 2.15 For every deterministic operator there is an equivalent one in normal form. There
is one that has a size that is polynomial in the size of the operator.

Proof: We can transform any deterministic operator into normal form by using the equivalences
in Table 2.2. The proof is by structural induction on the effeof the operatokc, e).

Induction hypothesis: the effeetcan be transformed to normal form.

Base case k, = T: This is already in normal form.

Base case 2 = a or e = —a: An equivalent effect in normal form i$ > e by Equivalence
2.5.

Inductive case l¢ = ey A eo: By the induction hypothesis; andes; can be transformed into
normal form, so assume that they already are. If ong @inde, is T, by Equivalence 2.9 we can
eliminate it.

Assumee; contains:; > [for some literal andey containsey > I. We can reordeg; A ey With
Equivalences 2.6 and 2.7 so that one of the conjundis is- [) A (c2 >). Then by Equivalence
2.3 it can be replaced biy:; V ¢2) > . Since this can be done repeatedly for every litérate
can transforne; A ey into normal form.

Inductive case 2¢ = z > ep: By the induction hypothesis; can be transformed to normal
form, so assume that it already is.

If e1 is T, e can be replaced by which is in normal form.

If e1 = 2’ > eg for somez’ andes, thene can be replaced by the equivalent (by Equivalence
2.2) effect(z A 2') > ey in normal form.

Otherwise; is a conjunction of effects > [. By Equivalence 2.1 we can movenside the
conjunction. Applications of Equivalences 2.2 transform the effect into normal form.

In this transformation the conditionsin ¢ > e are copied into front of the atomic effects.
Let m be the sum of the sizes of all the conditiansand letn be the number of occurrences of
atomic effects: and—a in the effect. An upper bound on size of the new effedDig:m) which
is polynomial in the size of the original effect. O

16 CHAPTER 2. BACKGROUND

c> (e1]-len) = (e>er)] - |(c>ey) (2.10)
eN(er]---len) = (eNer)| (e Nep) (2.11)

(eh] -~ lep)leal -+ len = €]~ lelea] - len (2.12)
(€ A(c>er))lea] - len = (e> ((e' Aer)lea] -+ |en)) A (e > (ea] - len)) (2.13)

Table 2.3: Equivalences on nondeterministic effects

2.3.4 Normal forms for nondeterministic operators

We can generalize the normal form defined in Section 2.3.3 to nondeterministic effects and opera-
tors. In the normal form nondeterministic choices and conjunctions are the outermost constructs,
and consequentsof conditional effects: > e are atomic effects.

Definition 2.16 (Normal form for nondeterministic operators) A deterministic effect is in nor-
mal form if it is T or a conjunction of one or more effeats> a andc > —a with at most one
occurrence ofi and—a for anya € A.

A nondeterministic effect is in normal form if itég| - - - |e,, or e; A - - - A e, for effectse; that
are in normal form.

A nondeterministic operatafe, e) is in normal form ife is in normal form.

For showing that every nondeterministic effect can be transformed into normal form we use
further equivalences that are given in Table 2.3.

Theorem 2.17 For every operator there is an equivalent one in normal form. There is one that
has a size that is polynomial in the size of the former.

Proof: Transformation to normal form is like in the proof of Theorem 2.15. Additional equiva-
lences needed for nondeterministic choices are 2.10 and 2.11. O

Example 2.18 The effect
at> (bl(cA f))A((dAe)|(bre))
in normal form is
((a>bd)[((a>c)Aar) AT >d) AT >e)|b>e)).

For some applications a still simpler form of operators is useful. In the second normal form
for nondeterministic operators nondeterminism may appear only at the outermost structure in the
effect.

Definition 2.19 (Normal form Il for nondeterministic operators) A deterministic effectis in nor-
mal formal Il if itis T or a conjunction of one or more effeets> a andc > —a with at most one
occurrence oft and—aq for anya € A.

2.3. SUCCINCT TRANSITION SYSTEMS 17

A nondeterministic effect is in normal form Il if it is of foreq| - - - |e,, wheree; are determin-
istic effects in normal form II.
A nondeterministic operatd(, e) is in normal form Il ife is in normal form 1.

Theorem 2.20 For every operator there is an equivalent one in normal form II.

Proof: By Theorem 2.17 there is an equivalent operator in normal form. The transformation
further into normal form |l requires equivalences 2.11 and 2.12. O

Chapter 3

Deterministic planning

The simplest planning problems involves finding a sequence of actions that lead from a given initial
state to a goal state. Only deterministic actions are considered. Determinism and the uniqueness of
the initial state mean that the state of the transition system after executing any sequence of actions
starting in the initial state is exactly predictable. This is not the case if actions are nondeterministic
or there are several initial states. The problem instances in this chapter are deterministic succinct
transition systems as defined in Section 2.3.1.

3.1 State-space search

The simplest possible planning algorithm generates all states (valuations of the state variables),
constructs the transition graph, and then finds a path from the initial Gtata goal statg € G

for example by a shortest-path algorithm. The plan is then simply the sequence of operators
corresponding to the edges on the shortest path from the initial state to a goal state. However,
this algorithm is not feasible when the number of state variables is higher than 20 or 30 because
the number of valuations is very high?’ = 1048576 ~ 10° for 20 Boolean state variables and

230 = 1073741824 ~ 10° for 30.

Instead, it will often be much more efficient to avoid generating most of the state space ex-
plicitly and to produce only the successor or predecessor states of the states currently under con-
sideration. This form of plan search can be easiest viewed as the application of general-purpose
search algorithms that can be employed in solving a wide range of search problems. The best
knownheuristic search algorithmare A«, IDAx and their variantfHartet al,, 1968; Pearl, 1984;

Korf, 1989 which can be used in finding shortest plans or plans that are guaranteed to be close to
the shortest ones.

There are two main possibilities to find a path from the initial state to a goal state: traverse
the transition graph forwards starting from the initial state, or traverse it backwards starting from
the goal states. The main difference between these possibilities is that there may be several goal
states (and one state may have several predecessor states with respect to one operator) but only one
initial state: in forward traversal we repeatedly compute the unique successor state of the current
state, whereas with backward traversal we are forced to keep track of a possibly very high number
of possible predecessor states of the goal states. Backward search is slightly more complicated to
implement but it allows to simultaneously consider several paths leading to a goal state.

18

3.1. STATE-SPACE SEARCH 19

3.1.1 Progression and forward search

We have already defingmogressiorfor single states asapp,(s). The simplest algorithm for the
deterministic planning problem does not require the explicit representation of the whole transition
graph. The search starts in the initial state. New states are generated by progression. As soon as a
states such thats = G is found a plan is guaranteed to exist: it is the sequence of operators with
which the state is reached from the initial state.

A planner can use progression in connection with any of the standard search algorithms. Later
in this chapter we will discuss how heuristic search algorithms together with heuristics yield an
efficient planning method.

3.1.2 Regression and backward search

With backward search the starting point is a propositional forrauthat describes the set of goal

states. An operator is selected, the set of possible predecessor states is computed, and this set is
again described by a propositional formula. A plan has been found when a formula that is true

in the initial state is reached. The computation of a formula representing the predecessor states
of the states represented by another formula is calgtession Regression is more powerful

than progression because it allows handling potentially very big sets of states, but it is also more
expensive.

Definition 3.1 We define the condition ERE) of literal [made true when an operator with the
effecte is applied recursively as follows.

EPG(T)

EPG()
EPG(!') whenl # 1" (for literals I)

)

)

1
T
1

EPG(e1 A---Ney) = EPG(er) V--- VEPG(ep)
EPG(c>e) = ¢ NEPG(e)

The cas&PG(e1 A---Ney) = EPG(e1) V- - - VEPG(e,) is defined as a disjunction because
it is sufficient that at least one of the effects makésie.

Definition 3.2 Let A be the set of state variables. We define the condition;&R®©f operator
o = {c,e) being applicable so that literal is made true ag A EPG(e) A A, c4 ~(EPGi(e) A
EPC..(e)).

For effectse the truth-value of the formul&PG (e) indicates in which statekis a literal to
which the effect assigns the value true. The connection to the earlier definitide] %f is stated
in the following lemma.

Lemma 3.3 Let A be the set of state variablesa state onA4, [a literal on A, ando and operator
with effecte. Then

1. 1 € [e]% if and only ifs = EPG(e), and

2. app,(s) is defined and € [e]?¢ if and only ifs = EPG (o).

20 CHAPTER 3. DETERMINISTIC PLANNING

Proof. We first prove (1) by induction on the structure of the effect
Base case 1 = T: By definition of [T]4¢* we havel ¢ [T]%! = (), and by definition of
EPG(T) we haves [~ EPG(T) = L, so the equivalence holds.
Base case 2, = I: [€ [l]9¢* = {I} by definition, ands = EPG (/) = T by definition.
Base case 3, = I’ for some literal’ # I: | ¢ [I')%* = {I'} by definition, ands [~ EPG (') =
1 by definition.
Inductive case Ig = e1 A --- Aey:
1€ le]d ifandonlyif 1€ [¢/]9 for somee’ € {e1,...,e,}
ifand only if s = EPG(e’) for somee’ € {ey,...,en}
ifand only if s = EPG(e1)V---VEPG(en)
ifandonly if s} EPG(e1 A--- Aep).
The second equivalence is by the induction hypothesis, the other equivalences are by the defi-
nitions of EPG (e) and[e]?** as well as elementary facts about propositional formulae.
Inductive case 2 = ¢ > ¢’:
l€[c>e]d ifandonlyif € [¢/]% ands = ¢
ifand only if s = EPG(e') ands = ¢
ifand only if s = EPG(cr> ¢).
The second equivalence is by the induction hypothesis. This completes the proof of (1).
(2) follows from the fact that the conjunctsand A\ .. , ~(EPG,(e) A EPC.4(e)) in EPG(0)
exactly state the applicability conditions af O

Notice that any operatdr, ¢) can be expressed in normal form in term&SfG, (e) as

<c, /\ (EPGu(e) > a) A (EPCoy(e) > ﬁa)> .

a€A

The formulaEPG,(e) V (a A =EPC_,(e)) expresses the condition for the trutke A after the
effecte is executed in terms of truth-values of state variables before: eitbecomes true, ar
is true before and does not become false.

Lemma 3.4 Leta € A be a state variabley = (c,e¢) € O an operator, ands ands’ = app,(s)
states. Ther = EPG,(¢) V (a A “EPC.,(e)) if and only ifs’ = a.

Proof: Assume that = EPG,(e) V (a A =EPC.,(e)). We perform a case analysis and show that
s’ = a holds in both cases.

Case 1: Assume that= EPG,(e). By Lemma 3.3 € [¢]¢¢, and hence’ |= a.

Case 2: Assume that= a A ~EPC.,(e). By Lemma 3.3-a ¢ [e]9!. Henceu is true ins’.

For the other half of the equivalence, assume thgt EPC,(e) V (a A =EPC.,(e)). Hence
s = —EPGy(e) A (ma VvV EPC,4(e)).

Case 1: Assume that= a. Now s = EPC.,(e) because = —a v EPC.,(e), and hence by
Lemma 3.3-a € [e]?! and hence’ = a.

Case 2: Assume that}= a. Sinces = ~EPG,(e), by Lemma 3.3 ¢ [e]9¢! and hence’ [~ a.

Therefores’ |~ a in all cases. O

The formulaeEPG (e) can be used in defining regression.

3.1. STATE-SPACE SEARCH 21

Definition 3.5 (Regression)Let ¢ be a propositional formula and = (c,e) an operator. The
regressiomf ¢ with respectt@ is regr, (¢) = ¢ AcAx wherex = A . 4 ~(EPCi(e)AEPC.,(¢))
and ¢, is obtained fromyp by replacing every. € A by EPG,(e) V (a A “EPC_,(e)). Define
regr.(¢) = ¢, A x and use the notation regy. ., (¢) = regr,, (- - -regr,, (¢) - - -).

The conjuncts ofy say that none of the state variables may simultaneously become true and
false. The operator is not applicable in states in whidh false.

Remark 3.6 Regression can be equivalently defined in terms of the conditions the state variables
stay or become false, that is, we could use the formula ERG v (—a A -EPG,(e)) which tells
whena is false. The negation of this formula, which can be writteiERGC, (e) A -EPC_,(e)) V

(a N =EPC_,(e)), is not equivalent to EPGZe) V (a A “EPC_,(e)). However, if EPG(e) and
EPC_,(e) are not simultaneously true, we do get equivalence, that is,

~(EPC,(¢) AEPC.4(e)) = ((EPGy(e) A ~EPC.4(¢)) V (a A =EPC.4(¢))
— (EPC,(e) V (a A =EPC_4(e)))

because~(EPGC,(e) A EPC.,(e)) = (EPGy(e) A =EPC.4(e)) < EPG,(e).

An upper bound on the size of the formula obtained by regression with opeeators, o,
starting from¢ is the product of the sizes @f o4, ..., 0,, Which is exponential im. However,
the formulae can often be simplified because there are many occurrencesdfL, for example
by using the equivalencésA¢ = ¢, LA¢ =1L, TV =T,1LVvep=¢,~L=T,and-T = L.

For unconditional operators, . . ., o, (with no occurrences a#), an upper bound on the size of
the formula (after eliminating” and_l) is the sum of the sizes of, . . . , 0,, and¢.

The reason why regression is useful for planning is that it allows to compute the predecessor
states by simple formula manipulation. The same does not seem to be possible for progression
because there is no known simple definition of successor statesetfod states expressed in
terms of a formula: simple syntactic progression is restricted to individual states only (see Section
4.2 for a general but expensive definition of progression for arbitrary formulae.)

The important property of regression is formalized in the following lemma.

Theorem 3.7 Let ¢ be a formula overA, o an operator overA, and S the set of all states i.e.
valuations ofA. Then{s € S|s = regr,(¢)} = {s € S|app.(s) = ¢}.

Proof: We show that for any state s |= regr,(¢) if and only if app,(s) is defined andpp,(s) =
¢. By definitionregr, (¢) = ¢, AcAx for o = (¢, e) whereg, is obtained fromp by replacing every
state variable. € A by EPC,(e) V (a A -EPC.(e)) andx = A, c4 ~(EPG,(e) AEPC.4(e)).

First we show that = ¢ A x if and only if app,(s) is defined.

sEcAy iff s|=cand{a,—~a} Z [e] forallac A byLemma3.3
iff app.(s) is defined by Definition 2.10.

Then we show that = ¢, if and only if app,(s) = ¢. This is by structural induction over
subformulaep’ of ¢ and formulaep!. obtained fromg’ by replacinga € A by EPG,(e) V (a A
—EPC.(e))

Induction hypothesiss |= ¢/, if and only ifapp,(s) = ¢'.

Base case 1y = T: Now ¢/. = T and both are true in the respective states.

Base case 2y = L: Now ¢/. = L and both are false in the respective states.

Base case 3} = a for somea € A: Now ¢, = EPG,(e) V (a A =EPC_,(e)). By Lemma 3.4

s = ¢, ifand only ifapp,(s) = ¢'.

22 CHAPTER 3. DETERMINISTIC PLANNING

Inductive case 19’ = —6: By the induction hypothesis = 0, iff app,(s) = 6. Hences = ¢..
iff app,(s) = ¢’ by the truth-definition of-.

Inductive case 2’ = 0 v §’: By the induction hypothesis |~ 0, iff app,(s) = 6, ands = 6.,
iff app,(s) = 6. Hences = ¢/, iff app,(s) | ¢’ by the truth-definition of/.

Inductive case 3p' = 6 A 0’: By the induction hypothesis |= 0, iff app,(s) = 6, ands = 0.,
iff app,(s) = 6. Hences = ¢/, iff app,(s) | ¢’ by the truth-definition of\. O

Regression can be performed with any operator but not all applications of regression are useful.
First, regressing for example the formulavith the effect-a is not useful because the new unsat-
isfiable formula describes the empty set of states. Hence the sequence of operators of the previous
regressions steps do not lead to a goal from any state. Second, regeesgim¢he operatotb, c)
yieldsregr, . (a) = a A b. Finding a plan for reaching a state satisfying easier than finding a
plan for reaching a state satisfying\ b. Hence the regression step produced a subproblem that is
more difficult than the original problem, and it would therefore be better not to take this regression
step.

Lemma 3.8 Letthere be aplany,..., o, for (A, 1,0,G). Ifregr,, .. .o, (G) = regr,,, (G)
for somek € {1,...,n — 1}, then alsw;,...,05_1,0%+1,...,0n iSaplanfor(A, I, O, G).

Proof: By Theorem 3.7app,, . ;;....0, (8) = G for any s such thats = regr,, ..., (G). Since
ap%l;--~§0k—1 (I) ’: regrok;-..;on (G) andregrok;..‘;on (G) ‘: regr0k+1;...;0n (G) alsoapp?l;--‘;ok71 (I) |:
reglo, 1;...;0n (G) Henceappn;---;Ok_1;0k+1;---;0n (I> ': G andos; .. .;0p1; Ok+15---30n is a plan
for (A,1,0,G). O

Therefore any regression step that makes the set of states smaller in the set-inclusion sense
is unnecessary. However, testing whether this is the case may be computationally expensive.
Although the following two problems are closely related to SAT, it could be possible that the
formulae obtained by reduction to SAT would fall in some polynomial-time subclass. We show
that this is not the case.

Lemma 3.9 The problem of testing whether regge) |~ ¢ is NP-hard.

Proof: We give a reduction from SAT to the problem. Lgtbe any formula. Let be a state
variable not occurring imp. Now regr_4 , .y(a) i~ a if and only if (-¢ — a) %= a, because
regr(~¢—a,a)(a) = ~¢ — a. (=¢ — a) |~ a is equivalent tg~ (-¢ — a) — a that is equivalent
to the satisfiability of~((-¢ — a) — a). Further,=((—¢ — a) — a) is logically equivalent to
=(=(¢ V a) V a) and further to-(—¢ V a) ande¢ A —a.

Satisfiability of¢ A —a is equivalent to the satisfiability @f asa does not occur i: if ¢ is
satisfiable, there is a valuatiansuch that = ¢, we can set: false inv to obtainv’, and asu
does not occur i, we still havev’ = ¢, and further’ = ¢ A —a. Clearly, if ¢ is unsatisfiable
alsog A —ais.

Henceregr -, _q.q)(a) # a if and only if ¢ is satisfiable. O

Also the problem of testing whether a regression step leads to an empty set of states is difficult.

Lemma 3.10 The problem of testing that regio) is satisfiable is NP-hard.

3.1. STATE-SPACE SEARCH 23

Proof: Proof is a reduction from SAT. Let be a formularegr . (a) is satisfiable if and only if
¢ is satisfiable becausegr,) (a) = ¢.

The problem is NP-hard even if we restrict to operators that have a satisfiable preconglition:
is satisfiable if and only if¢ v —a) A a is satisfiable if and only ifegr .4 (a A) is satisfiable.
Herea is a state variable that does not occuwinClearly, ¢ vV —a is true whena is false, and
hencep Vv —a is satisfiable. O

Of course, testing thaegr,(¢) [~ ¢ or thatregr,(¢) is satisfiable is not necessary for the
correctness of backward search, but avoiding useless steps improves efficiency.

Early work on planning restricted to goals and operator preconditions that are conjunctions
of state variables and to unconditional effects (STRIPS operators with only positive literals in
preconditions.) In this special case both gaaland operator effects can be viewed as sets of
literals, and the definition of regression is particularly simple: regressimgth respect toc, e)
is (G\e) Uc. Ifthere isa € A such thats € G and—a € e, then the result of regression s that
is, the empty set of states. We do not use this restricted type of regression in this lecture.

Some planners that use backward search and have operators with disjunctive preconditions and
conditional effects eliminate all disjunctivity by branching. For example, the backward step from
g with operator(a V b, g) yieldsa Vv b. This formula corresponds to two non-disjunctive goals,

a andb. For each of these new goals a separate subtree is produced. Disjunctivity caused by
conditional effects can similarly be handled by branching. However, this branching may lead to a
very high branching factor and thus to poor performance.

In addition to being the basis of backward search, regression has many other applications in
reasoning about actions. One of them is the composition of operators. The compasition
of operators; = (c1,e1) andos = (co, e2) is an operator that behaves like applymgfollowed
by 05. Fora to be true aften, we can regress with respect ta,, obtainingePG,(e2) V (a A
—-EPC_,(e2)). Condition for this formula to be true aftef is obtained by regressing with,
leading to

regre, (EPG,(e2) V (a A "EPC.,(e2)))
= regr., (EPG,(e2)) V (regre, (a) A —regre, (EPC.,(e2)))
= regr., (EPG,(e2)) V ((EPG.(e1) V (a A "EPC.4(e2))) A —regre, (EPC.,(e2))).

Since we want to define an effegt> a of 01 0 05 S0 thata becomes true whenevey followed by
02 would make it true, the formula does not have to represent the case in whightrue already
before the application af; o 0. Hence we can simplify the above formula to

regr., (EPG,(e2)) V (EPGy(e1) A —regre, (EPC.4(e2))).
An analogous formula is needed for making false. This leads to the following definition.

Definition 3.11 (Composition of operators)Leto; = (c1,e1) andos = (c2, e2) be two opera-
tors onA. Then theircompositiorno; o o is defined as

. /\ <((regr€1(EPQ1(62)) V (EPC,(e1) A —regr., (EPC_(e2)))) > a)A >
’ ((regre, (EPC-q(e2)) V (EPC.4(e1) A —regre, (EPG,(e2)))) > —a)

a€A

wherec = c; Aregre, (c2) A Ngea ~ (EPGy(er) A EPC 4 (e1)).

24 CHAPTER 3. DETERMINISTIC PLANNING

Notice that inoy o o5 first o is applied and thens, so the ordering is opposite to the usual
notation for the composition of functions.

Theorem 3.12 Leto; and oy be operators and a state. Then app.., (s) is defined if and only
if appy, .0, () is defined, and appoo, () = AP ;05 (S)-

Proof: Let o; = (c1,e1) andoy = (co,e2). ASSUMEAPN,, .0, () IS defined. Hence = ¢; A
regre, (c2) A N\yea = (EPGi(e1) AEPC 4 (e1)), thatis, the precondition af; o o, is true, ands [~
(regr., (EPG,(e2)) V(EPG,(e1) A-regre, (EPC 4 (e2)))) A(((regre, (EPCoq(e2)) V (EPC (1) A
—regr., (EPG,(e2)))))) for all a € A, that is, the effects do not contradict each other.

Now app,, (s) in app, ;0. (s) = apm, (app, (s)) defined becausel= ciAA ¢ 4 ~(EPGy(e1)A
EPC.,(e1)). Furtherapp,, (s) = c2 by Theorem 3.7 because = regre, (c2). Froms B
(regre, (EPCy(e2)) v (EPG,(e1) A—regre, (EPC.a(e2)))) A(((regre, (EPCoa(e2)) V (EPCua(e1) A
—regr., (EPC,(e2)))))) foralla € Alogically follows s = regr., (EPG,(e2))Aregre, (EPC.4(e2))
for all a € A. Hence by Theorem 3.8pp,, (s) = EPG,(e2) A EPC.,(e2) for all a € A, and by
Lemma 3.3app,, (app,, (s)) is defined.

For the other direction, sin@pp,, (s) is defineds = c1 A A\ c 4 ~ (EPGy(e1) A EPC 4(e1)).
Sinceapp,, (app,, (s)) is defineds |= regr., (c2) by Theorem 3.7.

It remains to show that the effects of o o2 do not contradict. Sincapp,,(app,,(s)) is
definedapp,, (s) = EPG,(e2) A EPC.,(e2) ands = EPG,(e1) A EPC.,(e1) for all a € A.
Hence by Theorem 3.9 [~ regr., (EPG,(e2)) A regre, (EPC.,(e2)) for all a € A. Assume that
for somea € A s |= regre, (EPG,(e2)) V (EPG,(e1) A —regre, (EPC.4(e2))), thatis,a € [0 o
024, If s |= regr., (EPC,(e2)) thens [~ regr., (EPC.,(e2)) V —regr., (EPC,(ez2)). Otherwise
s = EPGy(e1) N —regre, (EPC.4(e2)) and hences = EPC.,(e1). Hence in both cases (-
regre, (EPC.q(e2)) V (EPC_,(e1) A —regr., (EPC,(e2))), that is,—a ¢ [o1 o 02]9t. Therefore
app, oo, (s) is defined.

We show that for any. € A, app,,00,(s) = a if and only if app,, (app,(s)) E a. Assume
app, .0, (s) E a. Hence one of two cases hold.

1. Assumes |= regr., (EPG,(e2)) V (EPGy(e1) A —regre, (EPC.4(e2))).
If s = regr.,(EPC,(e2)) then by Theorem 3.7 and Lemma 3¢ [ei]9et .. Hence

app, (s)
APy ;05 (8) = a.
Assumes |= EPGC,(e1) A —regre, (EPC.4(e2)). Hence by Lemma 3.3 € [e1]9¢ and
app, (s) = a, andapp,, (s) = EPC.4(e2) and—a ¢ [62]25&1 (s)- Henceapp,, 0, (s) = a.

2. Assumes = a ands [~ regre, (EPC.,(e2)) V (EPC.4(e1) A —regre, (EPG,(e2))).

Sinces [~ regr., (EPC.,(e2)) by Theorem 3.7app,, (s) %~ EPC.,(e2) and hence-a ¢
[e23pp, o)
1

Sinces = EPC.,(e1) A —regr., (EPC,(e2)) by Lemma 3.3-a ¢ [e1]% or app, (s) =

EPC,(e2) and hence by Theorem 3a7c [62}23171 ()"

Hence eitheo,; does not make false, or if it makes, makes it true again so thapp,, .., (s) = a

in all cases.
Assumeapp,, .., (s) = a. Hence one of the following three cases must hold.

1. 1fa € [eg]gfﬁ%l («) then by Lemma 3.3pp,, (s) | EPG,(e2). By Theorem 3.7s |=

regre, (EPG,(e2)).

3.2. PLANNING BY HEURISTIC SEARCH ALGORITHMS 25

2.1f a € [e1]9t and—a ¢ [eQ]ggﬁbl(s) then by Lemma 3.21pp,, (s) = EPC..(e2). By

Theorem 3.7% |= EPG,(e1) A —regre, (EPC.4(e2)).

3. If s = aand-a ¢ [eg}ggf%l (s @nd—a & [e1]¢°" then by Lemma 3.8pp,, () £ EPC.q(e2).

By Theorem 3.% - regr., (EPC.,(e2)).
By Lemma 3.3s = EPC_,(e1).

In the first two cases the antecedent of the first conditional in the definition ©b, is true,
meaning thaepp,,..,(s) = a, and in the third case = a and the antecedent of the second
conditional effect is false, also meaning thaip,, .., (s) = a. O

The above construction can be used to elimirsaguential compositioftom operator effects
(Section 2.3.2).

3.2 Planning by heuristic search algorithms

Search for plans can be performed forwards or backwards respectively with progression or regres-
sion as described in Sections 3.1.1 and 3.1.2. There are several algorithms that can be used for
the purpose, including depth-first search, breadth-first search, and iterative deepening, but without
informed selection of operators these algorithms perform poorly.

The use of additional information for guiding search is essential for achieving efficient plan-
ning with general-purpose search algorithms. Algorithms that use heuristic estimates on the values
of the nodes in the search space for guiding the search have been applied to planning very suc-
cessfully. Some of the more sophisticated search algorithms that can be used|&i@rtt al.,

1964, WAx [Pearl, 198} IDA « [Korf, 1989, and simulated annealidirkpatrick et al., 1989.

The effectiveness of these algorithms is dependent on good heuristics for guiding the search.
The most important heuristics are estimates of distances between states. The distance is the min-
imum number of operators needed for reaching a state from another state. In Section 3.4 we will
present techniques for estimating the distances between states and sets of states. In this section we
will discuss how heuristic search algorithms are applied in planning.

When search proceeds forwards by progression starting from the initial state, we estimate the
distance between the current state and the set of goal states. When search proceeds backwards by
regression starting from the goal states, we estimate the distance between the initial state and the
current set of goal states as computed by regression.

All the systematic heuristic search algorithms can easily be implemented to keep track of the
search history which for planning equals the sequence of operators in the incomplete plan under
consideration. Therefore the algorithms are started from the initial 5{édeward search) or from
the goal formula (backward search) and then proceed forwards with progression or backwards
with regression. Whenever the search successfully finishes, the plan can be recovered from the
data structures maintained by the algorithm.

Local search algorithms do not keep track of the search history, and we have to define the
elements of the search space as prefixes or suffixes of plans. For forward search we use sequences
of operators (prefixes of plans)

01;025...5;0n.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the end of the plan or by deleting some of the last operators.

26 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.13 (Neighbors for local search with progression)Let(A, I, O, G) be a succinct tran-

sition system. For forward search, the neighbors of an incomplete @lay; .. .; 0, are the
following.

1. o01;09;...;0p;0f0ranyo € O such that app,......,...({) is defined

2. 01;00;...;0; foranyi < n

Whenapp,,.o.:...o. () = G thenoy; ... ; 0, is a plan.
Also for backward search the incomplete plans are sequence of operators (suffixes of plans)

Opj...;01.

The search starts from the empty sequence. The neighbors of an incomplete plan are obtained by
adding an operator to the beginning of the plan or by deleting some of the first operators.

Definition 3.14 (Neighbors for local search with regression)Let (A, I, O, G) be a succinct tran-
sition system. For backward search, the children of an incompletedqan . ; o; are the follow-

ing.
1. o;0p;...;01 foranyo € O such thatregs.,. . .., (G) is defined

2. 0;...;01foranyi <n

When! = regr,,......, (G) thenoy; .. .; 01 is a plan.

Backward search and forward search are not the only possibilities to define planning as a search
problem. In partial-order plannirid/cAllester and Rosenblitt, 199he search space consists of
incomplete plans which are partially ordered multisets of operators. The neighbors of an incom-
plete plan are those obtained by adding an operator or an ordering constraint. Incomplete plans can
also be formalized as fixed length sequences of operators in which zero or more of the operators
are missing. This leads to the constraint-based approaches to planning, including the planning as
satisfiability approach that is presented in Section 3.6.

3.3 Reachability

The notion of reachability is important in defining whether a planning problem is solvable and in
deriving techniques that speed up search for plans.

3.3.1 Distances

First we define the distances between states in a transition system in which all operators are deter-
ministic. Heuristics in Section 3.4 are approximations of distances.

Definition 3.15 Let I be an initial state and) a set of operators. Define tiferward distance
setsDz""d for I, O that consist of those states that are reachable fibimy at mosti operator
applications as follows.

fwd
Dy = {1}
DM — D™ {slo € O, s € img,(D*)} forall i > 1

3.3. REACHABILITY 27

Definition 3.16 Let I be a state a set of operators, andDg‘Nd, Dfl""d,
sets forl, O. Thenthe forward distancef a states from I is

5fwd()_ 0ifs=1
1= iif s e DM\ DM,

... the forward distance

Ifs & D?Nd foralli >0 thené?"’d(s) = oo. States that have a finite forward distance erachable
(from I with O).

Distances can also be defined for formulae.

Definition 3.17 Let ¢ be a formula. Then théorward distanceﬁ?”d(@ of ¢ is i if there is state
s such thats = ¢ and 6?"’(’(5) = ¢ and there is no state’ such thats’ = ¢ and 5§Wd(s) <. If
I |= ¢ thens™(4) = 0.

A formula ¢ has a finite distance oo if and only if (A, I, O, ¢) has a plan.

Reachability and distances are useful for implementing efficient planning systems. We mention
two applications.

First, if we know that no state satisfying a formutds reachable from the initial states, then
we know that no operatdpp, e) can be a part of a plan, and we can ignore any such operator.

Second, distances help in finding a plan. Consider a deterministic planning problem with goal
stateG. We can now produce a shortest plan by finding an opetaﬁnrthat&?"'d(regro(G)) <
63‘Nd(G), usingregr,(G) as the new goal state and repeating the process until the initial/sate
reached.

Of course, since computing distances is in the worst case just as difficult as planning (PSPACE-
complete) it is in general not useful to use subprocedures based on exact distances in a planning
algorithm. Instead, different kinds approximation®f distances and reachability have to be used.
The most important approximations allow the computation of useful reachability and distance
information in polynomial time in the size of the succinct transition system. In Section 3.4 we will
consider some of them.

3.3.2 Invariants

An invariant is a formula that is true in the initial state and in every state that is reached by
applying an operator in a state in which it holds. Invariants are closely connected to reachability
and distances: a formulais an invariant if and only if the distance ofy from the initial state is

oo. Invariants can be used for example to speed up algorithms based on regression.

Definition 3.18 Let I be a set of initial states an® a set of operators. An formula is an
invariantof I, O if s |= ¢ for all statess that are reachable froni by a sequence of O or more
operators inO.

An invariant¢ is the strongest invariant ¢ |= ¢ for any invariant). The strongest invariant
exactly characterizes the set of all states that are reachable from the initial state: for every state
s = ¢ if and only if s is reachable from the initial state. We say “the strongest invariant” even
though there are actually several strongest invariants:sttisfies the properties of the strongest
invariant, any other formula that is logically equivalengidor examplep V ¢, also does. Hence
the uniqueness of the strongest invariant has to be understood up to logical equivalence.

28 CHAPTER 3. DETERMINISTIC PLANNING

Example 3.19 Consider a set of blocks that can be on the table or stacked on top of other blocks.
Every block can be on at most one block and on every block there can be one block at most. The
actions for moving the blocks can be described by the following schematic operators.

(ontabléx) A clear(z) A clear(y),on(z,y) A —clealy) A —ontabléz))
(clealz) A on(z,y),ontabldz) A cleary) A —on(zx,y))
(clearz) A on(z,y) A cleal(z),on(z, z) A clealy) A —clear(z) A —on(z, y))

We consider the operators obtained by instantiating the schemata with the ohjé&ctndC. Let
all the blocks be initially on the table. Hence the initial state satisfies the formula

cleai(A) A clea B) A clea(C') A ontabld A) A ontablé B) A ontabléC)A
—0n(A4, B) A —on(A,C) A —on(B, A) A —on(B, C) A —on(C, A) A —on(C, B)

that determines the truth-values of all state variables uniquely. The strongest invariant of this
problem is the conjunction of the following formulae.

cleafA) < (—on(B, A) A—on(C,A)) clea(B) < (-on(4, B) A —on(C, B))

clea(C) < (—on(A,C) A—-on(B,C)) ontabléA) < (—on(A, B) A —on(A, C))
ontablé B) « (—on(B, A) A —on(B, C)) ontabléC) «— (-on(C, A) A —on(C, B))
—on(A4, B) vV —on(4, C) -on(B, A) vV —on(B, C)
—-on(C, A) v -on(C, B)
—on(B, A) vV -on(C, A)
—on(A4,C) Vv —-on(B,(C)
—(on(A, B) Aon(B,C) Aon(C, A)) —(on(A,C) Aon(C, B) Aon(B, A))

-on(A, B) vV -on(C, B)

We can schematically give the invariants for any Xebf blocks as follows.

clea(z) « Vy € X\{z}.-on(y, z)

ontabldz) « Vy € X\{z}.—on(z,y)

—on(z,y) V —on(z, z) wheny # z

—on(y, x) V —on(z, z) wheny # z

—(on(zy, x2) Aon(za, x3) A« AON(Tp—1,xn) AON(xy,z1)) foralln > 1,{z1,...,2,} CX

The last formula says that tlea relation is acyclic. |

3.4 Approximations of distances

The approximations of distances are based on the following idea. Instead of considering the num-
ber of operators required to reach individual states, we approximately compute the number of
operators to reach a state in which a certain state variable has a certain value. So instead of using
distances of states, we use distances of literals.

The estimates are not accurate for two reasons. First, and more importantly, distance estimation
is done one state variable at a time and dependencies between state variables are ignored. Second,
to achieve polynomial-time computation, satisfiability tests for a formula and a set of literals to
test the applicability of an operator and to compute the distance estimate of a formula, have to
be performed by an inaccurate polynomial-time algorithm that approximates NP-hard satisfiabil-
ity testing. As we are interested in computing distance estimates efficiently the inaccuracy is a
necessary and acceptable compromise.

3.4. APPROXIMATIONS OF DISTANCES 29

3.4.1 Admissible max heuristic

We give a recursive procedure that computes a lower bound on the number of operator applications
that are needed for reaching from a state state in which state variablasc A have certain
values. This is by computing a sequence of ge&'* of literals. The seiD;"** consists literals
that are true in all states that have distagcéfrom the statd.

Recall Definition 3.2 oEPG (o) for literalsi and operators = (c, e):

EPG(0) = ¢ AEPG(e) A\ ~(EPC,(e) A EPC.4(e)).

acA

Definition 3.20 Let L = AU {—ala € A} be the set of literals ord and! a state. Define the sets
Die® for ¢ > 0 as follows.

Dg** ={le Ll =1}
Dt = Di"*\{l € L|o € O, Dj*%* U{EPG(0)} is satisfiablg, fori > 1

Since we consider only finite setsof state variables andy***| = |A| and D}§" C D**
foralli > 0, necessarilyD;"** = D"** for somei < [A| and allj > i.

The above computation starts from the B§t** of all literals that are true in the initial stafe
This set of literals characterizes those states that have distance 0 from the initial state. The initial
state is the only such state.

Then we repeatedly compute sets of literals characterizing sets of states that are reachable with
1, 2 and more operators. Each $8t** is computed from the preceding gef*%” as follows. For
each operatas it is tested whether it is applicable in one of the distained states and whether it
could make a literal false. This is by testing wheth&PC(o) is true in one of the distande- 1
states. If this is the case, the litefalould be false, and it will not be included " **.

The sets of states in which the literdl$™** are true are an upper bound (set-inclusion) on the
set of states that have forward distarmce

Theorem 3.21 Let D?Nd,z‘ > 0 be the forward distance sets ag)"** the max-distance sets for
I'andO. Then for alli > 0, D?’Vd C {s € S|s = D"**} whereS is the set of all states.

Proof: By induction on.
Base caseé = 0: DSNd consists of the unique initial stafeand Dj*** consists of exactly those

literals that are true id, identifying it uniquely. Hencé.)?”d = {s € S|s = D"*"}.

Inductive caseé > 1: Let s be any state id)?”d. We show that = D;"**. Letl be any literal
in D,

3

Assumes € Dz‘fdl As DI"er C D" alsol € D"%*. By the induction hypothesis|= I.

Otherwises € D?Nd\Dz‘fci. Hence there i® € O andsg € sz‘f‘i with s = app,(so). By
Der C D™ and the induction hypothesig = [. Asl € D", by definition of D"** the set
D5 U {EPG{(0)} is not satisfiable. By, € sz‘f‘i and the induction hypothesig = D;"4".
Hences, = EPG(0). By Lemma 3.3 applying in s, does not makéfalse. Hences = 1. O

The setsD;"** can be used for estimating the distances of formulae. The distance of a formula
is the minimum of the distances of states that satisfy the formula.

30 CHAPTER 3. DETERMINISTIC PLANNING

Definition 3.22 Let¢ be a formula. Define

S) = 0 iff DF*** U {¢} is satisfiable
! | diff DT U {¢} is satisfiable andD'" U {¢} is not satisfiable for d > 1.

Lemma 3.23 Let] be a state() a set of operators, and;***, D***, ... the sets given in Defi-
nition 3.20 forl andO. Then app,.. .., (I) = D;'** for any operators{os,...,0,} C O.

Proof: By induction onn.

Base case = 0: The length of the operator sequence is zero, and hemgé/) = 1. The set
D{* consists exactly of those literals that are trus,iand hencd = D{***,

Inductive case: > 1: By the induction hypothes&spp,,, ,(I) = D7,

Let [be any literal inD***. We show it is true inapp,,. .., (I). Sincel € D;* and

Dper C Dt alsol € D7, and hence by the induction hypotheag@,,, , () = L

n—17 n—11
Sincel € D;** it must be thatD]**¢ U {EPC(0,)} is not satisfiable (definition ab;**) and
further thatapp,, ;.....,_, (1) = EPG(o,). Hence applying,, in app,,;....,,_, (I) does not make
false, and consequentpp,, ..., (I) = L.

O

The next theorem shows that the distance estimates given for formulae yield a lower bound on
the number of actions needed to reach a state satisfying the formula.

Theorem 3.24 Let I be a state(a set of operatorsp a formula, andDg***, DT***, .. . the sets

Proof: By Lemma 3.23app,,.....,(I) = D;'**. By assumptiorapp,,....,(I) = ¢. Hence
Drer U {¢} is satisfiable. O

Corollary 3.25 Let [be a state an@ a formula. Then for any sequenag . . ., o, of operators
such thatapp....., (1) = ¢, n > 07 (¢).

The estimate)]'®{(¢) never overestimates the distance frerto ¢ and it is therefore an ad-
missible heuristic. It may severely underestimate the distance, as discussed in the end of this
section.

Distance estimation in polynomial time

The algorithm for computing the sef3]*** runs in polynomial time except that the satisfiability
tests forDU{¢} are instances of the NP-complete SAT problem. For polynomial time computation
we perform these tests by a polynomial-time approximation that has the propertyfha{if} is
satisfiable then as@b, ¢) returns true, but not necessarily vice versa. A counterpart of Theorem
3.21 can be established when the satisfiability tésts {4} are replaced by tests a6t ¢).

The function asai, ¢) tests whether there is a state in whigland the literalsD are true, or
equivalently, whetheD U {¢} is satisfiable. This algorithm does not accurately test satisfiability,
and may claim thaD U {¢} is satisfiable even when it is not. This, however, never leads to

3.4. APPROXIMATIONS OF DISTANCES 31

overestimating the distances, only underestimating. The algorithm runs in polynomial time and is
defined as follows.

asatD, 1) = false
asatD, T) = true
asatD, a) = true iff —a ¢ D (for state variablea € A)
asatD, —a) = trueiff a ¢ D (for state variables € A)
asatD, -—¢) = asatD, ¢)
asatD, ¢1 V ¢2) = asatD, ¢1) or asatD, ¢2)
asatD, ¢1 A ¢2) = asatD, ¢1) and asdtD, ¢2)
asatD, —(¢1 V ¢2)) = asatD, —¢;1) and asdtD, —¢p2)
asatD, —(¢1 A ¢2)) = asatD, —¢1) or asatD, —¢2)

In this and other recursive definitions about formulae the cases(farA ¢2) and—(¢; V ¢2) are
obtained respectively from the casesfarv ¢o andg, A ¢2 by the De Morgan laws.

The reason why the satisfiability test is not accurate is that for formulae) (respectively
—(¢ V 1)) we make recursively two satisfiability tests that do not require that the subformulae
and+) (respectively-¢ and—1)) aresimultaneouslgatisfiable.

We give alemma that states the connection betweefasaj and the satisfiability oDU{¢}.

Lemma 3.26 Let ¢ be a formula andD a consistent set of literals (it contains at most one; of
and—a for everya € A.) If D U {¢} is satisfiable, then asé@b, ¢) returns true.

Proof: The proof is by induction on the structure @f

Base case 1p = L: The setD U {_L} is not satisfiable, and hence the implication trivially
holds.

Base case 2y = T: asatD, T) always returns true, and hence the implication trivially holds.

Base case 39 = a for somea € A: If D U {a} is satisfiable, thema ¢ D, and hence
asafD, a) returns true.

Base case 4p = —a for somea € A: If D U {—a} is satisfiable, them ¢ D, and hence
asatD, —a) returns true.

Inductive case 1¢ = ——¢’ for some¢’: The formulae are logically equivalent, and by the
induction hypothesis we directly establish the claim.

Inductive case 2p = ¢1V ¢o: If DU{p1V 2} is satisfiable, then eithdd U {41} or DU{¢2}
is satisfiable and by the induction hypothesis at least one of/asat) and asdtD, ¢2) returns
true. Hence as@b, ¢; V ¢») returns true.

Inductive case 3¢ = ¢1 A @21 If D U {p1 A ¢2} is satisfiable, then both U {¢;} and
D U {¢2} are satisfiable and by the induction hypothesis both(&sat;) and asdtD, ¢2) return
true. Hence aséb, ¢, A ¢) returns true.

Inductive cases 4 and B,= —(¢1 V ¢2) and¢ = —(p1 A ¢2): Like cases 2 and 3 by logical
equivalence. O

The other direction of the implication does not hold because for exampl@ asat-a) returns
true even though the formula is not satisfiable. The procedure is a polynomial-time approximation
of the logical consequence test from a set of literals:(@sat) always returns true iD U {¢} is
satisfiable, but it may return true also when the set is not satisfiable.

32 CHAPTER 3. DETERMINISTIC PLANNING

Informativeness of the max heuristic

The max heuristic often underestimates distances. Consider an initial state in whichtaie
variables are false and a goal state in which all state variables are true and a epecdtors each
of which is always applicable and makes one of the state variables true. The max heuristic assigns
the distance 1 to the goal state although the distance is

The problem is that assigning every state variable the desired value requires a different operator,
and taking the maximum number of operators for each state variable ignores this fact. In this case
the actual distance is obtained asshenof the distances suggested by each ofilstate variables.
In other cases the max heuristic works well when the desired state variable values can be reached
with the same operators.

Next we will consider heuristics that are not admissible like the max heuristic but in many cases
provide a much better estimate of the distances.

3.4.2 Inadmissible additive heuristic

The max heuristic is very optimistic about the distances, and in many cases very seriously underes-
timates them. If two goal literals have to be made true, the maximum of the goal costs (distances)
is assumed to be the combined cost. This however is only accurate when the easier goal is achieved
for free while achieving the more difficult goal. Often the goals are independent and then a more
accurate estimate would be the sum of the individual costs. This suggests another heuristic, first
considered by Bonet and Geffng001] as a more practical variant of the max heuristic in the
previous section. Our formalization differs from the one given by Bonet and Geffner.

Definition 3.27 LetI be a state and. = A U {—a|a € A} the set of literals. Define the sels"
for ¢ > 0 as follows.

Df ={leL|l =1}
D = D} \{l € L|o € O,cos{EPG(0), i) < i} forall i > 1

We define coép, i) by the following recursive definition.

=0
=0if~a ¢ DJ, forae A

)
)
)
)
)
cos(—a,i) = jif a € D |\D; for somej < i
cos(a,i) = oo if ~a € D forall j <i
) = oif a € D forall j <i
) = min(cos{¢1,17),Ccos{(¢p2,17))
cos{¢1 A ¢o,1) = €cOS{¢1,1) + COS{ g, 0)
cos(——¢, i) = cos(o, 1)
cos{— (o1 A ¢2),1) = min(cos{—¢1,1i),COS(—¢a, 1))
) = COS{—¢1,1) + COS(2, 1)

Notice that a variant of the definition of the max heuristic could be obtained by replacing the
sum+- in the definition of costs of conjunctions byax. The definition of cosip, i) approximates

3.4. APPROXIMATIONS OF DISTANCES 33

satisfiability tests similarly to the definition of agat, ¢) by ignoring the dependencies between
propositions.
Similarly to max distances we can define distances of formulae.

Definition 3.28 Let¢ be a formula. Define

07 (¢) = cost¢,n)
wheren is the smallest such thatD;” = D" ,.

The following theorem shows that the distance estimates given by the sum heuristic for literals
are at least as high as those given by the max heuristic.

Theorem 3.29 Let D"** i > 0 be the sets defined in terms of the approximate satisfiability tests
asatD, ¢). ThenD™ C D forall i > 0.

Proof: The proof is by induction omn.
Base casé = 0: By definition D = Dje*,
Inductlve case > 1: We have to show thab*4*\{l € L|o € O,asatD;"7",EPC(0))} C
D" \{l € L|o € O, cos{EPG(o) i < i}. By the induction hypothesi®%® C D . Itis
sufﬁment to show that coEPC;(0), i) < i implies asa(tD[”“f”, EPG(0))

We show this by induction on the structuredt= EPG/(0)

Induction hypothesis: cogt, i) < ¢ implies asatD;"4",)=true.

Base case Iy = L: cos(_L,:) = oo and asdtD;"**, L)=false.

Base case 2y = T: cos(_L,:) = 0 and asdtD!"**, L)=true.

Base case 3p = a: If cost(a,i) < i then—a ¢ D for somej < ior-a ¢ Dy. Hence
—a ¢ D; . By the outer induction hypothesis: ¢ D™%* and consequentlya ¢ D%, Hence
asatD;"**, L)=true.

Base case 4) = —a: Analogous to the casg = a.

Inductive case 5¢ = ¢;1 V ¢2: Assume costy V ¢o,i) < i. Since cosp; V ¢o,i) =
min(cos{¢1,1),Ccos(¢s, 1)), either costepy,i) < i or cost¢s, i) < i. By the induction hypothesis
cost¢q,1) < i implies asatD!"4", ¢1), and cosfpo, i) < i implies asatD!"4", ¢2). Hence either
asatD;"4", ¢1) or asatD!"%", ¢2). Therefore by definition as@D!"4", ¢1 V ¢2).

Inductive case 6) = ¢1 A pa: Assume cogth1 A ¢, i) < i. Sincei > 1 and cosfp; V ¢g, i) =
cos{(¢q,1) + cos{¢s, 1), both coste;, i) < i and cosfps,i) < i. By the induction hypothesis
cos{¢1,1) < i implies asatD!"4", ¢1), and costgs, i) < i implies asatD"%", ¢2). Hence both
asatD;"4", ¢1) an asatD]"%", ¢2). Therefore by definition as@D!"4", o1 A ¢2).

Inductive case 7 = ——¢;: By the induction hypothesis cdst, i) < i implies asatD!"4", ¢1).
By definition cos{——¢1,7) = cos{¢1,i) and asatD, -—¢) = asatD, ¢). By the induction hy-
pothesis cogt—¢1, 1) < i implies asatD;"4*, =—¢1).

Inductive case 8 = —(¢1 V ¢2): Analogous to the case = ¢; A ¢o.

Inductive case % = —(¢1 A ¢2): Analogous to the case = ¢1 V ¢o. O

That the sum heuristic gives higher estimates than the max heuristic could in many cases be
viewed as an advantage because the estimates would be more accurate. However, in some cases
this leads to overestimating the actual distance, and therefore the sum distances are not an admis-
sible heuristic.

34 CHAPTER 3. DETERMINISTIC PLANNING

Example 3.30 Consider an initial state such that= —a A —bA —c and the operatofT,a AbAc).
A state satisfying: A b A cis reached by this operator in one step Jfgtl(a AbAc)=3. |

3.4.3 Relaxed plan heuristic

The max heuristic and the additive heuristic represent two extremes. The first assumes that sets
of operators required for reaching the individual goal literals maximally overlap in the sense that
the operators needed for the most difficult goal literal include the operators needed for all the
remaining ones. The second assumes that the required operators are completely disjoint.

Usually, of course, the reality is somewhere in between and which notion is better depends on
the properties of the operators. This suggests yet another heuristic: we attempt to find a set of
operators that approximates, in a sense that will become clear later, the smallest set of operators
that are needed to reach a state from another state. This idea has been considered by Hoffman
and Nebe[2001]. If the approximation is exact, the cardinality of this set equals the actual dis-
tance between the states. The approximation may both overestimate and underestimate the actual
distance, and hence it is does not yield an admissible heuristic.

The idea of the heuristic is the following. We first choose a set of goal literals the truth of
which is sufficient for the truth ofs. These literals must be reachable in the sense of the sets
D;"e* which we defined earlier. Then we identify those goal literals that were the last to become
reachable and a set of operators making them true. A new goal formula represents the conditions
under which these operator can make the literals true, and a new set of goal literals is produced by
a simplified form of regression from the new goal formula. The computation is repeated until we
have a set of goal literals that are true in the initial state.

The function goal&D, ¢) recursively finds a se¥/ of literals such thai/ = ¢ and each literal
in M is consistent withD. Notice thatM itself is not necessarily consistent, for example for
D =(and¢ = a A —a we getM = {a,—a}. If a setM is found goalsD, ¢) = {M} and
otherwise goaldD, ¢) = 0.

Definition 3.31 Let D be a set of literals.

goalyD, 1) =0
goalg§ D, T) = {0}
goalgyD,a) = {{a}}if~a ¢ D
goal§D,a) = Qif —a € D
goaly D, ~a) = {{~a}}ifa g D
goalgD,—a) = 0ifae D
goal{ D, =—¢) = goalyD, ¢)
) goalg D, ¢1) if goals(D, ¢1) # 0
goalg D, ¢2) otherwise
goals D, ¢1 A ¢o) = {éLl U Ly} gtazil\llvsl(sl; ¢1) = {L1} and goal$D, ¢3) = {L2}
goalg D, —¢,) if goals(D, —¢1) # ()
goalg D, —¢9) otherwise

goalg D, (41 V ¢2)) = { éLl U Ly} ic]:t%(;?\lii(s% —¢1) = {L1} and goal$D, ~¢») = {L2}

goaly D, g1 V ¢2) = {

goals(D, ~(¢1 A 6)) = {

Above in the case fop; V ¢, if both ¢; and ¢- yield a set of goal literals the set fgr is
always chosen. A practically better implementation is to choose the smaller of the two sets.

3.4. APPROXIMATIONS OF DISTANCES 35

Lemma 3.32 Let D be a set of literals and a formula.

1. goal{ D, ¢) # () if and only if asatD, ¢) = true.

2. Ifgoals(D, ¢) = {M} then{l|l € M} N D = § and asatD, A\,) = true.
Proof:

1. Thisis by an easy induction proof on the structure dfised on the definitions of agak, ¢)
and goalsD, ¢).

2. This is becausé¢ D for all I € M. This can be shown by a simple induction proof.

O

Lemma 3.33 Let D and D’ C D be sets of literals. If goal®, ¢) = 0 and goal§D’, ¢) = {M }
for someM, then there i € M such that € D\D'.

Proof: Proof is by induction in the structure of formulae

Induction hypothesis: If goal®, ¢) = () and goal§D’, ¢) = { M} for somel, then there is
l € M suchthat € D\D'.

Base cases 1 & 2y = T and 2¢ = _L: Trivial as the condition cannot hold.

Base case 3 = a: If goals(D,a) = 0 and goaléD’,a) = M = {{a}}, then respectively
—a € D and—a ¢ D'. Hence there is € M such that € D\D'.

Inductive case 19 = ——¢': By the induction hypothesis as go@ls ——¢') = goalg D, ¢’).

Inductive case 2p = ¢ V ¢o: Assume goaldD, @1 V ¢2) = 0 and goalsD’, ¢1 V o) = {M }
for someM. Hence goaldD, ¢1) = 0 and goaléD, ¢») = 0, and goal§D’, ¢1) = {M} or
goalg D', ¢2) = {M}. Hence by the induction hypothesis with or ¢, there isl € M such that
le D\D'.

Inductive case 3p = ¢1 A ¢o: Assume goaldD, ¢1 A ¢2) = 0 and goalsD’, 1 A po) = { M}
for someM. Hence goalsD, ¢1) = 0 or goal§D, ¢3) = 0, and goaléD’, 1) = {L;} and
goal§ D', ¢2) = {Lo} for someL, and L, such thatM = L, U L,. Hence by the induction
hypothesis withp; or ¢, there is eithet € L; orl € L, such thal € D\D'.

Inductive case® = —(¢1 A ¢2) and¢p = —(¢1 V ¢2) are analogous to cases 2 and 3. [

Definition 3.34 Definest™ (¢) = relaxedplariA, I, 0, ¢).

Like the sum heuristic, the relaxed plan heuristic gives higher distance estimates than the max
heuristic.

Theorem 3.35 Let ¢ be a formula and"®(¢) the max-distance defined in terms of #&ate).
Thendp(¢) > 57(0).

Proof: We have to show that for any formuiathe procedure catelaxedplarA,l,0,G) returns a
number> 67 G).

First, the procedure returns if and only if asatD;"**,) = false for all; > 0. In this case
by definitiond"®(G) = oo.

36 CHAPTER 3. DETERMINISTIC PLANNING
1: procedurerelaxedplan(A,l,0,G);
2: L:=AU{~-alac A}; (* All literals *)
3: compute set®*** as in Definition 3.20;
4: if asatD"**, G) = false for alli > 0 then return oo; (* Goal not reachable *)
5. t:=01G);
6: L&, =0
7. Nigq = 0;
8. G;:=G,
9: for i:=tdownto1ldo
10: begin
11: LE = (LY \Niy1) U{l € M|M € goalg D", G;)}; (* The goal literals *)
12: N;:={l € L¥|l € D™4*}; (* Goal literals that become true betweer- 1 andi *)
13: T; := a minimal subset of so thatV; C {l € L|o € T;,asatD;"%", EPG(0))};
14: Gi-1:= Nien, VIEPG(0)|o € T;}; (* New goal formula *)
15: end

16: return |Ty| + |Ta| + - -+ |T3

Figure 3.1: Algorithm for finding a relaxed plan

Otherwiset = §"®(G). Now ¢ = 0 if and only if asatDg***, G) = true. In this case the
procedure returns 0 without iterating the loop starting on line 9.

We show that ift > 1 then for everyi € {1,...,t} the setT; is non-empty, entailingZ| +
<+ T >t = 6"¥(G). This is by an induction proof fromto 1.

We use the following auxiliary result. If agd?"4", G;) = false and asaD;"**, G;) = true
andl ¢ D for all | € LY thenT; is well-defined and’; # (. The proof is as follows.

By Lemma 3.32 goal®;"4*, G;) = () and goalsD***, G;) = {M} for somel!.
By Lemma 3.33 there is€ M such that € D™%* and henceV; # . By definition
I € D= foralll € N;. By N; C L§ and the assumption aboLf’ [¢ D™ for

alll € N;. Hencel € D™\ D" for all | € N;. Hence by definition oD for
everyl € N; there iso € O such that asaD"4*, EPG(0)). Hence there i§; C O
sothatN; C {l € L|o € T;,asatD"%4*, EPG(0))} and the value of; is defined. As
N; # () alsoT; # (.

In the induction proof we establish the assumptions of the auxiliary result and then invoke the
auxiliary result itself.
Induction hypothesis: For afl € {i,...,t}

1.1¢ D foralll € LY,

2. asatD7***, ;) = true and asaD}'", G;) = false, and

3.T; #0.

Base case = ¢:

1. 1 ¢ D foralll € LY by (2) of Lemma 3.32 becaudg’ = {I € goalg D"** G)}.
2. Ast = d1"*(G,) by definition asatD;"%", G;) = false and as@D;"**, G;) = true.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 37

3. By the auxiliary result from the preceding case.

Inductive casé < t:

1. We havel ¢ D for all I € L because.{ = (LY, \Ni1) U {l € goalg D", G;)}
and by the induction hypothesis¢ Dha* for all I € LZ-GJr1 and by (2) of Lemma 3.32
I ¢ D" foralll € M for M € goalg D", G,).

2. By definition G; = Ay, VIEPG(o)lo € Tiy1}. By definition of T;,, for every
[€ N4 there iso € Tjq such that asaD;"**, EPG(0)) = true. By definition of

asatD"*" ¢1 V ¢2) and asdtD]"**, ¢1 A ¢2) for ¢1 and¢, also asatD"**, G;) = true.

Then we show that asd®;"%", G;) = false. By definition ofD;"**, asatD;"4*, EPG/(0)) =
false for alll € D"** ando € O. Hence asaD;"%", EPG(0)) = false for alll € N;;
ando € O becausé € D™, Hence as&D!%* EPG/(o0)) = false for alll € N;;; and
o € T;41 becausd;,; C O. By definitionG; = /\leM+1 V{EPG(o)|o € T;+1}. Hence
by definition of asdtD, ¢) also asdtD;"%", G;) = false.

3. By the auxiliary result from the preceding case.

3.5 Algorithm for computing invariants

Planning with backward search and regression suffers from the following problem. Often only
a fraction of all valuations of state variables represent states that are reachable from the initial
state and represent possible world states. The goal formula and many of the formulae produced
by regression often represent many unreachable states. If the formulae represent only unreachable
states a planning algorithm may waste a lot of effort determining that a certain sequence of actions
is not the suffix of any plah Also planning with propositional logic (Section 3.6) suffers from the
same problem.

Planning can be made more efficient by restricting search to states that are reachable from
the initial state. However, determining whether a given state is reachable from the initial state
is PSPACE-complete. Consequently, exact information on the reachability of states could not be
used for speeding up the basic forward and backward search algorithms: solving the subproblem
would be just as complex as solving the problem itself.

In this section we will present a polynomial time algorithm for computing a class of invariants
that approximately characterize the set of reachable states. These invariants help in improving
the efficiency of planning algorithms based on backward search and on satisfiability testing in the
propositional logic (Section 3.6).

Our algorithm computes invariants that are clauses with at mdiggrals, for some fixech.

For representing the strongest invariant arbitrarily higimay be needed. Although the runtime
is polynomial for any fixedn, the runtimes grow quickly as increases. However, for many
applications short invariants of length= 2 are sufficient, and longer invariants are less important.

1A symmetric problem arises with forward search because with progression one may reach states from which goal
states are unreachable.

w
(o]

CHAPTER 3. DETERMINISTIC PLANNING

1: procedure preservedf,C',0);
2. ¢=1V---Vli,forsomely,...,l, ando = (c,e) for somec ande;
3: foreachl e {ly,...,l,}do
4: if C'U{EPGC(0)} is unsatisfiablehen goto OK; (* [cannot become false. *)
5: foreachl’ € {ly,...,1,}\{l} do (* Otherwise another literal inp) must be true. *)
6: if C U{EPG(0)} = EPG/ (o) then gotoOK; (* I’ becomes true. *)
7: if C U{EPG(0)} =" A -EPC;(0) then goto OK; (* I” was and stays true. *)
8: end do
9: return false; (* Truth of the clause could not be guaranteed. *)
10: OK:
11: enddo
12: return true;

Figure 3.2: Algorithm that tests whethemay falsifyl; v - - - V [,, in a state satisfying’

The algorithm first computes the set of all 1-literal clauses that are true in the initial state. This
set exactly characterizes the set of distance 0O states consisting of the initial state only. Then the
algorithm considers the application of every operator. If an operator is applicable it may make
some of the clauses false. These clauses are removed and replaced by weaker clauses which are
also tested against every operator. When no further clauses are falsified, we have a set of clauses
that are guaranteed to be true in all distance 1 states. This computation is repeated for distances
2, 3, and so on, until the clause set does not change. The resulting clauses are invariants because
they are true after any number of operator applications.

The flavor of the algorithm is similar to the distance estimation in Section 3.4: starting from
a description of what is possible in the initial state, inductively determine what is possibleé after
operator applications. In contrast to the distance estimation method in Section 3.4 the state sets
are characterized by sets of clauses instead of sets of literals.

Let C; be a set of clauses that characterizes those states that are reachatypetator appli-
cations. Similarly to distance computation, we consider for each operator and for each clause in
C; whether applying the operator may make the clause false. If it can, the clause could be false
afteri operator applications and therefore will not be in the(sgat; .

Figure 3.2 gives an algorithm that tests whether applying an operatot) in some state
may make a formuld Vv --- Vv [, false assuming that= C U {l; V --- V [,,}.

The algorithm performs a case analysis for every literal in the clause, testing in each case
whether the clause remains true: if a literal becomes false, either another literal becomes true
simultaneously or another literal was true before and does not become false.

Lemma 3.36 Let C' be a set of clausesy) = I VvV --- V [, a clause, anth an operator. If
preserved$,C,0) returnstrue then app(s) = ¢ for any states such thats = C U {¢} and
o is applicable ins. (It may under these conditions also retdaise).

Proof: Assumes is a state such thatl= C A ¢, app,(s) is defined andpp,(s) = ¢. We show
that the procedure returfalse

Sinces |= ¢ andapp,(s) [~ ¢ at least one literal im is made false by. Let {i;,... [t} C
{l1,...,1,} be the set of all such literals. Henge= I~ A --- A L and{i{, ..., Ik} C [e]de.
The literals in{iy, ..., 1, }\{l{, ..., L} are false ins ando does not make them true.

3.5. ALGORITHM FOR COMPUTING INVARIANTS 39

1: procedureinvariants@, I, O, n);
2. C={acAlEa}U{alaec A I}}a}; (* Clauses true in the initial state *)
3. repeat
4: ' =C,;
5: foreacho € Oandl; Vv --- VI, € C such thanot preserved(V - - - V [,,,C",0) do
6: C:=C\{l4 V- Vin};
7. if m < nthen (* Clause length within pre-defined limit. *)
8: begin (* Add weaker clauses. *)
9: C=Cu{lyVv---VipValaeA{a,~a}N{l,...,ln} =0}
10: C=Cu{lhVv---VipV-a|aecA{a,~a}N{l,....ln} =0}
11: end
12: end do
13: untl C =C";
14: return C,
Figure 3.3: Algorithm for computing a set of invariant clauses
Choose any € {I{,...,l:}. We show that when the outermdet eachloop starting on line

3 considerg the procedure will returfalse

Sincel € [e]? ando is applicable ins by Lemma 3.3s = EPG(0). Since by assumption
s = C, the condition of thef statement on line 4 is not satisfied and the execution proceeds by
iteration of the innefor eachloop.

Let !’ be any of the literals i exceptl. Sinceapp,(s) £ ¢, I € [e]%t. Hence by Lemma
3.3s [~ EPG/(0), and ass = C'U {EPG(o)} the condition of thef statement on line 6 is not
satisfied and the execution continues from line 7. Analyze two cases.

1. 1f U € {I{,...,1;;} then by assumptioh € [e]4°" and by Lemma 3.3 |= EPC;(0). Hence
CU{EPG(0)} = -EPC;(0) and the condition of thé statement on line 7 is not satisfied.

2.1f U ¢ {li,..., 1} thens (= I'. HenceC U {EPG(0)} }~ I’ and the condition of th&
statement on line 7 is not satisfied.

Hence on none of the iterations of the inrier eachloop is agoto OKexecuted, and as the
loop exits, the procedure returfadse O

Figure 3.3 gives the algorithm for computing invariants consisting of at mdis¢rals. The
loop on line 5 is repeated until there aresa O and clauses in C such that preserved(C’,0)
returns false. This exit condition for the loop is critical for the correctness proof.

Theorem 3.37 Let A be a set of state variable$,a state,O a set of operators, and > 1 an
integer. Then the procedure call invariants(Z, O, n) returns a setC of clauses with at most
literals so that for any sequeneg; . . . ; o, of operators fronO app,,, (1) = C.

)

Proof: Let Cy be the value first assigned to the variallein the procedurenvariants and
C1,Cy, . .. be the values of the variable in the end of each iteration of the outerspestioop.
Induction hypothesis: for everjp,,...,0;} C O and¢ € C;, app,,....o, (1) = ¢.
Base case = 0: app.(/) for the empty sequence is by definitidritself, and by construction
Cy consists of only formulae that are true in the initial state.

40 CHAPTER 3. DETERMINISTIC PLANNING

Inductive case > 1: Take any{o1,...,0;} C O and¢ € C;. Firstnotice that preservet(;,0)
returnstrue because otherwisg could not be inC;. Analyze two cases.

1. If ¢ € C;_1, then by the induction hypothes&pp,,.. .., ,(I) = ¢. Since¢ € C;
preservedt,C;_1,0) returnstrue. Hence by Lemma 3.38pp,,......,(I) = ¢.

2. If ¢ € C;_1, it must be because preserveéd(;_1,0") returnsfalsefor someo’ € O and
¢’ € C;_1 such that is obtained fromy’ by conjoining some literals to it. Heneg = ¢.

Since¢’ € C;_; by the induction hypothesiapp,,.. .., ,(I) = ¢'. Since¢’ = ¢ also
apm, ..o, . (I) = ¢. Since the function call preserved(;,o) returnstrue by Lemma 3.36
apR,;....0. (1) = ¢.
This finishes the induction proof. The iteration of the procedure stops WhenC;_1, mean-
ing that the claim of the theorem holds for arbitrarily long sequenges . ; o,,, of operators. [

The algorithm does not find the strongest invariant for two reasons. First, only clauses until
some fixed length are considered. Expressing the strongest invariant may require clauses that are
longer. Second, the test performedprgservedries to prove for one of the literals in the clause
that it is true after an operator application. Consider the clawde/ c and the operatobV ¢, —a).

We cannot show for any literal that it is true after applying the operator but we know that either
orcis true. The test performed lpreservectould be strengthened to handle cases like these, for
example by using the techniques discussed in Section 4.2, but this would make the computation
more expensive and eventually lead to intractability.

To make the algorithm run in polynomial time the satisfiability and logical consequence tests
should be performed by algorithms that approximate these tests in polynomial time. The procedure
asatD, ¢) is not suitable because it assumes thas a set of literals, whereas fpreservedhe
setC usually contain clauses with 2 or more literals. There are generalizations of the ideas behind
asatD, ¢) to this more general case but we do not discuss the topic further.

3.5.1 Applications of invariants in planning by regression and satisfiability

Invariants can be used to speed up backward search with regression. Consider the blocks world

with the goalAonBABonC Regression with the operator that moves B onto C from the table yields

AonBA Bclear A Cclear A BonT. This formula does not correspond to an intended blocks world

state becaus@onBis incompatible withBclear, and indeed;-AonBV —Bclearis an invariant

for the blocks world. Any regression step that leads to a formula that is incompatible with the

invariants can be ignored because that formula does not represent any state that is reachable from

the initial state, and hence no plan extending the current incomplete plan can reach the goals.
Another application of invariants and the intermediate ggtproduced by our invariant al-

gorithm is improving the heuristics in Section 3.4. Usibg** for testing whether an operator

precondition, for example A b, has distance from the initial state, the distances @fandb are

used separately. But even when it is possible to reach datidb with ¢ operator applications,

it might still not be possible to reach them both simultaneously wiperator applications. For

example, for = 1 and an initial state in which bothandb are false, there might be no single op-

erator that makes them both true, but two operators, each of which makes only one of them true. If

—a V —b € C;, we know that aftef operator applications one afor b must still be false, and then

we know that the operator in question is not applicable at time poiitherefore the invariants

and the set€’; produced during the invariant computation can improve distance estimates.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 41

3.6 Planning as satisfiability in the propositional logic

A very powerful approach to deterministic planning was introduced in 1992 by Kautz and Selman
[1992; 1996. In this approach the problem of reachability of a goal state from a given initial
state is translated into propositional formulag ¢1, ¢, . .. SO that every valuation that satisfies
formula¢; corresponds to a plan of lengthPlanning proceeds by first testing the satisfiability of
oo. If ¢g is unsatisfiable, continue withy, ¢, and so on, until a satisfiable formulg is found.

From a valuation that satisfigs, a plan of lengtm can be constructed.

3.6.1 Actions as propositional formulae

First we need a representation of actions in the propositional logic. We can view arbitrary propo-
sitional formulae as actions, or we can translate operators into formulae in the propositional logic.
We discuss both of these possibilities.

Given a set of state variables = {ay,...,a,}, one could describe an action directly as a
propositional formulap over propositional variabled U A’ whereA’ = {d},...,a,}. Here the
variablesA represent the values of state variables in the statewhich an action is taken, and
variablesA’ the values of state variables in a successor state

A pair of valuationss ands’ can be understood as a valuationdf) A’ (the states assigns a
value to variables! ands’ to variablesA4’), and a transition from to s’ is possible if and only if

s, s = ¢.

Example 3.38 The action that reverses the values of state variabjesnd a- is described by
¢ = (a1 < —a}) A (a2 < —dl). The following4 x 4 incidence matrix represents this action.

ayay ayay ayay ayay
aaz| 00 01 10 11

00| O 0 0 1
010 0 1 0
10| O 1 0 0
11| 1 0 0 0

42 CHAPTER 3. DETERMINISTIC PLANNING

The matrix can be equivalently represented as the following truth-table.

aj ag al al

000

e il e e e e e == == M es B e B v B e B s B an)
SO O R OO R OO~ OO RO OoOoB

=== O O OO == =EO OO
—H, OO, P OO, HFHFOOHFHFHEO
— O O R OFROFRORFRORFO M

Example 3.39 Let the set of state variables He= {a1, a2, as}. The formula(a; < a)) A (az <

as) A (a3 < a}) represents the action that rotates the values of the state varigbtesandas

one position right. The formula can be represented as the following adjacency matrix. The rows
correspond to valuations of and the columns to valuations df = {a}, a5, a4}

000 001 010 011 100 101 110 111
ogooj1 0 0O O O O 0 O
0010 0 O O 1 O O O
000 1 0 0 O 0 0 O
0110 0 0 O O 1 0 O
10000 0 1 0 0 O 0 O
1010 o 0o 0 0 O 1 O
1100 0 0 1 O O 0 O
1110 0 0 O O 0 0 1

A more conventional way of depicting the valuations of this formula would be as a truth-table with
one row for every valuation oft U A’, a total of 64 rows. |

The action in Example 3.39 is deterministic. Not all actions represented by propositional for-
mulae are deterministic. A sufficient (but not necessary) condition for determinism is that the
formula is of the form(¢y < a)) A -+ A (¢, <> al)) A whereA = {ay,...,ay} is the set of
all state variablesp; are formulae over (without occurrences oft’ = {d/, ..., a,}). There are
no restrictions ony. Formulae of this form uniquely determine the value of every state variable
in the successor state in terms of the values in the predecessor state. Therefore they represent
deterministic actions.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 43

3.6.2 Translation of operators into propositional logic

We first give the simplest possible translation of deterministic planning into the propositional logic.
In this translation every operator is separately translated into a formula, and the choice between
the operators is represented as disjunction.

Definition 3.40 The formular4 (o) that represents operataer = (c, e) is defined by

Ta(€) = Noea((EPGi(e) V (a A ~EPC.q(e))) < a’) A \en ~(EPGi(e) A EPCoq(e))
T4(0) = ¢ ATale).

The formulaTt4(e) expresses the value afin the successor state in terms of the values of
the state variables in the predecessor state and requires that execoitygnot make any state
variable simultaneously true and false. This is like in the definition of regression in Section 3.1.2.
The formular4 (o) additionally requires that the operator’s precondition is true.

Example 3.41 Consider operatofa V b, (b > a) A (¢ > —a) A (a > b)). The corresponding
propositional formula is

(bV (a A —c)) < d)

A(aV (bA=L)) <)
(LV(en—l)) <)

A=(bAe)AN=(aNL)AN=(LAL)

=
<

=
>
1

&
!
Q\

Lemma 3.42 Let s and s’ be states and an operator. Lety : AU A" — {0, 1} be a valuation
such that

1. foralla € A, v(a) = s(a), and
2. foralla € A,v(d") = §(a).
Thenv |= 74(0) if and only ifs’ = app,(s).

Proof: Assumev |= 74(0). Hences |= cands = A, 4 7(EPG,(e) A EPC.4(e)), and therefore
app,(s) is defined. Consider any state variallece A. By Lemma 3.4 and the assumption
v = (EPG(e) V (a A "EPC.4(e))) < d, the value of every state variable $h matches the
definition ofapp,(s). Hences’ = app,(s).

Assumes’ = app,(s). Sinces’ is definedy = 74(0) andv = A\, 4 ~(EPG,(e) \EPC.4(e)).
By Lemma 3.4 | EPG,(e) V (a A =EPC.,(e)) if and only if s’ |= a. O

Definition 3.43 DefineR (A, A") = 14(01) V -+ V Ta(0n).

44 CHAPTER 3. DETERMINISTIC PLANNING

The valuations that satisfy this formula do not uniquely determine which operator was applied
because for a given state more than one operator may produce the same successor state. However,
in such cases it does not matter which operator is applied, and when constructing a plan from the
valuation any of the operators may be chosen arbitrarily.

It has been noticed that extendifity (A, A") by 2-literal invariants (see Section 3.5) reduces
runtimes of algorithms that test satisfiability. Notice that invariants do not affect the set of models
of a formula representing planning: any satisfying valuation of the original formula also satisfies
the invariants because the values of variables describing the values of state variables at any time
point corresponds to a state that is reachable from the initial state, and hence this valuation also
satisfies any invariant.

3.6.3 Finding plans by satisfiability algorithms

We show how plans can be found by first translating succinct transition sys#ensO,) into
propositional formulae, and then finding satisfying valuations by a satisfiability algorithm.

In Section 3.6.1 we showed how operators can be described by propositional formulae over
setsA and A’ of propositional variables, the sdtdescribing the values of the state variables in
the state in which the operator is applied, and thed$etescribing the values of the state variables
in the successor state of that state.

For a fixed plan length, we use setsl?, ..., A" of variables to represent the values of state
variables at different time points, with variablel$ representing the values at tinie In other
words, a valuation of these propositional variables represents a sequence s,, of states. If
a € Ais a state variable, then we use the propositional variabler representing the value af
at time pointi.

Then we construct a formula so that the statés determined by, the states,, is determined
by G, and the changes of state variables between any two consecutive states corresponds to the
application of an operator.

Definition 3.44 Let (A, I, 0, G) be a deterministic transition system. Defile= A{a’|a €
A, I(a) = 1} U{-a’|a € A, I(a) = 0} for the initial state and=™ as the formulaG with every
variablea € A replaced by™. Define

B30 = 0 ARy (A%, AN A R (AL, A2) A - ARL(A™T, AT A G
whereA’ = {a’la € A} foralli € {0,...,n}.

A plan can be found by using the formul@g™ as follows. We start with plan length= 0, test
the satisfiability ofp}?, and depending on the result, either construct a plab(ff is satisfiable),
or increase by one and repeat the previous steps, until a plan is found.

If there are no plans, it has to be somehow decided when to stop increasiig upper
bound on plan length 84l — 1 where A is the set of state variables but this upper bound does
not provide a practical termination condition for this procedure. Some work on more practical
termination conditions are cited in Section 3.7.

The construction of a plan from a valuatiorthat satisfiesb;“? is straightforward. The plan
has exactly; operators, and this plan is known to be the shortest one because the fdrjffula
had already been determined to be unsatisfiable. First construct the exegution s; of the
plan fromwv as follows. For allj € {0,...,i} anda € A, s;j(a) = v(a;). The plan has the

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 45

formoq,...,0;. Operatoro; for j € {1,...,4} is identified by testing for alb € O whether
app,(sj—1) = s;. There may be several operators satisfying this condition, and any of them can
be chosen.

Example 3.45Let A = {a,b}. Let the statd satisfyl = a A b. LetG = (a A =) V (—a A b)
ando; = (T, (a > —a) A (ma > a)) andog = (T, (b > —b) A (=b > b)). The following formula
is satisfiable if and only if A, I, {01, 02}, G) has a plan of length 3.

(@ = a') A0 = =b1) v ((@® < =al) A0 < b))
(@' = a®) A < =)V ((a' « =a®) A (D! < b?)))
((@® < a®) A (b7 < b)) V ((a® & =a®) A (b < 1))
A((a® A=) V (=a® A B3))

One of the valuations that satisfy the formula is the following.

This valuation corresponds to the plan that applies opetatat time point 0,0, at time point 1,
ando, at time point 2. There are also other satisfying valuations. The shortest plans have length 1
and respectively consist of the operatorsando,. |

Example 3.46 Consider the following problem. There are two operators, one for rotating the
values of bits abc one step right, and the other for inverting the values of all the bits. Consider
reaching from the initial state 100 the goal state 001 with two actions. This is represented as the
following formula.

(a /\—\bO 0)

A(((a® bl) (0" = YA (P = a')) V((=a® = ar) A (=) < b)) A (= < c)))
A((ah = b*) A (b1 AN (= a®)V((ma' = a®) A(=b' = b)) A (= <)
A(=a? A =b% A c?)

Since the literals describing the initial and the goal state must be true, we can replace occurrences
of these state variables in the subformulae for operators bgd L.

(a® A =b° A =)

AT = DY A (Lo) A (L o a)) V(=T o ar) A (=L o b)) A (L o e1)))
A((@! = DA =TI AC = L)V (0l = 1) A (B = 1) (el = T))
A(=a? A =b% A c?)

After simplifying we have the following.

(a® A =0 /\)
A((B' A = /\—|a)\/(—|a1/\bl/\cl)
A((=a* AbE A =ct) Vo (at AbE A =)
A(=a? A =b% A ?)

46 CHAPTER 3. DETERMINISTIC PLANNING

The only way of satisfying this formula is to make the first disjuncts of both disjunctions true, that
is, b must be true and! andc! must be false. The resulting valuation corresponds to taking the
rotation action twice.

Consider the same problem but now with the goal state 101.

(a® A =B0 A =)
NM((a® bl) (07 =) A (= a)) Vv ((ma® < ar) A (=0 < b A (2 < c!)))
All(a! < D) A (0" = @) A (h o a2)) V ((mad o a?) A (FB! < B2) A (= o 2)))
A(a® A =b? A c?)

We simplify again and get the following formula.

(a® A =00 A =)
A((BE A =ct A=al) V (ma; ABEAC))
A((mat A AV (mal ABE A =et))
A(a? A =b% A c?)

Now there are two possible plans, to rotate first and then invert the values, or first invert and then
rotate. These respectively correspond to making the first disjunct of the first disjunction and the
second disjunct of the second disjunction true, or the second and the first disjunct. |

3.6.4 Parallel application of operators

For states and setd” of operators we definappy(s) as the result of simultaneously applying all
operators € T': the preconditions of all operators Tnmust be true irs and the statappr(s) is
obtained froms by making the literals nU (pe) ET[e]4¢t true. Analogously to sequential plans we
can defineppr,;r,;...;1, (s) asappr, (- - - appr, (appr, (s)) - -).

Next we show how the translation of deterministic operators into the propositional logic in
Section 3.6.2 can be extended to the simultaneous application of operatoepas (i5).

Consider the formula4 (o) representing one operator= (c, e).

¢\ (EPGi(e) V (a A —EPCoy(€)) = a) A\ =(EPGy(e) A EPCou(e)).

a€A acA

This formula can be rewritten to the following logically equivalent formula that separately says
which state variables are changed by the operator and which state variables retain their values.

cN\

Naca(EPGi(e) —a’)A
/\aEA(PC.q(e) ——a)A
Naeal(a A —a") —=EPC4(e))A
Naca((ma Aa')—EPGy(e))

We use this formulation of 4 (o) as basis of obtaining encodings of planning that alkeveral
operators in parallel Every operator applied at a given time point causes its effects to be true
and requires its precondition to be true. This is expressed by the first three conjuncts. The last
two conjuncts say that, assuming the operator that is applied is the only one, certain state variables
retain their value. These formulae have to be modified to accommodate the possibility of executing
several operators in parallel.

We introduce propositional variablegor denoting the execution of operatarg O.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 47

Definition 3.47 Let A be the set of state variables ari?l a set of operators. Let the formula
74(0O) denote the conjunction of formulae

(o—c)A
Nacalo NEPGy(e) —a')A
Naecalo NEPC (€)= —d’)

forall {c,e) € O and

Naeal(aN—a")—((o1 NEPCy(e1)) V -+ V (0, NEPC 4 (en))A
Naca((mana")— ((0o1 NEPGy(e1)) V -+ -V (op ANEPCy(en)))

whereO = {o1,...,0,} andey, ..., e, are the respective effects.

The difference to the definition af4(0) in Section 3.6.2 is that above the formulae do not
assume that there is only one operator explaining the changes that take place.
The formular4 (O) matches the definition afppr(s).

Lemma 3.48 Let s and s’ be states and andT' C O sets of operators. Let: AUA'UO —
{0,1} be a valuation such that

1. forallo€ O,v(0) =1iffo €T,
2. foralla € A, v(a) = s(a), and
3. foralla € A, v(d") = §(a).
Thenv |= 74(0) if and only ifs’ = appr(s).

Proof: For the proof from right to left we assume thét= appr(s) and show that = 74(0).

For the formulae — ¢ consider any = (c,e) € O. If o & T thenv [~ oandv = o —c.
So assume < T'. By assumptiors is a state such thaippr(s) is defined. Hence = ¢. Hence
vEo—e.

For the formulae A EPG,(e) — o’ consider any = (c,e) € O. If o € T thenv (= o and
v = o ANEPG(e) — [for all literals!. So assume € T. Nowv = o A EPG(e) — [because
if s = EPG(e) thenl € [e]% by Lemma 3.3 and’ |= [. Proof foro A EPC.,(e) — —d’ is
analogous.

For the formulag(a A =a’) — ((o1 A EPC.4(e1)) V -+ V (0, A EPC.4(e;,)) consider any
a € A. According to the definition o’ = appr(s), a can be true ins and false ins’ only if
—a € [0]%* for someo € T. By Lemma 3.3-a € [0]% if and only if s | EPC_,(0). So if the
antecedent ofa A —a’) — ((01 AEPC.4(01)) V- -+ V (om A EPC.4(0,))) is true, then one of the
disjuncts of the consequent is true, whére= {01, ...,om . The proof for the change from false
to true is analogous.

For the proof from left to right we assume= 74(O) and show that’ = appy(s).

The preconditior: of everyo € T is true ins because = o andv |= 0 — ¢, ands’ |= [e]d¢
for everyo = (c,e) € T because = o andv |= o A EPG(e) — [for every literall. This also
means thafT]¢¢* is consistent andppr(s) is defined.

For state variablesnot occurring iN7]%¢ we have to show that(a) = s'(a). Sincea does not
occur in[T]%, for everyo € {o1,...,0m} = O = {{c1,€1), ..., {Cm, em)} €ithero ¢ T or both

48 CHAPTER 3. DETERMINISTIC PLANNING

a & [e]4¢t and—a ¢ [e]?¢t. Hence eithev [~ o or (by Lemma 3.3) = —(EPGC,(e)) A—EPC.q(e).
This together with the assumptions that= (a A —a’) — ((01 A EPC.q(e1)) V -++ V (0 A
EPC..(em))) andv = (ma A a’) — ((01 A EPG(01)) V -+ V (om A EPGy(er,))) impliesv =
(a—a') A (~a— —a’). Therefore every € A not occurring in[7]%¢ remains unchanged. Hence
s’ = appr(s). O

Example 3.49 Leto; = (-LAMP1, LAM P1) andoy = (—~LAM P2, LAM P2). The applica-
tion of none, one or both of these operators is described by the following formula.

(‘\LAMPl A LAMPI/) — ((01 A T) V (02 A J_)
(LAMP1AN-LAMP1)—((01 A L)V (02 A L)
(~LAMP2 AN LAMP2")— ((oy A L)V (02 A T)
(LAMP2 N —-LAMP2")— ((01 A L)V (02 A L)
01— LAMP1

01— -LAMP1

09— LAM P2’

09— LAM P2

3.6.5 Partially-ordered plans

In this section we consider a more general notion of plans in which several operators can be applied
simultaneously. This kind of plans are formalized as sequences of sets of operators. In such a plan
the operators are partially ordered because there is no ordering on the operators taking place at the
same time point. This notion of plans is useful for two reasons.

First, consider a number of operators that affect and depend on disjoint state variables so that
they can be applied in any order. If there areuch operators, there atéplans that are equivalent
in the sense that each leads to the same state. When a satisfiability algorithm shows that there is
no plan of length consisting of these operators, it has to show that none aof'ltipbans reaches
the goals. This may be combinatorially very difficultifis high.

Second, when several operators can be applied simultaneously, it is not necessary to represent
all intermediate states of the corresponding sequential plans: partially-ordered plans require less
time points than the corresponding sequential plans. This reduces the number of propositional
variables that are needed for representing the planning problem, which may make testing the
satisfiability of these formulae much more efficient.

In Section 3.6.4 we have shown how to represent the parallel application of operators in the
propositional logic. However, this definition is too loose because it allows plans that cannot be
executed.

Example 3.50 The operatorga, —b) and (b, —a) may be executed simultaneously resulting in a
state satisfying-a A —b, although this state is not reachable by the two operators sequeniilly.

A realistic way of interpreting parallelism in partially ordered plans is that any total ordering
of the simultaneous operators is executable and results in the same state in all cases. This is the
definition used in planning research so far.

3.6. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC 49

Definition 3.51 (Step plans)For a set of operatorg) and an initial state/, a step plan folO

andI is a sequencd = (Ty,...,T;_1) of sets of operators for sonie> 0 such that there is a
sequence of states, . . ., s; (the execution of") such that
1. sog =1,

2. foralli € {0,...,l—1} and every total ordering;, ..., 0, of T}, app,,......,. (si) is defined
and equalss; 1.

Theorem 3.52 Testing whether a sequence of sets of operators is a step plan is co-NP-hard.

Proof: The proof is by reduction from the co-NP-complete validity problem TAUT. &bk any
propositional formula. Lel = {a4,...,ay} be the set of propositional variables occurringin
Our set of state variables i§. Leto, = (¢, T) andO = {(T,a1),...,(T,an),0,}. Lets ands’
be states such thatj= a ands’ |= a for all a € A. We show that is a tautology if and only if
T = (O) is a step plan fo© ands.

Assumeg is a tautology. Now for any total ordering, ..., o, of O the stateapp,,.....o, ()
is defined and equalg because all preconditions are true in all states and the set of effects of all
operators isA (the set is consistent and making the effects trueyields s’.) HenceT is a step
plan.

AssumeT’ is a step plan. Let be any valuation. We show that= ¢. LetO, = {(T,a)|a €
A,v = a}. The operatorg) can be ordered tay, . . . , 0,, SO that the operato®, = {oy, ..., 01}
precede, andO\ (O, U {o.}) follow o.. SinceT is a step planapp,,......, (s) is defined. Since
alsoappy:....o.:0. () is defined, the precondition of o, is true inv = appy,....o, (s). Hence
v = ¢. Since this holds for any valuatian ¢ is a tautology. O

To avoid intractability it is better to restrict to a class of step plans that are easy to recognize.
One such class is based on the notiomtérference

Definition 3.53 (Affect) Let A be a set of state variables and= (c,e) ando’ = (¢, ¢’) opera-
tors overA. Theno affectso’ if there isa € A such that

1. a is an atomic effect im anda occurs in a formula ire’ or it occurs negatively ir/, or

2. —a is an atomic effect im anda occurs in a formula ire’ or it occurs positively in’'.

Definition 3.54 (Interference) Operatorso ando’ interfereif o affectso’ or o affectso.

Testing for interference of two operators is easy polynomial time computation. Non-interference
not only guarantees that a set of operators is executable in any order, but it also guarantees that the
result equals to applying all the operators simultaneously.

Lemma 3.55 Let s be a state and’ a set of operators so that apps) is defined and no two
operators interfere. Then apfls) = app,,......,, () for any total orderingoy, ..., 0, Of T'.

Proof: Letoy, ..., 0, be any total ordering af’. We prove by induction on the length of a prefix
of 01,...,0, the following statement for all € {0,...,n — 1} by induction oni: s = « if and
only if app,,......,(s) = a for all state variablea occurring in an antecedent of a conditional effect
or a precondition of operatotg 1, ..., o,.

50 CHAPTER 3. DETERMINISTIC PLANNING

Base case = 0: Trivial.
Inductive casé > 1: By the induction hypothesis the antecedents of conditional effecis of
have the same value inand inapp,,......,_, (s), from which follows[o;]%* = [o;]dc

o PPoq;...i0;_1(8)"
Sinceo; does not interfere with operatass, 1, . . ., 0, NO state variable occurring jn;]%¢* occurs
in an antecedent of a conditional effect or in the precondition; of, . . . , 0,,, that is, these state
variables do not change. Singg|%* = [o;]4c this also holds when; is applied in

aphoy;...;0;_1 (8)
app,....o,_, (s). This completes the induction proof.
Sinceappr(s) is defined, the precondition of evesyc T is true ins and[o]4*! is consistent.
By the fact we established above, the precondition of evegy T is true also inapp,,.....o, ()

and [Oﬁﬁﬁol;m;ok(s) is consistent for any{os,...,0r} € T\{o}. Hence any total ordering of

the operators is executable. By the fact we established ahg{®, = [o]¢¢ for every
{o1,...,0,} € T\{o}. Hence every operator causes the same changes no matter what the total
ordering is. Sinceppr(s) is defined, no operator ifi' undoes the effects of another operator.
Hence the same staté= appy(s) is reached in every case. O

For finding plans by using the translation of parallel actions from Section 3.6.4 it remains to
encode the condition that no two parallel actions are allowed to interfere.

Definition 3.56 Define
Ra(A,A',0) = 74(0) A \{~(0 A d')[{0,0'} € 0,0 # o, 0 and?'interfere}

Definition 3.57 Let (A, I, O, G) be a deterministic succinct transition system. Define
b = 10 ARy (A%, AT, 0%) ARy (AT, A%, ON) A+ ARy (A A", 0") A G”

whereA® = {aila € A} foralli € {0,...,n} andO! = {o’|o € O} forall i € {1,...,n} and
1V = A\{a’la € A, I(a) =1} U{=a"|a € A, I(a) = 0} andG™ is G with everya € A replaced
bya™.

If 7" is satisfiable and is a valuation such that = ®}*", then definel; = {0 € Olv |=
o'} for everyi € {1,...,n}. Then(Ty,...,T,) is a plan for the transition system, that is,
appry;..;, (1) = G.

It may be tempting to think that non-interference implies that the actions occurring in parallel
in a plan could always be executed simultaneously in the real world. This however is not the case.
For genuine temporal parallelism the formalization of problems as operators has to fulfill much
stronger criteria than when sequential execution is assumed.

Example 3.58 Consider the operators

transport-A-with-truck-1= (AinFreiburg AinStuttgartA —AinFreiburg
transport-B-with-truck-1= (BinFreiburg BinKarlsruheA —BinFreiburg

which formalize the transportation of two objects with one vehicle. The operators do not interfere,
and our notion of plans allows the simultaneous execution of these operators. However, these
actions cannot really be simultaneous because the corresponding real world actions involve the
same vehicle going to different destinations. |

3.7. LITERATURE 51

3.7 Literature

Progression and regression were used early in planning redé&osbnschein, 1981 Our defi-

nition of regression in Section 3.1.2 is related to the weakest precondition predicates for program
synthesi§de Bakker and de Roever, 1972; Dijkstra, 1p76stead of using the general definition

of regression we presented, earlier work on planning with regression and a definition of operators
that includes disjunctive preconditions and conditional effects has avoided all disjunctivity by pro-
ducing only goal formulae that are conjunctions of litefs#sidersonet al, 1999. Essentially,

these formulae are the disjunctsredr,(¢) in DNF, although the formulagegr,(¢) are not gen-

erated. The search algorithm then produces a search tree with one branch for every disjunct of the
DNF formula. In comparison to the general definition, this approach often leads to a much higher
branching factor and an exponentially bigger search tree.

The use of algorithms for the satisfiability problem of the classical propositional logic in plan-
ning was pioneered by Kautz and Selman, originally as a way of testing satisfiability algorithms,
and later shown to be more efficient than other planning algorithms at thd kiengz and Sel-
man, 1992; 1996 In addition to Kautz and Selmd®994, parallel plans were used by Blum and
Furst in their Graphplan plannéBlum and Furst, 1997 Parallelism in this context serves the
same purpose as partial-order reducti@odefroid, 1991; Valmari, 1991reducing the number
of orderings of independent actions to consider. There are also other notions of parallel plans
that may lead to much more efficient planniiRjntanenet al, 2004. Ernst et al.[1997 have
considered translations of planning into the propositional that utilize the regular structure of sets
of operators obtained from schematic operators. Planning by satisfiability has been extended to
model-checking for testing whether a finite or infinite execution satisfying a given Linear Tem-
poral Logic (LTL) formula exist§Biereet al, 1999. This approach to model-checking is called
bounded model-checking

It is trickier to use a satisfiability algorithm for showing that no plans of any length exist than
for finding a plan of a given length. To show that no plans exist all plan lengths 2p to1
have to be considered when there arstate variables. In typical planning applicationss
often some hundreds or thousands, and generating and testing the satisfiability of all the required
formulae is practically impossible. That no plans of a given lemgth 214 do not exist does not
directly imply anything about the existence of longer plans. Some other approaches for solving
this problem based on satisfiability algorithms have been recently propbgeMdillan, 2003;
Mneimneh and Sakallah, 20D3

The use of general-purpose heuristic search algorithms has recently got a lot of attention. The
class of heuristics currently in the focus of interest was first proposed by McDe984 and
Bonet and Geffnef2001. The distance estimaté§®{(¢) andd; (¢) in Section 3.4 are based on
the ones proposed by Bonet and Geff[001]. Many other distance estimates similar to Bonet
and Geffner’s existHaslum and Geffner, 2000; Hoffmann and Nebel, 2001; Ngwter., 2004.
The '™ (¢) estimate generalizes ideas proposed by Hoffmann and N@oed.

Other techniques for speeding up planning with heuristic state-space search include symmetry
reduction[Starke, 1991; Emerson and Sistla, 1P86d partial-order reductiofGodefroid, 1991;
Valmari, 1991; Aluret al,, 1997, both originally introduced outside planning in the context of
reachability analysis and model-checking in computer-aided verification. Both of these techni-
ques address the main problem in heuristic state-space search, high branching factor (number of
applicable operators) and high number of states.

The algorithm for invariant computation was originally presented for simple operators with-

52 CHAPTER 3. DETERMINISTIC PLANNING

out conditional effect§Rintanen, 1998 The computation parallels the construction of planning
graphs in the Graphplan algorithfalum and Furst, 1997 and it would seem to us that the notion

of planning graph emerged when Blum and Furst noticed that the intermediate stages of invariant
computation are useful for backward search algorithms: if a depth-boundsdmposed on the
search tree, then formulae obtained/hyregression steps (suffixes of possible plans of length
m) that do not satisfy clause&s,_,,, cannot lead to a plan, and the search tree can be pruned. A
different approach to find invariants has been proposed by Gerevini and Scligstt

Some researchers extensively use Graphplan’s planning diBjpins and Furst, 1997or var-
ious purposes but we do not and have not discussed them in more detail for certain reasons. First,
the graph character of planning graphs becomes inconvenient when preconditions of operators are
arbitrary formulae and effects are conditional. As a result, the basic construction steps of planning
graphs become unintuitive. Second, even when the operators have the simple form, the practi-
cally and theoretically important properties of planning graphs are not graph-theoretic. We can
equivalently represent the contents of planning graphs as sequences of sets of literals and 2-literal
clauses, as we have done in Section 3.5. In general it seems that the graph representation does
not provide advantages over more conventional logic-based and set-based representations and is
primarily useful for visualization purposes.

The algorithms presented in this section cannot in general be ordered in terms of efficiency.
The general-purpose search algorithms with distance heuristics are often very effective in solving
big problem instances with a sufficiently simple structure. This often entails better runtimes than
in the SAT/CSP approach because of the high overheads with handling big formulae or constraint
nets in the latter. Similarly, there are problems that are quickly solved by the SAT/CSP approach
but on which heuristic state-space search fails.

There are few empirical studies on the behavior of different algorithms on planning problems
in general or average. Bylandgi994 gives empirical results suggesting the existence of hard-
easy pattern and a phase transition behavior similar to those found in other NP-hard problems
like propositional satisfiabilitySelmanet al, 1994. Bylander also demonstrates that outside the
phase transition region plans can be found by a simple hill-climbing algorithm or the inexistence
of plans can be determined by using a simple syntactic test. Rin{2084d complemented
Bylander’s work by analyzing the behavior of different types of planning algorithms on difficult
problems inside the phase transition region, suggesting that current planners based on heuristic
state space search are outperformed by satisfiability algorithms on difficult problems.

The PSPACE-completeness of the plan existence problem for deterministic planning is due to
Bylander[1994. The same result for another succinct representation of graphs had been estab-
lished earlier by Lozano and Balcada©9d.

Any computational problem that is NP-hard — not to mention PSPACE-hard — is considered too
difficult to be solved in general. As planning even in the deterministic case is PSPACE-hard there
has been interest in finding restricted special cases in which efficient (polynomial-time) planning
is always guaranteed. Syntactic restrictions have been investigated by several resgRytdmers
der, 1994; Bickstom and Nebel, 199%ut the restrictions are so strict that very few interesting
problems can be represented.

Schematic operators increase the conciseness of the representations of some problem instances
exponentially and lift the worst-case complexity accordingly. For example, deterministic planning
with schematic operators is EXPSPACE-compleEeol et al, 19995. If function symbols are
allowed, encoding arbitrary Turing machines becomes possible and the plan existence problem is
undecidabldErol et al., 1999.

Chapter 4

Extensions to nondeterministic planning

The techniques discussed in Chapter 3 can be generalized to nondeterministic conditional planning
problems.

Deterministic planning is the problem of finding a path from the initial state to any of the
goal states. This problem is also implicitly a subproblem in more general nondeterministic plan-
ning problemgHoward, 1960; Puterman, 1994; Boutilier al, 1999; Bonet and Geffner, 2000;
Cimatti et al, 2003; Smallwood and Sondik, 1973; Kaelbliagal, 1998; Madankt al, 2003
and the techniques in the previous chapter can be helpful in solving them as well. Nondeter-
ministic planning problems fundamentally differ from the basic deterministic planning problem,
for example by being provably exponentially more diffidiRintanen, 2004a These techniques
should therefore only be viewed amplementation techniqueglgorithms for the more general
problems fundamentally differ from those for deterministic planning.

Planning without observability can be viewed as a path existence problem similarly to the
classical deterministic planning problem. As there may be several initial states and one state may
have several successors, there may be several possible states at any step of plan execution. These
state sets are known bslief statesFor nondeterministic problems without observability planning
can be formalized as finding a path in the space of belief states. In this setting the problem of
computing the successor or the predecessors of a belief state with respect to an operator arises.
The techniques discussed in this chapter may be used for representing belief states and computing
their successors and predecessors, and can also be applied for conditional planning with partial
and full observability.

Some algorithms for conditional planning (with full or partial observability) involve testing
whether the current (incomplete) candidate plan can reach the goal states or whether it can also
reach states that are not goal states. This question can be answered by techniques that extend those
given for deterministic planning in Section 3.6.

4.1 Nondeterministic operators

In this section we will present a basic translation of nondeterministic operators into the proposi-
tional logic and a regression operation for nondeterministic operators. In the next sections we will
discuss a general framework for computing with nondeterministic operators and their transition
relations which are represented as propositional formulae. This framework provides techniques
for computing both regression and progression for sets of states that are represented as formulae.

53

54 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

4.1.1 Regression for nondeterministic operators

Regression for deterministic operators is given in Definition 3.5. It can be easily generalized to a
subclass of nondeterministic operators.

Definition 4.1 (Regression for nondeterministic operators)Let ¢ be a propositional formula
ando = (c,e1]| - - - |e,) an operator where, . . ., e, are deterministic. Define

regrgd((b) = regr(c,e1) ((b) JARRRNA regr(c,en>(¢)-

Theorem 4.2 Let ¢ be a formula overd, o an operator overd, and.S the set of all states ovet.
Then{s € S|s |= regrd(¢)} = spreimg({s € S|s = ¢}).

Proof: Leto = (c, (e1]|-- - |en)).
{s € S|s = regr(¢)}
={seSlsE regr(c,eﬂ(d)) ARERRA regr(c,%)(‘b)}
={sesSlskE regr(c,e1)(¢)7 sk regr(c,%)(‘b)}
= {3 € S’app(c,q)(s)): o, ... » 8PP e,,) (8)): ¢} T3.7
={se S|s' E ¢forall s € img,(s) and there is’ = ¢ with sos’}
= spreimg({s € S|s |= ¢})
The second last equality is becaus®,(s) = {apP.e;)(s), - - > aPPc.e,) () }- O

Example 4.3 Leto = (d, (b|]—c)). Then

regrid(b — c) = regrgp (b < ¢) Aregry (b« c)
=dAN(T <) AdA(Db— 1))
=dANcAb.

4.1.2 Translation of nondeterministic operators into propositional logic

In Section 3.6.2 we gave a translation of deterministic operators into the propositional logic. In
this section we extend this translation to nondeterministic operators.

We define for effects the setshangese) of state variables that are possibly changed by
in other words, the set of state variables occurring in an atomic effect in

changeéa) = {a}
change§—a) = {a}
changeéc > ¢) = changese)
changeée; A --- Ae,) = changege;) U - - - U changesge,,)
changesge;| - - - le,) = changeée;) U - - - U changesge,,)

We make the following assumption to simplify the translation.

Assumption 4.4 Leta € A be a state variable. Let; A - - - A e, occur in the effect of an operator.
If e1,...,e, are not all deterministic, then or —a may occur as an atomic effect in at most one
ofer,...,e,.

4.1. NONDETERMINISTIC OPERATORS 55

This assumption rules out effects like|b) A (—alc) that may make: simultaneously true
and false. It also rules out effects liké&d > a)|b) A ((—d > —a)|c) that are well-defined and
could be translated into the propositional logic. However, the additional complexity outweighs
the benefit of allowing them. Effects can often easily be transformed by the equivalences in Table
2.3 to satisfy Assumption 4.4(d > a)|b) A ((—d > —a)l|c) is equivalent ta(d > a) A (—-d >
—a))|((d > a) Ae)|(bA (=d > —a))[(b A c).

The problem in the translation that does not show up with deterministic operators is that for
nondeterministic choices | - - - |e,, the formula for eacla; has to express the changes for exactly
the same set of state variables. ThisBés given as a parameter to the translation function. The
setB has to include all state variables possibly changed by the effect.

M(e) = T(e) whene is deterministic
Tier] - len) = TR (er) V-V (en)
ng(el AN Nep) = TBci(Bzu---uBn)(el) A ng(eg) ARREWA Tgci(en)
whereB; = changes¢e;) foralli € {2,...,n}

The first part of the translatiori(e) for deterministice is the translation of deterministic effects
we presented in Section 3.6.2 restricted to state variablds. irmThe other two parts cover all
nondeterministic effects in normal form. In the translatiorof\ - - - A e,, all state variables that
are not changed are handled in the translatiom;of Assumption 4.4 guarantees that for each
7M(¢e) all state variables changed byare inB.

Example 4.5 We translate the effect
e = (al(d > a)) A (c|d)
into a propositional formula. The set of state variabled is {a,b, ¢, d}.

9 ey (€) = 708 o (al(d>a))/\T{‘d}(c]d
= (T {a,,}<)vf{ab}(dDa))A(by (©) V Ty ()
= (@A =)V ((avd) <)A (b=))A
(A (d = d))V((ced)nd))

For expressing a state in terms 4f instead ofA, or vice versa, we need to map a valuation
of A to a corresponding valuation of’, or vice versa. for this purpose we defiglel’ /A] =

{{d, s(a))|a € A}.

Definition 4.6 Let A be a set of state variables. Let= (c, e) be an operator over in normal
form. Definerl9(o) = c¢ A 71%(e).

Lemma 4.7 Leto be an operator over a set of state variables. Then
{v|vis a valuation ofA U A’ v |= 71%(0)} = {s U s'[A4"/A]|s,s' € S, 5" € img,(s)}.

Proof: We show that there is a one-to-one match between valuations satisfyfifag and pairs of
states and their successor states.

56 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

For the proof from right to left assume thaands’ are states such that € img,(s). Hence
there isE € [e], such that’ is obtained froms by making literals inE true. Letv = sUs'[A’/A].
We show that [= 779(0). Leto = (¢, e). Sinceimg,(s) is non-emptys [= c. It remains to show
thatv = 77%(e).

Induction hypothesis: Let be any effect over a sé® of state variables, and and s’ states
such for some&r € [e|s s’ |E F ands(a) = s'(a) for everya € B such that{a,—a} N E = (.
Thens U s'[A’/A] = m0(e).

Base casee is a deterministic effect. There is only oi¢ € [e]s. A proof similar to that of
Lemma 3.42 shows thatu s'[A’/A] = Ti9(e).

Inductive case 1g = e; A - -+ A e,: By definitionrid(e; A -+ Aey) = TgC{(B2U_”UBn)(61) A
T (e2) A+ AT (e,) for B; = changeée;), i € {2,...,n}. Let E be any member of], and
s’ a state such that = F ands(a) = s'(a) for everya € B such that{a,—a} N E = (. By
definition of[e]s we haveE = E; U --- U E,, for someE; € [e;], for everyi € {1,...,n}. The
assumptions of the induction hypothesis hold for evergnd B;,i € {2,...,n}:

1. s’ E E; becauser; C E.
2. By Assumption 4.4(a) = s'(a) for everya € B; such thaf{a, —a} N E; = 0.

Similarly fore; andB\(Ba U- - -U By,). Hences Us'[A’/A] = m7(e;) forall i € {2,...,n} and
sUS'[A'JA E i 5,,..up,) (i), and therefore U s'[A'/A] |= 7}(e).

Inductive case % = ej] - - |e,,: By definition89(es| - - - en) = 70(eq) V - - - vV 78(e,,). By
definition[e1] - - - |en]s = [e1]s U -+ U [en]s. HenceE € [e;]s for somei € {1,...,n}. Hence
the assumptions of the induction hypothesis hold for at leastegriec {1,...,n} and we get
sUs'[A'JA] = 7M(e;). AsThd(e;) is one of the disjuncts affd(e) finally s U s'[A/A] = 704(e).

For the proof from left to right assume that= 7j%(e) for v = s U s'[A’/A]. We prove by
structural induction that the changes frarto s’ correspond tde ;.

Induction hypothesis: Letbe any effectp a set of state variables that includes those occurring
in e, ands ands’ states such that |= 729(e) wherev = s U s'[A’/A]. Then there isZ € [e]; such
thats = F ands(a) = s'(a) for all a € B such thafa, —a} N E = (.

Base casee is a deterministic effect. There is only ofe € [e]s. A proof similar to that of
Lemma 3.42 shows that the changes betweands’ for a € B correspond tdv.

Inductive case I = e; A - - - Aey,: By definitionfe]s = {E1U---UE,|E € [e1]s,...,Ep €
len]s}, and by Assumption 4.4 sets of the state variables occurring,in ., e, are disjoint.
By definition 7}(e1 A -+ Aen) = IR 5,00, (€1) A THI(e2) Ao A TR (en) for By =
changeée;),i € {2,...,n}. The induction hypothesis for and alla € B is directly by
the induction hypothesis for all € B = (B\(B2 U --- U By)) U By U --- U B, because
v = TE({(BQU.‘.UB")(Q) A ng (ea) A+ A ngi (en)-

Inductive case % = e;| - - - |e,: By definition[e; |- - - |ep]s = [e1]s U+ - - U [en]s. By definition
M(er| - |en) = TH(e1) V-V TH(e,). Because = mi(eq| - |en), v = THd(e;) for some
i € {1,...,n}. By the induction hypothesis therefis < [¢;]; with the given property. We get the
induction hypothesis for becausége;]s C [e]s and hence als& € [e]s.

Therefores’ is obtained froms by making some literals it? € [e]; true and retaining the
values of state variables not mentionediinands’ € img,(s). O

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 57

4.2 Computing with transition relations as formulae

As discussed in Section 2.3, formulae are a representation of sets of states. In this section we show
how operations on transition relations have a counterpart as operations on formulae that represent
transition relations.

Most implementations of the techniques in this section are based on binary decision diagrams
(BDDs) [Bryant, 1992, a representation (essentially a normal form) of propositional formulae
with useful computational properties, but the techniques are applicable to other representations of
propositional formulae as well.

4.2.1 Existential and universal abstraction

The most important operations performed on transition relations represented as propositional for-
mulae are based axistential abstractiomnduniversal abstraction

Definition 4.8 Existential abstractionf a formula¢ with respect to an atomic propositianis
the formula

Sa.g = §[T/a] v 6[L/al.

Universal abstraction is defined analogously by using conjunction instead of disjunction.

Definition 4.9 Universal abstractionf a formula¢g with respect to an atomic propositianis the
formula

Va.¢ = ¢[T/a] A o[L/d].

Existential and universal abstractiong@fvith respect to &et of atomic propositions defined
in the obvious way: folB = {b,...,b,} such thatB is a subset of the propositional variables
occurring ing define
3IB.¢p = 3b1.(3ba.(... TFbp.0p...))
VB.¢p = Vb1.(Vba.(...Vbyp.00...)).

In the resulting formulae there are no occurrences of variablés in

Let ¢ be a formula over. ThendA.¢ is a formula that consists of the constamtand 1. and
the logical connectives only. The truth-value of this formula is independent of the valuatitbn of
that is, its value is the same for all valuations.

The following lemma expresses the important properties of existential and universal abstrac-
tion. When we writev U ' for a pair of valuations we view valuationsas binary relations, that
is, sets of pairs such théfa, b), (a,c)} & v for anya, b andc such thab # c.

Lemma 4.10 Let ¢ be a formula overd U A’ andv’ a valuation ofA’. Then
1. v E JA.¢ifand only if (v U') |= ¢ for at least one valuation of A, and
2. v EVA.gifandonly if (v Uv") = ¢ for all valuationsv of A.

Proof: We prove the statements by induction on the cardinalityl ofNVe only give the proof for
4. The proof fory is analogous to that faf.

Base cas¢A| = 0: There is only one valuation = () of the empty sel = (). When there is
nothing to abstract we haw#.¢ = ¢. Hence triviallyv’ = 30.¢ if and only if (v U () = 6.

58 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

matrices formulas sets of states
vectorVi «p, formula overA set of states
matrix My, «n formula over4d U A’ transition relation
Visn +Vign | 61V ¢ set union
b1 N ¢a set intersection
Myscn X Npsen, | 3A'(779(0) A 779(0)[A” JA!, A’/ A])[A’/A"] | sequential compositiono of
Visn X Maxn | (346 A T9(0)))[A/ 4] img,(T)
Mysen X Vyser | 3A'(77900) A ¢[A’/A]) preimg,(T")
VA'.(T79(0) — ¢[A"/A]) A FA'.779(0) spreimg(7T)

Table 4.1: Correspondence between matrix operations, Boolean operations and set-
theoretic/relational operations. Aboe = {s € S|s = ¢}, M is the matrix corresponding
to 719(0) and NV is the matrix corresponding .

Inductive caseA| > 1: Take anya € A. V' = 3A.¢ if and only if v’ = 3A\{a}.(¢[T /a] V
¢[L/a]) by the definition o8a.¢. By the induction hypothesis = 3A\{a}.(¢[T /a] V ¢[L/a])
if and only if (voUv') = ¢[T /a]V¢|[L/a] for at least one valuatiom of A\{a}. Since the formula
o[T/a] v ¢[L/a] represents both possible valuations:oh ¢, the last statement is equivalent to
(vU ") = ¢ for at least one valuation of A. O

4.2.2 Images and preimages as formula manipulation

Let A = {a1,...,an}, A = {d},...,a),} andA” = {df,...,ad]’}. Let¢; be a formula over
AU A" and ¢, be a formula overd” U A”. The formulae can be viewed as representations of
2™ x 2™ matrices or as transition relations over a state space op8ize

The product matrix of; andg, is represented by a the following formula ovér A”.

E|A/.(251 A ¢

Example 4.11 Let ¢; = a < —a’ andgy = o’ < a” represent two actions, reversing the truth-
value ofa and doing nothing. The sequential composition of these actions is

.61 A ds = ((a o ~T)A(T o a"))V ((@ = ~L) A (L o a”))
((a = DA(T <@V (@ T)A L=)

a <« —a”.

This idea can be used for computing the images, preimages and strong preimages of operators
and sets of states in terms of formula manipulation by existential and universal abstraction. Table
4.1 outlines a number of connections between operations on vectors and matrices, on propositional
formulae, and on sets and relations. For transition relations we use valuatiohs/of’ for
representing pairs for states and for states we use valuatiohs of

Lemma 4.12 Let ¢ be a formula overd and v a valuation ofA. Thenv = ¢ if and only if
v[A'/A] |= ¢[A'/A], and (¢[A'/A])[A/A] = ¢

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 59

Definition 4.13 Leto be an operator ang a formula. Define
img,(¢) = (34.(¢ A 74%0)))[A/4']
preimg,(¢) = JA’.(77%0) A ¢[A"/A])
spreimg(¢) = YA'.(779(0) — ¢[A’/A]) A A" .779(0).

Theorem4.14LletT = {s € S|s & ¢}. Then{s € S|s = img,(¢)} = {s € S|s |
(34.(¢ A 7)Y(0)))[A/A]} = img, (T).

Proof: s' = (3A.(¢ A 71%(0)))[A/A"] O
iff s'[A’/A] = 3A.(¢ A 71%0)) L4.12
iff there is valuations of A such thats U s'[A'/A]) = ¢ A 71%(0) L4.10

iff there is valuations of A such that |= ¢ and(s U s'[A"/A]) = 77%(0)

iff there iss € T such thats U s'[4"/A]) = 71%0)

iff there iss € T such thats’ € img,(s) L4.7
iff s € img,(T).

Theorem4.15LetT = {s € S|s = ¢}. Then{s € S|s = preimg,(¢)} = {s € S|s |
JA'.(7h8(0) A B[A'/A])} = preimg,(T).
Proof: s |= 3A4".(77%0) A ¢[A’/A))

iff there issf) : A’ — {0, 1} such thats U s}) = 719(0) A ¢[A"/A]

iff there issf) : A’ — {0, 1} such thats), = ¢[A’/A] and(s U s})) = 71%0) L4.10

iff there iss’ : A — {0, 1} such that’ = ¢ and(s U s}) = 719(0) L4.12
iff there iss’ € T such that(s U s'[A’/A]) = 71%0)
iff there iss’ € T such thats’ € img,(s) L4.7
iff there iss’ € T such thats € preimg, (') (5) of L2.2
iff s € preimg,(7).
Above we defing’ = s,[A/A’] (and hence), = s'[A’/A].) O

Theorem4.16LetT = {s € S|s = ¢}. Then{s € S|s |= spreimg(¢)} = {s € S|s =
VA’ (Th(0) — ¢[A"/A]) A FA'.709(0)} = spreimg(T).

Proof:
s = VA" .(T79(0) — ¢[A"/A]) A FA'.779(0)
iff s = VA" (7790) — #[A’/A]) ands = 3A".719(0)
iff (sUsp) = 779(0) — ¢[A"/A] forall s}, : A’ — {0,1} ands = 3A’.77%0) L4.10
iff (sUs)) = 7090) or sfy |= ¢[A’/A] forall s}y : A — {0,1} ands = 3A’.71%0)
iff (sUs'[A"/A]) = 7%0) ors’' = ¢ forall s’ : A — {0,1} ands = 3A".7%(0) L4.12
iff s’ ¢ img,(s) ors’ =¢foralls’: A— {0,1} ands = 3A4".779(0) L4.7
iff s’ € img,(s) impliess’ = ¢ forall s’ : A — {0,1} ands = 3A".7(0)
iff img,(s) C T ands = 3A".71%0)
iff img,(s) C T and there is’ : A — {0, 1} with (s U s'[A’/A]) = 71%(0) L4.10
iff img,(s) C T'and thereis’ : A — {0, 1} with s’ € img,(s) L4.7
iff img,(s) C T and there is’ € T with s’ € img,(s)
iff img,(s) C T and there is’ € T with sos’
iff s € spreimg(7T).

60 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

Above we defing’ = s,[A/A’] (and hence), = s'[A’/A].) O

Corollary 4.17 Leto = (¢, (e1] - - |en)) be an operator such that all; are deterministic. The
formula spreimg(¢) is logically equivalent to regy’(¢) as given in Definition 4.1.

Proof: By Theorems 4.2 and 4.1 € S|s = regr,(¢)} = spreimg({s € S|s = ¢}) = {s €
S|s = spreimg(¢)}. O

Example 4.18 Leto = (c,a A (a > b)). Then
regr’d(a Ab) =cA(TA(BVa)=cA(bVa).
The transition relation o is represented by
™M) =cAd A((bVa) = V)A(ce ().
The preimage of A b with respect tw is represented by
Ja'b'd (@' AV) ATIY0)) = Fa'V . ((d AV)YAehd A((bVa) <) A (ce)

= 3d'b'd.(d NV ANeA(bVa)AC)
=3IV NeA(bVa)Ad)

A (eN(bVa)AC)
cA(bVa)

Hence regression for nondeterministic operators (Definition 4.1) can be viewed as a specialized
method for computing preimages of sets of states represented as formulae.

Many algorithms include the computation of the union of images or preimages with respect
to all operators, for examplg) ., img,(7'), or in terms of formulae)/ ., img,(¢) whereT' =
{s € S|s = ¢}. Atechnique used by many implementations of such algorithms is the following.
Instead of computing the images or preimages one operator at a time, construct a combined tran-
sition relation for all operators. For an illustration of the technique, consiugy;, (¢) V img,, (¢)
that represents the union of state sets representeddyy(¢) andimg,, (¢). By definition

Mgy, (¢) Vimgy, (¢) = (3A.(¢ A ThY01)))[A/A] V (3A.(6 A 7Y (02))[A/A'].
Since substitution commutes with disjunction we have

imgs, (¢) V img,, (¢) = (3A.(6 A TA%01))) V (3A.(6 A ThY(02)))[A/A'].

Since existential abstraction commutes with disjunction we have

My, (¢) VMg, (¢) = (3A.((¢ A Ti%(01)) V (6 A 73%(02))))[4/A].

By logical equivalence finally

img, (¢) Vimg,, (¢) = 3A.(¢ A (Th01) v 73%(02)))[A/A'].

4.2. COMPUTING WITH TRANSITION RELATIONS AS FORMULAE 61

Hence an alternative way of computing the union of imaggs,, img,(¢) is to first form the
disjunction\/,_, 71%(0) and then conjoin the formula with and only once existentially abstract
the propositional variables id. This may reduce the amount of computation because existential
abstraction is in general expensive and it may be possible to simplify the form@grgd(o)
before existential abstraction.

The definitions ofreimg,(¢) andspreimg(¢) allow using\/ 7M9(0) in the same way.

Notice that defining progression for arbitrary formulae (sets of states) seems to require the ex-
plicit use of existential abstraction with potential exponential increase in formula size. A simple
syntactic definition of progression similar to that of regression does not seem to be possible be-
cause the value of a state variable in a given state cannot be stated in terms of the values of the
state variables in the successor state. This is because of the asymmetry of deterministic actions:
the current state and an operator determine the successor state uniquely but the successor state
and the operator do not determine the current state uniquely. In other words, the changes that
take place are a function of the current state, but not a function of the successor state. Taking an
action erases the information that determines which changes take place between two states. This
information is visible in the predecessor state but not in the successor state.

4.2.3 An algorithm for constructing acyclic plans

Next we present an algorithm for constructing acyclic plans for nondeterministic problem with full
observability. Acyclicity means that during any execution of the plan no state is visited more than
once. Not all nondeterministic planning problems that have an intuitively acceptable solution have
a solution as an acyclic plan. For a more detailed discussion of this topic and related algorithms
see[Cimattiet al,, 2009.

The basic algorithm is for transition systems as in Definition 2.1 but the techniques in Section
4.2 can be directly applied to obtain a logic-based algorithm for succinct transition systems (Def-
inition 2.8 in Section 2.3) that can be implemented easily by using any publicly available BDD
package.

In the first phase the algorithm computes distances of the states. In the second phase the
algorithm constructs a plan based on the distances.

Let G be a set of states an@d a set of operators. Then we define theckward distance sets
D?Wd for G, O that consist of those states for which there is a guarantee of reaching a gtate in
with at most; operator applications.

Dgv = G
DPwd = pbwd | ., spreimg (DY) for all i > 1

Definition 4.19 LetG be as set of states arf@ a set of operators, and lg2"d, D4 . pe the
backward distance sets f6f andO. Thenthe backward distanagf a states to G is

0ifse @
3 s) = {z if s € Dowe\ ppwd

If s ¢ DPdfor all i > 0 thens2"d(s) = cc.

Example 4.20 We illustrate the distance computation by the diagram in Figure 4.1. The set of
states with distance 0 is the set of goal stdtesStates with distanceare those for which there

62 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

distance ta?
00 3 2 1 0

Figure 4.1: Goal distances in a nondeterministic transition system

is an action that always leads to states with distaneel or smaller. In this example the action
depicted by the solid arrow has this property for every state. The dashed arrows depict the second
action which for no state is guaranteed to get closer to the goal states. States for which there is no
finite upper bound on the number of actions for reaching a goal state have distance [

Given the backward distance sets we can construct a plan covering all states having a finite
backward distance. Let’ C S be those states having a finite backward distance. Thenplan
defined by assigning for every € S such thav2"%(s) > 1 (s) any operatob € O such that
img,(s) € DP"dwhere; = §2V(s).

The plan execution starts from one of the initial states. As we have full observability, we may
observe the current stat&nd then execute the action corresponding to the operé&tgrreaching
one of the successor statés img,(s). The plan execution proceeds by repeatedly observing the
new current state’ and executing the associated actid®’) until the current state is a goal state.

Lemma 4.21 Let a states be in D;. Then there is a plan that reaches a goal state froby at
most; operator applications.

The algorithm can be implemented by using logic-based data structures and operations defined
in Section 4.2 by representing the set of goal states as a formula, using the logic-based operation
spreimg(¢) instead of the set-based operatispreimg(7") for computing the setsD?""d that

are also represented as formulae, and replacing all set-theoretic operationsaliken by the
respective logical operationsandA.

4.3 Planning as satisfiability in the propositional logic and QBF

The techniques presented in Sections 3.6 and 3.6.5 can be extended to nondeterministic operators.

The notion of parallel application of operators and partially ordered plans can be generalized to
nondeterministic operators.

Let T be a set of operators anda state such that = ¢ for every(c,e) € T andFE; U --- U
E, is consistent for for anyz; € [e;]s,i € {1,...,n} andT = {{(c1,e1),...(cn,en)}. Then

4.3. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 63

defineimgy(s) as the set of states that are obtained from by makingE; U - -- U E,, true ins
whereFE; € [e;]s for everyi € {1,...,n}. We also use the notatior¥'s’ for s’ € imgr(s) and

imgr(S) = UsesImgr(s).

4.3.1 Advanced translation of nondeterministic operators into propositional logic

In Section 4.1.2 we showed how nondeterministic operators can be translated into formulae in the
propositional logic. This translation is not sufficient for reasoning about actions and plans in a
setting with more than one agent. This is because the formif§e;) v - -- v 71%0,,) do not
distinguish between the choice of operatofin, ..., 0,} and the nondeterministic effects (the
opponent) of each operator, even though the former is controllable and the latter is not.

In nondeterministic planning in general we have to treat the controllable and uncontrollable
choices differently. We cannot do this practically in the propositional logic but by using quantified
Boolean formulae (QBF) we can. For the QBF representation of nondeterministic operators
we universally quantify over all uncontrollable eventualities (nondeterminism) and existentially
quantify over controllable eventualities (the choice of operators).

We need to universally quantify over all the nondeterministic choices because for every choice
the remaining operators in the plan must lead to a goal state. This is achieved by associating with
every atomic effect a formula that is true if and only if that effect is executed, similarly to functions
EPG(e) in Definition 3.1, so that fof to become true the universally quantified auxiliary variables
that represent nondeterminism have to have values corresponding to an effect that imegkes

The operators are assumed to be in normal form. For simplicity of presentation we further
transform nondeterministic choices|- - - |e,, so that only binary choices exist. For example
alblc|d is replaced by(a|b)|(c|d). Each binary choice can be encoded in terms of one auxiliary
variable.

The condition for the atomic effeétto be executed whenis executed i€PC*(e, o). The
sequence of integers is used for deriving unique names for auxiliary variableEHﬁ‘;d(e, o).

The sequences correspond to paths in the tree formed by nested nondeterministic choices and
conjunctions.

EPCY(e,0) = EPG(e) if e is deterministic
EPCY(e1e2,) = (z, NEPCY(e1,01)) V (x5 AEPC(e2,01))
EPCY(e1 A+ Aep,0) = EPCY(ey,01) V --- VEPCY(e,, on)

The translation of nondeterministic operators into the propositional logic is similar to the trans-
lation for deterministic operators given in Section 3.6.4. Nondeterminism is encoded by making
the effects conditional on the values of the auxiliary variabigs Different valuations of these
auxiliary variables correspond to different nondeterministic effects.

The following frame axioms express the conditions under which state variablest may
change from true to false and from false to true. > . . |, e, be the effects oéq, . . ., o, respec-
tively. Each operatos € O has a unique integer indéX(o).

(a A=a')— ((o1 NEPCY (e1,(01))) V --- V (0n A EPCY (e, 2(01))))
(ma A a')—((o1 NEPCY(e1,Q(01))) V- -V (0, NEPCM(e,,2(01))))

Foro = (c,e) € O there is a formula for describing values of state variables in the predecessor

64 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

and successor states when the operator is applied.

(o—c)A
Nacalo NEPG (e, (o)) — ')A
Naealo NEPC (e, (o)) — a')

Example 4.22 Considero; = (—a, (b|(c > d)) A (alc)) andog = (=b, (((d > b)|c)|a)). The
application of these operators is described by the following formulae.

=(a A —ad') (ma Na')—((01 Ax12) V (02 A —22))
—|(b/\—|b/) (—\b/\b) ((01 /\xn) V (02 N X2 N\ T /\Cl))
=(c A=) (me N)= ((01 A —x12) V (02 A 29 A —91))
—(d N —d) (md ANd')— (01 A —x11 Ac)

o1 —a

(01 A\ .%'12) —a (01 AN .%'11) —b

(01 A —x19) — (01 A —x11 Ae)—d

02—>—\b

(09 A\ —x9)—d (09 Ao N xoy ANd)—b

(02 N x2 N\ —|$21) —C
[|

Two operators ando’ may be applied in parallel only if they do not interfere. Hence we use
formulae
=(o A0

for all operators ando’ that interfere anad # o'.
Let X be the set of auxiliary variables, in all the above formulae. The conjunction of all the
above formulae is denoted by
R3(A, A", 0, X).

We use two lemmata for proving properties about these formulae and the translation of nonde-
terministic operators into the propositional logic.

Let=,(e) be the set of propositional variables in the translation of the effeetwith a given
o. This is equal to the set of variables. in formulaeEPC! (e,) and EPC (e, o)) for all
a € A.

Definition 4.23 Define the set of literale]s” which are the active effects efwhene is exe-
cuted in states and nondeterministic choices are determined by the valuatiohpropositional
variables inZ, (e) as follows.

[e]5

= [e]4° if e is deterministic
ov [el]alv if U(x0> =1
tal?” = { oo i) =0

[er A Aen)d? = [e]T U+ Uen] ™"

o,v;

Lemma 4.24 Let s be a state anqvy, ..., v,} all valuations of=;(e). ThenJ; ;. [e]s™ =

[€]s.

4.3. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 65

Lemma4.25Let O andT C O be sets of operators; and s’ states,v,, a valuation of X =
Ute,eyeo Ea(e.e)) (€), andu, a valuation ofO such thatu,(o) = 1iff o € T'.
Thens U s'[A"/A] U v, Uv, | R3(A, A’, 0, X) if and only if

1. s = aiff s’ = aforalla € Asuchthat{a,—a} N Uqerles " =10,

Q({c,e)),vz
2.5/ = Upegerlels ™, and
3. sEcforall (c,e) € T.

The number of auxiliary variables, can be reduced when two operatorando’ interfere.
Since they cannot be applied simultaneously the same auxiliary variables can control the nonde-
terminism in both operators. To share the variables rename the ones occurring in the formulae for
one of the operators so that the variables needed fera subset of those far' or vice versa.
Having as small a number of auxiliary variables as possible may be important for the efficiency
for algorithms evaluating QBF and testing propositional satisfiability.

The formulagR3(A, A’, O, X) can be used for plan search with algorithms that evaluate QBF
(Section 4.3.2) as well as for testing by a satisfiability algorithm whether a conditional plan (with
full, partial or no observability) that allows several operators simultaneously indeed is a valid plan.

4.3.2 Finding plans by evaluation of QBF

In deterministic planning in propositional logic (Section 3.6) the problem is to find a sequence of
operators so that a goal state is reached when the operators are applied starting in the initial state.
When there are several initial states, the operators are nondeterministic and it is not possible to
use observations during plan execution for selecting operators, the problem is to find an operator
sequence so that a goal state is reached in all possible executions of the operator sequence. There
may be several executions because there may be several initial states and the operators may be
nondeterministic. Expressing the quantification over all possible executions cannot be concisely
expressed in the propositional logic. This is the reason why quantified Boolean formulae are used
instead.

The existence of an-step partially-ordered plan that reaches a state satisfyifigpm any
state satisfying the formulacan be tested by evaluating the QBE’® defined as

EIVplanvvndﬂvexec
10— (R3(A°%, AT, 00, XO0) A R3(AL, A2, 01, XY A -+ ARg(A™ 1, A", 0" X"=1) A G™).

HereVpan=0"U---UO0" 1, Vog=A°UXOU---U X" andVexec= A U--- U A", Define
M _ jo0_, (R3(AY, AL, 00, XOAR3(AL, A2, O, XA - AR3(A™ L, A7 O"—L XA

G"™). The valuation ofVj,an corresponds to a sequence of sets of operators. For a given valuation
of Vpian @any valuation ofi,q determines an execution of these operators. The valuatibg&fis
uniquely determined by the valuation Bfjan U Vig.

The algorithms for evaluating QBF that extend the Davis-Putham procedure traverse an and-or
tree in which the and-nodes correspond to universally quantified variables and or-nodes correspond
to existentially quantified variables. If the QBFtisie then these algorithms return a valuation of
the outermost existential variables. For a t®ff®" this valuation ofl/an corresponds to a plan
that can be constructed like the plans in the deterministic case in Section 3.6.5.

66 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

Theorem 4.26 The QBF®P?" has valuetrueif and only if there is a sequend®,, . .., T,,_, of
sets of operators such that for every {0, ...,n} and every state sequengg . . ., s; such that

1. so = I and
2. sodps1T1s2-+-5i-1T5-15;

T; is applicable ins; if i < n ands; = G if i = n.

Proof: We first prove the implication from left to right. Sinég"?" is true there is a valuation

Uptan Of Vplan = O° U - - - U O"~! such that for all valuations,,; of Vog = A°UX°U- .- U X!
there is a valuatione,e. Of Vexec = A' U -+ U A" such thatvyan U vng U Vezee E 10 —
(R3(A°, AT, 0% XO) A - ARz (AP, A™ O~ X1 A G™).

Let Ty, ..., T,_1 be the sequence of sets of operators such that fos al O andi €
{0,...,n — 1}, 0 € T; if and only if v, (0') = 1. We prove the right hand side of the the-
orem by induction om.

Induction hypothesis: For evesy, . .., s; such thatsg = I andsgTos171s2 - - si—1T5-15i:

1. T; is applicable irs; if i < n.
Base caseé = 0: Let sy be any state sequence such thal= 1.

1. If 0 < n then we have to show thd} is applicable insg.
LetE = By U---UE, forall j € {1,...,m} and anyE; € [e;]s,, Whereey, ..., e,
are respectively the effects of the operators . ., o, in Ty. Such setd are the possible
active effects off.

We have to show thalt is consistent and the preconditions of operatorfkjiare true insg.

By Lemma 4.24 there is a valuatierof X such that? = |, .yc7, [e]2{eeny,

Letv,q be any valuation oFqq such thatsg[A°/A] C v,q andv[X°/X] C v,,4. SincedPP
is true there is a valuation f ;.. SUCh that,e, U vpg U vezee = TP,

Sincevny | 1° alsovpiay, Uvng Uvezee = R3(A°, AL, 0% X0). Hence by Lemma 4.25 the
preconditions of operators ify, are true insyp ands; = E wheres; is the state such that
51(a) = vegec(at) for all a € A. SinceE was chosen arbitrarily from the sets of possible
sets of active effects dfy and it is consistent[} is applicable insg.

2. 1f n = 0 thenVpan = Vexec = 0 andVVpg(I° — GY) is true, andv,, = G° for every
valuationuv,,q of Vg such thaty,,4 = 1°.

Inductive case > 1: Letsy, ..., s; be any sequence such that— I andsoTpsi . . . si—1Ti—15i.

1. If i < n then we have to show thdt is applicable ins;.

LetE = E1U---UEy,forall j € {1,...,m} and anyE} € [e;]s,, Whereey, ..., e, are
respectively the effects of the operatoss. . . , o, in T;. Such set€ are the possible active
effects ofT;.

We have to show thak is consistent and the preconditions of operators;iare true ins;.

4.3. PLANNING AS SATISFIABILITY IN THE PROPOSITIONAL LOGIC AND QBF 67

By Lemma 4.24 there is a valuatiorof X such thatt? = U, . cr, [e] (D,

Since by the induction hypothesisT;s;; forall j € {0,...,i — 1}, by Lemma 4.24 for
everyj € {0,...,i—1} there is a valuation? of X such that;[A/A7]|Us;1[A’/ATHU
vo Ui = R3(A, A, O, X) wherev, assigns every € O value 1iffo € Tj.

Let v,4 be any valuation of/;g such thatsg[A°/A] C v,q andv[X?/X] C w,q and
v [X7/X] C v,qforallj € {0,...,i—1}.

Since®{*" is true there is a valuation af ... such that,ia, U vng U vegee = @92,

Sincev,q | 1° alsovpia, U vng U Vezee = R3(AY, AL O, X7). Hence by Lemma 4.25
the preconditions of operators i are true ins; ands;+1 = F wheres; ;1 is a state such
thats;1(a) = vezec(a’™t) for all a € A. Since anyE is consistent7} is applicable ins;.

2. If i = n we have to show that, = G. Like in the proof for the previous case we construct
valuationsv,,; andve,.. matching the executiosy, . . ., s,, and sinCey,q, U Uy U Vegee =
1°— G™ we haves,, = G.

Then we prove the implication from right to left. So there is sequéijce. ., T;,_1 for which
all executions are defined and redeh

We show that*®" is true: there is valuation,, of Vpan = O° U --- U O"~! such that for
every valuation,,; of Voqg = A°UXOU. . .UX ™! there is a valuation, . Of Vexee= A'U- - -UA™
such thawp;a, U vpg U Vegee = DIPM,

We define the valuatiom,;,, of Vpan by o € T; iff uphm(oi) = 1 for everyo € O and
ie€{0,...,n—1}.

Take any valuation,,; of Vpq. Define the stateg by so(a) = 1 iff v,q(a’) = 1 for every
a € A.

If s K I thenv,g F 10 andupian U vpg U vezee = @3P2™ for any valuationseze. of Vexeo

It remains to consider the casg|= I.

Define for everyi € {1,...,n} setsE; and states; as follows.

1. Letv! be avaluation ofX such that! (z) = v,q(z'~!) for everyz € X.

Q({c,e ,Ui
2. Let E;, = U(c,e)GTi_l[e]Si(}l 2 .

We show below that this is the set of literals made trughy in s; 1.
3. Defines;(a) = 1iff a € E; or s;—1(a) = 1 and—a ¢ E;, for everya € A.

Let Vegee = 51[AY/A]U -+ U s,[A"/A].
Induction hypothesisu,ian, U vna U s1[AL /AU~ - U s;[AT/A] = 19 AR5 (A%, AL, 0% XO) A
S AR3(ATH AL, O X ands;T)s 41 forall j € {0,...,i — 1}

Base casé = 0: Trivial becausey,q = I°.

Inductive case > 1: Let v, C wv,q be the valuation ofX*~! determined byv,; and let
v, be the valuation 0*~! such thatv,(0) = vpiun(0'!) for everyo € O. By Lemma 4.25
Uplan U Vng U si—1[AT1 /Al U 5;[A"/A] |E Ra(AT1, AL, O X1, This together with the
claim of the induction hypothesis for— 1 establishes the first part of the claim of the hypothesis
for i. By Lemma 4.24 the sdf; is one of the possible sets of active effectdpf; in s;_1. Hence
si—1T;—1s;. This finishes the induction proof.

68 CHAPTER 4. EXTENSIONS TO NONDETERMINISTIC PLANNING

Hencevpian U Vg U vegee | 10 A R3(A%, AL, O XO) A - ARg(A™L, A, On 1 Xy,
andveze. = G™ becauss,, |= G by assumption ang,[A"/A] C vegec- O

4.4 Literature

The state-space traversal techniques based on existential abstraction were first used in connection
with verification methods for model-checkifBurchet al, 1994; Clarkeet al, 1994 based on
ordered binary decision diagrams (BDDByyant, 1992. The model-checking problem is closely
related to the deterministic planning problem and to the problem of testing whether a given condi-
tional plan (program, controller) satisfies its specification, for example, reaches the goal states.
Not surprisingly, these state-space traversal techniques have been used as an implementation
technigue for many algorithms for conditional planniitpey et al,, 1999; Cimattiet al, 2003;

Bertoli et al,, 2001; Rintanen, 2005 When probabilities are involved, like when implementing

MDP algorithms, a generalization of BDDs called algebraic decision diagrams (ADDSs) is used
[Fujitaet al, 1997; Bahaet al,, 1997.

The satisfiability planning approach of Kautz and Selrf#®02; 1998 was first applied in
planning with nondeterministic actions and several initial states by Rintdr@9¢g. The deter-
ministic planning problem restricted to polynomial size plans is NP-complete, which makes it
possible to reduce the problem efficiently to SAT. Nondeterministic planning under the same plan
size restriction does not appear to be in NP because the corresponding decisions problems are com-
plete for>f andII}. Hence reduction to SAT is not in general feasible but reduction to QBF is.
Rintanen’s QBF have the preft/3 corresponding to the structure of nondeterministic planning
problemszthere isa plan such th&or all eventualitieghere isan execution leading to a goal state.

This idea is applicable to very general forms of conditional planning with partial observability. A
variant of Rintanen’s approach has been used in some later works by replacing the outermost
quantification by an ad hoc search algorithm that goes through candidate plans and tests whether
a candidate plan is a valid plan by a satisfiability test of an unquantified propositional formula
[Castelliniet al,, 2003. This satisfiability test is essentially the same as the one donetinded
model-checking[Biere et al,, 1999 for testing whether a given transition system fransition

system controlled by a plan) can reach a state satisfying a given property.

The heuristics in Section 3.4 can be generalized to nondeterministic operators and used to solve
more general planning problems by heuristic search algorithms. The choice of algorithm depends
on the definition of plans which is determined by assumptions concerning observability.

Without observability plans are sequences of operators and can be found by standard heuristic
search algorithms like Aand IDA« by search in the belief space.

If observations are possible, plan search can be viewed as search in an and-or tree. Heuristic
search algorithms for and-or trees are for example- ARartelli and Montanari, 1973; 1978;
Nilsson, 1980 and LAO« [Hansen and Zilberstein, 20p10ther applicable algorithms include
RTDP[Bartoet al,, 1999 and LRTDP[Bonet and Geffner, 2003

The most straightforward heuristics for these planning problems ignore nondeterminism and
observability by replacing each nondeterministic operator by a number of deterministic opera-
tors and assuming full observability. This can be justified by efficiency grounds. Other heuristics
attempt to improve the informativeness by taking observability and nondeterminism better into ac-
count. For more on the topic see for examBeyce and Kambhampati, 2004; Rintanen, 2004b

Bibliography

[Allen et al, 1997 J. Allen, J. A. Hendler, and A. Tate, editorReadings in PlanningMorgan
Kaufmann Publishers, 1990.

[Alur etal, 1997 R. Alur, R. K. Brayton, T. A. Henzinger, S. Qadeer, and S. K. Rajamani.
Partial-order reduction in symbolic state space explorationCdmputer Aided Verification,
9th International Conference, CAV '97, Haifa, Israel, June 22-25, 1997, Proceedialysne
1254 ofLecture Notes in Computer Scienpages 340-351. Springer-Verlag, 1997.

[Andersoret al, 1999 C. Anderson, D. Smith, and D. Weld. Conditional effects in Graphplan.
In R. Simmons, M. Veloso, and S. Smith, editoBpceedings of the Fourth International
Conference on Atrtificial Intelligence Planning Systepeges 44-53. AAAI Press, 1998.

[Backstbm and Nebel, 1995C. Backstom and B. Nebel. Complexity results for SA$lan-
ning. Computational Intelligencel1(4):625—-655, 1995.

[Baharet al, 1997 R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii, A. Pardo,
and F. Somenzi. Algebraic decision diagrams and their applicatnsal Methods in System
Design: An International Journall0(2/3):171-206, 1997.

[Bartoet al, 1999 A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic
programming Artificial Intelligence 72:81-138, 1995.

[Bertoli et al, 2001 P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in nondeter-
ministic domains under partial observability via symbolic model checking. In B. Nebel, editor,
Proceedings of the 17th International Joint Conference on Artificial Intelligepages 473—
478. Morgan Kaufmann Publishers, 2001.

[Biereet al, 1999 A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In W. R. Cleaveland, editofpols and Algorithms for the Construction and
Analysis of Systems, Proceedings of 5th International Conference, TAGASIO®e 1579 of
Lecture Notes in Computer Scienpages 193—-207. Springer-Verlag, 1999.

[Blum and Furst, 1997A. L. Blum and M. L. Furst. Fast planning through planning graph anal-
ysis. Artificial Intelligence 90(1-2):281-300, 1997.

[Bonet and Geffner, 2000B. Bonet and H. Geffner. Planning with incomplete information as
heuristic search in belief space. In S. Chien, S. Kambhampati, and C. A. Knoblock, editors,
Proceedings of the Fifth International Conference on Artificial Intelligence Planning Systems
pages 52-61. AAAI Press, 2000.

69

70 BIBLIOGRAPHY

[Bonet and Geffner, 2001B. Bonet and H. Geffner. Planning as heuristic seafgtificial Intel-
ligence 129(1-2):5-33, 2001.

[Bonet and Geffner, 2003B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence
of real-time dynamic programming. In E. Giunchiglia, N. Muscettola, and D. Nau, edims,
ceedings of the Thirteenth International Conference on Automated Planning and Scheduling
pages 12-21, 2003.

[Boutilier et al, 1999 C. Boutilier, T. Dean, and S. Hanks. Planning under uncertainty: structural
assumptions and computational leverag@urnal of Artificial Intelligence Researcthl:1-94,
1999.

[Bryant, 1992 R. E. Bryant. Symbolic Boolean manipulation with ordered binary decision dia-
grams.ACM Computing Survey24(3):293—-318, September 1992.

[Bryce and Kambhampati, 20DD. Bryce and S. Kambhampati. Heuristic guidance measure for
conformant planning. IlCAPS 2004. Proceedings of the Fourteenth International Conference
on Automated Planning and Schedulipgges 365-374. AAAI Press, 2004.

[Burchet al, 1994 J. R. Burch, E. M. Clarke, D. E. Long, K. L. MacMillan, and D. L. Dill.
Symbolic model checking for sequential circuit verificatidBEE Transactions on Computer-
Aided Design of Integrated Circuits and Syste(4):401-424, 1994.

[Bylander, 1994 T. Bylander. The computational complexity of propositional STRIPS planning.
Artificial Intelligence 69(1-2):165-204, 1994.

[Bylander, 1995 T. Bylander. A probabilistic analysis of propositional STRIPS planniugifi-
cial Intelligence 81(1-2):241-271, 1996.

[Castelliniet al, 2003 C. Castellini, E. Giunchiglia, and A. Tacchella. SAT-based planning in
complex domains: concurrency, constraints and nondetermidificial Intelligence 147(1—
2):85-117, 2003.

[Cimattiet al, 2003 A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong
cyclic planning via symbolic model checkingyrtificial Intelligence 147(1-2):35-84, 2003.

[Clarkeet al,, 1994 E. Clarke, O. Grumberg, K. McMillan, and X. Zhao. Efficient generation
of counterexamples and withesses in symbolic model checking. Technical Report CS-94-204,
Carnegie Mellon University, School of Computer Science, October 1994.

[de Bakker and de Roever, 1972. W. de Bakker and W. P. de Roever. A calculus of recursive
program schemes. IRroceedings of the First International Colloquium on Automata, Lan-
guages and Programmingages 167—196. North-Holland, 1972.

[Dijkstra, 1976 E. W. Dijkstra. A Discipline of ProgrammingPrentice Hall, Englewood Cliffs,
New Jersey, 1976.

[Emerson and Sistla, 19P@&. A. Emerson and A. P. Sistla. Symmetry and model-checkg.
mal Methods in System Design: An International Jouy8é1/2):105-131, 1996.

BIBLIOGRAPHY 71

[Ernstet al, 1969 G. Ernst, A. Newell, and H. SimonGPS: A Case Study in Generality and
Problem Solving Academic Press, 1969.

[Ernstet al, 1997 M. Ernst, T. Millstein, and D. S. Weld. Automatic SAT-compilation of plan-
ning problems. In M. Pollack, editoBroceedings of the 15th International Joint Conference
on Artificial Intelligence pages 1169-1176. Morgan Kaufmann Publishers, 1997.

[Erolet al, 1999 K. Erol, D. S. Nau, and V. S. Subrahmanian. Complexity, decidability and
undecidability results for domain-independent plannifgificial Intelligence 76(1-2):75-88,
1995.

[Fikes and Nilsson, 1971R. E. Fikes and N. J. Nilsson. STRIPS: a new approach to the applica-
tion of theorem proving to problem solvindirtificial Intelligence 2(2-3):189-208, 1971.

[Fujitaet al, 1997 M. Fuijita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary decision
diagrams: an efficient data structure for matrix representatieormal Methods in System
Design: An International Journall0(2/3):149-169, 1997.

[Gerevini and Schubert, 19p&\. Gerevini and L. Schubert. Inferring state constraints for
domain-independent planning. Rroceedings of the 15th National Conference on Atrtificial
Intelligence (AAAI-98) and the 10th Conference on Innovative Applications of Artificial Intel-
ligence (IAAI-98) pages 905-912. AAAI Press, 1998.

[Godefroid, 1991 P. Godefroid. Using partial orders to improve automatic verification methods.
In E. M. Clarke, editorProceedings of the 2nd International Conference on Computer-Aided
Verification (CAV '90), Rutgers, New Jersey, 1980mber 531 in Lecture Notes in Computer
Science, pages 176-185. Springer-Verlag, 1991.

[Green, 196D C. Green. Application of theorem-proving to problem solving. In D. E. Walker
and L. M. Norton, editorsProceedings of the 1st International Joint Conference on Artificial
Intelligence pages 219-239. William Kaufmann, 1969.

[Hansen and Zilberstein, 20DE. A. Hansen and S. Zilberstein. LAOA heuristic search algo-
rithm that finds solutions with loopgrtificial Intelligence 29(1-2):35-62, 2001.

[Hartet al, 1969 P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum-cost patH&EE Transactions on System Sciences and Cybernetics
SSC-4(2):100-107, 1968.

[Haslum and Geffner, 2000P. Haslum and H. Geffner. Admissible heuristics for optimal plan-
ning. In S. Chien, S. Kambhampati, and C. A. Knoblock, edittreceedings of the Fifth
International Conference on Artificial Intelligence Planning Systepagies 140-149. AAAI
Press, 2000.

[Hoeyet al,, 1999 J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier. SPUDD: Stochastic planning
using decision diagrams. In K. B. Laskey and H. Prade, editémsertainty in Artificial Intel-
ligence, Proceedings of the Fifteenth Conference (UA|-P&Yyes 279—-288. Morgan Kaufmann
Publishers, 1999.

72 BIBLIOGRAPHY

[Hoffmann and Nebel, 2091J. Hoffmann and B. Nebel. The FF planning system: Fast plan
generation through heuristic searchournal of Artificial Intelligence Researchi4:253-302,
2001.

[Howard, 1960 R. A. Howard.Dynamic programming and Markov decision procesJése MIT
Press, 1960.

[Kaelblinget al, 1999 L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting
in partially observable stochastic domaiwstificial Intelligence 101(1-2):99-134, 1998.

[Kautz and Selman, 1992H. Kautz and B. Selman. Planning as satisfiability. In B. Neumann,
editor,Proceedings of the 10th European Conference on Atrtificial Intelliggrages 359—-363.
John Wiley & Sons, 1992.

[Kautz and Selman, 1996H. Kautz and B. Selman. Pushing the envelope: planning, proposi-
tional logic, and stochastic search. Pmoceedings of the 13th National Conference on Ar-
tificial Intelligence and the 8th Innovative Applications of Artificial Intelligence Conference
pages 1194-1201. AAAI Press, August 1996.

[Kirkpatrick et al, 1983 S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by
simulated annealingScience220(4598):671-680, May 1983.

[Korf, 1989 R. E. Korf. Depth-first iterative deepening: an optimal admissible tree seArth.
ficial Intelligence 27(1):97-109, 1985.

[Lozano and Balazar, 1990 A. Lozano and J. L. Bakizar. The complexity of graph problems
for succinctly represented graphs. In M. Nagl, edi@rmaph-Theoretic Concepts in Computer
Science, 15th International Workshop, WG'@mber 411 in Lecture Notes in Computer Sci-
ence, pages 277-286. Springer-Verlag, 1990.

[Madaniet al, 2003 O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic
planning and related stochastic optimization proble/dificial Intelligence 147(1-2):5-34,
2003.

[Martelli and Montanari, 1973A. Martelli and U. Montanari. Additive AND/OR graphs. In
Proceedings of the 3rd International Joint Conference on Artificial Intelligepeges 1-11,
1973.

[Martelli and Montanari, 1978A. Martelli and U. Montanari. Optimizing decision trees through
heuristically guided searci€ommunications of the ACM2(12):1025-1039, 1978.

[McAllester and Rosenblitt, 1991D. A. McAllester and D. Rosenblitt. Systematic nonlinear
planning. In T. L. Dean and K. McKeown, editoRroceedings of the 9th National Conference
on Artificial Intelligence volume 2, pages 634—639. AAAI Press / The MIT Press, 1991.

[McDermott, 1999 D. V. McDermott. Using regression-match graphs to control search in plan-
ning. Artificial Intelligence 109(1-2):111-159, 1999.

[McMillan, 2003 K. L. McMillan. Interpolation and SAT-based model checking. In W. A,
Hunt Jr. and F. Somenzi, editoBroceedings of the 15th International Conference on Com-
puter Aided Verification (CAV 2003humber 2725 in Lecture Notes in Computer Science,
pages 1-13, 2003.

BIBLIOGRAPHY 73

[Meyer and Stockmeyer, 19F2A. R. Meyer and L. J. Stockmeyer. The equivalence problem for
regular expressions with squaring requires exponential timerdoeedings of the 13th Annual
Symposium on Switching and Automata Thepages 125-129. IEEE Computer Society, 1972.

[Mneimneh and Sakallah, 20D3/. Mneimneh and K. Sakallah. Computing vertex eccentricity in
exponentially large graphs: QBF formulation and solution. In E. Giunchiglia and A. Tacchella,
editors,SAT 2003 - Theory and Applications of Satisfiability Testmgnber 2919 in Lecture
Notes in Computer Science, pages 411-425, 2003.

[Nguyenet al, 2004 X. Nguyen, S. Kambhampati, and R. S. Nigenda. Planning graph as the
basis for deriving heuristics for plan synthesis by state space and CSP gs&difatial Intelli-
gence 135:73-123, 2002.

[Nilsson, 198D N. J. Nilsson. Principles of Atrtificial Intelligence Tioga Publishing Company,
1980.

[Pearl, 1984 J. Pearl. Heuristics: Intelligent Search Strategies for Computer Problem Salving
Addison-Wesley Publishing Company, Reading, Massachusetts, 1984.

[Puterman, 1994 M. L. Puterman.Markov decision processes: discrete stochastic dynamic pro-
gramming John Wiley & Sons, 1994.

[Rintaneret al, 2009 J. Rintanen, K. Heljanko, and |. Nien#el Planning as satisfiability: par-
allel plans and algorithms for plan search. Report 216, Albert-Ludwigs-Unigefsieiburg,
Institut fur Informatik, 2005.

[Rintanen, 199B J. Rintanen. A planning algorithm not based on directional search. In A. G.
Cohn, L. K. Schubert, and S. C. Shapiro, editdPsinciples of Knowledge Representation
and Reasoning: Proceedings of the Sixth International Conference (KRpa8es 617-624.
Morgan Kaufmann Publishers, June 1998.

[Rintanen, 199P J. Rintanen. Constructing conditional plans by a theorem-prod@urnal of
Artificial Intelligence Researgi0:323-352, 1999.

[Rintanen, 2004aJ. Rintanen. Complexity of planning with partial observability. In S. Zilber-
stein, J. Koehler, and S. Koenig, editolSAPS 2004. Proceedings of the Fourteenth Interna-
tional Conference on Automated Planning and Schedupages 345—-354. AAAI Press, 2004.

[Rintanen, 2004b J. Rintanen. Distance estimates for planning in the discrete belief space. In
Proceedings of the 19th National Conference on Artificial Intelligence (AAAI-2004) and the
16th Conference on Innovative Applications of Artificial Intelligence (IAAI-20pdyes 525—
530. AAAI Press, 2004.

[Rintanen, 2004c J. Rintanen. Phase transitions in classical planning: an experimental study. In
D. Dubois, C. A. Welty, and M.-A. Williams, editor&rinciples of Knowledge Representation
and Reasoning: Proceedings of the Ninth International Conference (KR 288ggs 710-719.
AAAI Press, 2004.

[Rintanen, 200F J. Rintanen. Conditional planning in the discrete belief space. In L. P. Kael-
bling, editor,Proceedings of the 19th International Joint Conference on Atrtificial Intelligence
Morgan Kaufmann Publishers, 2005. to appear.

74 BIBLIOGRAPHY

[Rosenschein, 1981S. J. Rosenschein. Plan synthesis: A logical perspective. In P. J. Hayes,
editor, Proceedings of the 7th International Joint Conference on Artificial Intelligepeges
331-337. William Kaufmann, August 1981.

[Sacerdoti, 197U E. D. Sacerdoti. Planning in a hierarchy of abstraction spagsdicial Intel-
ligence 5:115-135, 1974.

[Sacerdoti, 1976 E. D. Sacerdoti. The nonlinear nature of plans. Pimceedings of the 4th
International Joint Conference on Artificial Intelligenqeages 206-214, 1975.

[Selmaret al, 1996 B. Selman, D. G. Mitchell, and H. Levesque. Generating hard satisfiability
problems.Atrtificial Intelligence 81(1-2):459—-465, 1996.

[Smallwood and Sondik, 19Y3R. D. Smallwood and E. J. Sondik. The optimal control of par-
tially observable Markov processes over a finite horizOperations Resear¢i21:1071-1088,
1973.

[Starke, 19911 P. H. Starke. Reachability analysis of Petri nets using symmetdesrnal of
Mathematical Modelling and Simulation in Systems Ana)\&i4/5):293—-303, 1991.

[Valmari, 1991 A. Valmari. Stubborn sets for reduced state space generation. In G. Rozenberg,
editor,Advances in Petri Nets 1990. 10th International Conference on Applications and Theory
of Petri Nets, Bonn, Germangiumber 483 in Lecture Notes in Computer Science, pages 491—
515. Springer-Verlag, 1991.

Index

appr(s), 46

PRy, ;...;0, (5), 7,13
app,(s), 7,13
asatD, ¢), 31
[e)¢*, 13

le]s, 12

R3(A4, 4,0, X), 64
Ro(A, A, 0), 50
R1(A, A"), 43
62md(s), 61

"), 27

5M2(), 30, 51

5™ (¢), 35, 51

67 (¢), 33,51
EPC"(e,0), 63
EPG(e), 19

EPG (o)
imgr(s)
img, ()
M9%(0), 55

Q(0), 63

74(0), 47

Ta(e), 43

T4(0), 43
preimg,(¢), 59
regri(¢), 54
regr. (¢), 21
regroy;....on (¢), 21
regr,(¢), 21
s[A"/A], 55
spreimg(¢), 59

, 19
, 63
, 59

Ax, 25

action, 5
affect, 49
application, 6
assignment, 9

backward distance (of a state), 61

75

bounded model-checking, 51, 68

causal link planning, 2
clause, 10

CNF, 10

complexity, 52

composition of operators, 23
conjunction, 9

conjunctive normal form, 10
connective, 9

consistency, 10

deterministic operator, 13

deterministic succinct transition system, 13

deterministic transition system, 6
disjunction, 9

disjunctive normal form, 10
distance (of a state), 27, 61
DNF, 10

effect, 11
existential abstraction, 57

formula, 8
forward distance (of a state), 27

GPT, 4
Graphplan, 2, 3, 52

IDA %, 25
imageimg,(s), 6, 58
interference, 49
invariant, 27, 37

literal, 10
logical consequence, 10

max heuristic, 29
model, 9
model-checking, 51, 68

76

negation, 9

negation normal form, 10

NNF, 10

normal form Il, nondeterministic operators,

16
normal form, deterministic operators, 14
normal form, nondeterministic operators, 16

observable state variable, 12
operator, 11
operator application, 6

partial-order planning, 2, 26
partial-order reduction, 51
partially-ordered plans, 48, 51
phase transitions, 52
planning graphs, 52
precondition, 11
preimagepreimg,(s), 6
progression, for formulae, 61
progression, for states, 19
propositional formula, 8
propositional variable, 8

QBF, 10, 63
quantified Boolean formula, 10, 63

reachability, 27, 61
regression, 20, 54, 60
relaxed plan heuristic, 34

satisfiability, 10

sequential composition, 14, 25
simulated annealing, 25

state, 5, 11

state variable, 11

state variable, observable, 12
step plan, 49

STRIPS, 2

STRIPS operators, 14, 23
strong preimagspreimg(7), 6, 58, 61
strongest invariant, 27
succinct transition system, 12
sum heuristic, 32

symmetry reduction, 51

tautology, 10
transition system, 5, 6

universal abstraction, 57

valid, 10
valuation, 9

WA, 25
weak preimag@reimg,(s), 6, 58

INDEX

