
On the Impact of Stratification on the Complexity of Nonmonotonic
Reasoning

Ilkka Niemelä
Department of Computer Science
Helsinki University of Technology

Otakaari 1, SF–02150 ESPOO, Finland

Jussi Rintanen
Department of Computer Science
Helsinki University of Technology

Otakaari 1, SF–02150 ESPOO, Finland

Abstract

The ability to “define” propositions using de-
fault assumptions about the same proposi-
tions is identified as a source of additional
computational complexity in nonmonotonic
reasoning. If such constructs are not al-
lowed, i.e. the knowledge base is stratified,
a significant computational advantage is ob-
tained. This is demonstrated by developing
an iterative algorithm for propositional strat-
ified autoepistemic theories the complexity of
which is dominated by required classical rea-
soning. Thus efficient subclasses of stratified
nonmonotonic reasoning can be obtained by
further restricting the form of sentences in
the knowledge base. As an example we de-
rive quadratic and linear time algorithms for
specific subclasses of stratified autoepistemic
theories. The results are shown to imply ef-
ficient reasoning methods for stratified cases
of default logic, logic programs, truth mainte-
nance systems, and nonmonotonic modal log-
ics.

1 INTRODUCTION
Nonmonotonic reasoning is an important aspect of many
knowledge representation systems. Nonmonotonic rea-
soning is applied because it is hoped that knowledge rep-
resentation and reasoning problems can be solved more
effectively than using classical (monotonic) reasoning.
Recent results suggest that nonmonotonic reasoning is in
fact computationally more complex than corresponding
classical reasoning (Gottlob 1991). Furthermore, even
very restricted subclasses of nonmonotonic reasoning
where required classical reasoning can be done efficiently
turn out to be computationally intractable. Examples
of this are, e.g., simple cases of default logic (Kautz &
Selman 1991), truth maintenance systems (Elkan 1990),
and logic programs (Marek & Truszczyński 1991) which
have NP-complete decision problems. Thus reducing the

computational complexity of required classical reason-
ing does not yield the expected efficiency in nonmono-
tonic reasoning. A typical aspect of the subclasses of
nonmonotonic reasoning with disappointing computa-
tional properties is that propositions can be “defined”
in terms of default assumptions about the same propo-
sitions. This seems to result in a situation where finding
the correct order of applying defaults (conflict resolu-
tion) is computationally very complex.

In this paper we investigate stratified knowledge
bases. The notion of stratification has its origins in the
logic programming community (Chandra & Harel 1985;
Apt, Blair, & Walker 1988; Van Gelder 1988). A knowl-
edge base is stratified if it can be partitioned into a set
of levels (strata) such that on every level default as-
sumptions are made only about propositions which have
already been “defined” on lower levels. This restriction
reduces expressivity at least in the sense that it rules
out multiple extensions: a stratified knowledge base has
exactly one possible set of correct conclusions. However,
we show that the restriction provides notable computa-
tional benefits. In stratified knowledge bases the conflict
resolution task can be solved efficiently and the overall
complexity of reasoning is dominated by the complexity
of the classical reasoning task.

Stratified propositional autoepistemic theories (Marek
& Truszczyński 1991) are chosen as the basis of the re-
search because autoepistemic logic offers a unified ap-
proach to several other types of nonmonotonic reason-
ing (or at least substantial fragments of these) (Konolige
1988; Gelfond & Lifschitz 1988; Elkan 1990). Thus effi-
cient decision methods developed for autoepistemic logic
can be immediately applied to other forms of nonmono-
tonic reasoning. First we develop an iterative algorithm
for reasoning in stratified autoepistemic theories. From
this we derive a quadratic and a linear time algorithm for
limited subclasses of stratified theories. The result are
shown to imply fast reasoning algorithms for stratified
cases of default logic, logic programs, truth maintenance
systems, and nonmonotonic modal logics.

2 AUTOEPISTEMIC LOGIC
To obtain the language Lae of propositional autoepis-
temic logic we extend the language L of the proposi-
tional calculus by a monadic operator L which is read
“is believed”. Autoepistemic logic models the beliefs of
a fully introspective ideally rational agent. The agent
reasons according to a consequence relation |= which is
a simple extension of the propositional consequence rela-
tion where the new Lφ formulae are treated like atomic
formulae in the propositional calculus. Given a set of
premises a set of correct autoepistemic conclusions is
defined as a set of beliefs of the agent with the premises
as the initial assumptions of the agent. A set of beliefs is
called a stable expansion of the premises and it is defined
by the following fixed point equation.

Definition 2.1 (Moore (1985)). ∆ is a stable expansion
of Σ iff

∆ = {φ | Σ ∪ L∆ ∪ ¬L∆ |= φ} (1)

where L∆ = {Lφ | φ ∈ ∆}, ¬∆ = {¬φ | φ ∈ ∆}, and
∆ = Lae −∆. Thus ¬L∆ = {¬Lφ | φ ∈ Lae −∆}.

Stable expansions are infinite sets of formulae. A fini-
tary characterization is needed for handling expansions
computationally. Niemelä (1990) has presented a com-
pact characterization of stable expansions using the no-
tion of a full set. The basic idea is to use the Lφ subfor-
mulae of the premises to characterize the stable expan-
sions. If the set of premises is finite, the corresponding
full sets are finite. In this case infinite stable expansions
can be represented finitely.

We use the following notations. SfL(φ) denotes the
set of subformulae of the form Lχ of φ. Sf qL(φ) is the
set of Lχ quasi-subformulae of φ. Quasi-subformulae are
subformulae in the usual sense except that Lχ formulae
do not have any further quasi-subformulae. For a set of
formulae Σ, SfL(Σ) =

⋃
φ∈Σ Sf

L(φ) and similarly for
Sf qL(Σ).

Definition 2.2. A set of formulae Λ is Σ-full if it sat-
isfies the following conditions.

1. Λ ⊆ SfL(Σ) ∪ ¬SfL(Σ).
2. Lφ ∈ Λ iff Σ ∪ Λ |= φ for all Lφ ∈ SfL(Σ).
3. ¬Lφ ∈ Λ iff Σ ∪ Λ 6|= φ for all Lφ ∈ SfL(Σ).

For a set of premises Σ, the Σ-full sets are in a
one-to-one correspondence with the stable expansions
of Σ (Niemelä 1990). The unique stable expansion in-
duced by a full set can be characterized with the aid
of the consequence relation |=L which is defined recur-
sively using the underlying consequence relation |=. The
new consequence relation determines the membership
in a stable expansion of Σ when the corresponding full
set Λ is known (Definition 4.1 and Theorems 3.15 and
4.2 (Niemelä 1990)):

Definition 2.3. For Σ ⊆ Lae and φ ∈ Lae,
Σ |=L φ iff Σ ∪ SBΣ(φ) |= φ

where SBΣ(φ) = {Lχ ∈ Sf qL(φ) | Σ |=L χ} ∪ {¬Lχ ∈
¬Sf qL(φ) | Σ 6|=L χ}.
Theorem 2.4. Let Λ be a Σ-full set. Then ∆ =
SEΣ(Λ) = {φ | Σ ∪ Λ |=L φ} is the unique stable ex-
pansion of Σ such that Λ ⊆ L∆ ∪ ¬L∆.
Example 1. Let Σ = {Lp → p,¬Lp → q}, where
p and q are atomic. There are two candidates for Σ-
full sets: Λ1 = {Lp} and Λ2 = {¬Lp}. Both are
Σ-full. Λ1 is full as Σ ∪ Λ1 |= p and Λ2 is full as
Σ ∪ Λ2 6|= p. So Σ has exactly two stable expansions
SEΣ({Lp}) and SEΣ({¬Lp}). L¬Lq belongs to the for-
mer but not to the latter because Σ∪{Lp} |=L L¬Lq but
Σ ∪ {¬Lp} 6|=L L¬Lq. E.g., Σ ∪ {Lp} |=L L¬Lq can be
verified as follows. As SBΣ∪{Lp}(q) = ∅ and Σ∪{Lp} 6|=
q, Σ ∪ {Lp} 6|=L q. Thus SBΣ∪{Lp}(¬Lq) = {¬Lq}.
So Σ ∪ {Lp} ∪ SBΣ∪{Lp}(¬Lq) |= ¬Lq which implies
Σ ∪ {Lp} |=L ¬Lq. Hence SBΣ∪{Lp}(L¬Lq) = {L¬Lq}
and thus Σ ∪ {Lp} |=L L¬Lq.

3 STRATIFICATION
Marek and Truszczyński define a notion of a stratified
set for propositional autoepistemic logic.
Definition 3.1 ((Marek & Truszczyński 1991)). A set
of formulae Σ is stratified if

1. the formulae φ ∈ Σ are of the form a(φ)∧o(φ)→ c(φ),
where the subformulae o(φ) and c(φ) do not contain
the operator L and o(φ) may be missing, and a(φ) is a
formula of the form Lφ1∧· · ·∧Lφr∧¬Lψ1∧· · ·∧¬Lψs
where r, s ≥ 0.

2. The set {c(φ)|φ ∈ Σ} is satisfiable.
3. There exists a set of indices I = {1, . . . , n} or I =
{1, . . .} and a partition of Σ =

⋃
i∈I Σi such that

for all j ∈ I the propositional variables occurring in
{c(φ)|φ ∈ Σj} do not occur in Σj in the scope of an
L operator or in Σj−1

1 (where Σba =
⋃b
i=a Σi).

If a set of premises is stratified, it has a unique stable
expansion (Marek & Truszczyński 1991, Theorem 5.1).
However, a non-stratified set can have several stable ex-
pansions. In fact there can be up to 2n stable expansions
for a set of premises with n Lχ subformulae (Niemelä
1990). On the other hand, it is not necessary for a set
to be stratified to have a unique stable expansion. The
set {p,¬Lp→ p} is a simple example of this.

The notion of stratifiedness reduces expressivity be-
cause it rules out premises for which the agent has
multiple competing sets of beliefs. When formalizing
commonsense reasoning premises with multiple stable
expansions seem to occur (e.g. (Gelfond 1988)). Ko-
laitis (1991) discusses the expressivity of stratified logic

programs which are closely related to stratified autoepis-
temic theories. Stratification can be seen as an at-
tempt to find a useful trade-off between the expressivity
of a knowledge representation language and the com-
putational complexity of the required reasoning effort.
On one hand, stratification excludes multiple expansions
and reduces expressivity and, on the other hand, it leads
to efficient nonmonotonic reasoning methods as will be
shown in this paper.

The reasoning methods developed in this paper use
the stratifications, i.e. the partitions of the formulae in
the stratified sets. In the general case the computation
of a stratification or testing whether a set of autoepis-
temic formulae is stratified is exponential time because
of the satisfiability testing of {c(φ)|φ ∈ Σ}. In the poly-
nomial time cases developed in this paper Condition 2
of stratification can be tested in linear time. For testing
Condition 3 efficiently Marek and Truszczyński define
the notion of a-stratifiedness which coincides with strat-
ifiedness. A finite set Σ is a-stratified if it satisfies con-
ditions 1 and 2 of stratification and there is a partition
P1, . . . , Pn of the propositional variables P in Σ that ful-
fills the following condition. For each pair of variables
p ∈ Pi, q ∈ Pj such that p occurs in a(φ) and q in c(φ)
for some φ ∈ Σ, i < j, and for each pair of variables
p ∈ Pi, q ∈ Pj such that p occurs in φ and q in c(φ) for
some φ ∈ Σ, i ≤ j.
Theorem 3.2 ((Marek & Truszczyński 1991)). A fi-
nite set of formulae Σ is stratified if and only if Σ is
a-stratified.

The test for the existence of the partition of variables
can easily be reduced to the computation of the strong
components of a graph. The characteristic graph of a
set of formulae is a graph representing the constraints
imposed on the partition of the propositional variables
by the definition of a-stratifiedness. In the characteristic
graph there is an edge from the variable p to the variable
q if for some φ ∈ Σ p occurs in c(φ) and q anywhere in
φ. The edge is an L-edge if there is an occurrence of q
in a(φ).
Theorem 3.3 ((Marek & Truszczyński 1991)). A finite
set of formulae Σ is a-stratified if and only if Σ satis-
fies Conditions 1 and 2, and no strong component of its
characteristic graph contains an L-edge.
Example 2. The set

r ∧ ¬Lp→ h

q ∧ ¬Lh→ p

is not a-stratified and consequently it is not stratified.
The characteristic graph has three strong components.
The variables r and p occupy singleton strong compo-
nents, and since there are edges both from h to p and
from p to h, p and h are in the same strong component.

The set is not a-stratified – and consequently not strat-
ified – because the edges between p and h are L-edges.

Example 3. The set

L¬Lr ∧ p→ q

q → p

L(p↔ q)→ s

is a-stratified. Variables p and q belong to the same
component and there are no L-edges between them, s
and r both occupy a singleton component.

For the tractable classes of autoepistemic reasoning
investigated in this paper, we present a linear time algo-
rithm that computes a stratification if the set is strati-
fied, and for sets that are not, detects this fact. The algo-
rithm is based on Theorem 3.3. Marek and Truszczyński
(1991) sketch a similar algorithm for arbitrary sets of au-
toepistemic formulae that fulfill Condition 1. Another
algorithm for computing a stratification which is based
on strong components is presented in (Lassez, McAloon,
& Port 1987).

In the general case the size of the characteristic graph
is quadratic on the size of Σ, and consequently the
traversal of the graph for finding the strong components
takes quadratic time. However, if the form of the subfor-
mulae c(φ), φ ∈ Σ is restricted the computation becomes
linear time.

Linear time complexity results in this paper, e.g. the
linearity of our stratification algorithm, rest on the fol-
lowing assumption.
Proposition 3.4. Each propositional variable is as-
signed a unique number so that data structures with con-
stant access time (arrays) can be used for storing various
data related to them.

Taking a set of formulae Σ as input and assigning a
number for each propositional variable can be done in
O(nlogv) time where n is the size of Σ and v is the
number of distinct propositional variables in Σ.
Proposition 3.5. Let Σ be a set of formulae that ful-
fills Condition 1 of stratification, and for each φ ∈ Σ
there are occurrences of at most one propositional vari-
able in c(φ). Under Assumption 3.4 the computation of
a stratification for Σ or detecting that Σ is not stratified
is O(|Σ|) time.

In this restricted case Condition 2 of the definition of
a stratified set can be tested in time O(|Σ|).

By Theorem 3.3 testing Condition 3 of stratification
can be implemented as a computation of the strong com-
ponents of the characteristic graph together with detec-
tion of L-edges inside the strong components. For this
purpose we give a variant of Tarjan’s (1972) well-known

algorithm for the strong components of a graph as pre-
sented in (Aho, Hopcroft, & Ullman 1974). Tarjan’s
algorithm runs in time O(n+ e) where n is the number
of nodes and e is the number of edges, and it has the use-
ful property that the strong components are produced
in an order that qualifies as a stratification, i.e. the first
component the algorithm emits consists of the variables
in c(φ) for formulae φ ∈ Σ1 that can be taken as the
lowest stratum of a stratification Σn1 , and so on.

The size of the characteristic graph is linear on the size
of Σ because for each φ ∈ Σ there are occurrences of at
most one propositional variable in c(φ) and consequently
there is at most one edge for each variable occurrence in
{a(φ) ∧ o(φ)|φ ∈ Σ}.

For the computation of the strata the following arrays
and variables are needed.
formulae[p] the list of formulae φ in which the variable
p appears in c(φ). This array can be initialized in
linear time by traversing the set of formulae once.

edges[p] the list of variables q that appear in a(φ)∧o(φ)
for a formula φ in which the variable p appears in
c(φ). The initialization can be done in linear time.
First initialize the elements to empty lists. Then for
each p the list of formulae [p] is traversed and for each
occurrence of a variable q an auxiliary array of flags
is tested whether q already is in edges[p]. If not, it is
added in the head and the auxiliary array is updated.

l-edges[p] the list of variables q that appear in a(φ) for
a formula φ in which the variable p appears in c(φ).
This array is initialized the same way as edges.

ccount a counter for the strong components. Initialized
to zero.

component[i] the list of formulae in stratum i.
stratum[p] the number of the stratum to which formu-

lae φ having p in c(φ) belong.
The following variables are part of the original strong

components algorithm (see (Aho, Hopcroft, & Ullman
1974) for details):

count a counter for numbering the nodes of the graph
in the order of depth-first traversal.

dfnumber[p] the number assigned to the node p during
depth-first traversal.

lowlink[p] an array which is used for recognizing strong
components during the traversal.

SEARCHC is called repeatedly for unmarked vari-
ables until all variables are marked old. If the error
NOT STRATIFIED is signalled then Condition 3 can-
not be fulfilled and the set is not stratified.

procedure SEARCHC(v);
begin

mark v ”old”
dfnumber[v] := count;
count := count + 1;
lowlink[v] := dfnumber[v];
push v on stack;
for each vertex w on edges[v] do
if w is marked ”new” then
begin
SEARCHC(w);
lowlink[v] := min(lowlink[v],lowlink[w]);

end
else
if dfnumber[w] < dfnumber[v] and w is on stack
then lowlink[v] := min(dfnumber[w],lowlink[v]);

end if
end for
if lowlink[v] = dfnumber[v] then
begin
ccount := ccount + 1;
components[ccount] := empty list;
initialize stack2 to empty;
repeat
pop x from top of stack;
push x to stack2;
stratum[x] := ccount;

until x=v;
while stack2 not empty do
pop x from stack2;
for each y in l-edges[x] do
if stratum[x] = stratum[y]
then signal NOT STRATIFIED;

end for
concatenate formulae[x] to components[ccount];

end while
end

end

The first half of the algorithm traverses the character-
istic graph depth-first and maintains the data structures
for detection of the strong components. Like Tarjan’s
original algorithm it works in O(n + e) time where n
and e are the number of nodes and edges, respectively.
All our modifications are in the if statement that forms
the second half of the algorithm.

First, for the formulae in the new component a new
element is reserved in the array components. The repeat
loop assigns each variable in the component the num-
ber of the component. Finally the while loop tests the
component for the containment of an L-edge and con-
catenates the list of formulae belonging to the stratum
to the array components. Constructing the lists of the
array components is O(n) where n is the size of the set
of formulae, since each formula belongs to exactly one
stratum and we restrict c(φ) for each φ to contain occur-
rences of at most one propositional variable. The tests

for the containment of an edge through an L operator
are within the O(n) bound as for each propositional vari-
able p the presence of L-edges inside the stratum of p is
tested exactly once, and the number of elements in the
lists of the array l-edges is linearly bounded by the size
of the set of formulae.

Example 4. Our algorithm computes for the set in Ex-
ample 3 the stratification shown below. The first column
contains the numbers of the strata, the second contains
the variables in the corresponding strong components of
the associated characteristic graph, and the third the
strata, i.e. the sets of formulae φ in which the variables
of the respective strong component occur in c(φ).

3 s L(p↔ q)→ s
2 p, q q → p, L¬Lr ∧ p→ q
1 r ∅

Because there are no formulae φ with r in c(φ) the
lowest stratum is empty, and can be ignored.

4 A DECISION PROCEDURE FOR
STRATIFIED THEORIES

The next theorem gives an iterative algorithm for com-
puting the Σ-full set of an arbitrary stratified set Σ. Be-
cause of the results of Marek and Truszczyński and on
the other hand of Niemelä, the Σ-full set characterizes
the unique stable expansion of Σ.

Theorem 4.1. Let Σ = Σn1 be a stratified set. Then
Λ = Λn defined by
Λ0 = ∅
Λi+1 = Λi∪
{Lχ|Lχ ∈ SfL(Σi+1)− SfL(Σi1),Σi1 ∪ Λi |=L χ}∪
{¬Lχ|Lχ ∈ SfL(Σi+1)− SfL(Σi1),Σi1 ∪ Λi 6|=L χ}

(0 ≤ i < n) is Σ-full and SEΣ(Λ) is the unique stable
expansion of Σ.

For proving Theorem 4.1 the following lemma is es-
sential.

Lemma 4.2. Let Σ = Σn1 be stratified and Λi as in
Theorem 4.1. Then for all i, 0 ≤ i < n and for all
Lχ ∈ SfL(Σi+1), Σi1 ∪ Λi |=L χ iff Σj1 ∪ Λj |=x χ where
|=x is |= or |=L, i < j ≤ n.

Proof. By induction on i. When i = 0,Σ0
1 = ∅ and

Λ0 = ∅. Otherwise as in the inductive case.
(i ≥ 0) We prove Σi1 ∪ Λi |=L χ iff Σj1 ∪ Λj |=x χ

by induction on the L-depth s of χ. The L-depth of
a formula is the maximum nesting level of L operators
in it. The proof for the base case s = 0 is included in
the proof of the inductive case as the only difference is
that when s = 0 the sets SBΣk

1∪Λk
(χ) for k ∈ {i, j} are

empty.
We have to show that for all Lχ ∈ SfL(Σi+1), Σi1 ∪

Λi ∪ SBΣi
1∪Λi

(χ) |= χ iff Σj1 ∪ Λj |=x χ, i < j ≤ n.

First note that A. SBΣi
1∪Λi

(χ) = SBΣj
1∪Λj

(χ) by the
induction hypothesis on s and the definition of SBΣ(χ).
B. SBΣi

1∪Λi
(χ) ⊆ Λi+1 (and furthermore SBΣi

1∪Λi
(χ) ⊆

Λh for h > i) because for each Lφ ∈ SBΣi
1∪Λi

(χ) there
is k ≤ i such that Lφ ∈ (SfL(Σk+1) − SfL(Σk1)) and
by the induction hypothesis on i, Σk1 ∪Λk |=L φ, and by
the equations of Theorem 4.1 Lφ ∈ Λk+1. Similarly for
¬Lφ ∈ SBΣi

1∪Λi
(χ). By A and the monotonicity of |=

we get the implication ⇒ for |=L, and by monotonicity
and B for |=.

(⇐) We show that Σi1∪Λi 6|=L χ implies Σj1∪Λj 6|=x χ.
LetM be a model such thatM |= Σi1∪Λi∪SBΣi

1∪Λi
(χ)

and M 6|= χ. Let M′ be a model constructed by modi-
fyingM to satisfy Σji+1∪(Λj−Λi). This modification is
possible without falsifying Σi1 because the set of propo-
sitional variables in {c(φ)|φ ∈ Σji+1} is both disjoint
from the propositional variables in Σi1 ∪ {χ} and satisfi-
able according to the definition of stratification. Hence,
Σj1 ∪Λj 6|= χ. Although SBΣi

1∪Λi
(χ) is not disjoint from

Λj , it is contained in it because of B above. Then by A
SBΣj

1∪Λj
(χ) ⊆ Λj and therefore Σj1 ∪ Λj 6|=L χ.

Proof of Theorem 4.1: Λ is Σ-full because it satisfies the
conditions of Definition 2.2. Condition 1 is immediate,
and Condition 3 is true if Condition 2 is, since by con-
struction for all Lχ ∈ SfL(Σ) exactly one of Lχ or ¬Lχ
is in Λ. Condition 2 holds because Lχ ∈ Λ iff there
is i < n for which Lχ ∈ (SfL(Σi+1) − SfL(Σi1)) and
Σi1 ∪ Λi |=L χ and by Lemma 4.2 Σn1 ∪ Λ |= χ. By The-
orem 5.1 of (Marek & Truszczyński 1991) and Theorem
2.4 SEΣ(Λ) is the unique stable expansion of Σ. �

The following two lemmata are needed for Theorem
4.5 which shows how the unique stable expansion of a
stratified set Σ can be computed more efficiently without
explicitly constructing the Σ-full set Λ.

Lemma 4.3. Let Σ be a set of formulae of the form
Lχ1∧· · ·∧Lχn∧¬Lχn+1∧· · ·∧¬Lχn+m∧ψ → ψ′ where
ψ,ψ′ ∈ L, and let Λ be a set of formulae of the form
Lφ,¬Lφ that contains exactly one of Lχ, ¬Lχ for each
Lχ ∈ SfL(Σ). Define Red(Σ,Λ) = {ψ → ψ′|(φ ∧ ψ →
ψ′) ∈ Σ and the conjuncts of φ are in Λ}. Assume that
for all Lφ,¬Lφ′ ∈ Λ, Σ ∪ Λ |=L φ and Σ ∪ Λ 6|=L φ′.
Then for all χ ∈ Lae,

Red(Σ,Λ) |=L χ iff Σ ∪ Λ |=L χ.

Proof. Taking into account the equivalence φ ∧ ψ →
ψ′ ≡ φ → (ψ → ψ′) we actually prove
the lemma for Red(Σ,Λ) = {ψ|(φ → ψ) ∈
Σ and the conjuncts of φ are in Λ}, where ψ is written
instead of ψ → ψ′. The proof is by induction on the

L-depth s of χ. The base case s = 0 is included in
the inductive case s ≥ 1 as the only difference is that
SBRed(Σ,Λ)(χ) = SBΣ∪Λ(χ) = ∅ when s = 0.

(⇒) Suppose Σ ∪ Λ 6|=L χ, i.e. there exists a model
M such that M |= Σ ∪ Λ ∪ SBΣ∪Λ(χ) and M 6|= χ.
By the definition of SB and the induction hypothesis
SBRed(Σ,Λ)(χ) = SBΣ∪Λ(χ). Let (φ → ψ) ∈ Σ. If ψ ∈
Red(Σ,Λ), then the conjuncts of φ are in Λ andM |= φ.
Now M |= ψ because M |= φ → ψ. This shows that
M |= Red(Σ,Λ) ∪ SBRed(Σ,Λ)(χ) and Red(Σ,Λ) 6|=L χ.

(⇐) Suppose Red(Σ,Λ) 6|=L χ, i.e. there exists a
model M such that M |= Red(Σ,Λ) ∪ SBRed(Σ,Λ)(χ)
and M 6|= χ. By the definition of SB and the in-
duction hypothesis SBRed(Σ,Λ)(χ) = SBΣ∪Λ(χ), and
M |= SBΣ∪Λ(χ). Let M′ be M modified to sat-
isfy Λ. This modification is possible without affect-
ing the truth values of Red(Σ,Λ), SBRed(Σ,Λ)(χ), and
χ because Red(Σ,Λ) ⊆ L, for Lφ ∈ (SfqL(Λ) ∩
SfqL(SBRed(Σ,Λ)(χ))), Lφ ∈ Λ iff Lφ ∈ SBRed(Σ,Λ)(χ)
by the definition of SB and our assumption (similarly
with ¬Lφ), and because the truth value of no proposi-
tional variable in χ changes and the Lφ subformulae of
χ stay unchanged because the sub-beliefs of χ also do.

We still have to show thatM′ |= Σ. For (φ→ ψ) ∈ Σ
if all conjuncts of φ are in Λ then ψ ∈ Red(Σ,Λ) and
therefore M |= ψ, and further, M′ |= φ → ψ. If at
least one conjunct of φ is not in Λ then φ is false in M′
(because then the complement of the conjunct is in Λ)
and again M′ |= φ→ ψ. Therefore Σ ∪ Λ 6|=L χ.

Lemma 4.4. Let φ be of the form Lφ1 ∧ · · · ∧ Lφn ∧
¬Lψ1∧· · ·∧¬Lψm and Σ ⊆ L. Then Σ |=L φ iff Σ |=L φi
for all i, 1 ≤ i ≤ n and Σ 6|=L ψj for all j, 1 ≤ j ≤ m.

Proof. (⇒) Suppose that for some i, Σ 6|=L φi,
or for some j, Σ |=L ψj . Then one of Lφi or
¬Lψj is not in SBΣ(φ) and Σ 6|=L φ. (⇐) Sup-
pose that the antecedent is true. Then SBΣ(φ) =
{Lφ1, . . . , Lφn,¬Lψ1, . . . ,¬Lψm}, and therefore Σ ∪
SBΣ(φ) |= φ and Σ |=L φ.

Let Λ be the Σ-full set corresponding to the unique
stable expansion SEΣ(Λ) of a stratified set Σ. The fol-
lowing theorem gives an algorithm for computing di-
rectly the set Red(Σ,Λ) ⊆ L which characterizes the
stable expansion SEΣ(Λ).
Theorem 4.5. Let Σ = Σn1 be a stratified set. Let R =
Rn be defined by

R0 = ∅
Ri+1 = Ri ∪ RedL(Σi+1, Ri), 0 ≤ i < n

where RedL(Σ,∆) = {o(φ)→ c(φ) | φ ∈ Σ,∆ |=L a(φ)}.
Then R = Red(Σ,Λ), where Λ is the unique Σ-full set,
and {φ | R |=L φ} is the unique stable expansion of Σ.

Proof. We show by induction on i that for all i =
0, . . . , n,

Ri = Red(Σi1,Λi). (2)
For i = 0, Ri = Red(Σi1,Λi) = ∅. (⊆) By

the induction hypothesis Ri−1 = Red(Σi−1
1 ,Λi−1) and

therefore Ri−1 ⊆ Red(Σi1,Λi). Let o(φ) → c(φ) ∈
RedL(Σi, Ri−1). Thus Ri−1 |=L a(φ). By the induc-
tion hypothesis Red(Σi−1

1 ,Λi−1) |=L a(φ). The formula
a(φ) is of the form Lφ1∧· · ·∧Lφr∧¬Lψ1∧· · ·∧¬Lψs and
by Lemma 4.4 for each Lφj , Red(Σi−1

1 ,Λi−1) |=L φj and
for each ¬Lψj , Red(Σi−1

1 ,Λi−1) 6|=L ψj . By Lemma 4.3
Σi−1

1 ∪ Λi−1 |=L φj and Σi−1
1 ∪ Λi−1 6|=L ψj . For each

Lφj there is some k ≤ i such that Lφj ∈ SfL(Σk) −
SfL(Σk−1

1). By Lemma 4.2 Σk−1
1 ∪ Λk−1 |=L φj and

thus Lφj ∈ Λk ⊆ Λi. Similarly it can be shown that
¬Lψj ∈ Λi. Thus o(φ) → c(φ) ∈ Red(Σi1,Λi) and
Ri ⊆ Red(Σi1,Λi).

(⊇) Let o(φ) → c(φ) ∈ Red(Σi1,Λi). If φ ∈ Σi−1
1 ,

then o(φ) → c(φ) ∈ Red(Σi−1
1 ,Λi) = Red(Σi−1

1 ,Λi−1).
Therefore by the induction hypothesis o(φ) → c(φ) ∈
Ri−1. Let φ ∈ Σi. The conjuncts in a(φ) are in Λi where
a(φ) is of the form Lφ1∧· · ·∧Lφr∧¬Lψ1∧· · ·∧¬Lψs. By
Lemma 4.2 Σi−1

1 ∪ Λi−1 |=L φj and Σi−1
1 ∪ Λi−1 6|=L ψj

for each Lφj ,¬Lψj . By Lemma 4.3 Red(Σi−1
1 ,Λi−1) |=L

φj and Red(Σi−1
1 ,Λi−1) 6|=L ψj and by the induc-

tion hypothesis Ri−1 |=L a(φ). Thus o(φ) → c(φ) ∈
RedL(Σi, Ri−1) ⊆ Ri. Hence Red(Σi1,Λi) ⊆ Ri.

We have shown that Rn = Red(Σn1 ,Λn). Thus Rn |=L

φ iff Red(Σn1 ,Λn) |=L φ iff Σn1 ∪Λn |=L φ by Lemma 4.3.
Thus by Theorem 4.1 {φ | Rn |=L φ} is the unique stable
expansion of Σ.

Example 5. The table below demonstrates the compu-
tation of Λ by the algorithm in Theorem 4.1, and the
computation of R = Red(Σ,Λ) with Theorem 4.5.

i Σi Λ R
2 L(p↔ q)→ s L(p↔ q) s
1 L¬Lr ∧ p→ q ¬Lr, L¬Lr p→ q

q → p q → p

5 COMPLEXITY RESULTS
We write |φ| for the length of a formula φ, |Σ| for the
sum of lengths of the formulae in a set Σ, and ‖Σ‖ for
the cardinality of a set Σ.

As a basis of analyzing the complexity of computing
the stable expansions of stratified sets we use the algo-
rithm in Theorem 4.5 for computing a set R ⊆ L that
characterizes the unique stable expansion of a stratified
set. By the next lemma the explicit construction of the
sets SBΣ(χ) can be avoided in the |=L tests of the algo-
rithm. As a result all consequence tests are for sets of
formulae in which no L operators appear.

Lemma 5.1. Let Σ ⊆ L and χ(Lφ) be a formula in
which the formula Lφ possibly occurs and χ(>) the same
formula where all occurrences of Lφ have been replaced
by the constant true >. Now Σ ∪ {Lφ} |= χ(Lφ) iff
Σ |= χ(>), and Σ ∪ {¬Lφ} |= χ(Lφ) iff Σ |= χ(⊥),
where ⊥ = ¬>.

Proof. (⇐) Suppose Σ ∪ {Lφ} 6|= χ(Lφ), i.e. there is a
model M such that M |= Σ ∪ {Lφ} and M 6|= χ(Lφ).
Clearly M 6|= χ(>). (⇒) Suppose Σ 6|= χ(>), i.e.
M |= Σ and M 6|= χ(>). Since the truth value of Lφ is
independent both of other formulae of the form Lψ and
of propositional variables, > can be replaced by Lφ in
χ and therefore Σ ∪ {Lφ} 6|= χ(Lφ). Similarly for ¬Lφ
and ⊥.

Lemma 5.2. F (χ,Σ) in Equation 3 gives the amount
of resources needed for testing the |=L consequence of
an arbitrary formula χ from a set of formulae Σ ⊆ L.
R(x) is the amount of resources needed for performing a
consequence test of size x.

F (χ,Σ) = R(|χ|+ |Σ| −
∑

Lφ∈SfqL(χ)

|φ|) +

∑
Lφ∈SfqL(χ)

F (φ,Σ) (3)

and the equation with recursion removed is

F (χ,Σ) = R(|χ|+ |Σ| −
∑

Lφ∈SfqL(χ)

|φ|) +

∑
Lφ∈SfL(χ)

R(|φ|+ |Σ| −
∑

Lψ∈SfqL(φ)

|ψ|) (4)

Proof. The second summand of the rhs of Equation
3 corresponds to the computation of the members of
SBΣ(χ) using |=L. The first summand corresponds to
the consequence test Σ |=L χ, i.e. the test of satisfia-
bility of {¬χ} ∪ Σ ∪ SBΣ(χ). By Lemma 5.1 the con-
sequence test can be made by replacing Lφ in χ by >
for all Lφ ∈ SBΣ(χ), and by ⊥ for all ¬Lφ ∈ SBΣ(χ),
thus obtaining χ′ ∈ L and then testing the consequence
Σ |= χ′. This is why

∑
Lφ∈SfqL(χ) |φ| is subtracted.

Next we give an upper bound for the amount of re-
sources needed for consequence tests in the computation
of the algorithm in Theorem 4.5. Let Σ = Σn1 be a strat-
ified set and let there be an enumeration of the formulae
φi ∈ Σ, 1 ≤ i ≤ r such that if the stratum of φi is
lower than that of φj then i < j. Let ni = |a(φi)| and
mi = |o(φi)→ c(φi)|. Ignoring the exact boundaries be-
tween the strata is an acceptable approximation since we
are primarily interested in analyzing the upper bounds

of complexity. The size of a stratified set is the sum of
the sizes of its formulae:

r∑
i=1

(ni +mi + 1) (5)

and an upper bound for the resources needed for the
consequence tests is

r∑
i=1

F (a(φi),
i−1⋃
j=1

{o(φj)→ c(φj)}) (6)

Tractable classes of stratified sets of autoepistemic for-
mulae can be found by restricting the syntactic form
of the formulae in such a way that the classical theo-
rem proving task becomes tractable. As an example we
present a tractable class SHCae based on Horn clauses,
i.e. disjunctions of literals of which at most one is pos-
itive. For the members of this class the |= consequence
can be tested by using the linear time algorithm of Dowl-
ing and Gallier (1984) and for SHCae the algorithm of
the previous section runs in polynomial time.

Definition 5.3. A formula χ is in the class HFae if it is
a disjunction of conjunctions of formulae of the form p,
¬p, Lφ, and ¬Lφ with at most one ¬p in each disjunct,
where each p is a propositional variable and each φ is in
HFae.

Definition 5.4. SHCae is the class of finite stratified
sets of formulae φ of the form a(φ)∧ o(φ)→ c(φ) where
a(φ) is a conjunction of zero or more formulae of the
form Lχ or ¬Lχ where χ is in HFae, o(φ) is a conjunc-
tion of zero or more propositional variables, and c(φ) is
a propositional variable or a negated propositional vari-
able.

The following are examples of the syntactic form of
the formulae in sets in SHCae.

a ∧ b→ c

¬L(LLp ∨ q ∨ ¬r ∨ (t ∧ ¬u) ∨ (x ∧ y))→ ¬a

Theorem 5.5. For a set Σ in SHCae the set Red(Σ,Λ),
where Λ is the unique Σ-full set, can be computed in time
O(n2) where n = |Σ|.

Proof. By Proposition 3.5 a stratification can be deter-
mined in O(|Σ|) time, and the rest of the computation
of the algorithm in Theorem 4.5 is clearly dominated by
the consequence tests. All consequence tests reduce to
satisfiability tests for formulae that are in conjunctive
normal form with at most one positive literal in each
conjunct, so that the linear time satisfiability algorithm
of (Dowling & Gallier 1984) can be used. For logical
consequence tests in the computation of the algorithm

in Theorem 4.5, instantiate R(x) = ax+ c to the second
equation of Lemma 5.2:

F (χ,Σ) = a(|χ|+ |Σ| −
∑

Lφ∈SfqL(χ)

|φ|) +

c+
∑

Lφ∈SfL(χ)

(a(|φ|+ |Σ| −
∑

Lψ∈SfqL(φ)

|ψ|) + c)

By reordering the terms:

F (χ,Σ) = a(|χ|+ |Σ|+
∑

Lφ∈SfL(χ)

|Σ|) +

(c+
∑

Lφ∈SfL(χ)

c) + a(−
∑

Lφ∈SfqL(χ)

|φ|+
∑

Lφ∈SfL(χ)

|φ|

−
∑

Lφ∈SfL(χ)

∑
Lψ∈SfqL(φ)

|ψ|)

The value of the third summand is zero since the length
of each Lφ ∈ SfL(χ) is added and subtracted exactly
once. From this we get the upper bound

a(|χ|+ |Σ|+ ‖SfL(χ)‖ · |Σ|) + c(1 + ‖SfL(χ)‖)
≤ a(|χ|+ |Σ| · (1 + ‖SfL(χ)‖)) + c · |χ|)
≤ a(|χ|+ |Σ| · |χ|) + c · |χ|
< (a+ c)(|χ|+ |Σ| · |χ|)

for F (χ,Σ). Using this and Equation 6 (by the definition
of O the constant factor a + c appearing in each term
can be left out).

r∑
i=1

(ni + ni

i−1∑
j=1

mi) ≤ (
r∑
i=1

ni) + (
r∑
i=1

ni)(
r∑
i=1

mi)

≤ (
r∑
i=1

ni)2 + 2(
r∑
i=1

ni)(
r∑
i=1

mi) + (
r∑
i=1

mi)2

< (
r∑
i=1

ni +mi + 1)2

Thus, we obtain the O(n2) upper bound for the logical
consequence tests.

Theorem 5.6. Given Red(Σ,Λ) where Σ ∈ SHCae and
Λ is a Σ-full set, the membership in the unique stable
expansion of Σ {φ|Red(Σ,Λ) |=L φ} for formulae φ in
HFae can be decided in time O(n2), where n = |Σ|+|¬φ|.

Proof. By the second equation of Lemma 5.2 the amount
of resources needed is bounded by |Σ| · |¬φ| + |¬φ| as
shown in the proof of Theorem 5.5, and this is O(n2).

Theorem 5.7. Let Σ be in SHCae. The membership
problem of the unique stable expansion of Σ for formulae
φ in HFae is solvable in time O(n2) where n = |Σ|+|¬φ|.

The line taken in establishing the above result sug-
gests further tractable classes based on other subsets of
propositional logic for which polynomial time satisfiabil-
ity tests are available, like those presented in (Schaefer
1978; Gallo & Scutellà 1988). Next we investigate an
even more restricted class for which the logical conse-
quence testing does not have to be done separately for
each formula inside L.
Definition 5.8. A formula χ is in CFae if it is a con-
junction of one or more formulae of the form p, Lφ, and
¬Lφ where each p is a propositional variable and each φ
is in CFae.
Definition 5.9. SPCae is the class of finite stratified
sets of formulae φ of the form a(φ)∧ o(φ)→ c(φ) where
a(φ) is a conjunction of zero or more formulae of the
form Lχ or ¬Lχ and each χ is in CFae, o(φ) is a con-
junction of zero or more propositional variables, and
c(φ) is a propositional variable.

The following formulae illustrate the form of formulae
in sets in SPCae:

¬L(a ∧ b ∧ c ∧ ¬Ld)→ e

L(p ∧ Lq ∧ ¬Lr) ∧ ¬L(¬Ls) ∧ t→ u

In (Dowling & Gallier 1984) two linear time algo-
rithms are given for testing the satisfiability of a set of
Horn clauses. We modify the first one of these to be used
in linear time tests for the membership in the unique sta-
ble expansions of sets in SPCae. By Theorem 4.5 explicit
construction of the sets Λi can be avoided and instead
of separately testing the logical consequence of each for-
mula inside L in a(φ) the whole set of consequences for
one stratum of a stratification can be computed by one
run of the algorithm.

The function DG is the basis of the efficient algorithm
for SPCae and can be implemented as a variant of Algo-
rithm 2 of (Dowling & Gallier 1984). Dowling and Gal-
lier’s algorithm works with arbitrary Horn clauses, but
ours is restricted to program clauses, i.e. disjunctions
of literals exactly one of which is positive. Sometimes
program clauses are written as a1 ∧ · · · ∧ an → b instead
of ¬a1 ∨ · · · ∨ ¬an ∨ b.

In our algorithm sets of propositional variables are
represented by their characteristic functions or equiva-
lently arrays. For array indexing the Assumption 3.4 is
essential.
Proposition 5.10. Let Σ be a set of program clauses
and v a set of propositional variables. Then

DG(Σ, v) = {p|p is a propositional variable, Σ ∪ v |= p}
can be computed in time O(|Σ|).

Proof. The computation of DG for a set of program
clauses Σ and a set of propositional variables v uses the
following arrays:

poslitlist Each element n is initialized to the proposi-
tional variable appearing in the positive literal of the
clause φn ∈ Σ. The initialization can be done by one
traversal of the set of formulae, which is linear time.

clauselist The element n is the list of clauses of Σ in
which the variable in the positive literal of φn appears
in a negative literal. Initialization can be done in lin-
ear time.

numargs The element n is initialized to the number
of variables p in the negative literals of φn for which
v(p) = 0.

The function is computed by the following procedure.
function DG(Σ, v:array of {0, 1}) : array of {0, 1};

begin
initialize poslitlist, clauselist, numargs;
initialize queue to the list of clauses n
for which numargs[n] = 0;
for each c in queue do v(poslitlist[c]) := 1;
while queue 6= empty do
clause1 := pop(queue);
for each clause2 in clauselist[clause1] do
numargs[clause2] := numargs[clause2] - 1;
if numargs[clause2] = 0 then
n := poslitlist[clause2];
if v(n) = 0 then
v(n) := 1;
queue := push(clause2,queue);

end if
end if

end for
end while
return v;

end
Under Assumption 3.4 the computation is linear time

on the size of Σ. The amount of computation inside
the while loop is proportional to the number of negative
literals in Σ.

Computing RedL(Σ, v) = {φ → φ′|(Lχi ∧ · · · ∧
Lχn ∧ ¬Lχn+1 ∧ · · · ∧ ¬Lχn+m ∧ φ → φ′) ∈ Σ, v |=L

χ1, . . . , v |=L χn, v 6|=L χn+1, . . . , v 6|=L χn+m} can be
done in linear time on |Σ| for members of SPCae. The
consequence tests v |=L χ, χ in CFae can be done in
linear time on |χ| by using the following algorithm.
v |=L χ iff

for each conjunct φ of χ

{ if φ is atomic then φ ∈ v
if φ = Lψ then v |=L ψ
if φ = ¬Lψ then v 6|=L ψ

The following two lemmata are needed for establishing
Lemma 5.13 which describes how to compute in O(|Σ|)
time the set of propositional variables in the unique sta-
ble expansion of a set Σ in SPCae.

Lemma 5.11. Let χ be in CFae, Σ ⊆ L, and v =
{p|p is a propositional variable,Σ |= p}. Then v |=L χ
iff Σ |=L χ.

Proof. By induction on the L-depth s of χ. Let s = 0.
Suppose Σ 6|=L χ, i.e. there is a model M for which
M |= Σ and M 6|= χ. Because v is the set of proposi-
tional variables true in every model of Σ, also M |= v,
and v 6|=L χ. Suppose Σ |=L χ. Because χ is a conjunc-
tion of propositional variables each of which is a logical
consequence of Σ, obviously v |=L χ. Let s ≥ 1. By the
induction hypothesis SBv(χ) = SBΣ(χ), and replacing
members of SBv(χ) (and SBΣ(χ)) according to Lemma
5.1 by > or ⊥, χ can be reduced to χ′ of L-depth 0 for
which v |= χ′ iff Σ |= χ′, which can be shown as in the
case s = 0.

Lemma 5.12. Let Σ be a set of program clauses and
Γ = {p|p is a propositional variable,Σ |= p}. Let ∆ be a
set of program clauses such that the propositional vari-
ables in the positive literals of ∆ do not occur in the
negative literals of Σ. Then for all propositional vari-
ables p, Σ ∪∆ |= p iff Γ ∪∆ |= p.

Proof. Suppose Σ ∪ ∆ 6|= p, i.e. for some model M,
M |= Σ ∪ ∆ and M 6|= p. Clearly M |= Γ ∪ ∆ and
therefore Γ ∪ ∆ 6|= p. Suppose Γ ∪ ∆ 6|= p, i.e. there is
a model M, M |= Γ ∪ ∆, M 6|= p. M′ is M modified
to satisfy Σ ∪ ∆ in the following way. Formulae φ =
¬a1∨· · ·∨¬an∨b, φ ∈ Σ can be false ifM |= a1∧· · ·∧an
and M 6|= b. Now M′ can be modified to make φ true
by making one of ai, 1 ≤ i ≤ n false. This can be done
without falsifying formulae in Γ ∪ ∆ because i) not all
ai, 1 ≤ i ≤ n can be logical consequences of Σ. If they
were, then b ∈ Γ. And ii) as propositional variables in
the positive literals of ∆ do not occur in the negative
literals of Σ, this modification falsifies no formula in ∆.
Therefore M′ |= Σ ∪∆ and Σ ∪∆ 6|= p.

Lemma 5.13. For Σ = Σn1 in SPCae and formulae χ
in CFae, vn |=L χ iff χ belongs to the unique stable
expansion of Σ, where vn is defined by

v0 = ∅
vi+1 = DG(RedL(Σi+1, vi), vi), 0 ≤ i < n.

Furthermore, vn, which is the set of propositional vari-
ables in the unique stable expansion of Σ, can be com-
puted in time O(|Σ|).

Proof. We prove vi |=L χ iff Red(Σi1,Λi) |=L χ, where
Λi as in Theorem 4.1, by induction on i. Let i = 0.
Immediate as v0 = Red(Σ0

1,Λ0) = ∅. Let i > 0. For all

propositional variables p,

vi |= p iff vi−1 ∪ RedL(Σi, vi−1) |= p

iff Red(Σi−1
1 ,Λi−1) ∪ RedL(Σi, vi−1) |= p

iff Red(Σi−1
1 ,Λi−1) ∪ Red(Σi,Λi) |= p

iff Red(Σi1,Λi) |= p.

The first equivalence is by the definition of vi, the
second and the third by A and B below, respec-
tively. A. By the induction hypothesis vi−1 |= p
iff Red(Σi−1

1 ,Λi−1) |= p. We get the equivalence by
Lemma 5.12 taking ∆ = RedL(Σi, vi−1),Γ = vi−1,Σ =
Red(Σi−1

1 ,Λi). B. By the definitions of Red and RedL
a formula φ is in RedL(Σi, vi−1) if (ψ → φ) ∈ Σi
and for the conjuncts Lχ,¬Lχ′ of ψ, vi−1 |=L χ and
vi−1 6|=L χ′, and in Red(Σi,Λi) if Lχ,¬Lχ′ ∈ Λi.
By Lemmata 4.2 and 4.3 Red(Σi−1

1 ,Λi−1) |=L χ and
Red(Σi−1

1 ,Λi−1) 6|=L χ′. By the induction hypothe-
sis vi−1 |=L χ iff Red(Σi−1

1 ,Λi−1) |=L χ. Therefore
RedL(Σi, vi−1) = Red(Σi,Λi).

By Lemma 5.11 we get the induction step, i.e. for all
χ in CFae, vi |= χ iff Red(Σi1,Λi) |= χ.

By Theorem 2.4 and Lemma 4.3 χ ∈ CFae is in the
unique stable expansion of Σ iff vi |=L χ.

By Proposition 3.5 stratification can be computed in
linear time, and using Assumption 3.4 the computa-
tion is O(|Σ|) time because computing RedL(Σi, vi−1)
is linear in |Σi| and this is done exactly once for each
Σi ⊆ Σ, 1 ≤ i ≤ n. The size of RedL(Σi, vi−1) is smaller
than or equal to that of Σi and therefore the respective
computation with DG is linear in |Σi|.

Theorem 5.14. Let Σ be in SPCae and χ in CFae. The
membership of χ in the unique stable expansion of Σ can
be decided in time O(n), where n = |Σ|+ |χ|.

Proof. By Lemma 5.13 the computation of the set vn
for Σ = Σn1 is O(|Σ|). The membership in the unique
stable expansion can be tested by vn |=L χ, and this is
O(|χ|).

6 APPLICATIONS
Autoepistemic logic is closely related to McDermott
and Doyle style nonmonotonic modal logics. Marek et
al. (1991) show that for a wide range of modal logics
S, S-expansions coincide with stable expansions in the
stratified case. Thus all the methods and results ob-
tained for stratified autoepistemic logic are directly ap-
plicable to these logics.
Theorem 6.1 (Marek et al. (1991)). Let Σ ⊆ Lae be
stratified. Then for each logic S such that N ⊆ S and
S ⊆ KD45 or S ⊆ S4 the unique stable expansion of Σ
is the unique S-expansion of Σ.

Reiter’s (1980) default logic is one of the leading for-
malizations of nonmonotonic reasoning. Konolige (1988)
shows that under a suitable translation of a default the-
ory extensions of the theory correspond to stable ex-
pansions of the translated theory satisfying a special
groundedness condition. In the case of stratified default
theories the special groundedness condition is not re-
quired. So the iterative algorithm in Theorem 4.5 yields
efficient methods for computing extensions of stratified
default theories based on subsets of propositional logic
for which efficient satisfiability tests are available. As
a straightforward example of this we show that the lin-
ear time algorithm in Lemma 5.13 implies a linear time
algorithm for a similar class of stratified default logic.

We call (D,W) a stratified Horn default theory if
1. W is a finite set of propositional program clauses and

2. D is a finite set of default rules α:β1,...,βn

γ where the
prerequisite α is a conjunction of propositional vari-
ables and each justification βi is a disjunction of
negated propositional variables and the conclusion
γ is a propositional variable and there is a parti-
tion D1, . . . , Dn of D such that if γ is a conclusion
of a default rule in Di, then γ does not appear in
D1 ∪ . . . ∪Di−1, in negative literals in W nor in any
prerequisite or justification in Di.

Lemma 6.2. Let (D,W) be a stratified Horn default
theory. Then E = ∆ ∩ L is the unique extension of
(D,W) where ∆ is the unique stable expansion of the
stratified autoepistemic theory

W ∪ {Lα ∧ ¬L¬β1 ∧ . . . ∧ ¬L¬βn → γ |
α : β1, . . . , βn

γ
∈ D}. (7)

Theorem 6.3. Let (D,W) be a stratified Horn default
theory. Then the atomic part of the unique extension of
(D,W) can be computed in linear time.

Stable model semantics (Gelfond & Lifschitz 1988)
and well-founded semantics (Van Gelder, Ross, & Schlipf
1991) are the leading declarative semantics for general
logic programs. For stratified propositional logic pro-
grams the stable model semantics and the well-founded
semantics coincide. Logic programs can be seen as sets
of autoepistemic formulae, e.g. using the following trans-
lation proposed by Gelfond and Lifschitz (1988).

trLP (a0 ← a1, . . . , am,not am+1, . . . ,not an) =
(a1 ∧ . . . ∧ am ∧ ¬Lam+1 ∧ . . . ∧ ¬Lan)→ a0 (8)

When using this translation stable models and stable
expansions are closely related in the stratified case.
The correspondence is described in the following lemma
which a direct consequence of the results of Gelfond and
Lifschitz (1988).

Lemma 6.4. Let P be a propositional stratified general
logic program. S = ∆ ∩ At is the unique stable model
(well-founded model) of P where ∆ is the unique stable
expansion of trLP (P) and At is the set of propositional
variables.

Deciding whether a propositional logic program has a
stable model is NP-complete in the general case (Marek
& Truszczyński 1991). Kautz and Selman (1991) pro-
pose a cubic algorithm for computing the stable model of
a stratified logic program using a translation to default
logic. This result can be improved using the algorithm
in Lemma 5.13.

Theorem 6.5. Let P be a stratified general propositional
logic program. The unique stable model (well-founded
model) of P can be computed in linear time.

Elkan (1990) shows that the justifications in a non-
monotonic truth maintenance system (TMS) can be seen
as a propositional general logic program and that the
grounded model computed by the TMS is a stable model
of the corresponding logic program.

Corollary 6.6. Let J be a stratified set of justifications.
Then the unique grounded model of J can be computed
in linear time.

7 CONCLUSIONS

The attempts to find subclasses of nonmonotonic reason-
ing which can be implemented efficiently by limiting the
computational complexity of required classical reason-
ing have produced very disappointing results (Kautz &
Selman 1991; Elkan 1990; Marek & Truszczyński 1991).
In this paper we follow a different approach. We iden-
tify the ability to “define” propositions using default as-
sumptions about the same propositions as a source of
additional computational complexity in nonmonotonic
reasoning. Disallowing such constructs, i.e. requiring
the knowledge base to be stratified, gives a significant
computational advantage. We demonstrate this by de-
veloping an iterative (non-backtracking) algorithm for
stratified autoepistemic theories the complexity of which
is dominated by required classical reasoning. Thus ef-
ficient subclasses of stratified nonmonotonic reasoning
can be obtained by restricting the form of sentences
in the knowledge base. As an example, we develop a
quadratic and a linear time algorithm for limited sub-
classes of stratified autoepistemic theories. The results
are shown to imply fast reasoning methods for stratified
cases of default logic, logic programs, truth maintenance
systems and nonmonotonic modal logics. E.g., decid-
ing whether a propositional logic program has a stable
model is an NP-complete problem in the general case
but for the stratified case we give a linear time algo-
rithm which computes the unique stable model.

Acknowledgements Ilkka Niemelä gratefully ac-
knowledges the support from the following foundations:
Foundation of Technology, Jenny and Antti Wihuri
Foundation, Emil Aaltonen Foundation, Alfred Kor-
delin Foundation, as well as Heikki and Hilma Honkanen
Foundation.

References

Aho, A. V.; Hopcroft, J. E.; and Ullman, J. D.
1974. The design and analysis of computer algorithms.
Addison-Wesley.
Apt, K. R.; Blair, H. A.; and Walker, A. 1988. To-
wards a theory of declarative knowledge. In Minker, J.,
ed., Foundations of Deductive Databases and Logic Pro-
gramming. Los Altos, California: Morgan Kaufmann
Publishers. 89–148.
Chandra, A. K., and Harel, D. 1985. Horn clause
queries and generalizations. Journal of Logic Program-
ming 2(1):1–15.
Dowling, W. F., and Gallier, J. H. 1984. Linear-
time algorithms for testing the satisfiability of propo-
sitional Horn formulae. Journal of Logic Programming
1(3):267–284.
Elkan, C. 1990. A rational reconstruction of nonmono-
tonic truth maintenance systems. Artificial Intelligence
43:219–234.
Gallo, G., and Scutellà, M. G. 1988. Polynomially
solvable satisfiability problems. Information Processing
Letters 29:221–226.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Proceedings of the
5th International Conference on Logic Programming,
1070–1080. Seattle: The MIT Press.
Gelfond, M. 1988. Autoepistemic logic and formaliza-
tion of commonsense reasoning, preliminary report. In
Proceedings of the 2nd Workshop on Non-Monotonic
Reasoning, number 346 in Lecture Notes in Artificial
Intelligence, 176–186. Grassau, Germany: Springer-
Verlag.
Gottlob, G. 1991. Complexity results for nonmono-
tonic logics. Technical Report CD-TR 91/24, Chris-
tian Doppler Laboratory for Expert Systems, Institut
für Informationssysteme, Technische Universität Wien,
Vienna.
Kautz, H., and Selman, B. 1991. Hard problems for
simple default theories. Artificial Intelligence 49(1-
3):243–279.
Kolaitis, P. 1991. The expressive power of stratified
programs. Information and Computation 90(1):50–66.
Konolige, K. 1988. On the relation between default and
autoepistemic logic. Artificial Intelligence 35:343–382.

Lassez, C.; McAloon, K.; and Port, G. 1987. Stratifica-
tion and knowledge base management. In Proceedings
of the 4th International Conference on Logic Program-
ming, volume 1, 136–151.
Marek, W., and Truszczyński, M. 1991. Autoepistemic
logic. Journal of the ACM 38:588–619.
Marek, W.; Shvarts, G. F.; and Truszczyński, M. 1991.
Modal nonmonotonic logics: Ranges, characterization,
computation. In Allen, J.; Fikes, R.; and Sandewall, E.,
eds., Principles of Knowledge Representation and Rea-
soning: Proceedings of the Second International Con-
ference (KR ’91), 395–404. Cambridge, Massachusetts:
Morgan Kaufmann Publishers.
Moore, R. C. 1985. Semantical considerations on non-
monotonic logic. Artificial Intelligence 25(1):75–94.
Niemelä, I. 1990. Towards automatic autoepistemic
reasoning. In Van Eijck, J., ed., Proceedings of the Eu-
ropean Workshop on Logics in Artificial Intelligence—
JELIA’90, number 478 in Lecture Notes in Artificial
Intelligence, 428–443. Amsterdam: Springer-Verlag.
Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13(1-2):81–132.
Schaefer, T. J. 1978. The complexity of satisfiabil-
ity problems. In Proceedings of the 10th Annual ACM
Symposium on Theory of Computing, 216–226.
Tarjan, R. E. 1972. Depth first search and linear graph
algorithms. SIAM Journal on Computing 1(2):146–160.
Van Gelder, A.; Ross, K. A.; and Schlipf, J. S. 1991.
The well-founded semantics for general logic programs.
Journal of the ACM 38(3):620–650.
Van Gelder, A. 1988. Negation as failure using tight
derivations for general logic programs. In Minker, J.,
ed., Foundations of Deductive Databases and Logic Pro-
gramming. Los Altos, California: Morgan Kaufmann
Publishers. 149–176.

