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Chapter 1

Introduction

The classical propositional logic is the most basic and most widely used logic. It is a notation for Boolean
functions, together with several proof and reasoning methods.

The use of the propositional logic as a computational tool has dramatically increased since the development of
powerful search algorithms and implementation methods since the late 1990s. Today it enjoys extensive use in
several areas of computer science, especially in Computer-Aided Verification and Artificial Intelligence. Its uses
in AI include planning, problem-solving, intelligent control, and diagnosis, and in Computer-Aided Verification
it is used in Model-Checking, Reachability Analysis, Deadlock Detection, and many other problems.

The reason why logics are used is their ability to precisely express data and information, in particular when it is
partial or incomplete, and some of the implicit consequences of the information must be inferred to make them
explicit.

The propositional logic, as the first known NP-complete problem [Coo71], is used for representing many types
of co-NP-complete and NP-complete combinatorial search problems. Such problems are prevalent in artificial
intelligence as a part of decision-making, problem-solving, and planning.

For many applications natural choices would be various more expressive logics, including the predicate logic or
various modal logics. These logics, however, lack the kind of efficient and scalable algorithms that are available for
the classical propositional logic. The existence of high performance algorithms for reasoning with propositional
logic is the main reason for its wide use.

1



Chapter 2

Propositional Logic

2.1 Formulas

Propositional logic is about Boolean functions, which are mappings from truth-values 0 and 1 (false and true) to
truth-values. Arbitrary Boolean functions can be represented as formulas formed with connectives such as ∧, ∨
and ¬, and it can be shown that any Boolean function can be represented by such a formula.

The informal readings of some of the most standard connectives are as follows.

• The conjunction denoted by ∧ is for and, as in “It is Monday and it rains”.
• The disjunction denoted by ∨ is for or, as in “It is Monday or it is Tuesday”.
• The negation denoted by ¬ is for not, as in “It is not the case that it is Monday”.
• The implication denoted by → is for conditional truth, as in “If it is Monday then it is not not week-end”.
• The equivalence denoted by ↔ is for expressing that truth values are the same, as in “It is week-end if and

only if it is Saturday or Sunday.”

Boolean functions and formulas have important applications in several areas of Computer Science.

• Digital electronics and the construction of digital computation devices such as microprocessors, is based on
Boolean functions.

• The theory of computation and complexity uses Boolean functions for representing abstract models of com-
putation, for example in terms of Boolean circuits, and investigating their properties, for example the theory
of Computational Complexity, where some of the fundamental results like NP-completeness [Coo71, GJ79]
were first established with Boolean functions.

• In software engineering and related disciplines, formal logics and automated reasoning methods are used for
modeling and analyzing software programs and other complex systems, in order to create software systems
and validate them, for example.

• Parts of Artificial Intelligence use Boolean functions and formulas for representing models of the world and
the reasoning processes of intelligent systems.

Some of the best known and most primitive Boolean functions are represented by the connectives ∨, ∧, ¬, →, ↔,
and ⊕ as follows, with the columns marked with α and β giving the input values and the third column the value
of the indicated Boolean function with these inputs.

α β α ∨ β
0 0 0

0 1 1

1 0 1

1 1 1

α β α ∧ β
0 0 0

0 1 0

1 0 0

1 1 1

α ¬α
0 1

1 0

α β α→ β

0 0 1

0 1 1

1 0 0

1 1 1

α β α↔ β

0 0 1

0 1 0

1 0 0

1 1 1

α β α⊕ β

0 0 0

0 1 1

1 0 1

1 1 0

The connectives are used for forming complex Boolean functions from primitive ones.

2



2.2. VALUATIONS AND TRUTH-VALUES 3

Often only some of the connectives, typically ¬ and one or both of ∧ and ∨, are viewed as primitive connectives,
and other connectives are defined in terms of the primitive connectives. For example the implication → and
equivalence ↔ connectives can be defined as follows in terms of ¬, ∧ and ∨: α → β as ¬α ∨ β, and α ↔ β as
(α→ β) ∧ (β → α).

There is a close connection between the Boolean connectives ∨, ∧ and ¬ and the operations ∪, ∩ and complemen-
tation in Set Theory. Observe the similarity between the truth-tables for the three connectives and the analogous
tables for the set-theoretic operations.

α β α ∪ β
∅ ∅ ∅
∅ {1} {1}
{1} ∅ {1}
{1} {1} {1}

α β α ∩ β
∅ ∅ ∅
∅ {1} ∅
{1} ∅ ∅
{1} {1} {1}

α α

∅ {1}
{1} ∅

Formulas in logic are formed analogously to arithmetic expressions in mathematics, with parentheses, variables
(atomic propositions) and binary connectives analogous to the binary arithmetic operations like addition and
multiplication.

Definition 2.1 (Propositional Formulas) Formulas are recursively defined as follows.

• Atomic propositions x ∈ X are formulas.
• Symbols ⊤ and ⊥ are formulas (respectively representing the constant true and false).
• If α and β are formulas, then so are

1. ¬α,
2. (α ∧ β),
3. (α ∨ β),
4. (α→ β), and
5. (α↔ β).

Nothing else is a formula.

Parentheses ( and ) do not always need to be written if precedences between the connectives are observed. The
highest precedence is with ¬, followed by ∧ and ∨, then →, and finally ↔. So, ¬a∨bmeans the same as (¬a)∨b.
Associativity rules for ∨ and ∧ are usually not paid much attention to, as these connectives are associative:
for example, a ∨ (b ∨ c) is equivalent to (a ∨ b) ∨ c. For implication, one can define ϕ1 → ϕ2 → ϕ3 to
mean ϕ1 → (ϕ2 → ϕ3), but this expression would practically always be parenthesized anyway, so adopting this
precedence rule is not important.

2.2 Valuations and Truth-Values

Definition 2.2 (Valuation of atomic propositions) A valuation v : X → {0, 1} is a mapping from atomic propo-
sitions X = {x1, . . . , xn} to truth-values 0 and 1.

Valuations can be extended to formulas ϕ ∈ L(X), i.e. v : L(X) → {0, 1}.

Often the term assignment or truth-assignment is used instead of valuation, but they refer to the same thing.

Definition 2.3 (Valuation of propositional formulas) A given valuation v : X → {0, 1} of atomic propositions
can be extended to a valuation of arbitrary propositional formulas over X .



4 CHAPTER 2. PROPOSITIONAL LOGIC

v(¬α) = 1 iff v(α) = 0
v(⊤) = 1
v(⊥) = 0
v(α ∧ β) = 1 iff v(α) = 1 and v(β) = 1
v(α ∨ β) = 1 iff v(α) = 1 or v(β) = 1
v(α→ β) = 1 iff v(α) = 0 or v(β) = 1 (or, equivalently, v(α) ≤ v(β))
v(α↔ β) = 1 iff v(α) = v(β)

Example 2.4 Let v(a) = 1, v(b) = 1, v(c) = 1, v(d) = 1. Then

v(a ∨ b ∨ c) = 1,
v(¬a→ b) = 1,
v(a→ ¬b) = 0.

■

We also introduce a commonly used notation for the truth of a formula under a given valuation. We will write
v |= ϕ if v(ϕ) = 1, and v ̸|= ϕ if v(ϕ) = 0.

Definition 2.5 (Subformulas and immediate subformulas) We recursively define immediate subformulas isfma(ϕ)
of a formula ϕ as follows.

1. If ϕ = x where x is an atomic proposition, then isfma(ϕ) = ∅.
2. isfma(α ∧ β) = {α, β}
3. isfma(α ∨ β) = {α, β}
4. isfma(α→ β) = {α, β}
5. isfma(α↔ β) = {α, β}
6. isfma(¬α) = {α}

Subformulas of a formula ϕ are defined recursively by sfma(ϕ) = {ϕ} ∪
⋃
ψ∈isfma(ϕ) sfma(ψ).

2.3 Equivalences

Table 2.1 lists equivalences that hold in the propositional logic. Replacing one side of any of these equivalences
by the other - in any formula - does not change the Boolean function represented by the formula.

These equivalences have several applications, including translating formulas into normal forms (Section 4), and
simplifying formulas. For example, all occurrences ⊤ and ⊥ of the constant symbols (except one, if the whole
formula reduces to ⊤ or ⊥) can be eliminated with the equivalences containing these symbols.

In some applications, and especially in implementations as computer programs, it may be useful to define con-
junctions and disjunctions to have more than 2 sub-formulas. These are chain disjunction and chain conjunction.
These can be written as ∧

{ϕ1, . . . , ϕn}

and ∨
{ϕ1, . . . , ϕn}

with n ≥ 0 having arbitrarily high value. Special cases are n = 1, when
∧
{ϕ1} and

∨
{ϕ1} are both the same

as ϕ1, and n = 0, when
∧
∅ is equivalent to the constant ⊤ (because all conjuncts are true, and there are none of

them), and
∨

∅ is equivalent to the constant ⊥ (because for disjunction to be true there should be at least one true
disjunct, and in this case there are none.)

2.4 Truth-tables

All valuations relevant to a formula are often tabulated as truth-tables so that each row corresponds to a valuation.
Truth-tables are used for analyzing the most basic properties of formulas.
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double negation ¬¬α ≡ α
associativity ∨ α ∨ (β ∨ γ) ≡ (α ∨ β) ∨ γ
associativity ∧ α ∧ (β ∧ γ) ≡ (α ∧ β) ∧ γ
commutativity ∨ α ∨ β ≡ β ∨ α
commutativity ∧ α ∧ β ≡ β ∧ α
distributivity ∧ ∨ α ∧ (β ∨ γ) ≡ (α ∧ β) ∨ (α ∧ γ)
distributivity ∨ ∧ α ∨ (β ∧ γ) ≡ (α ∨ β) ∧ (α ∨ γ)
idempotence ∨ α ∨ α ≡ α
idempotence ∧ α ∧ α ≡ α
absorption 1 α ∧ (α ∨ β) ≡ α
absorption 2 α ∨ (α ∧ β) ≡ α
De Morgan’s law 1 ¬(α ∨ β) ≡ (¬α) ∧ (¬β)
De Morgan’s law 2 ¬(α ∧ β) ≡ (¬α) ∨ (¬β)
contraposition α→ β ≡ ¬β → ¬α
negation ⊤ ¬⊤ ≡ ⊥
negation ⊥ ¬⊥ ≡ ⊤
constant ⊥ α ∧ ¬α ≡ ⊥
constant ⊤ α ∨ ¬α ≡ ⊤
elimination ⊤ ∨ ⊤ ∨ α ≡ ⊤
elimination ⊤ ∧ ⊤ ∧ α ≡ α
elimination ⊥ ∨ ⊥ ∨ α ≡ α
elimination ⊥ ∧ ⊥ ∧ α ≡ ⊥
elimination ⊥→ ⊥ → α ≡ ⊤
elimination ⊥→ α→ ⊥ ≡ ¬α
elimination ⊤→ ⊤ → α ≡ α
elimination ⊤→ α→ ⊤ ≡ ⊤
commutativity ↔ α↔ β ≡ β ↔ α
elimination ⊤↔ ⊤ ↔ α ≡ α
elimination ⊥↔ ⊥ ↔ α ≡ ¬α

Table 2.1: Propositional Equivalences
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Valuations for formulas containing exactly one connective are as follows.

α ¬α
0 1
1 0

α β α ∧ β
0 0 0
0 1 0
1 0 0
1 1 1

α β α ∨ β
0 0 0
0 1 1
1 0 1
1 1 1

α β α→ β

0 0 1
0 1 1
1 0 0
1 1 1

α β α↔ β

0 0 1
0 1 0
1 0 0
1 1 1

Truth-tables for more complex formulas ϕ are constructed as follows.

1. Create columns for all subformulas sfma(ϕ), with columns for shorter formulas left of the bigger formulas.
The shortest subformulas are the n atomic propositions occurring in ϕ.

2. Create 2n rows corresponding to all the valuations of the atomic propositions.
3. Fill in truth-values in the remaining cells from left to right: every row in the column for a formula ψ is filled

in by looking at the contents of the immediate subformulas isfma(ψ) in the same row (residing to the left),
based on the truth table for the outermost connective in ψ.

Example 2.6 The truth-table for ¬B ∧ (A→ B) is the following.

A B ¬B (A→ B) (¬B ∧ (A→ B))

0 0 1 1 1
0 1 0 1 0
1 0 1 0 0
1 1 0 1 0

■

2.5 Logical Consequence, Satisfiability, Validity

Once we have represented some facts of whatever object or system we are analyzing as a formula, we are often
interested in understanding its properties.

A formula is satisfiable if it is true under some valuation of its atomic propositions. For example, if our formula
described the properties of some system or some scenario, the formula being satisfiable would mean that the
scenario is possible.

A formula is a logical consequence of another formula, if it is necessarily true when the other formula is true. In
English we would say that some statement follows from another statement. For example, from “It is Tuesday” it
follows that “It is Monday or it is Tuesday”. If the first sentence is true, then necessarily also the second sentence
is true. Note that there does not have to be any real connection between the two statements: “It is Monday or it is
not Monday” is a logical consequence of any statement. We similarly defined logical consequence from a set of
formulas, viewing the set as the conjunction of all the formulas in it.

A formula is valid (a tautology) if it is true no matter what the values of the atomic propositions are, similarly to
basic mathematical equalities everybody is familiar with, such as 2x = x+x which holds no matter which values
we choose for x.

Next we formally define these concepts.

Definition 2.7 (Validity) A formula ϕ is valid if and only if v |= ϕ for all valuations v.

Example 2.8 x ∨ ¬x is valid.

x→ (x ∨ y) is valid.

x ∨ y is not valid. ■

Definition 2.9 (Satisfiability) A formula ϕ is satisfiable if and only if there is at least one valuation v such that
v |= ϕ. A set {ϕ1, . . . , ϕn} is satisfiable if there is at least one valuation v such that v |= ϕi for all i ∈ {1, . . . , n}.
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α ∧ β |= α
α |= α ∨ β
α |= β → α

¬α |= α→ β
Modus Ponens α ∧ (α→ β) |= β

¬β ∧ (α→ β) |= ¬α

Table 2.2: Useful Logical Consequences

The best known result in computational complexity theory is that the propositional satisfiability problem SAT
is NP-complete. SAT is defined as decision problem of deciding whether a given formula ϕ is satisfiable, often
stated as ϕ ∈ SAT. The closely related validity problem (TAUT) is similarly hard (co-NP-complete.)

Example 2.10 The following formulas are satisfiable: x, x ∧ y, and x ∨ ¬x. ■

Example 2.11 The following formulas are not satisfiable: x ∧ ¬x, ⊥, a ∧ (a→ b) ∧ ¬b. ■

A satisfiable formula is also said to be consistent. A formula that is not satisfiable is unsatisfiable, inconsistent, or
contradictory.

Satisfiability means logically possible: it is possible that the formula is true (if the truth-values of the atomic
propositions in the formula are chosen right.)

Definition 2.12 (Logical Consequence) A formula ϕ is a logical consequence of Σ = {ϕ1, . . . , ϕn}, denoted by
Σ |= ϕ, if and only if for all valuations v, if v |= Σ then v |= ϕ.

Notice that we are here using the symbol |= for a completely different purpose than the one we first introduced
it for in Section 2.2. With logical consequence Σ |= ϕ we have a set of formulas on the left-hand side, whereas
when talking about the truth of a formula ϕ in valuation v we have a valuation on the left-hand side of v |= ϕ.

If we talk about logical consequence from a single formula so that Σ = {ψ} for some formula ψ, then we often
write this as ψ |= ϕ.

Logical consequences ϕ of Σ are what can be inferred with certainty from Σ: if Σ holds, then ϕ is guaranteed to
hold too.

Example 2.13 From “if it is a weekday today then most people are working today”, and “it is a weekday today”
it follows that “most people are working today”. This can be expressed as {w → p, w} |= p. ■

Example 2.14 {a, a→ b, b→ c} |= c ■

Example 2.15 {m ∨ t,m→ w, t→ w} |= w ■

Some useful logical consequences are given in Table 2.2.

Notice two special cases of logical consequence ϕ1 |= ϕ2 which may be unintuitive. If ϕ2 is valid, then ϕ1 |= ϕ2
holds for any formula ϕ1. For example, a |= b ∨ ¬b. Similarly, if ϕ1 is unsatisfiable, then ϕ1 |= ϕ2 holds for any
formula ϕ2. One sometimes says that “from a contradiction anything follows”. This is the formal counterpart of
that. For example, a∧¬a |= b. The unintuitive thing in these cases may be that the formulas on the different sides
of |= do not share any atomic formulas, and hence there isn’t any real connection between them.

Definition 2.16 (Logical Equivalence) A formula ϕ1 is a logically equivalent to formula ϕ2, denoted by ϕ1 ≡ ϕ2,
if and only if for all valuations v, v(ϕ1) = v(ϕ2).

Lemma 2.17 ϕ1 ≡ ϕ2 if and only if both ϕ1 |= ϕ2 and ϕ2 |= ϕ1.
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Importantly, there are close connections between satisfiability, validity, and logical consequence. These con-
nections allow reducing questions concerning these concepts to each other, which allows choosing one of these
concepts as the most basic one (for example implemented in algorithms for reasoning in the propositional logic),
and reducing the other concepts to the basic one.

Theorem 2.18 (Validity vs. Logical Consequence 1) The formula ϕ is valid if and only if ∅ |= ϕ.

Theorem 2.19 (Validity vs. Logical Consequence 2) {ϕ1, . . . , ϕn} |= ϕ if and only if (ϕ1 ∧ · · · ∧ ϕn) → ϕ is
valid.

Theorem 2.20 (Validity vs. Satisfiability) ϕ is valid if and only if ¬ϕ is not satisfiable.

Theorem 2.21 (Logical Consequence vs. Satisfiability) Σ |= ϕ if and only if Σ ∪ {¬ϕ} is not satisfiable.

In practice, algorithms for reasoning in the propositional logic implement satisfiability. Other reasoning tasks are
reduced to satisfiability testing as shown by Theorems 2.20 and 2.21.



Chapter 3

Reasoning in the Propositional Logic

In this chapter we discuss the main methods for automating inference in the propositional logic.

The simplest method is based on truth-tables (Section 3.1), which enumerate all valuations of the relevant atomic
propositions, and questions about satisfiability and logical consequence can be answered by evaluating the truth-
values of the relevant formulas for every valuation.

Truth-tables are easy to implement as a program, but are impractical when the number of atomic propositions is
higher than 20 or 30. The algorithms used in practice (Section 3.2) are based on searching a tree in which each
path starting from the root node represents a (partial) valuation of the atomic propositions. The size of this tree is
in practice orders of magnitudes smaller than corresponding truth-tables, and for finding one satisfying valuation
not the whole tree needs to be traversed. Finally, only one path of the tree, from the root node to the current
leaf node, needs to be kept in the memory at a time, which reduces the memory requirements substantially. This
enables the use of these algorithms for formulas of the size encountered in solving important problems in AI and
computer science in general, with up to hundreds of thousands of atomic propositions and millions of clauses.

3.1 Truth-Tables

The most basic method for testing satisfiability of a formula ϕ is to construct the truth-table for ϕ, representing all
valuations of atomic propositions occurring in ϕ, and then check whether the column for ϕ contains at least one
1: ϕ is satisfiable if and only if the column for ϕ contains at least one 1. Obviously, this is because all possible
valuations are represented in the truth-table, and a formula is satisfiable if and only if it is true in at least one
valuation.

Example 3.1 The truth-table for ¬B ∧ (A→ B):

A B ¬B (A→ B) (¬B ∧ (A→ B))

0 0 1 1 1
0 1 0 1 0
1 0 1 0 0
1 1 0 1 0

¬B ∧ (A→ B) is satisfiable because it is true when both A and B are false, corresponding to the first row. ■

The second important problem is testing for logical consequence.

Algorithm 3.2 To test whether ϕ a logical consequence of Σ do the following.

1. Construct the truth-table for ϕ and Σ.
2. Mark every row in which the columns for all members of Σ contain 1.
3. Check that there is 1 in the column for ϕ for every marked row.

This algorithm tests whether ϕ is true in every valuation in which Σ is true.

If there is marked row with ϕ false, then we have a counterexample to Σ |= ϕ: Σ is true but ϕ is false.

9
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a = 0a = 1

b = 0b = 1b = 0b = 1

c = 0c = 1c = 0c = 1 c = 0c = 1c = 0c = 1

Figure 3.1: All valuations as a binary tree

Example 3.3 Test {a→ b, b→ c} |= a→ c:

a b c a→ b b→ c a→ c

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1

{a→ b, b→ c} true on 4 rows, and we need to confirm that a→ c is true on those rows. ■

Truth-tables are a practical method to be used by hand only up to a couple of atomic propositions. With 6 atomic
propositions there are 64 rows, which barely fits on a sheet of paper. With computer it is possible to use the
truth-table method for up to 20 or 25 variables. After that memory consumption and computation times will be
impractically high. In many applications the number of atomic propositions is in the hundreds, thousands, or even
hundreds of thousands, and completely different types of algorithms are necessary.

The exponentiality in the truth-table is inherent in all algorithms for testing satisfiability or logical consequence,
similarly to many of challenging problems in AI. For testing satisfiability, and many other problems, this expo-
nentiality is an indication of NP-completeness [Coo71, GJ79]. The exponentiality is known as the combinatorial
explosion, and is caused by the exponential number 2n of combinations of values of n atomic propositions. NP-
completeness of the satisfiability problem suggests that all algorithms for the problem necessarily need to do an
exponential amount of computation, in the worst case, and the problem is inherently hard in this sense. Work
on practically useful algorithms for the satisfiability problem try to avoid the exponential worst-case by using
methods for pruning the search tree, and by using heuristics for choosing the traversal order and a tree structure
that minimizes the time it takes to find a satisfying valuation or to determine that none exist.

3.2 Tree-Search Algorithms

More practical algorithms for solving the satisfiability problem do not explicitly go through all possible valuations
of the atomic propositions, and do not store all of them in a big table that has to be kept in the memory.

The simplest algorithm for testing satisfiability that does not construct a truth-table does a depth-first traversal of
a binary tree that represents all valuations. This is illustrated in Figure 3.1 for atomic propositions X = {a, b, c}.

During the traversal, this algorithm only needs to store in the memory the (partial) valuation on the path from the
root node to the current node, and hence its memory consumption is linear in the number of atomic propositions.
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The runtime of the algorithm, however, is still exponential in the number of atomic propositions for all unsatisfi-
able formulas, because of the size of the tree. For satisfiable formulas the whole tree does not need to be traversed,
but since the first satisfying valuation may be encountered late in the traversal, in practice this algorithm is also
usually exponential.

The improvements to this basic tree-search algorithm are based on the observation that many of the (partial)
valuations in the tree make the formula false, and this is easy to detect during the traversal. Hence large parts of
the search tree can be pruned.

In the following, we assume that the formula has been translated into the conjunctive normal form (Section 4).
Practically all leading algorithms assume the input to be in CNF.

The fundamental observation in pruning the search tree is the following. Let v be a valuation and l∨l1∨l2∨· · ·∨ln
a clause such that v(l1) = 0, . . . , v(ln) = 0,

Since we are trying to find a valuation that makes our clause set true, this clause has to be true (similarly to all
other clauses), and it can only be true if the literal l is true.

Hence if the partial valuation corresponding to the current node in the search tree makes, in some clause, all
literals false except one (call it l) that still does not have a truth-value, then l has to be made true. If l is an atomic
proposition x, then the current valuation has to assign v(x) = 1, and if l = ¬x for some atomic proposition x,
then we have to assign v(x) = 0. We call these forced assignments.

Consider the search tree in Figure 3.1 and the clauses ¬a ∨ b and ¬b ∨ c. The leftmost child node of the root
node, which is reached by following the arc a = 1, corresponds to the partial valuation v = {(a, 1)} that assigns
v(a) = 1 and leaves the truth-values of the remaining atomic propositions open. Now with clause ¬a∨ b we have
the forced assignment v(b) = 1. Now, with clause ¬b ∨ c also v(c) = 1 is a forced assignment.

Hence assigning a = 1 forces the assignments of both of the remaining variables. This means that the leftmost
subtree of the root node essentially only consists of one path that leads to the leftmost leaf node. The other
leaf nodes in the subtree, corresponding to valuations {a = 1, b = 1, c = 0}, {a = 1, b = 0, c = 0}, and
{a = 1, b = 0, c = 1}, would not be visited, because it is obvious that they falsify at least one of the clauses.
Since we are doing the tree search in order to determine the satisfiability of our clause set, the computation in the
subtree with a = 1 can be stopped here, continuing from the root node with a = 0 to the rightmost subtree.

3.2.1 Unit Resolution

What we described as forced assignments is often formalized as the inference rule Unit Resolution.

Theorem 3.4 (Unit Resolution) In
l l ∨ l1 ∨ l2 ∨ · · · ∨ ln

l1 ∨ l2 ∨ · · · ∨ ln
the formula below the line is a logical consequence of the formulas above the line.

Here the complementation l of a literal l is defined by x = ¬x and ¬x = x.

Example 3.5 From {A ∨B ∨ C,¬B,¬C} one can derive A by two applications of the Unit Resolution rule. ■

A special case of the Unit Resolution rule is when both clauses are unit clauses (consisting of one literal only.)
Since the n = 0 in this case, the formula below the line has 0 disjuncts. We identify a chain-disjunction with 0
literals with the constant false ⊥, corresponding to the empty clause.

l l

⊥

Any clause set with the empty clause is unsatisfiable.

The Unit Resolution rule is a special case of the Resolution rule.

Theorem 3.6 (Resolution) In
l ∨ l′1 ∨ · · · ∨ l′m l ∨ l1 ∨ · · · ∨ ln
l′1 ∨ · · · ∨ l′m ∨ l1 ∨ l2 ∨ · · · ∨ ln
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1: procedure DPLL(S)
2: S := UP(S);
3: if ⊥ ∈ S then return false;
4: x := any atomic proposition such that {x,¬x} ∩ S = ∅;
5: if no such x exists then return true;
6: if DPLL(S ∪ {x}) then return true;
7: return DPLL(S ∪ {¬x});

Figure 3.2: The DPLL procedure

the formula below the line is a logical consequence of the formulas above the line.

The resolution rule can be use as a part of complete decision procedures for the satisfiability problem of the
propositional logic: apply the resolution rule exhaustively in all possible ways until no more new clauses are
produced. If the empty clause ∅ was produced, then the clause set is unsatisfiable, and otherwise it is satisfiable.

The resolution rule used in this way is, however, in general not a practical decision method, because the number
of clauses generated is often exponential in the size of the original clause set, quickly leading to the exhaustion of
the available memory for any slightly bigger clause set.

Instead of the resolution rule in its full generality, practical decision procedures for the SAT problem use unit
resolution (see Section 3.2.4 for the DPLL procedure), and use the resolution rule in a more restricted way that
does not blindly generate huge numbers of clauses, as in the Conflict-Drive Clause Learning (CDCL) procedure
[MSS96].

3.2.2 Subsumption

If a clause set contains two clauses with literals {l1, . . . , ln} and {l1, . . . , ln, ln+1, . . . , lm}, respectively, then the
latter clause can be removed, as it is a logical consequence of the former. The two clause sets, with and without
the second clause, are true in exactly the same valuations.

Example 3.7 Applying the Subsumption rule to {A ∨B ∨ C,A ∨ C} yields the equivalent set {A ∨ C}. ■

If the shorter clause is a unit clause, then this is called Unit Subsumption.

3.2.3 Unit Propagation

Performing all unit resolutions exhaustively leads to the Unit Propagation procedure, also known as Boolean
Constraint Propagation (BCP).

In practice, when a clause l1 ∨ · · · ∨ ln with n > 2 can be resolved with a unit clause, the shorter clause of
length n − 1 > 1 would not be useful, so, instead of producing these n − 1 clauses, of lengths 1, 2, . . . , n − 1,
unit propagation attempts to do the same useful inferences of unit clauses only, without producing the longer
intermediate clauses: only produce a new clause when the complements of all but 1 of the n literals of the clause
have been inferred. This can be formalized as the following rule, with n ≥ 2.

l1 l2 l3 . . . ln−1 l1 ∨ · · · ∨ ln
ln

We denote by UP(S) the clause set obtained by performing all possible unit propagations to a clause set S,
followed by applying the subsumption rule.

3.2.4 The Davis-Putnam Procedure

The Davis-Putnam-Logemann-Loveland procedure (DPLL) [DLL62], often known simply as the Davis-Putnam
procedure, is given in Figure 3.2.
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We have sketched the algorithm so that the first branch assigns the chosen atomic proposition x true in the first
subtree (line 6) and false in the second (line 7). However, these two branches can be traversed in either order (ex-
changing x and ¬x on lines 6 and 7), and efficient implementations use this freedom by using powerful heuristics
for choosing first the atomic proposition (line 4) and then choosing its truth-value.

Theorem 3.8 Let S be a set of clauses. Then DPLL(S) returns true if and only if S is satisfiable.

References

Automation of reasoning in the classical propositional logic started in the works of Davis and Putnam and their
co-workers, resulting in the Davis-Putnam-Logemann-Loveland procedure [DLL62] (earlier known as the Davis-
Putnam procedure ) and other procedures [DP60].

Efforts to implement the Davis-Putnam procedure efficiently lead to fast progress from mid-1990s on.

The current generation of solvers for solving the SAT problem are mostly based on the Conflict-Driven Clause
Learning (CDCL) procedure which emerged from the work of Marques-Silva and Sakallah [MSS96]. Many of
the current leading implementation techniques and heuristics for selecting the decision variables come from the
work on the Chaff solver [MMZ+01]. Several other recent developments have strongly contributed to current
solvers [PD07, AS09].

Unit propagation can be implemented to run in linear time in the size of the clause set, which in the simplest
variants involves updating a counter every time a literal in a clause gets a truth-value [DG84]. Modern SAT
solvers attempt to minimize memory accesses (cache misses), and even counter-based linear time procedures are
considered too expensive, and unit propagation schemes that do not use counters are currently used [MMZ+01].
The above developments for the CDCL procedure have made it possible to solve very large satisfiability problems
efficiently, with up to millions of atomic propositions and tens or even hundreds of millions of clauses.

Also stochastic local search algorithms have been used for solving the satisfiability problem [SLM92], but they
are not used in many applications because of their inability to detect unsatisfiability.

The algorithms in this chapter assumed the formulas to be in CNF. As discussed in Section 4, the translation into
CNF may in some cases exponentially increase the size of the formula. However, for the purposes of satisfia-
bility testing, there are transformations to CNF that are of linear size and preserve satisfiability (but not logical
equivalence.) These transformations are used for formulas that are not already in CNF [Tse68, CMV09].



Chapter 4

Normal Forms and Logic Data Structures

Arbitrary propositional formulas can be translated into syntactically restricted forms which are still capable of
expressing all Boolean functions. Use of such normal forms can serve two main purposes. First, it may be more
straightforward to define algorithms and inference methods for formulas of a simple form. The resolution rule
(Section 3.2.1) is an example of this. Second, the process of translating a formula into certain normal form does
much of the work in solving important computational problems related to propositional formulas. For example, an
answer to the question of whether a formula is valid is obtained as a by-product of translating the formula normal
forms such as DNF or OBDD. A number of other operations on propositional formulas are in practice much more
efficient when the formulas are in certain normal forms rather than unrestricted propositional formulas.

In this chapter we present some of the best known normal forms, including the disjunctive and conjunctive normal
forms, the negation normal form, as well as binary decision diagrams.

Definition 4.1 (Literals) If x is an atomic proposition, then x and ¬x are literals.

Definition 4.2 (Clauses) If l1, . . . , ln are literals, then l1 ∨ · · · ∨ ln is a clause.

Definition 4.3 (Terms) If l1, . . . , ln are literals, then l1 ∧ · · · ∧ ln is a term.

Definition 4.4 (Conjunctive Normal Form) If ϕ1, . . . , ϕm are clauses, then the formula ϕ1 ∧ · · · ∧ ϕm is in
conjunctive normal form.

Example 4.5 The following formulas are in conjunctive normal form.

¬x
¬x1 ∨ ¬x2
x3 ∧ x4
(¬x1 ∨ ¬x2) ∧ ¬x3 ∧ (x4 ∨ ¬x5)

■

Table 4.1 lists rules that transform any formula into CNF. These rules are instances of the equivalence listed in
Table 2.1

Algorithm 4.6 Any formula can be translated into conjunctive normal form as follows.

1. Eliminate connective ↔ (Rule 4.1).
2. Eliminate connective → (Rule 4.2).
3. Move ¬ inside ∨ and ∧ (Rules 4.3, 4.4 and 4.5), also eliminating double negations.
4. Move ∧ outside ∨ (Rules 4.6 and 4.7).

Notice that the last step of the transformation multiplies the number of copies of subformulas α and γ. For some
classes of formulas this transformation therefore leads to exponentially big normal forms.

14
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α↔ β ⇝ (¬α ∨ β) ∧ (¬β ∨ α) (4.1)

α→ β ⇝ ¬α ∨ β (4.2)

¬(α ∨ β) ⇝ ¬α ∧ ¬β (4.3)

¬(α ∧ β) ⇝ ¬α ∨ ¬β (4.4)

¬¬α ⇝ α (4.5)

α ∨ (β ∧ γ) ⇝ (α ∨ β) ∧ (α ∨ γ) (4.6)

(α ∧ β) ∨ γ ⇝ (α ∨ γ) ∧ (β ∨ γ) (4.7)

Table 4.1: Rewriting Rules for Translating Formulas into Conjunctive Normal Form

Formulas in CNF are often represented as sets of clauses (rather than a conjunction of clauses), with clauses
represented as sets of literals. The placement of connectives ∨ and ∧ can be left implicit because of the simple
structure of CNF. The CNF (A ∨B ∨C) ∧ (¬A ∨D) ∧E can be represented as {A ∨B ∨C, ¬A ∨D, E} or,
equivalently, as {{A,B,C}, {¬A,D}, {E}}. Any clause set {∅, . . .} that contains the empty clause ∅ is logically
equivalent to ⊥, and the empty clause set ∅ is equivalent to ⊤.

Example 4.7 Translate A ∨B → (B ↔ C) into CNF.

⇝ A ∨B → (B → C) ∧ (C → B)
⇝ ¬(A ∨B) ∨ ((¬B ∨ C) ∧ (¬C ∨B))
⇝ (¬A ∧ ¬B) ∨ ((¬B ∨ C) ∧ (¬C ∨B))
⇝ (¬A ∨ ((¬B ∨ C) ∧ (¬C ∨B)))∧ (¬B ∨ ((¬B ∨ C) ∧ (¬C ∨B)))
⇝ (¬A ∨ ¬B ∨ C) ∧ (¬A ∨ ¬C ∨B)∧ (¬B ∨ ((¬B ∨ C) ∧ (¬C ∨B)))
⇝ (¬A ∨ ¬B ∨ C) ∧ (¬A ∨ ¬C ∨B)∧ (¬B ∨ ¬B ∨ C) ∧ (¬B ∨ ¬C ∨B)

■

Another often used normal form is the Disjunctive Normal Form (DNF).

Definition 4.8 (Disjunctive Normal Form) If ϕ1, . . . , ϕm are terms, then the formula ϕ1 ∨ · · · ∨ ϕm is in dis-
junctive normal form.

Disjunctive normal forms are found with a procedure similar to that for CNF. The only difference is that a different
set of distributivity rules is applied, for moving ∧ inside ∨ instead of the other way round.

A less restrictive normal form that includes both CNF and DNF is the Negation Normal Form (NNF). It is useful
in many types of automated processing of formulas because of its simplicity and the fact that translation into NNF
only minimally affects the size of a formula, unlike the translations into DNF and CNF which may increase the
size exponentially.

Definition 4.9 (Negation Normal Form) Let X be a set of atomic propositions.

1. ⊥ and ⊤ are in negation normal form.
2. x and ¬x for any x ∈ X are in negation normal form.
3. ϕ1 ∧ ϕ2 is in negation normal form if ϕ1 and ϕ2 both are.
4. ϕ1 ∨ ϕ2 is in negation normal form if ϕ1 and ϕ2 both are.

No other formula is in negation normal form.

In other words, ϕ is in NNF if and only if it only contains the connectives ¬, ∨ and ∧, and ¬ only occurs right in
front of atomic propositions.

After performing the first three steps in the translation into CNF, a formula is in NNF. Notice that only the
application of the distributivity equivalences increases the number of atomic propositions in the CNF translation.
Hence the translation into NNF does not affect the number of occurrences of atomic propositions or the total
number of connectives ∨ and ∧. Therefore the size of the resulting formula can be bigger only because of the
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higher number of negation symbols ¬, and there cannot be more of ¬ symbols than there are occurrences of atomic
propositions.

4.1 Complexity of Validity and Satisfiability for DNF and CNF

Lemma 4.10 A formula in CNF is valid if and only if for every clause in the formula, there is some atomic
proposition x such that both x and ¬x are in the clause.

Lemma 4.11 A formula in DNF is satisfiable if and only if at least one of its terms does not contain both x and
¬x for any atomic proposition x.

So, for formulas in CNF, testing for validity is a simple syntactic operation that can be done in polynomial time,
and for formulas in DNF, satisfiability testing is similarly a polynomial time operation. These operations for
arbitrary propositional formulas are far harder, co-NP-complete and NP-complete, respectively. For NNF these
operations are similarly hard.

While validity for CNF is easy, testing satisfiability is still NP-complete. Similarly, validity for DNF is co-NP-
complete.

Constructing a CNF or a DNF for an unrestricted propositional formula may take exponential time (due to the
doubling of size of subformulas when applying the distributivity rules), but as a result, some of the computational
problems are exponentially easier.

Validity and satisfiability for NNF are respectively co-NP-complete and NP-complete, because DNF and CNF are
special cases of NNF.

4.2 Formulas as a Data Structure

Traditional application of logic is as a language of representing data and knowledge and for deductively making
inferences from it.

A different use of logic emerged in the 1980s [Bry86, CBM90, Bry92], when logical formulas were used as a
data structure for representing sets (of valuations) and relations (on valuations). As will be discussed in Section
5.1, many logical operations have set-theoretic counterparts, for example union can be identified with disjunction.
It turned out that logic-based data structures could scale up to much bigger sets and relations than conventional
(enumerative) data structures (trees, lists, arrays, and so on.)

To use formulas as a data structure, we need operations for constructing formulas, for manipulating formulas, and
for asking questions about formulas.

Constructing formulas:
Negation: Given ϕ, form ¬ϕ
Conjunction: Given ϕ1 and ϕ2, form ϕ1 ∧ ϕ2
Disjunction: Given ϕ1 and ϕ2, form ϕ1 ∨ ϕ2

Manipulating formulas:
Substitution: Given ϕ, construct ϕ[ψ/x] by replacing occurrences of x by ϕ
Existential Abstraction: Given ϕ, construct ∃x.ϕ = ϕ[⊤/x] ∨ ϕ[⊥/x]
Universal Abstraction: Given ϕ, construct ∀x.ϕ = ϕ[⊤/x] ∧ ϕ[⊥/x]

A commonly occurring special case of Substitution is Renaming, replacing occurrences of atomic propositions by
other atomic propositions.

The abstraction operations are central in implementing relational projection operations (Section 5.2) and multipli-
cation of Boolean matrices.
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Analyzing formulas:
Satisfiability: Given ϕ, is ϕ satisfiable?
Validity: Given ϕ, is ϕ valid?
Logical Consequence: Given ϕ1 and ϕ2, does ϕ1 |= ϕ2 hold?
Model Counting: Given ϕ over X , for how many valuations v : X → {0, 1} does v |= ϕ hold?

We have already seen that with some normal forms, some of these operations are easier than with arbitrary proposi-
tional formulas. For unlimited formulas, the construction operations are efficient, but many of the other operations
in turn are not. Similarly, for limited normal forms of propositional formulas, some of the construction operations
can be expensive, but as soon as the normal form has been constructed, some of the other operations are far easier
than with general propositional formulas.

Interestingly, for some normal forms, although their construction can be expensive (exponential in the worst case),
the cheaper other operations have made them far preferable to general propositional logic.

A case in point is the abstraction operations, which are central in relational projections (Section 5.2), and for which
no good algorithms exist for general propositional formulas, but which can often be very effectively computed for
example with Binary Decision Diagrams (see next section).

4.3 Binary Decision Diagrams

Any propositional formula can be turned to a case analysis on a single atomic proposition by using the following
equivalence-preserving transformation (also known as Shannon expansion.)

Theorem 4.12 (Boole’s Expansion) For any propositional formula ϕ overX and any atomic proposition x ∈ X ,
the formula (x ∧ ϕ[⊤/x]) ∨ (¬x ∧ ϕ[⊥/x]) is logically equivalent to ϕ.

One can also express this in terms of the ternary Boolean connective ITE (or IF-THEN-ELSE)

ITE(x, ϕ1, ϕ2) = (x ∧ ϕ1) ∨ (¬x ∧ ϕ2)

as
ϕ ≡ ITE(x, ϕ[⊤/x], ϕ[⊥/x]).

The special form of the formulas resulting from the expansion operation gives rise to a graphical representation of
any propositional formula: at the topmost level, the formula represents a case analysis on the value of one atomic
proposition – either x is true, or x is false – and depending on the value of x, either ϕ[⊤/x] or ϕ[⊥/x] equals the
value of the original formula. And, neither of these latter formulas contain occurrences of x.

The binary decision diagram construction proceeds by eliminating x first, and the eliminating further variables
from the subformulas ϕ[⊤/x] and ϕ[⊥/x].
The idea is that after translating ϕ to (x ∧ ϕ[⊤/x]) ∨ (¬x ∧ ϕ[⊥/x]), we continue applying Boole’s expansion to
the subformulas ϕ[⊤/x] and ϕ[⊥/x] for other atomic propositions.

x

Φ[⊤/x] Φ[⊥/x]

x

y y

Φ[⊤/x][⊤/y] Φ[⊤/x][⊥/y] Φ[⊥/x][⊤/y] Φ[⊥/x][⊥/y]

The dashed line is followed when the atomic proposition in the node is false, and the non-dashed one when it is
true.

Doing this systematically for any formula with n atomic propositions yields a binary tree with 2n leaf nodes la-
belled with formulas that consist of the constants ⊤ and ⊥ and connectives only, without any atomic propositions.
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Our first observation is that the formulas in the leaves can always be simplified to ⊤ or ⊥. At this point, we
essentially have a graphical representation of the truth table constructed for the n variables: for any valuation of
the atomic propositions we can determine the corresponding truth-value of the formula by following the path from
from root that correspond to the valuation, and reading the truth-value from the resulting leaf node.

Example 4.13 If we do this for the formula a ∨ (b ∧ ¬c), we get the following binary trees.

a

⊤ b ∧ ¬c

a

b b

⊤ ⊤ ¬c ⊥

a

b b

c

⊤ ⊤

c

⊤ ⊤

c

⊥ ⊤

c

⊥ ⊥ ■

Our second observation is that this tree can often be represented far more compactly as a directed acyclic graph,
in which two isomorphic sub-graphs are identified. First, there will be only two leaf nodes ⊤ and ⊥ (in the special
cases for valid and unsatisfiable formulas there is only one leaf node.) After this, higher up in the graph, if two
nodes have the same child nodes, the nodes can be merged to one.

A third observation is that if both outgoing arcs of a node point to the same subgraph, then this node can be
eliminated by directing the arc from its parents to the node’s child node.

After these operations, we have a reduced ordered binary decision diagram (ROBDD, OBDD). The reduced refers
to the merging of nodes that are logically equivalent. The ordered refers to the diagram being constructed with
a fixed total ordering of the atomic propositions. Sometimes more relaxed binary decision diagram are used,
especially without the ordering condition.

Observe that for a given variable ordering, the OBDD is unique up to an isomorphism, that is, all OBDDs gener-
ated for a given formula and a given variable ordering are isomorphic to each other, represented by essentially the
same graph.

Example 4.14 Consider the binary tree we constructed for the formula a ∨ (b ∧ ¬c).

a

b b

c

⊤ ⊤

c

⊤ ⊤

c

⊥ ⊤

c

⊥ ⊥

The correspondence with the truth table is exact. (Imagine rotating the truth table 90 degrees clockwise.)
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a b c a ∨ (b ∧ ¬c)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

■

Example 4.15 Merge all ⊤ nodes and all ⊥ nodes.

a

b b

c

⊤ ⊥

c c c

Then eliminate all nodes for which both arcs point to the same node. Above this means first eliminating three of
the c nodes, after which the leftmost b node also needs to be eliminated. The resulting diagram is an OBDD.

a

b

⊤ ⊥

c

■

The above construction progressed top-down starting from an arbitrary formula, generating an exponential size
tree as an intermediate stage, before arriving at an OBDD. This OBDD could be constructed bottom up from the
original formula, by first generating the OBDD for atomic propositions, and then constructing the OBDDs for
ϕ ∧ ϕ′ and ϕ ∨ ϕ′ directly from the OBDDs for ϕ and ϕ′.

The OBDD for an atomic proposition x is the following.

x

⊤ ⊥

An OBDD can be negated by swapping the leaf nodes ⊤ and ⊥. However, the typical setting in which an OBDD
is negated is inside an OBDD package which maintains a high number of different Boolean functions in a large
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directed graph shared by all these Boolean functions. Swapping the two leaf nodes would negate all of the Boolean
functions currently of interest, which is of course not wanted. For this reason, constructing the negation ¬ϕ of
some BDD for ϕ is implemented indirectly, for example by constructing the BDD for ϕ ↔ ⊥ instead. This can
be done similarly to the other binary connectives, which are described next.

By Boole’s expansion theorem, ϕ1⊘ϕ2 with any connective ⊘ is logically equivalent to (x∧ϕ1[⊤/x]⊘ϕ2[⊤/x])∨
(¬x ∧ ϕ1[⊥/x] ⊘ ϕ2[⊥/x]). This yields as a way of constructing an OBDD for any formula ϕ1 ⊘ ϕ2, given the
OBDDs for ϕ1 and ϕ2.

This is what is known as the apply procedure.

1. If the root nodes of both constituent OBDDs have the same atomic propositions, then we do as follows.
apply(⊘, x

B B′

, x

C C ′

) = x

apply(⊘, B,C) apply(⊘, B′, C ′)
2. If the atomic proposition in the root node of the OBDD C comes later in the variable ordering than x, or if C

is one of the terminal nodes ⊤ or ⊥, then we do the following.
apply(⊘, x

B B′

, C ) = x

apply(⊘, B,C) apply(⊘, B′, C)
3. Analogously to the previous case, if the atomic proposition in the root node of the OBDD B comes later in

the variable ordering than x, or if B is ⊤ or ⊥, then we do the following.
apply(⊘,B, x

C C ′

) = x

apply(⊘, B,C) apply(⊘, B,C ′)
4. The remaining case is when both OBDDs are leaf nodes ⊤ or ⊥. Then we apply the truth table for the

connective ⊘ to the truth values.
apply(⊘,b,b′) = b⊘ b′

By using apply, an OBDD can be constructed from any propositional formula with the unary connective ¬ and
binary Boolean connectives ∧, ∨, →, ↔, and others.

The above description of apply does not include the reduction part of OBDD construction. Including this is critical
for efficiency. On the first three cases, the two recursive calls are first made, and if the result from both calls is the
same OBDD, the node for x is not constructed, and the OBDD from the two recursive calls is returned instead.
Further, memoization is used: before constructing an OBDD node for x and two constituent OBDDS B1 and B2,
it is checked whether a node (x,B1, B2) has already been constructed. If so, that already-existing OBDD node is
returned instead.

Although the runtime of one call to apply is polynomial in the size of the two OBDDs, the construction of an
OBDD can be exponential time in the size of the original formula, as we call apply repeatedly, and OBDDs
produced by apply can be bigger than the inputs to apply. This is as it should be, since constructing an OBDD
solves the NP-complete satisfiability problem: a formula ϕ is satisfiable if and only if the its OBDD is not ⊥.

Example 4.16 We illustrate apply with the OBDD for a ∨ (b ∧ ¬c) and the variable ordering a, b, c that is con-
structed by apply(∨,A,apply(∧,B,apply(↔,C,⊥))), whereA,B andC are the OBDDs for the atomic propositions
a, b and c. We show the first steps of this computation next.

The OBDD for the atomic proposition c is as follows.

c

⊤ ⊥
For apply(↔,C,⊥) we use case 2 from above.

apply(↔, c

⊤ ⊥

, ⊥ ) = c

apply(↔,⊤,⊥) apply(↔,⊥,⊥)

= c

⊥ ⊤
Next we do apply(∧,B,...) with the above OBDD as the second conjunct. Since b precedes c in the ordering, we
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again use case 2.

apply(∧, b

⊤ ⊥

, c

⊥ ⊤

) = b

apply(∧,⊤,¬C) apply(∧,⊥,¬C)

= b

c apply(∧,⊥,¬C)

apply(∧,⊤,⊥) apply(∧,⊤,⊤)

= b

c apply(∧,⊥,¬C)

⊥ ⊤

= b

c c

⊥ ⊤ apply(∧,⊥,⊥) apply(∧,⊥,⊤)

= b

c c

⊥⊤
The final step is apply(∨,A,...) with the above BDD as the second argument.

apply(∨, a

⊤ ⊥

, . . .) = a

⊤ apply(∨,⊥, . . .)

=

a

b

c c

⊥⊤
■

OBDD for ϕ trivially answers the validity and satisfiability questions by equality with ⊤ and inequality with
⊥, respectively. Logical consequence of Φ |= ϕ is by the validity of Φ → ϕ by satisfiability of Φ ∧ ¬ϕ. The
OBDD for one of these two formulas (which are negations of each other) needs to be constructed. For logical
consequence tests Φ |= c where c is a single literal or a disjunction of literals, simpler graph-theoretic tests, which
do not require constructing a new OBDD, exist. See Section 4.3.3.

4.3.1 Properties of OBDDs

Lemma 4.17 The only valid OBDD is the one consisting of the single node ⊤.

The only unsatisfiable OBDD is the one consisting of the single node ⊥.

An OBDD can be exponentially larger than an equivalent propositional formula.

Example 4.18 Consider the formula (x1 ↔ x′1) ∧ · · · ∧ (xn ↔ x′n). The OBDD with the variable ordering
x1, . . . , xn, x

′
1, . . . , xn has an exponential size. This OBDD is shown in Figure 4.2a. The number of nodes in the

middle is 2n. Hence the OBDD size is exponential in n and the size of the formula we started is linear in n. ■

An OBDD can be exponentially smaller than an equivalent propositional formula.

Example 4.19 The OBDD in Figure 4.1 is true if and only if the number of true atomic propositions is even.

This OBDD is true iff the number of true atomic propositions is even. An equivalent propositional formula over
the atomic propositions x0, . . . , xn has an exponential size. Representing the OBDD compactly is possible, but
requires auxiliary variables as in the Tseitin transformation.

Any path after an even number of true atomic propositions ends up on the right, and after an odd number it ends
up on the left.

An equivalent propositional formula over the atomic propositions x0, . . . , xn has an exponential size. The OBDD
can, of course, be represented compactly as a propositional formula by using auxiliary variables as in the Tseitin
transformation [Tse68]. ■
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x0

x1 x1

x2 x2

x3 x3

x4 x4

⊤ ⊥

Figure 4.1: OBDD for determining the parity of an assignment

4.3.2 Model Counting

For any node in the OBDD (representing some formula Φ), the two subtrees rooted at that node represent formulas
that contradict each other: (x ∧Φ[⊤/x]) and (¬x ∧Φ[⊥/x]), because of x and ¬x. Hence the number of models
of Φ is the sum of the numbers of models of the formulas for the child nodes.

This property makes it possible to count the number of satisfying assignments of an OBDD in polynomial time.
This is by traversing the OBDD once. Since the number of paths to a given node can be exponential (see Example
4.19), it is critical that the traversal counts the number of partial assignments for an internal node only once. For
this it is enough that the model count for a node is recorded the first time it is needed, and subsequent uses of the
count use the recorded number rather than doing the same computation multiple times.

In this algorithm, we assume that the variables in the BDD have integer index 0, . . . ,MAX. For OBDDs B, by
index(B) we denote the index of the variable in the root node of an OBDD. If B is a terminal node, then the index
is MAX + 1.

To avoid traversing a possibly exponential number of paths in an OBDD, we use the array memo to record already
computed model-counts for subgraphs. All elements of this array are initialized to 0 before calling MC.

1: procedure MC(B : OBDD)
2: begin
3: if B = ⊤ then return 1;
4: if B = ⊥ then return 0;
5: if memo[B] ≥ 0 then return memo[B];
6: i := index(B.nodeVar);
7: i1 := index(B.posChild);
8: i0 := index(B.negChild);
9: memo[B] := 2i1−i−1× MC(B.posChild) + 2i0−i−1× MC(B.negChild);

10: return memo[B];
11: end

The correction terms 2i1−i−1 and 2i0−i−1 on line 4.3.2 are needed because they may be gaps in the variable
ordering on some of the paths: if in a given path the variable xi is not followed by xi+1 but some later variable
xk with k > i+ 1, then the variables xi+1, xi+2, . . . , xk−1 are “don’t cares”, and all valuations of these variables
are possible on this path. Since there are k − i − 1 of such “don’t care” variables, we get the model count for
xi+1, . . . , xn by multiplying the number of assignments for xk, . . . , xn by 2k−i−1.
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When determining the model-count for an OBDD B, we have to multiply the result of MC(B) by 2index(B),
because the variable in the root node of B does not in general have the index 0.

4.3.3 Clausal consequences

Testing whether a clause l1 ∨ · · · ∨ ln is a logical consequence of an OBDD can be implemented as a graph-
theoretic test: Do all paths from the root node of the OBDD to the leaf node ⊤ satisfy at least one of the literals in
the clause, that is, for every path, is there at least literal li such that the atomic proposition xi in li does not appear
on the path, or the arc on the path from xi matches the polarity of x in li (the outgoing arc from the node is dashed
if li = xi and solid if li = xi.)

The test is simplest done as follows: remove all such outgoing arcs for nodes with x1, . . . , xn, as well as all arcs
between nodes y and y′ such that one of the xi is between y and y′ in the variable ordering. Then the clause is
logical consequence of the OBDD if there is still at least one path from the root node to the leaf node ⊤: this
means that the OBDD is true in at least one valuation in which all of l1, . . . , ln are false.

4.3.4 Restriction

Given an OBDD representing a propositional formula ϕ, the function restrict returns an OBDD that represents
ϕ with every occurrences of a given atomic proposition replaced by the constant true or false. This operation is
useful in implementing the existential and universal abstraction operations in Section 4.3.5.

1: procedure restrict(B : OBDD, x : variable, b : bool)
2: begin
3: if index(B)> index(x) then return B;
4: if index(B)< index(x) then return mkNode(index(B),restrict(B.posChild,x,b),restrict(B.negChild,x,b));
5: if b = 0 then return B.negChild;
6: return B.posChild;
7: end

Here mkNode creates a new OBDD node, or if a node with the same children exists already, returns that one, or,
if both recursive calls to restrict return the same node, directly returns that node without creating any new nodes.

4.3.5 Abstraction

A key operation, needed in relational operations such as the join, is existential abstraction. This is also the
operation that seems to be the reason why OBDDs are in many applications preferable to unrestricted propositional
formulas: repeated existential abstraction unavoidably explodes the size of propositional formulas, whereas the
size of OBDDs can remain in reasonable bounds.

For unrestricted propositional formulas there are no very effective methods for simplifying ϕ[⊤/x] ∨ ϕ[⊥/x] as
resulting from abstraction ∃x.ϕ. Other operations, such as conjunction, renaming, and emptiness/satisfiability
testing, would often not be an obstacle for using unrestricted propositional formulas in the applications where
OBDDs have been very successful. NP-completeness of SAT is often mentioned as a reason why OBDDs are
preferable, but the numbers of variables in many applications are relatively low (hundreds or at most thousands),
and modern SAT solvers perform these tests very efficiently for smallish formulas.

Some properties of the abstraction operations:

∃x.(ϕ1 ∨ ϕ2) ≡ (∃x.ϕ1) ∨ (∃x.ϕ2) (4.8)

∀x.(ϕ1 ∧ ϕ2) ≡ (∀x.ϕ1) ∧ (∀x.ϕ2) (4.9)

∃x.¬ϕ ≡ ¬∀x.ϕ (4.10)

∀x.¬ϕ ≡ ¬∃x.ϕ (4.11)
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x1

x2 x2

x3 x3 x3 x3

y3 y3 y3 y3 y3 y3 y3 y3

y2y2y2y2

y1y1

⊤⊥
(a) Exponential size

x1

y1 y1

x2

y2 y2

x3

y3 y3

⊤

⊥
(b) Linear size

Figure 4.2: OBDDs for (x1 ↔ y1) ∧ (x2 ↔ y2) ∧ (x3 ↔ y3)

The abstraction operations can be implemented with the restriction operation of Section 4.3.4. Existential abstrac-
tion ∃x.B simply as apply(∨,restrict(B,x,1),restrict(B,x,0)), and universal abstraction ∃x.B as apply(∧,restrict(B,x,1),restrict(B,x,0)).

4.3.6 Variable Ordering

For a given Boolean function, OBDDs with different variable ordering may look completely different, and the
differences in their sizes may be dramatic. Finding a good variable ordering is one of the critical issues in the
efficient use of OBDDs. A bad variable ordering may lead to an astronomically large OBDD, and a good variable
ordering may lead to a small one.

Example 4.20 Figures 4.2a and 4.2b contain two OBDDs for the formula (x1 ↔ y1) ∧ (x2 ↔ y2) ∧ (x3 ↔ y3).

The first one has an exponential size, and it has the variable ordering x1, . . . , xn, yn, . . . , y1. Intuitively, each of
the y3 nodes in the middle of the OBDD encodes one of the valuations of x1, . . . , xn, corresponding to the path
from the root node. Since there are 2n valuations, there are 2n nodes for yn. The lower part of the OBDD reads
the valuation of y1, y2, y3, and if it does not match the valuation of x1, x2, x3, an arc to the ⊥-node is followed.

The second OBDD for the same formula has only 3n non-leaf nodes, and hence it is linear in n. The OBDD reads
the xi variables one by one, and immediately makes a comparison to the corresponding yi variable. Hence the
OBDD does not need to “remember” previous values, only the last xi value.

Clearly the ordering x1, y1, x2, y2, . . . , xn, yn (or any ordering in which the xi and yi for the same i are next to
each other) is better than x1, . . . , xn, yn, . . . , y1 (and other similar ones.) ■

Variable ordering can be designed manually, or they can be found by the automated variable ordering methods
provided by OBDD packages. The automated methods perform a form of local search, trying out small mod-
ifications in the ordering, and keeping a change if the size of the OBDD got smaller. These methods have not
guarantee of finding a good ordering even if an obvious one existed.

4.4 Normal Forms DNNF and d-DNNF

Darwiche et al. [Dar01, DM02] have carried out a thorough study on features of propositional formulas, to identify
normal forms of practical importance.

The first new normal form identified by Darwiche was Decomposable NNF [Dar01]. This is NNF with the
additional property of decomposability.



4.5. NORMAL FORMS SUMMARY 25

Definition 4.21 (Decomposability) A formula ϕ in NNF is decomposable if for every subformula ψ1 ∧ ψ2 of ϕ,
the subformulas ψ1 and ψ2 don’t share atomic propositions.

The normal form DNNF (Decomposable Negation Normal Form) is defined as formulas in NNF that additionally
satisfy the decomposability condition.

Notice that OBDDs are subclass of DNNF: In OBDDs conjunctions are of the form x∧ϕ[⊤/x] and ¬x∧ϕ[⊥/x],
where x is an atomic proposition and ϕ[⊤/x] and ϕ[⊥/x] trivially have no occurrences of x.

Unlike for general NNF formulas, formulas in DNNF have the interesting property that satisfiability testing can
be done in polynomial time. The algorithm for doing this is as follows.

dcSAT (x) = true
dcSAT (¬x) = true
dcSAT (⊤) = true
dcSAT (⊥) = false

dcSAT (ϕ1 ∧ ϕ2) = dcSAT (ϕ1) and dcSAT (ϕ2)
dcSAT (ϕ1 ∨ ϕ2) = dcSAT (ϕ1) or dcSAT (ϕ2)

This algorithm does not work correctly for general NNF. For example, dcSAT(x ∧ ¬x) will incorrectly return
true. But the decomposability property guarantees that the satisfiability of ϕ1 and the satisfiability of ϕ2 entail the
satisfiability of ϕ1 ∧ ϕ2. Since the two formulas share no atomic propositions, if they are both satisfiable, we can
always easily construct a satisfying valuation from the satisfying valuations of the two formulas.

Translation from general propositional formulas into NNF is polynomial time, but translation from NNF into
DNNF takes exponential time in the worst case. This is to be expected, as SAT is NP-hard but for DNNF satisfia-
bility testing is polynomial time. The most effective known methods for translating formulas into DNNF always
translate the formulas into the normal form d-DNNF too [Dar02, HD05]. We define d-DNNF next.

A further condition on NNF is determinism.

Definition 4.22 (Determinism) A formula ϕ in NNF is deterministic if for every subformula ψ1 ∨ ψ2 of ϕ, the
subformulas ψ1 and ψ2 are mutually contradictory.

The normal form d-DNNF (Deterministic DNNF) is defined as formulas in DNNF that additionally satisfy the
determinism condition.

Notice that OBDDs are subclass of d-DNNF: In OBDDs disjunctions are of the form (x∧ϕ[⊤/x])∨(¬x∧[⊥/x]),
and the two disjuncts contradict because of x and ¬x.

In addition to polynomial-time satisfiability testing, d-DNNF additionally have polynomial-time model-counting.
This is because the model counts, that is the number of satisfying assignments, for a subformula ψ1 ∨ ψ2 can be
obtained as the sum of the model-counts of ψ1 and ψ2.

There are examples of Boolean functions that can be expressed more compactly in DNNF than in d-DNNF, and
more compactly in d-DNNF than in OBDD. A property separating OBDD from d-DNNF and DNNF is canonicity:
the DNNF and d-DNNF for a given Boolean function are not unique. This seems to be the main reason why
OBDDs, and not some other normal form, has been extensively used in practice. Canonicity of OBDDs relies on
the ordering condition, whereas for DNNF and d-DNNF no obvious ordering condition exists. A different type
of normal form, called Sentential Decision Diagram (SDD) [Dar11], located between OBDD and DNNF, has an
ordering condition and canonicity.

For n atomic propositions, the truth-table has 2n rows, and the last row (indicating the value of a Boolean function
for one valuation of the atomic propositions) can be assigned a value in 22

n
different ways. Hence there are 22

n

different Boolean functions of n variables (atomic propositions). One can show by a simple cardinality argument
that “most” Boolean functions do not have “compact” representation (e.g. size that is polynomial in the number
of propositional variables.)
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PL

NNF

CNFDNNF

DNF d-DNNF

OBDD

Figure 4.3: Inclusion Relations of Normal Forms

operation PL NNF CNF DNF DNNF d-DNNF OBDD
ϕ ∈SAT NP NP NP P P P P
ϕ ∈TAUT co-NP co-NP P co-NP co-NP P P
ϕ |= c co-NP co-NP co-NP P P P P
model counting NP NP NP NP NP P P
n× ∧ P P P exp exp exp exp
n× ∨ P P exp P P exp exp
¬ P P exp exp exp ? P

Table 4.2: Complexity of Logical Operations for Different Normal Forms
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4.5 Normal Forms Summary

Figure 4.3 depicts the inclusion relations between some of the best known normal forms, and Table 4.2 summarizes
the complexities of some important operations on logical formulas for these normal forms. In the table, NP denotes
NP-hard, co-NP denotes co-NP-hard, and P denotes “polynomial time”. The complexity of negating a d-DNNF
formula is not known.

For the construction operations ∨, ∧ and ¬ the result has to be in the same normal form. For one ∧ or ∨,
construction is polynomial size and time (at most n1 × n2 when the constituent formulas have sizes n1 and
n2, respectively), but repeating the operation n times is exponential in n, as the size can increase exponentially
(((n1 × n2)× n3)× n4)× · · · × nk, as the product n1n2 · · ·nk is exponential in k.

The clausal logical consequence ϕ |= c tests whether a clause c is a logical consequence of the formula ϕ. Only
the formula ϕ here is expected to be in the normal form in question. (A clause, a disjunction of literals, is not a
DNNF, d-DNNF, or OBDD.)



Chapter 5

Sets and Relations in the Propositional Logic

Formulas can be viewed as a data structure for representing sets and relations. The advantage of logic in this
application is succinctness: a formula can represent a set that has a size that is exponential in the size of the
formula. Logic representation is therefore succinct. This is in strong contrast to conventional data structures
which would explicitly enumerate all elements of a set, and therefore have a size that is linear in the size of the
set.

5.1 Representation of Sets

Formulas can be considered as a representation of those sets of valuations that make the formula true. We can
identify a valuation v : X → {0, 1} with a vector of length |X|, with each element of the vector corresponding to
one of the atomic propositions in X .

Example 5.1 Let X = {A,B,C,D}. Now a valuation that assigns 1 to A and C and 0 to B and D corresponds

to the bit-vector
A
1
B
0
C
1
D
0 , and the valuation assigning 1 only to B corresponds to the bit-vector

A
0
B
1
C
0
D
0 . ■

Any propositional formula ϕ can be understood as a representation of those valuations v such that v(ϕ) = 1.
Since we have identified valuations and bit-vectors, a formula naturally represents a set of bit-vectors.

Example 5.2 Formula B represents all bit-vectors of the form ?1??, and the formula A represents all bit-vectors
1???. Formula B therefore represents the set

{0100, 0101, 0110, 0111, 1100, 1101, 1110, 1111}

and formula A represents the set

{1000,1001,1010,1011,1100,1101,1110,1111}.

■

Similarly, ¬B represents all bit-vectors of the form ?0??, which is the set

{0000, 0001, 0010, 0011, 1000, 1001, 1010, 1011}.

This is the complement of the set represented by B.

5.1.1 Set Operations as Logical Operations

There is a close connection between the Boolean connectives ∨, ∧, ¬ and the set-theoretical operations of union,
intersection and complementation, which is also historically the origin of Boole’s work on Boolean functions.

If ϕ1 and ϕ2 represent bit-vector sets S1 and S2, then

28
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sets formulas over X
those 2|X|

2 bit-vectors where x is true x ∈ X

E (complement) ¬E
E ∪ F E ∨ F
E ∩ F E ∧ F
E\F (set difference) E ∧ ¬F

the empty set ∅ ⊥ (constant false)
the universal set ⊤ (constant true)

question about sets question about formulas
E ⊆ F ? E |= F ?
E ⊂ F ? E |= F and F ̸|= E?
E = F ? E |= F and F |= E?

Table 5.1: Connections between Set-Theory and Propositional Logic

1. ϕ1 ∧ ϕ2 represents set S1 ∩ S2,
2. ϕ1 ∨ ϕ2 represents set S1 ∪ S2, and
3. ¬ϕ1 represents set S1.

Example 5.3 A∧B represents the set {1100, 1101, 1110, 1111} andA∨B represents the set {0100, 0101, 0110,
0111, 1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111}. ■

Questions about the relations between sets represented as formulas can be reduced to the basic logical concepts
we already know, namely logical consequence, satisfiability, and validity.

1. “Is ϕ satisfiable?” corresponds to “Is the set represented by ϕ non-empty?”
2. ϕ |= α corresponds to “Is the set represented by ϕ a subset of the set represented by α?”.
3. “Is ϕ valid?” corresponds to “Is the set represented by ϕ the universal set?”

These connections allow using propositional formulas as a data structure in some applications in which con-
ventional enumerative data structures for sets are not suitable because of the astronomic number of elements
in the sets. For example, if there are 100 atomic propositions, then any formula consisting of just one atomic
proposition represents a set of 299 = 633825300114114700748351602688 bit-vectors, which would require
7493989779944505344 TB in an explicit enumerative representation if each of the 100-bit vectors was repre-
sented with 13 bytes (wasting only 4 bits in the 13th byte.)

5.2 Relations as Formulas

Similarly to finite sets of atomic objects, relations on any finite set of objects can be represented as propositional
formulas. One of the main applications of this is the representation of transition relations as formulas in order to
solve state-space search problems by automated reasoning methods.

A binary relation R ⊆ X ×X is a set of pairs (a, b) ∈ X ×X , and the representation of this relation is similar to
representing sets before, except that the elements are pairs.

As before, we assume that the atomic objects are bit-vectors. A pair of bit-vectors of lengths n and m can of
course be represented as a bit-vector of length n+m, simply by attaching the two bit-vectors together.

Example 5.4 To represent the pair (0001, 1100) of bit-vectors, both expressed as valuations of atomic proposi-
tions X = {A,B,C,D}, instead use the atomic propositions X01 = {A0, B0, C0, D0, A1, B1, C1, D1} as the
index variables.

The pair (0001, 1100) is hence represented as 00011100, a valuation of X01. ■
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Pair (
A0

0
B0

0
C0

0
D0

1 ,
A1

1
B1

1
C1

0
D1

0 ) therefore corresponds to the valuation that assigns 1 to D0, A1 and B1 and 0 to all
other variables.

Example 5.5 (A0 ↔ A1) ∧ (B0 ↔ B1) ∧ (C0 ↔ C1) ∧ (D0 ↔ D1) represents the identity relation of 4-bit
bit-vectors. ■

Example 5.6 The formula
inc01 = (¬c0 ∧ c1 ∧ (b0 ↔ b1) ∧ (a0 ↔ a1))

∨(¬b0 ∧ c0 ∧ b1 ∧ ¬c1 ∧ (a0 ↔ a1))
∨(¬a0 ∧ b0 ∧ c0 ∧ a1 ∧ ¬b1 ∧ ¬c1)
∨(a0 ∧ b0 ∧ c0 ∧ ¬a1 ∧ ¬b1 ∧ ¬c1)

represents the successor relation of 3-bit integers

{(000, 001), (001, 010), (010, 011), (011, 100), (100, 101), (101, 110), (110, 111), (111, 000)},

which can also be depicted in a tabular form as follows, in order to make the variables for the columns explicit.

a0b0c0 a1b1c1
000 001
001 010
010 011
011 100
100 101
101 110
110 111
111 000

■

Notice in this example that the tabular representation only has 8 rows, whereas the corresponding truth-table for
the formula inc01 has 26 = 64 rows. The tabular representation of the relation only enumerates those rows for
which the formula evaluates to true.

Example 5.7 Consider the relation {(001, 111), (010, 110), (011, 010), (111, 110)}. The relation can be repre-
sented as the following truth-table (listing only those of the 26 = 64 lines that have 1 in the column for ϕ),

a0 b0 c0a1 b1 c1ϕ
...
0 0 1 1 1 1 1
...
0 1 0 1 1 0 1
...
0 1 1 0 1 0 1
...
1 1 1 1 1 0 1
...

which is equivalent to the following formula.

(¬a0 ∧ ¬b0 ∧ c0 ∧ a1 ∧ b1 ∧ c1)∨
(¬a0 ∧ b0 ∧ ¬c0 ∧ a1 ∧ b1 ∧ ¬c1)∨
(¬a0 ∧ b0 ∧ c0 ∧ ¬a1 ∧ b1 ∧ ¬c1)∨
(a0 ∧ b0 ∧ c0 ∧ a1 ∧ b1 ∧ ¬c1)

■

Any binary relation over a finite set can be represented as a propositional formula in this way. These formulas can
be used as components of formulas that represent paths in the graphs corresponding to the binary relation.
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5.2.1 Relational Operations in Logic

As relations as sets of pairs (or, for n-ary relations, sets of n-tuples), the set operations that we already defined (∪,
∩, and so on) immediately apply to relations as well. Of interest in many of our applications are also well-known
relational algebra operations such as join operations (natural join ⋊⋉), projections, and so on. In this section, we
will show how the most important relational operations can be implemented by formula manipulation when the
relations in question are represented as formulas. We focus on the core operations of natural join, selection, and
projection, as most of the other operations, for example many types of join operations, can be reduced to these
basic operations.

The join and projection operations are the basis operations when computing the successors of a set of states with
respect to a binary transition relation, when both the set and the relation are represented as formulas.

We first consider the natural join operation. The natural join operation takes two relations, and constructs a new
table with columns from the two constituent tables, and each row in the new table consists of rows from the
constituent tables that match on the shared columns. There may be zero, one, or more shared columns.

Example 5.8 We form the natural join R1 ⋊⋉ R2 of two relations R1 and R2.

0 1

01 10
10 01
11 11

▷◁

1 2

00 01
01 10
10 11

=

0 1 2

01 10 11
10 01 10

The relation R1 could be called non-zero swap, and R2 could be called increment. Formulas to represent R1 and
R2 are respectively

ϕ1 = (a0 ∨ b0) ∧ (a1 ↔ b0) ∧ (b1 ↔ a0)

and
ϕ2 = (b2 ↔ ¬a1) ∧ (a2 ↔ (a1 ∧ ¬b1)) ∧ ¬(a1 ∧ b1).

(The same Boolean functions can of course be represented by many other logically equivalent formulas.)

Although ϕ1 only contains occurrences of a0, b0, a1, b1, one should thing about its truth-table that also includes
columns for a2 and b2. Essentially, a2 and b2 for ϕ1 are don’t cares: they are not limited by ϕ1, and they can
obtain any truth-values.

Similarly, ϕ2 does not explicitly refer to a0 and b0.

Now, the join R1 ⋊⋉ R2 represents all those valuations of a0, b0, a1, b1, a2, b2 that satisfy both ϕ1 and ϕ2.

The process of matching column 1 values, that is central in computing the join of relations represented as tables,
corresponds to the requirement that valuations that satisfy the formula for R1 ⋊⋉ R2 have to satisfy both ϕ1 and
ϕ2.

Hence the natural join operation simply corresponds to the logical conjunction ∧, and R1 ⋊⋉ R2 is represented by
ϕ1 ∧ ϕ2, as can be easily verified. ■

The selection operation σβ(R) has a straightforward representation when the relation R is represented as a
formula ϕ. This is again simply a conjunction ϕ ∧ β, when β has been expressed in terms of propositional
variables occurring in ϕ.

Finally, we consider the important projection operation πc(R). This operation select some subset c of the columns
of a relation.

Example 5.9 Consider the relation R
0 1

00 00
01 00
10 11
11 11
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represented by the formula ϕ1 = (a1 ↔ a0) ∧ (b1 ↔ a0) (over variables a0, b0, a1, b1), which we would like to
project to the column 1 by π1(R) to obtain

π1


0 1

00 00
01 00
10 11
11 11

 =

1

00
11

The result of the projection is the atomic formula a1 ↔ b1.

Consider the truth-tables of the original relation and its projection to 1:

a0 b0 a1 b1 (a1 ↔ a0) ∧ (b1 ↔ a0)

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 1

a1 b1 a1 ↔ b1
0 0 1
0 1 0
1 0 0
1 1 1

In the second table exactly those rows (valuations of a1, b1) are mapped to 1, for which there is at least one row in
the first table with matching values for a1, b1 and 1 in the last column. We have highlighted the rows in the first
table that correspond to a1 = 0, b1 = 0. This valuation is mapped to 1 in the second table. Similarly, for valuation
a1 = 0, b1 = 1 we get 0 in the second table, because the first table always maps this valuation to 0. ■

What the above example illustrates turns out to exactly match what Existential Abstraction does: eliminating
variables a0 and b0 from the truth table for ϕ corresponds to existentially abstracting a0 and b0 in ϕ, that is,
∃a0∃b0.ϕ.

Definition 5.10 (Existential abstraction) Existential abstraction of ϕ with respect to x is defined by

∃x.ϕ = ϕ[⊤/x] ∨ ϕ[⊥/x].

This operation allows eliminating atomic proposition x from any formula. Make two copies of the formula, with
x replaced by the constant true ⊤ in one copy and with constant false ⊥ in the other, and form their disjunction.

Analogously we can define universal abstraction, with conjunction instead of disjunction.

Definition 5.11 (Universal abstraction) Universal abstraction of ϕ with respect to x is defined by

∀x.ϕ = ϕ[⊤/x] ∧ ϕ[⊥/x].
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Example 5.12
∃B.((A→ B) ∧ (B → C))
= ((A→ ⊤) ∧ (⊤ → C)) ∨ ((A→ ⊥) ∧ (⊥ → C))
≡ C ∨ ¬A
≡ A→ C

∃AB.(A ∨B) = ∃B.(⊤ ∨B) ∨ (⊥ ∨B)
= ((⊤ ∨⊤) ∨ (⊥ ∨⊤)) ∨ ((⊤ ∨⊥) ∨ (⊥ ∨⊥))
≡ (⊤ ∨⊤) ∨ (⊤ ∨⊥) ≡ ⊤

■

Both universal ∀c and existential ∃c abstraction can be viewed as eliminating a column for c in a truth-table of a
formula ϕ by combining lines with the same valuation for variables other than c. There are always two lines that
agree on the valuation of variables other than c, one in which c = 0 and the other with c = 1.

For universal abstraction these lines are combined by the Boolean function and, and for existential abstraction
these lines are combined by the Boolean function or. We will illustrate this in the next example.

Example 5.13 We will abstract a∨(b∧c) both existentially and universally, obtaining ∃c.(a∨(b∧c)) ≡ a∨b and
∀c.(a∨(b∧c)) ≡ a. The corresponding truth tables for the original formula and the results of the two abstractions
are as follows.

a b c a ∨ (b ∧ c)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

a b ∃c.(a ∨ (b ∧ c))
0 0 0

0 1 1

1 0 1

1 1 1

a b ∀c.(a ∨ (b ∧ c))
0 0 0

0 1 0

1 0 1

1 1 1

Here we have colored the pairs of rows in the first truth-table which will be merged to the corresponding rows
in the truth-tables for the abstracted formulas. The difference between the abstractions is that the existential
abstraction yields 0 if and only if both of the two rows in the original table are 0, and for universal abstraction we
get 0 if and only if at least one of the rows is 0. ■

Example

From ¬A0∧¬A1∧((¬B0∧¬C0∧B1∧C1)∨(B0∧¬C0∧¬B1∧C1) produce (¬A1∧B1∧C1)∨(¬A1∧¬B1∧C1).

Φ = ¬A0 ∧ ¬A1 ∧ ((¬B0 ∧ ¬C0 ∧B1 ∧ C1) ∨ (B0 ∧ ¬C0 ∧ ¬B1 ∧ C1)

∃A0B0C0.Φ
= ∃B0C0.(Φ[0/A0] ∨ Φ[1/A0])
= ∃B0C0.(¬A1 ∧ ((¬B0 ∧ ¬C0 ∧B1 ∧ C1) ∨ (B0 ∧ ¬C0 ∧ ¬B1 ∧ C1))
= ∃C0.((¬A1 ∧ (¬C0 ∧B1 ∧ C1)) ∨ (¬A1 ∧ ((¬C0 ∧ ¬B1 ∧ C1))))
= (¬A1 ∧B1 ∧ C1) ∨ (¬A1 ∧ ¬B1 ∧ C1)
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Transition Systems

6.1 Basic Models

Definition 6.1 (Transition System) A transition system ⟨S,E,R⟩ consists of

• a set S of states,
• a set E of events, and
• an assignment R : E → 2S×S of transition relations R(e) ⊆ S × S to all events e ∈ E.

Transition systems model the dynamics of system: the state of the system is changed by events. Zero or more
events may be possible in a state, as indicated by the transition relation associated with the event: if s is related by
R(e) to some state, then the event e is possible in s. If s is related to s′ by R(e) then it is possible that the event
e changes the state from s to s′. The transition system does not determine which events take place: if there are
more than one event possible in a state, there may be one or more possible next states for a state.

Definition 6.2 (Execution) In a transition system ⟨S,E,R⟩, an execution s0, e0, s1, e1, s2, e2, . . . , en−1, sn with
{s0, . . . , sn} ⊆ S and e0, . . . , en−1 ⊆ E is possible if (si, si+1 ∈ R(ei) for all i such that 0 ≤ i < n.

A sequence s consisting of a single state s ∈ S is a trivial execution.

Definition 6.3 (Transition System with State Variables) A transition system with state variables ⟨S,E,R,X, v⟩
consists of a transition system ⟨S,E,R⟩ and

• a set X of state variables,
• a valuation v : S ×X →{0,1} of state variables in states.

For convenience, we will write vs(x) for v(s, x).

In a transition system with state variables we can talk about the truth of a propositional formula in a state of the
transition system. It is trivial to adapt Definition 2.3 to transition systems with state variables to define vs(ϕ) for
any state s ∈ S and any propositional formula ϕ over X .

Definition 6.4 (Succinct Transition System) A succinct transition system variables ⟨X,E,R, I⟩ consists of

• a set X of state variables,
• a set E of events
• a succinctly represented transition relation R(e) ∈ L(X ∪X ′) for every e ∈ E, and
• a succinctly represented set of initial states I ∈ L(X).

If the formula I is the constant ⊤, then any valuation of X is a possible initial state of the transition system.
Typically I expresses at least dependencies between state variables, if not specifying a unique initial state (by a
conjunction of literals for every x ∈ X .)

The relations are represented as formulas R(e) with occurrences of atomic propositions for values of state vari-
ables X = {a, b, c, . . .} and values of state variables in the next state X ′ = {a′, b′, c′, . . .}.

Representation of transition relations in Section 5.2.

34
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6.2 Procedural Representations

While we have defined succinct transition systems in terms of transitions relations represented as logical formulas,
this is not how large transition systems are modelled in practise.

Practical modelling languages represent states are assignments of values to state variables, exactly as with the
logic representation, but transitions are typically defined procedurally, in terms of changes they induce on the
state variables. This, in turn, is similar to programming languages: changes are assignments of values to state
variables, unconditionally or conditionally on some facts holding.

In this section we describe how such procedural representations can be mapped to the logic representation. The
logic representation is important for many of the state space search methods that are scalable to very large state
spaces. If it was not for the logic based representations, we could have defined succinct transition systems (Def-
inition 6.4) in terms of functions f : S → 2S , where S is the set of all valuations of the state variables, that
map individual states to sets of states (zero or one states for a deterministic transitions, and 2 or more states for
nondeterministic transitions.) Clearly, both types of definitions are equivalent, because a function f : S → 2S can
be understood as a many-to-many binary relation on S, exactly as we have defined transitions in Definition 6.4.

The plan next is to give a simplest possible procedural transition representation and show how it is mapped to the
propositional logic (Section 6.2.1), and then give a more expressive definition that covers a complex modelling
language (Section 6.2.2)

6.2.1 Deterministic Unconditional Transitions

We first consider a transition representation in which a transition is characterized by a pair (p, e) where p is an
arbitrary propositional formula (the precondition), and e is a set of assignments x := 0 or x := 1. That is, every
change to the state variables is fixed and independent of the state the transition takes place. The set e of effects
can be identified with literals x and ¬x, corresponding to assignments to 1 and 0.

This language cannot compactly represent many types of changes. For example, it cannot compactly represent a
transition that complements the value of n state variables x1, . . . , xn. One would need 2n separate transitions for
representing this type of complementation.

Nevertheless, many types of complex systems can still be represented, with conditional behavior split to multiple
transitions. Incrementing an n-bit binary number represented by xn−1, . . . , x0 can be done with n unconditional
transitions.

Example 6.5 Incrementing a 5-bit binary number is achieved by the following transitions, exactly one of which
can be applicable in any given state.

(¬x0, {x0})
(¬x1 ∧ x0, {x1,¬x0})
(¬x2 ∧ x1 ∧ x0, {x2,¬x1,¬x0})
(¬x3 ∧ x2 ∧ x1 ∧ x0, {x3,¬x2,¬x1,¬x0})
(¬x4 ∧ x3 ∧ x2 ∧ x1 ∧ x0, {x4,¬x3,¬x2,¬x1,¬x0})

■

Definition 6.6 (Unconditional deterministic transition) Given an unconditional transition (p, e), its translation
into the propositional logic is

p ∧
∧

{x′|x ∈ e, x ∈ X} ∧ {¬x′|¬x ∈ e, x ∈ X} ∧ {x↔ x′|x ∈ X,x ̸∈ e,¬x ̸∈ e}

In addition to the precondition, the formula essentially gives, for every state variable x ∈ X , an equivalence
x′ ↔ ϕx, where ϕx = ⊤ if x ∈ p, ϕx = ⊥ if ¬x ∈ p, and ϕx = x if {x,¬x} ∩ p = ∅. These equivalences
describe how the new value of every state variable depends on the values of the old values of state variables. In the
simple case covered here, the dependencies are simple, as either a state variable retains its old value, or becomes
unconditional true or false. In the next section we cover far more complex dependencies.
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Exercise 6.1 Given a state in which a, b and c are all true, and the transition (a ∧ b, {¬b,¬c}),
1. express both the state and the transition relation as propositional formulas,
2. form their conjunction,
3. existentially abstract away all atomic propositions x ∈ X , leaving only atomic propositions x ∈ X ′ left,
4. simplify the formula by eliminating all occurrences of ⊤ and ⊥.

6.2.2 General Definition

The simple procedural representation for unconditional transitions covered in the previous section can be restric-
tive, as the changes taking place in a state cannot be dependent on the state, which may require the use of a large
number of unconditional transitions. For representing more complex systems it is customary to use a transition
model with more complex features, which allow representing many problem far more compactly.

Definition 6.7 (Succinct transition procedure) Given a set X of state variables, a transition is described by a
pair (p, e) where p is a propositional formula over X , and e is an effect. The set of all possible effects over X is
recursively defined by

1. ϵ (the NO-OP effect) is an effect,
2. x and ¬x for any x ∈ X are (atomic) effects,
3. eITE(ϕ, e1, e2) is an effect if ϕ is a formula over X and e1 and e2 are effects over X , and
4. e1; e2 is an effect if e1 and e2 are effects over X .

The empty effect ϵ does not do anything. The conditional effect eITEϕe1e2 is the procedural IF-THEN-ELSE
statement: if the condition ϕ holds, then e1 is executed, and otherwise e2 is executed. We could define IF-THEN
eIT(ϕ, e) as a special case eITE(ϕ, e, ϵ). The sequential composition e1; e2 of two effects means that e1 is executed
first, and then e2 after that.

Next we present a systematic derivation of a translation from our action definition to the propositional logic. We
could give the definition directly (and you can skip to the table given on the next page), but we can alternatively use
the weakest precondition predicate familiar from programming logics [Dij75] to do the derivation systematically
not only for our limited language for actions, but also for a substantially more general one.

The weakest precondition predicate wpπ(ϕ) gives for a program π (effect of an action) and a formula ϕ the weakest
(most general) formula χ = wpπ(ϕ) so that if a state s satisfies χ, that is s |= χ, then the state obtained from s by
executing π will satisfy ϕ.

Example 6.8 If a condition is not affected by the program, then the weakest precondition is the condition itself.

wpx:=1(y = 1) = y = 1

If the program achieves the condition unconditionally, then the weakest precondition is the constant ⊤.

wpx:=1(x = 1) = ⊤

■

Definition 6.9 (Expressions) Only the constant symbols 0 and 1 are expressions.

Definition 6.10 (Programs) 1. The empty program ϵ is a program.
2. If x is a state variable and f is an expression, then x := f is a program
3. If ϕ is a formula over equalities x = f where x is a state variable and f is an expression, and π1 and π2 are

programs, then eITE(ϕ, π1, π2) is a program.
4. If π1 and π2 are programs, then their sequential composition π1;π2 is a program. This program first executes
π2, and then π2.

5. If π1 and π2 are programs, then their parallel composition π1|π2 is a program. This program first executes
π2, and then π2.

Nothing else is a program.
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Given a program π and formula ϕ, we can compute the weakest precondition wpπ(ϕ), that has the property, that
if it is satisfied, then executing π will end in a state that satisfies ϕ, and for any other formula χ that satisfies the
same condition, χ |= wpπ(ϕ), that is, it is the weakest such formula. It was first investigated by Dijkstra [Dij75].

Definition 6.11 (The Weakest Precondition)

wpϵ(ϕ) = ϕ (6.1)

wpx:=b(ϕ) = ϕ with x replaced by b (6.2)

wpeITE(θ,π1,π2)(ϕ) = (θ ∧ wpπ1(ϕ)) ∨ (¬θ ∧ wpπ2(ϕ)) (6.3)

wpπ1;π2(ϕ) = wpπ1(wpπ2(ϕ)) (6.4)

(6.5)

6.3 Higher Order Representations

Practical modelling languages have concepts that are at a higher level than the propositional logic. The set of state
variables is not a collection x1, . . . , xn of unstructured variables. Instead, these atomic (Boolean) state variables
are obtained from a higher level specification language.

We give an example of such a language.

There are different types of objects, each type t characterized by its domain Dt, the set of objects belonging to the
type. The objects themselves are represented as their names, an alphanumeric string.

The state variables are formed by combining a predicate symbol P with some combination (o1, . . . , ok) ∈ Dt1 ×
· · · ×Dtn of objects associated with the type (t1, . . . , tn) of the predicate.

Example 6.12 Let there be only one type location, with the domain Dlocation = { Helsinki, Tampere, Jyväskylä,
Oulu }.

Let there be only one predicate arc, of type (location,location).

All combinations of locations, obtained as the Cartesian product Dlocation × Dlocation, yield the following state
variables.

arc(Helsinki,Helsinki) arc(Helsinki,Tampere) arc(Helsinki,Jyväskylä) arc(Helsinki,Oulu)
arc(Tampere,Helsinki) arc(Tampere,Tampere) arc(Tampere,Jyväskylä) arc(Tampere,Oulu)
arc(Jyväskylä,Helsinki) arc(Jyväskylä,Tampere) arc(Jyväskylä,Jyväskylä) arc(Jyväskylä,Oulu)
arc(Oulu,Helsinki) arc(Oulu,Tampere) arc(Oulu,Jyväskylä) arc(Oulu,Oulu)

■

Similarly to creating state variables from a parametric definition (a predicate), also the transitions can be created
from a parametric definition.

Our definition of a parametric transition consists of three components (i, p, e), where

• i is a list (v1, t1), . . . , (vn, tn) of pairs (v,t) where v is a variable name and t is a type,
• p is a propositional formula with schematic variables as the atomic propositions, and
• e is an effect with schematic variables as state variables.

A parametric transition is instantiated by creating all possible bindings (v1, . . . , vn) ∈ Dt1 × · · · ×Dtn , and for
each binding producing a succinct transition.

Example 6.13 We have the arc predicate of type (location,location) as discussed before, as well as a unary pred-
icate isAt of type location.

A schematic transition that moves (a single unspecified object) between locations is defined as (i, p, e) where

• i = (o1,location),(o2,location)
• p = isAt(o1) ∧ arc(o1,o2)
• e = { isAt(o2), ¬ isAt(o1) }
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This schematic transtion can be instantiated in 4 × 4 different ways, as there are two parameters each with 4
objects in its type domain. One of the instances of the transition is (p, e) where

• p = isAt(Helsinki) ∧ arc(Helsinki,Tampere)
• e = { isAt(Tampere), ¬ isAt(Helsinki) }

■
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Symbolic Reachability Testing

State-space search is the problem of testing whether a state in a transition system is reachable from one or more
initial states. Transition systems in the most basic cases can be identified with graphs, and the state-space search
problem in this case is the s-t-reachability problem in graphs.

For small graphs the problem can be solved with standard graph search algorithms such as Dijkstra’s algorithm.
For graphs with an astronomically high number of states, 1010 or more, standard graph algorithms are impractical.
Many transition systems can be compactly represented, yet their size as graphs is very high. This is because
N Boolean (0-1) state variables together with a state-variable based representation of the possible actions or
events can induce a state-space with the order of 2n reachable states. This is often known as the combinatorial
explosion. It turns out that the s-t-reachability problem for natural compactly represented graphs is PSPACE-
complete [GW83, Loz88, LB90, Byl94].

Classical propositional logic has been proposed as one solution to state-space search problems for very large
graphs, due to the possibility of representing and reasoning about large numbers of states with (relatively small)
formulas.

7.1 OBDD-Based Symbolic Reachability

The logic-based methods are best understood in terms of relational operations, with formulas representing sets
and relations. A basic state space traversal algorithm expressed with relation join and projection is as follows.

1. i := 0
2. S0 := set of initial states
3. i := i+ 1

4. Si := Si−1 ∪ π2(Si−1 ⋊⋉ R)

5. if Si ̸⊆ Si−1, go to 3.

On step 4, set Si of those states that are reachable from the initial states by i step or less is computed. This
consists of the states in Si−1 as well as those states that can be reached from a state in Si−1 by one step. These
latter states are obtained by π2(Si−1 ⋊⋉ R), where the natural join Si−1 ⋊⋉ R computes those pairs (s, s′) of states
where s ∈ Si−1 has distance i − 1 and where s′ can be reached from s by one step, as determined by the 1-step
reachability relation R. From Si−1 ⋊⋉ R we obtain those states that are reached from Si−1 by projection to the
second elements of the pairs, dropping the first element.

In Section 5 we have already shown how set and relation operations can be implemented as formula manipulation,
when the sets Si and the relations R are represented as formulas. Next we show how state space reachability
problems can be solved with those techniques.

The first idea is that states are valuations of some set of state variables X = {x1, . . . , xn}. Any set of states
can be represented as a formula on X , and any formula on X represents a set of states. Next, the arcs in any
transition system (with states represented by valuations of X), representing transitions from states to states is a
binary relation on valuations of X . As was shown before, such a relation can be represented as a formula on
propositional variables X ∪ X ′, where X ′ = {x′1, . . . , x′n}. Here we have two propositional variables for every
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state variable: one indicating its value before a transition takes place, and the other indicating its value after.

We already saw an example of this kind of formula in Example 5.6, here adapted to the x, x′ convention on names
of propositional variables.

inc = (¬c ∧ c′ ∧ (b↔ b′) ∧ (a↔ a′))
∨(¬b ∧ c ∧ b′ ∧ ¬c′ ∧ (a↔ a′))
∨(¬a ∧ b ∧ c ∧ a′ ∧ ¬b′ ∧ ¬c′)
∨(a ∧ b ∧ c ∧ ¬a′ ∧ ¬b′ ∧ ¬c′)

Given a set of states, expressed by a formula ϕ on X , and a transition relation, expressed by a formula ρ on
X ∪X ′, we can compute their natural join by simply forming their conjunction ϕ ∧ ρ. After this, we can project
the resulting relation to the successor states of all possible transitions (s, s′) from s to s′ by existentially abstracting
away all variables in X , by ∃X.(ϕ ∧ ρ). This formula has occurrences of variables from X ′ only. After renaming
every x′ ∈ X ′ to the corresponding x ∈ X , the result is a formula over X .

Corresponding to the relation image operation

imgR(S) = π2(S ⋊⋉ R)

we now have the logical image operation

imgρ(ϕ) = substX/X′(∃X.(ϕ ∧ ρ)),

as well as a pre-image operation

preimgρ(ϕ) = ∃X ′.((substX/X′(ϕ)) ∧ ρ)

for computing all the possible predecessor states of a set of states with respect to a relation.

Now we can express the relation breadth-first search algorithm in terms of formulas.

1. i := 0
2. ϕ0 := formula that represents all initial states
3. i := i+ 1

4. ϕi := ϕi−1 ∨ imgρ(ϕi−1);
5. if ϕi ̸≡ ϕi−1, go to 4.

If we are not interested in computing all reachable states, but only testing whether some states in a set G are
reachable then we can terminate the computation earlier.

1. i := 0
2. ϕ0 := formula that represents all initial states
3. i := i+ 1

4. ϕi := ϕi−1 ∨ imgρ(ϕi−1);
5. if ϕi ̸≡ ϕi−1 and ϕi ∧G ≡ ⊥, go to 4.

Here line 5 has a slightly stronger condition: computation is only continued if no state in G has been reached.

Finally, when interested in the reachability of a specific state or sets of states, it is often useful to explicitly
construct a transition sequence that leads from an initial state to those state. If we have the formulas ϕi from
the previous computation, this can be achieved by the following procedure. Here we assume that the transition
relation formula ρ is a disjunction ρ1 ∨ ρ2 ∨ · · · ∨ ρm, and we are interested in knowing which of the constituent
transitions, which we could call either events or actions, were taken to reach G. The initial value of i below is the
final value of i in the previous algorithm.

1. T := substX′/X(ϕi ∧G)
2. if i = 0, terminate.
3. for some t ∈ {1, . . . ,m} such that Si−1 ∧ ρt ∧ T ̸≡ ⊥ do

(a) T := Si−1 ∧ preimgρt(T )
(b) ti−1 := t

4. i := i− 1
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5. go to 2.

Here the sets B1, . . . , Bi are states that can be reached when firing a sequence of transitions t1, . . . , ti so that a
state in ϕi ∧G is reached in the end.

Notice that only if the constituent transitions ρi are deterministic (it is a (partial) function, rather than a more gen-
eral relation) will the firing of t1, . . . , ti guarantee that a state inG is reached in the end and that setsB1, . . . , Bi−1

are visited on the way.

7.2 SAT-Based Symbolic Reachability

OBDD-based symbolic state-space traversal find longer and longer transition sequences by interleaved natural
joins and projections, when 1-step transitions are represented by the formula ρ over propositional variables X and
X ′, and the initial states are represented by the formula S0 over X .

S1 = substX/X′(∃X.(S0 ∧ ρ)))
S2 = substX/X′(∃X.(substX/X′(∃X.(S0 ∧ ρ))) ∧ ρ)))
S3 = substX/X′(∃X.(substX/X′(∃X.(substX/X′(∃X.(S0 ∧ ρ))) ∧ ρ))) ∧ ρ)))

...

Another way of using the same transition relation formulas is to perform only the natural joins, ignoring the
projections that are needed for “forgetting” about the past transition sequence. This will lead to formulas of the
following form, when testing the reachability of states expressed by a formula G.

S0 ∧ substX@1/X′(ρ) ∧ substX@1/X,X@2/X′(ρ) ∧ substX@2/X,X@3/X′(ρ) ∧ · · · ∧ substX@n/X(G).

The sets X@i for integers i consist of all propositional variables x@i where x ∈ X is a state variable.

This formula is satisfiable if and only if there is a transition sequence of length n from one of the initial states to
one of the goal states.

Example 7.1 The successor relation of 3-bit integers (000, 001), (001, 010), (010, 011), (011, 100), (100, 101), (101, 110), (110, 111), (111, 000)
is represented by the formula

inc = (¬c ∧ c′ ∧ (b↔ b′) ∧ (a↔ a′))
∨(¬b ∧ c ∧ b′ ∧ ¬c′ ∧ (a↔ a′))
∨(¬a ∧ b ∧ c ∧ a′ ∧ ¬b′ ∧ ¬c′)
∨(a ∧ b ∧ c ∧ ¬a′ ∧ ¬b′ ∧ ¬c′),

and the multiplication by 2 for 3-bit integers (left shift, losing the most significant bit) is represented by the
formula

ml2 = (a′ ↔ b) ∧ (b′ ↔ c) ∧ ¬c′.

To test whether the bit-vector 101 is reachable from bit-vector 000 by four steps by using actions inc and ml2 test
the satisfiability of the formula

¬a@0 ∧ ¬b@0 ∧ ¬c@0
∧(inc[X@0/X,X@1/X ′] ∨ml2[X@0/X,X@1/X ′])
∧(inc[X@1/X,X@2/X ′] ∨ml2[X@1/X,X@2/X ′])
∧(inc[X@2/X,X@3/X ′] ∨ml2[X@2/X,X@3/X ′])
∧(inc[X@3/X,X@4/X ′] ∨ml2[X@3/X,X@4/X ′])
∧a@4 ∧ ¬b@4 ∧ c@4

There is exactly one satisfying assignment.

i a@i b@i c@i action
0 0 0 0 inc
1 0 0 1 inc or ml2
2 0 1 0 ml2
3 1 0 0 inc
4 1 0 1
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■

The general scheme followed here involves generating formulas Φi for i-step reachability, and testing their sat-
isfiability one by one, starting from Φ0,Φ1, . . ., until a satisfiable formula Φj is found. From the satisfying
assignment a transition sequence can be extracted: for every two consecutive time points i, i+ 1, the valuation of
the propositional variables in X@i ∪X@(i+ 1) corresponds to (at least) one of the transitions.

7.2.1 Parallel Actions

The scheme we presented involves one transition at a time. Transition systems are typically described by transition
rules, which correspond to the different possible actions or events, as discussed in Section 6.2.

To reduce the length of the state sequences to be considered, it is useful to try to pack more than one action/event
transition in one step. Hence the transition relation formula does not represent the firing of one transition rule, but
several. In this section we demonstrate how this type of partially ordered action sequences can be represented in
the propositional logic. Here the partial ordering refers to the fact that at a given step, the ordering of the actions
is not total: actions a1, . . . , an are taken, but no strict ordering between them is imposed (explicitly).

We consider partial ordering schemes in which the simultaneous actions a1, . . . , an, represented by rules (c1, e1), . . . , (cn, en)
taken in state st of the state sequence s0, . . . , sN satisfy the following two properties.

• The conditions ci for i ∈ {1, . . . , n} all satisfy st |= ci.
• Each effect ei of action ai causes the same changes as it would cause alone, irrespectively of the other actions

taken in parallel.

Action a1, . . . , an occurring “in parallel” means that they occur in some total ordering ai1 , ai2 , . . . , ain with
{i1, . . . , in} = {1, . . . , n}.

The effects e of actions.
x := F (x1, . . . , xn) assignment of a state variable x ∈ X = {x1, . . . , xn}
eITE(ϕ, e1, e2) IF-THEN-ELSE conditional
e1; e2 sequential composition: execute e1 and then execute e2
e1 : e2 parallel composition: execute e1 and e2 simultaneously

In contrast to the weakest precondition predicate wp (Definition 6.11), what we need to determine the conditions
under which a state variable changes. This is to distinguish between the cases in which x will be true because it
was true already and did not become false, and in which x is changed to true.

The condition under which x becomes true is denoted by cca(x), and the condition under which x becomes false
is denoted by cca(¬x).

Definition 7.2

ccϵ(x) = ⊥ (7.1)

ccx:=ϕ(x) = ϕ (7.2)

ccy:=ϕ(x) = ⊥ when x ̸= y (7.3)

ccx:=ϕ(¬x) = ¬ϕ (7.4)

ccy:=ϕ(¬x) = ⊥ when x ̸= y (7.5)

cceITE(ϕ,e1,e2)(l) = (ϕ ∧ cce1(l)) ∨ (¬ϕ ∧ cce2(l)) (7.6)

cce1;e2(l) = (cce1(l) ∧ wpe1(¬cce2(l))) ∨ wpe1(cce2(l)) (7.7)

cce1:e2(l) = cce1(l) ∨ cce2(l) (7.8)

The propositional variables used to express the transition relation formulas with parallel action are as follows.

x value of state variable x
x′ value of state variable x at the next time point
a action a is executed?

Unlike in the formula in Section 6.2, here we have propositional variables a that indicate whether a given action
is taken at the current time point.
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To express the possibility of taking an action we need to make sure that the condition part c of the action (c, e)
is true: a → c. For given values for the action variables a1, . . . , an and the propositional variables x ∈ X that
represent the current state, the following formula determines the new value for each state variable x ∈ X uniquely.

x′ ↔

(∨
a∈A

(a ∧ cca(x))

)
∨

(
x ∧ ¬

∨
a∈A

(a ∧ cca(¬x))

)
(7.9)

This formula is often represented in a different, but logically equivalent form.

First, we view the equivalence as x′ ↔ (Φ1 ∨ (x ∧ ¬Φ2)), where Φ1 is the condition for x becoming true and Φ2

is the condition for x becoming false. The formula can be equivalently written as follows.

Φ1 → x′ (7.10)

x ∧ ¬Φ2 → x′ (7.11)

¬Φ1 ∧ ¬(x ∧ ¬Φ2) → ¬x′ (7.12)

The formulas 7.10 simply consists of the following for every action.

a ∧ cca(x) → x′ (7.13)

These formulas are called (positive) effect axioms, as they indicate for each action when they will make x true at
the next time point.

The formulas 7.11 are known as (positive) frame axioms for historical reasons. They indicate the conditions
under which x remains true when no action turns it false. They are often written in the form Φ2 ∧ x → x′ or
x′ ∨ ¬x ∨ ¬Φ2.

Formula 7.12 can be rewritten to any of the following implications.

¬Φ1 ∧ (¬x ∨ Φ2) → ¬x′ (7.14)

(¬Φ1 ∧ ¬x) ∨ (¬Φ1 ∨ Φ2) → ¬x′ (7.15)

The last version can be split to two implications.

¬Φ1 ∧ ¬x→ ¬x′ (7.16)

¬Φ1 ∧ Φ2 → ¬x′ (7.17)

The implication 7.16 is the (negative) frame axiom, analogous to the (positive) frame axiom 7.11, and indicating
the conditions under which x is false and remains false.

The implication 7.17 is the negative counterpart of the effect axiom 7.10. It contains the seemingly superfluous
conjunct ¬Φ1. We have assumed that a state variable cannot simultaneously become true and false. Hence
the seemingly superfluous conjunct could be removed. However, our equivalence 7.9 entails that x will be true
whenever the conditions for it becoming true hold (by formula 7.10), and x will only become false if conditions
for becoming false hold and conditions for becoming true do not hold, as is made explicit in formula 7.17.

7.2.2 Alternative Meanings of Parallelism

However, we need something more than the above formulas to guarantee that any set of simultaneous actions can
be meaningfully executed.

Example 7.3 Consider actions

• a1 = (x, y := 0)

• a2 = (y, x := 0)
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As a formula this is
x′ ↔ (x ∧ ¬a2) a1 → x
y′ ↔ (y ∧ ¬a1) a2 → y

If both a1 and a2 are true, both x′ and y′ will be false. This does not correspond to any sequential execution of the
actions, as the actions disable each other. ■

Only such sets of actions are acceptable that can be executed in some total ordering. To guarantee that such a total
ordering exists we need some auxiliary concepts.

Definition 7.4 Action (p1, e1) (possibly) disables (p2, e2) if some x ∈ X occurs in e1 in an assignment x := · · ·
and in p2.

Definition 7.5 Action (p1, e1) affects (p2, e2) if some x ∈ X occurs in e1 in an assignment x := · · · and in ϕ for
some eITE(ϕ, · · · , · · · ) in p2.

Note that these definitions are approximate. E.g. (⊤, (a := 1)) “disables” (a, (x := 1)), although it really
doesn’t. These definitions could be strengthened e.g. by considering whether the state variables occur positively
or negatively.

Example 7.6 (⊤, (x := 0)) disables (x ∨ y, (a := 1)) ■

Example 7.7 (⊤, (x := 0)) affects (⊤, (x := 1)) ■

Example 7.8 (⊤, (x := 0)) affects (⊤, eITE(x, (a := 1), (b := 1))) ■

The simplest condition for simultaneous actions is that they can be executed in any total ordering. This is achieved
by the concept of interference that expresses a symmetric dependency relation.

Definition 7.9 (Interference) a1 and a2 interfere if

1. a1 disables or affects a2, or
2. a2 disables or affects a1

To guarantee that execution in any order is possible and leads to the same state the following suffices. If a1 and
a2 interfere, then include the following formula.

¬a1 ∨ ¬a2

A weaker, directed definition of dependence, sometimes allowing many more actions in parallel, is the following.

Definition 7.10 (Directed Interference) a1 interferes with a2 if a1 disables or affects a2.

Now, even a set of actions that have interfere can be taken in parallel, as long as the directed interference relation
is acyclic. A particularly simple way of achieving this is based on an arbitrarily total ordering a1, . . . , an on the
set of all actions. If the action ai interferes with aj and j > i, then we need include the following formula.

¬ai ∨ ¬aj

Now, given a state s in which a set P ⊆ {a1, . . . , an} of actions is applicable (their conditions are true, and their
effects are non-conflicting) and the above constraints are satisfied, these actions can be executed in an ordering
indicated by the ordering of the set of all actions. This is because each action is applicable in s, and if an action
disables (or can disable) another action, then the latter action is earlier in the ordering.

Example 7.11 Consider the nesting of Russian matryoshka dolls, expressed as the following actions.

a1 = (out1 ∧ out2 ∧ empty2, (1in2 := 1; out1 := 0; empty2 := 0))
a2 = (out2 ∧ out3 ∧ empty3, (2in3 := 1; out2 := 0; empty3 := 0))
a3 = (out3 ∧ out4 ∧ empty4, (3in4 := 1; out3 := 0; empty4 := 0))
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A doll can be put inside another if neither is inside another doll, and the bigger one is empty. As a result, the
bigger will not be empty any more, and the smaller is inside the bigger one. Notice that action a3 disables a2, and
a2 disables a1.

Consider the initial state in which the four dolls are initially un-nested. With the stricter definition of parallelism,
they can be nested one by one, by taking the actions a1, a2, a3 in this order. But with the more relax definition
of parallelism, the nesting can be performed in one step, as all actions are initially applicable, none of the effects
conflict, and the directed interference relation is acyclic. The ordering of the actions is still implicitly the same
a1, a2, a3, but in terms of the definition of parallelism they can be taken at the same time. ■

References

For the solution of reachability problems in discrete transition systems the use of propositional logic as a repre-
sentation of sets and relations was first proposed in the works by Coudert et al. [CBM90, CM90] and Burch et al.
[BCL+94].

The use of these logic-based techniques was possible with (ordered, reduced) Binary Decision Diagrams [Bry92],
generally known as BDDs or OBDDs. BDDs are a restrictive normal form that guarantees a canonicity property:
any two logically equivalent Boolean formulas are represented by a unique BDD. The canonicity property guar-
antees the polynomial-time solvability of many central problems about Boolean formulas, including equivalence,
satisfiability, and model-counting. Though in some cases necessarily (even exponentially) larger than unlimited
Boolean formulas, BDDs also in practice often lead to compact enough representations when unlimited formulas
would in practice be too large.

Other similar normal forms, with useful polynomial-time operations, exist, including Decomposable Negation
Normal form (DNNF) [Dar01, Dar02]. There are interesting connections between this type of normal forms and
the Davis-Putnam procedure [HD05].

Problems with scalability of BDD-based methods was well-understood already in mid-1990s. Another way of
using the propositional logic for solving state-space search problems was proposed by Kautz and Selman [KS92]
in 1992, and in 1996 they demonstrated it to be often far better scalable than alternative search methods for solving
state-space search problems in AI [KS96]. This method was based on mapping one reachability query, whether
a state satisfying a given goal formula is reachable in a given number of steps from a specified initial state. The
method suffered from the large size of the formulas far less than BDDs, and was soon shown to be in many
cases far better scalable than BDD-based methods for example in Computer Aided Verification, for solving the
model-checking problem [BCCZ99].

In Sections 5.2 and 6.2 we only presented the most basic translation of action sequences into propositional formu-
las, with the exactly one action at each step. This is what is known as a sequential encoding. This representation
suffers from the possibility of sequences of actions a1, . . . , an that are independent of each other, and which
therefore can be permuted to every one of n! different orders. These representations are what is typically used
in OBDD-based reachability methods. Having several actions can simultaneous decreases the horizon length.
This substantially improves the scalability of SAT-based methods in the main applications including the plan-
ning, diagnosis, and model-checking problems. The parallel representations, with multiple simultaneous events
or actions, come from Kautz and Selman’s works [KS92, KS96]. The more relaxed notion of parallelism, with
weaker constraints and potential for more parallelism, by requiring that at least one ordering, rather than all total
orderings, are executable, were investigated later [DNK97, RHN06]. The total orderings can be often chosen so
that no constraints limiting the parallelism are needed at all [RHN06].

That the SAT problems in testing the existence of transition sequences of increasing lengths are related in a way
that can be used for speeding up the SAT solving process, was recognized and utilized by Eén and Sörensson in
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Chapter 8

Modal Logics

Many concepts are not definable truth-functionally. Consider the following.

• It is possible that ϕ holds.
• At the next time point ϕ holds.
• After executing the program π, the formula ϕ will hold.

In all of these, the truth of ϕ does not in all cases determine the truth of the sentence in question. Modal logics are
logics that, in addition to the usual Boolean connectives, also include modal operators for defining concepts such
as the ones mentioned above. A major difference between modal operators and Boolean connectives is that the
former are not truth-functional: whereas the truth of a formula like ϕ1 ∨ ϕ2 is a function of the truth-values of ϕ1
and ϕ2, the truth of a modal formula □ϕ is not a function of the truth of ϕ. If a is true, the formula □a could be
true or false, depending on the circumstances. This difference becomes obvious from the way the model-theory
(semantics) of modal logics is defined.

The interesting and intriguing thing is that the generalization of the propositional logic for the above, and many
other, concepts can be achieved in the same kind of formal framework. This framework involves defining the truth
of generalized formulas in a graph, in which the nodes are propositional valuations, and the nodes are connected
to each other by arcs. This framework is related to the notion of transition systems with state variables (Definition
6.3), as we will see later.

In the next sections we first consider basic uni-modal logics with one modality only (the dual modal operators □
and ♢). Then we consider multi-modal logics with multiple modalities, temporal logics which talk about time, as
well as dynamic logics which allow talking about programs and paths in graphs.

8.1 Modal Logics with One Modality

Modal logics with a single modality were the earliest ones, first used in philosophical investigations in concepts
like necessity and possibility, and later with other concepts. These logics have a modal operator □, with □ϕ read
as “it is necessary that ϕ”, and its dual operator ♢ with ♢ϕ read as “it is possible that ϕ”. Depending on the
application, these operators have multiple readings.

• □ϕ: It is necessary that ϕ (Alethic logic)
• □ϕ: It is obligatory that ϕ (Deontic logic)
• □ϕ: It is known that ϕ (Epistemic Logic)
• □ϕ: It is believed that ϕ (Epistemic Logic)
• □ϕ: Always in the future ϕ (Temporal Logic)
• [π]ϕ: After executing π necessarily ϕ (Dynamic Logic)

As pointed out, the dual concept of necessity is possibility, with the operators □ and ♢ related by ♢ϕ ≡ ¬□¬ϕ:
something is possible if its negation is not necessary. Similarly, “obligatory” is dual to “permissible”, and “always”
is dual to “sometimes”. There is no unique dual for “is believed” or “is known” in English, but the dual concepts
could be expressed as “it is considered possible (as far as knowledge/belief is concerned)”. Notice that these two
modal operators are related similarly to the universal and existential quantification operators ∀x.ϕ ≡ ¬∃x.¬ϕ. It
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would be sufficient to use only one of these pairs of operators, but for convenience both are used.

Beliefs, for example, do not in general characterize the actual world exactly, and as beliefs may be false, they
might not concern the actual world at all. And, it turns out, beliefs can be characterized by the set of worlds that
are considered possible by the person/agent in question:

1. If I consider only such worlds possible in which ϕ is true, then I believe ϕ.
2. If I don’t believe ϕ (this is different from believing ¬ϕ!), then I consider at least one world possible in which
A is false.

Clearly, I could not normally believe both A and ¬A (the formula (□A)∧ (□¬A) should in general be false) and
none of the possible worlds satisfy both A and ¬A, but I might consider both A and ¬A as possible as far as my
beliefs are concerned ((♢A) ∧ (♢¬A) could well be true), and there could well be two possible worlds, one of
which satisfying A and the other ¬A.

In deontic logics, in which the operator□ is interpreted as “it is obligatory that”, the set of worlds that are referred
to when interpreting sentences like “it is obligatory that” are those that satisfy all the laws and norms that we are
considering. ϕ is obligatory if and only if ϕ is true in all of those worlds. If ϕ is permitted, then there is at least
one world in which ϕ is true. Further, in temporal logics (which are considered in more detail later in Section 8.3
and 8.4), the worlds that are referred to by operators like “always in the future” are those representing the state of
the world in later time points.

A simple semantics for a fragment of modal logics could be given by having a valuation w for the actual world
and a set of valuations W for all the possible worlds. Then we could say that □ϕ is true if ϕ is true in all
worlds/valuations in W . However, this definition works only when ϕ does not contain modal operators. For the
more general case, with the possibility of nesting modal operators, a more sophisticated semantics is needed.

Starting in 1959, Saul Kripke (a 19-year old Harvard undergraduate) developed a semantics for a wide range of
modal logics based on possible worlds [Kri63a, Kri63b, Kri65]. The semantics is very intuitive and powerful, and
it is the main reason for the wide use of different modal logics in different kinds of applications, varying from
philosophical logic to computer science. The idea is to view the set of all possible worlds as a graph. Formally, a
frame is a pair F = ⟨W,R⟩, where W is a set of possible worlds and R ⊆ W ×W (the accessibility relation) is
a binary relation on W . A frame just describes how the possible worlds are related to each other, it does not yet
say anything about the truth and falsity of formulae.

Let X be a finite set of propositional variables. A model M based on the frame F is a 4-tuple M = ⟨W,R,X, v⟩
where W and R are like in F , and v : W × X → {0, 1} is a valuation that assigns the truth value true or false
(respectively represented by 1 and 0) to each propositional variable in every possible world.

Definition 8.1 (Uni-modal Kripke model) A Kripke model M = ⟨W,R,X, v⟩ consists of

• a set W of worlds,
• a accessibility relation R ⊆W ×W ,
• a set X of atomic formulas,
• a valuation v :W ×X →{0,1} of propositional variables in worlds.

For convenience, we will write vw(x) for v(w, x).

The truth of a formula is defined with respect to one of the nodes of a Kripke model.

We write M |=w ϕ for the truth of a modal formula ϕ in world w in a Kripke model M .

Definition 8.2 (Truth of uni-modal formulas) Let M = ⟨W,R,X, v⟩ be a Kripke model.

1. M |=w x iff vw(x) = 1

2. M |=w ϕ ∧ ψ iff M |=w ϕ and M |=w ψ

3. M |=w ϕ ∨ ψ iff M |=w ϕ or M |=w ψ

4. M |=w ¬ϕ iff not M |=w ϕ

5. M |=w □ϕ iff M |=w′ ϕ for all w′ ∈W such that wRw′

6. M |=w ♢ϕ iff M |=w′ ϕ for at least one w′ ∈W such that wRw′

All but the last two lines in the above definition are essentially the same as the truth-definition for the propositional
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logic. The second last line defines □ϕ to be true in the world w if and only if ϕ is true in all worlds w′ that are
accessible from the current world w according to the relation R.

The necessity operator requires that something holds in all accessible states, whereas the possibility requires only
that something holds in at least one accessible state. So it is not surprising that the relation between □ and
♢ is analogous to the universal ∀ and existential ∃ quantifications which are related by ∀x.ϕ ≡ ¬∃x.¬ϕ and
∃x.ϕ ≡ ¬∀x.¬ϕ.

8.1.1 Validity in classes of frames

The following formulae all valid in all frames, meaning that they automatically follow if we are to have Kripke
models as the semantics of the logic.

• □⊤
• □(a→ b) → (□a→ □b) (the formula schema K)
• □(a ∧ b) ↔ (□a ∧□b)
• ♢(a ∨ b) ↔ (♢a ∨ ♢b)
• □(a→ b) → (♢a→ ♢b)

Also, as we will see later when we axiomatically formalize different modal logics, the set of formulae that are
valid in a class of frames have the following properties.

• If ϕ is valid in a class C of frames, then also □ϕ is valid in C.
• If ϕ and ϕ→ ϕ′ are valid in a class C of frames, then also ϕ′ is valid in C.
• If ϕ is valid in a class C of frames, then any substitution instance of ϕ is valid in C.

In the first two cases this is simply because the set of formulae true in one model have the analogous properties.

8.1.2 Properties of the accessibility relation

What makes Kripke models interesting is that there is a close connection between several important axioms
schemata and the formal properties of the accessibility relations.

Let us consider the following axiom schemata.

1. T: □φ→ φ (alternatively φ→ ♢φ)
2. 4: □φ→ □□φ (alternatively ♢♢φ→ ♢φ)
3. 5: ♢φ→ □♢φ
4. B: φ→ □♢φ
5. D: □φ→ ♢φ (alternatively □φ→ ¬□¬φ)
6. L: □(φ ∧□φ→ χ) ∨ (□(χ ∧□χ→ φ)

Now, these schemata exactly correspond to the following properties of the accessibility relation. We say that a
frame is reflexive, for example, if its accessibility relation is reflexive.

1. reflexivity (wRw for every world w),
2. transitivity (wRu ∧ uRv implies wRv),
3. euclidicity (wRu ∧ wRv implies uRv),
4. symmetry (wRu implies uRw),
5. seriality (for every w there exists v with wRv)
6. weak connectedness (sRt ∧ sRu implies that either tRu, t = u or uRt)

For example, if the frame F if reflexive, then the axiom schema T is valid in F . Also the opposite holds. If the
axiom schema T is valid in a frame F , then F is reflexive. We prove these things and leave the analogous proofs
for the other properties as an exercise.

Theorem 8.3 Axiom schema T is valid in the class of reflexive frames.
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Proof: Let F be a reflexive frame. Let M be a model based on F and let w be any world in M . If □φ is not true
w, then axiom T is true in w. If □φ is true in w, then φ is true in all worlds that are accessible from w. Since the
accessibility relation is reflexive, w is among the accessible worlds, i.e., φ is true in w. This means that also in this
case T is true w. This means, T is true in all worlds in all models based on reflexive frames, which we wanted to
show. □

Theorem 8.4 If T is valid in a frame F , then F is reflexive.

Proof: We prove the contraposition of the claim, that is, start from the negation of the conclusion and derive the
negation of the antecedent.

Assume that F is not reflexive. We will construct a model based on F that falsifies T. Because F is not reflexive,
there is a world w such that not wRw. Construct a model M such that M ̸|=w p and M |=v p for all v such that
wRv. Now M |=w □p and M ̸|=w p, and hence M ̸|=w □p→ p. □

The next table summarizes the correspondences between relational properties and modal axioms.

Name Property Axiom schema
K − □(φ→ ψ) → (□φ→ □ψ)
T reflexivity □φ→ φ
4 transitivity □φ→ □□φ
5 euclidicity ♢φ→ □♢φ
B symmetry φ→ □♢φ
D seriality □φ→ ♢φ
L weak connectedness □(φ ∧□φ→ χ) ∨ (□(χ ∧□χ→ φ)

8.1.3 Different uni-modal logics

Because the different properties considered above are to some extent mutually independent, there is a possibility
to construct many different modal logics corresponding to different classes of frames. Interestingly, the early
modal logics S4 and S5, originally developed without reference to Kripke-style semantics by C. I. Lewis in 1910,
are some of these logics.

One axiom schema is common to most logics that correspond to a class of frames, namely the axiom schema

K = □(a→ b) → (□a→ □b).

We call the corresponding logic K. In general, we simply give the list of names of axioms schemata to name a
logic, but many of the logics of historical importance have their own name that is usually used.

K
S4 = KT4
S5 = KT5

K4.3 = K4L
S4.3 = KT4L

...

These logics have been applied for different purposes. The choice of axiom schemata depends on how one exactly
wants to interpret the modal operators. Some properties often used for formalizations of natural language notions
like knowledge, belief, and obligation, among others, are summarized in the following table. In the column for
each axiom we have indicated whether it should be included in the given type of logic (marked with “Y”). This
is based on reading the axiom with the corresponding meaning (for example “□ϕ→ □□ϕ for epistemic logics is
“If I know ϕ, then I know that I know ϕ.”).
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logics □ ♢ = ¬□¬ K T 4 5 B D
aletic necessary possible Y Y ? ? ? Y
epistemic known possible Y Y Y Y N Y
doxastic believed possible Y N Y Y N Y
deontic obligatory permitted Y N N ? ? Y
temporal always (in future) sometimes Y Y Y N N Y

8.1.4 Undefinable properties

Many properties of binary relations exactly correspond to modal logic formulae. However, there are simple
properties of binary relations that do not have a corresponding axiom schema. One such property is irreflexivity.
For showing that there is no modal axiom schema corresponding to irreflexivity we use p-morphisms.

Definition 8.5 Let M1 = ⟨W1, R1, X, v1⟩ and M2 = ⟨W2, R2, X, v2⟩ be models over the same propositional
variables X . Then a p-morphism from M1 to M2 is a function f :W1 →W2 such that

• sR1t implies f(s)R2f(t),
• f(s)R2u implies that there is t ∈W1 such that sR1t and f(t) = u, and
• M1 |=s p iff M2 |=f(s) p for all p ∈ X and s ∈W1.

So, every world in M1 is mapped to a world in M2, and the arrows between world in M1 are similarly mapped to
arrows in M2. Notice that M2 may have worlds that do not correspond to any world in M1, and that there may be
arrows in M2 that do not correspond to any arrow in M1 as long as the starting world does not correspond to any
world in M1.

A p-morphism between the frames F1 = ⟨W1, R1⟩ and F2 = ⟨W2, R2⟩ is a function f : W1 → W2 that satisfies
the first two conditions of the definition of p-morphisms between models.

Lemma 8.6 Let f be a p-morphism from M1 = ⟨W1, R1, X, v1⟩ to M2 = ⟨W2, R2, X, v2⟩. Then for all s ∈ W1

and all formulae ϕ, M1 |=s ϕ if and only if M2 |=f(s) ϕ.

Proof: By induction on the structure of the formula.

Base case: ϕ is an atomic formula. For any s ∈ W1 by definition of p-morphisms, M1 |=s ϕ if and only if
M2 |=f(s) ϕ.

Inductive cases:

1. Let ϕ = ψ → ψ′. By induction hypothesis M1 |=s ψ iff M2 |=s ψ, and M1 |=s ψ
′ iff M2 |=s ψ

′. From this
the result directly follows.

2. Let ϕ = ¬ψ. By induction hypothesis M1 |=s ψ iff M2 |=s ψ. From this the result directly follows.
3. Let ϕ = □ψ. By induction hypothesis M1 |=s′ ψ iff M2 |=f(s′) ψ for all worlds s′ ∈W1, including those for

which sRs′. From this the result directly follows.

Therefore, M1 |=s ϕ if and only if M2 |=f(s) ϕ, for all s ∈W1 and all formulae ϕ. □

Lemma 8.7 Let there be a surjective p-morphism f from frame F1 to F2. Then for any formula ϕ, F1 |= ϕ implies
F2 |= ϕ.

Proof: Assume there is a model M2 = ⟨W2, R2, X, v2⟩ based on F2 such that M2 ̸|=t ϕ for some t ∈W2. Define
the model M1 based on F1 by

M1 |=s p iff M2 |=f(s) for all s ∈W1

Take any s such that f(s) = t (such an s exists because f is a surjection.) Now by Lemma 8.6 M1 ̸|=s ϕ. □

Theorem 8.8 The class of irreflexive frames is not defined by any axiom schema.
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Proof: We show that there is an irreflexive frame F1 that has a p-morphic image that is not irreflexive. Consider
the frame ⟨N,<⟩ of natural numbers ordered by the less than relation. The frame ⟨{1}, {(1, 1)}⟩ is its p-morphic
image but not irreflexive.

Hence the class of irreflexive frames is not closed under p-morphic images. But the class of frames defined by any
axiom schema is closed under p-morphic images by Lemma 8.7. This shows that the class of irreflexive frames is
not definable by any axiom schema. □

8.1.5 Logical consequence in modal logics

Logical consequence Σ |= ϕ in the classical propositional logic is defined as truth of the consequent ϕ in all
models in which the antecedents Σ are true.

In modal logic there are several alternative definitions of logical consequence, because the truth of the antecedent
can be considered in several different ways: do we require that the antecedents are true in all worlds of the model
and then check whether ϕ is true in all worlds of a model, or do we just check that ϕ is true in those worlds of a
model in which Σ are true?

These two possibilities lead to two different notions of logical consequence. The first is known as the global
definition of logical consequence, and the second as the local definition of logical consequence. In this lecture we
use the local definition.

Definition 8.9 (Logical consequence) The formula ϕ is a logical consequence of a set Σ of formulae in a class
C of frames (or models) (written Σ |=C ϕ) iff for all worlds s in all models M based on F ∈ C (or all models M
in C) M |=s Σ implies M |=s ϕ

Clearly, logical consequence from the empty set Σ = ∅ in a class of frames coincides with validity in that class of
frames.

8.2 Multi-Modal Logics

We can easily have multiple modalities by having multiple modal-operators each corresponding to a different
accessibility relation.

Definition 8.10 (Multi-modal Kripke model) A Kripke model M = ⟨W,D,R,X, v⟩ consists of

• a set W of worlds,
• a set D of modalities,
• an assignment R : D → 2W×W of accessibility relations to each modality,
• a set X of atomic formulas,
• a valuation v :W ×X →{0,1} of propositional variables in worlds.

Now we have multiple modal operators □d, one for each d ∈ D.

Definition 8.11 (Truth of multi-modal formulas) 1. M |=w x iff vw(x) = 1

2. M |=w ϕ ∧ ψ iff M |=w ϕ and M |=w ψ

3. M |=w ϕ ∨ ψ iff M |=w ϕ or M |=w ψ

4. M |=w ¬ϕ iff not M |=w ϕ

5. M |=w □dϕ iff M |=w′ ϕ for all w′ ∈W such that wR(d)w′

We consider multi-modal logics of belief and knowledge of several agents. Each modality d ∈ D correspond to
one of the agents, and the operator □d refers to the beliefs of the agent: □dϕ means that the agent d belief that ϕ,
that is, ϕ is true in all worlds that the agent considers possible. What the agent considers possible is represented
by the accessibility relation R(d).

The beliefs of an agent depend on the agent’s accessibility relation.
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Commonly used axioms in epistemic logics.

1. □i(p→ q) → (□ip→ □iq) (Distribution Axiom for Knowledge)
2. □ip→ p (Knowledge/Truth Axiom)
3. □ip→ □i□ip (Positive Introspection)
4. ¬□ip→ □i¬□ip (Negative Introspection)

We are often interested in the multi-agent epistemic logic S5n that satisfies these principles. The accessibility
relation of each agent is then of course reflexive, transitive and euclidic.

Knowledge generalization rule:

If M |= ϕ, then M |=s □iϕ for every M , ϕ and s.

For many applications it is useful to introduce further modal operators based on the operator K.

Define the operator “everybody knows that ϕ” by

M |=s Eϕ iff M |=s □iϕ for every i ∈ {1, . . . , n}

This of course corresponds to the axioms schema

Eϕ↔ (□1ϕ ∧ · · · ∧□nϕ).

Define the operator “it is common knowledge that ϕ” by

M |=s Cϕ iff M |=s E
iϕ for every i ≥ 1

Here Ei means a sequence EEEEE . . . E of i Es.

Common knowledge has the following property

Cϕ↔ E(ϕ ∧ Cϕ).

There is a simple and very useful graph-theoretic view of these two operators in terms of paths in the Kripke-
model.

Definition 8.12 A world t is reachable from a world in s in k steps if there is a sequence of worlds s0, s1, . . . , sk
so that

1. s0 = s and sk = t, and
2. siRjsi+1 for every i ∈ {0, . . . , k − 1} and any j ∈ {1, . . . , n}.

Lemma 8.13 M |=s E
kϕ iff M |=t ϕ in every world t that is reachable from s in k steps.

M |=s Cϕ iff M |=t ϕ in every world t that is reachable from s in any number of steps.

8.3 Linear Temporal Logic LTL

Linear temporal logic is one of the best-known and most used modal logics in computer science. It can be viewed
as a sub-logic of the branching time temporal logic CTL∗ (Section 8.4), omitting the path quantifiers A and E
that refer to the branching of time.

Since LTL cannot refer to alternative futures, the truth of its formulas are interpreted over individual paths or state
sequences, and in the CTL∗ terminology, all LTL formulas are path formulas, meaning that they talk about truth
of facts along a single timeline, often corresponding to a path in a tree or graph of computations.

The semantics of LTL, similarly to the temporal logics CTL and CTL∗, is not given in the standard framework of
Kripke models as for the uni-modal and multi-modal logics.

Definition 8.14 A linear temporal model M = (X,σ) consists of propositional variables X and an infinite
sequence of propositional valuations σ = (v0, v1, v2, . . .)
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• M |=i x if and only if vi(x) = 1

• M |=i ¬ϕ if and only if M ̸|=i ϕ

• M |=i ϕ1 ∨ ϕ2 if and only if M |=i ϕ1 or M |=i ϕ2
• M |=i ϕ1 ∧ ϕ2 if and only if M |=i ϕ1 and M |=i ϕ2
• M |=i Gϕ if and only if M |=j ϕ for all j ≥ i

• M |=i Fϕ if and only if M |=j ϕ for some j ≥ i

• M |=i Xϕ if and only if M |=i+1 ϕ

• M |=i ϕUψ if and only if for some j ≥ i, M |=j ψ and M |=k ϕ for all k ∈ {i, . . . , j − 1}

8.4 Branching Time Temporal Logics CTL and CTL∗

In many applications of temporal logics in computer science the temporal logic models are based on transition
systems, best understood as arbitrary Kripke structures, instead of linearly ordered structures like in the linear
temporal logic.

An arbitrary Kripke model naturally represents not just one linear ordering of worlds, but a tree, representing a
high number of linear orderings corresponding to the paths in the tree. In this setting it is natural to extend the
linear logic language further to be able to express properties of such trees. This leads to branching time temporal
logics, of which we discuss the computation tree logic CTL∗, and its sublogics LTL and CTL [Eme90].

8.4.1 The language of CTL∗

1. Every propositional variable x ∈ X is a formula.
2. If φ and ψ are formulae, then so are ¬φ, φ ∨ ψ, φ ∧ ψ, φ→ ψ, Fφ, Gφ, Xφ, φUψ, Aφ, Eφ.

The semantics of the operators F ,G,X and U is known from the linear time temporal logics. The path quantifiers
quantify over all of the possibly infinite number of computation paths in a transition system. Formulae Eφ with
existential path quantification say that φ must be true on at least one computation path, and formulae Aφ say that
φ must be true on all computation paths through the current state.

Example 8.15 CTL∗ formulae with path quantification are useful in expressing many correctness properties pro-
grams, controllers or other systems might have to fulfil.

AG¬failure A failure state is never reached.
AG(EF restart) From every state of the system it is possible to reach the restart state. That is,

the system cannot get stuck anywhere.
AG(request → AF ack) Any request will be eventually acknowledged.

■

8.4.2 The semantics of CTL∗

A model in the computation tree logic is a tupleM = ⟨W,R,X, v⟩ whereW is a set of states (possible worlds),R
is an accessibility relation so that for every w ∈W there is w′ ∈W such that wRw′, X is the set of propositional
variables, and v :W ×X → {0, 1} is a valuation that assigns truth values to propositional variables in every state.

The truth of CTL∗ formulae are in general defined over a computation path, an infinite sequence of states in a
model. However, for state formulae that only have E and A as their outermost modal operators the truth can also
be defined with respect to a state.

Definition 8.16 A computation path is an infinite sequence of states λ = w0w1w2 . . . such that wiRwi+1 for
each i ≥ 0. For a path λ = w0w1w2 . . ., λ[i] denotes the state wi. For a path λ, λi denotes the ith suffix of a path
λ,that is, λi is defined by λi[j] := λ[i+ j] for all j ≥ 0.

We often write briefly “path” instead of “computation path”.
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Figure 8.1: Branching temporal model in which AFGp is true but AFAGp is false

The truth-definition of formulae in states w ∈W or over computation paths λ is as follows.

1. M |=w x iff v(w, x) = 1

2. M |=w ¬φ iff M ̸|=w φ

3. M |=w φ ∨ ψ iff M |=w φ or M |=w φ

4. M |=w Aφ iff M |=λ φ for every path λ such that λ[0] = w

5. M |=w Eφ iff M |=λ φ for some path λ such that λ[0] = w

6. M |=λ φ iff M |=λ[0] φ for state formulae φ
7. M |=λ ¬φ iff M ̸|=λ φ

8. M |=λ φ ∨ ψ iff M |=λ φ or M |=λ φ

9. M |=λ Gφ iff M |=λi φ for every i ≥ 0

10. M |=λ Fφ iff M |=λi φ for some i ≥ 0

11. M |=λ Xφ iff M |=λ1 φ

12. M |=λ φUψ iff there is i ≥ 0 such that M |=λi ψ and M |=λj φ for every j ∈ {0, . . . , i− 1}.

8.4.3 Computation tree logic CTL

CTL is a simpler variant of CTL∗ that does not allow arbitrary combination of temporal operators. Specifically,
every occurrence of operators X , F , G and U is preceded by the path quantifier E or A. Essentially, we have 8
modal operatorsAX AF AGAU EX EF EGEU . Hence every formula is a state formula and can be evaluated
with respect to a state without referring to a designated computation path. This restriction on modal operators
reduces the class of properties expressible in CTL, but it also makes CTL much easier to handle computationally.

8.4.4 Relations between CTL, LTL and CTL∗

Every LTL formula and every CTL formulae has an equivalent CTL∗ formula, but LTL and CTL are not compa-
rable in expressivity, that is, there are formulae in both of these logics that express properties of computation trees
not expressible in the other logic.

For the LTL formula F (p ∧ Xp) (interpreted universally with implicit prefix A) there is no equivalent CTL
formula. See the tree in Figure 8.1 that satisfies AFGp (Every path through it satisfies FGp), but it doesn’t satisfy
AFAGp (No node on the leftmost path satisfies AGp.)

For the CTL formula AG(EFp) there is no equivalent LTL formula.

The conjunction AF (p∧Xp)∧AG(EFp) of the above two formulae is a CTL∗ formula that has no counterpart
in LTL nor in CTL. Hence CTL∗ is strictly more expressive than either of the these two logics.
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8.5 Dynamic Logic

Both Floyd and Hoare [Flo67, Hoa69] have used correctness assertions

{φ}α{ψ}

for stating that executing the program α in a state satisfying φ will always end in a state satisfying ψ. There are
proof systems that allow the step-wise derivation of such assertions about programs α from similar assertions on
components of α.

The possible steps a program can take can be understood as a Kripke structure, and this idea leads to the definition
of dynamic logics [Pra76, FL77, FL79], in which we have an infinite number of modal operators [α] for all
possible programs α, and the above correctness assertion corresponds to the dynamic logic formula

φ→ [α]ψ.

8.5.1 Propositional dynamic logic PDL

The language of the propositional dynamic logic is based on a set X of propositional variables and a set A of
atomic programs.

Then formulas and programs based on A and X are defined recursively as follows.

1. The constant true ⊤ is a formula.
2. Every propositional variable x ∈ X is a formula.
3. If φ and ψ are formulae, then so are ¬φ, φ ∨ ψ, φ ∧ ψ, φ↔ ψ and φ→ ψ.
4. Every atomic program a ∈ A is a program.
5. If α and β are programs and φ is a formula, then α ∪ β, α;β, α∗ and φ? are programs.
6. If α is a program and φ is a formula, then [α]φ and ⟨α⟩φ are formulae.

The intuitive meaning of α∪ β is nondeterministic choice: execute either α or β. The construct α;β is sequential
composition: first execute α and then execute β. The α∗ programs correspond to looping: execute α zero or any
finite number of times. Conditional execution is expressed by φ?: the execution continues only if φ is true.

When considering ordinary programming languages, the atomic programs would most naturally be assignment
statements that take us from one possible world to another in which one or more propositional variables have a
different truth-value. Of course, the definition of PDL allows more general types of atomic programs, for example
ones that are nondeterministic and therefore do not define exactly one unique successor for each possible world.

Familiar constructs from procedural programming languages can be defined in terms of the PDL program con-
structs as follows.

if φ then α else β ≡ (φ?;α) ∪ (¬φ?;β)
while φ do α ≡ (φ?;α)∗;¬φ?

repeat α until φ ≡ α; (¬φ?;α)∗;φ?

8.5.2 The semantics of PDL

Models for dynamic logic are Kripke structures with an accessibility relation for every atomic program.

Definition 8.17 A model in the propositional dynamic logic is a tuple M = ⟨W,Ra1 , . . . , Ran , A,X, v⟩ where

• W is a set of possible worlds,
• A is a set of n atomic programs,
• Ra ⊆W ×W for every a ∈ A is an accessibility relation,
• X is the set of propositional variables, and
• v : W × X → {0, 1} is a valuation that assigns truth values to propositional variables in every possible

world.

Analogously to modal logics defined earlier we can talk about the frame F = ⟨W,Ra1 , . . . , Ran⟩.
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The truth-definition of modal formulae in possible worlds w ∈W is as follows (the truth-definition of non-modal
connectives is just like earlier.)

• M |=w [α]φ iff M |=′
w φ for every possible world w′ such that wRαw′.

• M |=w ⟨α⟩φ iff M |=′
w φ for some possible world w′ such that wRαw′.

Here the difference to earlier modal logics is that there is an infinite number of different accessibility relations for
all of the non-atomic programs α. The accessibility relations for these programs are defined as follows.

1. The accessibility relations of atomic programs a ∈ A are given explicitly by the model M .
2. If α and β have respectively accessibility relations Rα and Rβ , then

(a) Rα∪β = Rα ∪Rβ (union of relations),
(b) Rα;β = {⟨w,w′⟩|u ∈W,wRαu, uRβw

′} (composition of relations),
(c) Rα∗ = (Rα)∗ (the reflexive transitive closure of a relation), and
(d) Rφ? = {⟨w,w⟩|w ∈W,M |=w φ}.

8.5.3 Axiom system for PDL

The propositional dynamic logic includes the propositional logic, and hence its set of theorems includes all the the-
orems of the classical propositional logic and its (modal) substitution instances, and it is closed under substitution
and modus ponens.

To formalize PDL axiomatically, one additionally needs axioms for describing the properties of the modal opera-
tors.

Definition 8.18 (Propositional dynamic logic) PDL is the smallest logic that is closed under the necessita-
tion/generalization rule

If ⊢PDL φ, then ⊢PDL [α]φ for any program α.

and contains the following axiom schemata for programs α and β and formulae/propositions p and q.

1. [α](p→ q) → ([α]p→ [α]q)

2. [α;β]p↔ [α][β]p

3. [α ∪ β]p↔ [α]p ∧ [β]p

4. [α∗]p↔ p ∧ [α][α∗]p
5. [α∗](p→ [α]p) → (p→ [α∗]p)
6. [q?]p↔ (q → p)

8.5.4 Relations to other modal logics and Hoare logic

Relation to LTL

Variants of the temporal operators F , X , G and U can be translated into the propositional dynamic logic. Essen-
tially, temporal logics can be understood as dynamic logics that do not make the different programs explicit, or
alternatively, have only one atomic program a. The following is an embedding of LTL operators in PDL.

operator translation into PDL
Fφ ⟨a∗⟩φ
Xφ ⟨a⟩φ
Gφ [a∗]φ
φUψ ⟨(φ?; a)∗⟩ψ

Relation to unimodal logics

There are simple embeddings of some the unimodal logics with operators □ and ♢ in the dynamic logic. The
interesting thing here is that what is the properties of the relations in these uni-modal logics, are represented in
the PDL modal operator.
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logic translation of □φ into PDL
K [a]φ
S4 [a∗]φ
S5 [(a ∪ a−1)∗]φ

Here we need the converse connective −1 that is given a semantics as follows.

Rα−1 = {⟨t, s⟩|⟨s, t⟩ ∈ α}.

The converse program α−1 of α computes the computation of α in reverse from the end states back to the starting
states.

With the above translation the satisfiability problems in the logics in question can be directly translated into PDL.
Notice that the relations in the PDL frames may be arbitrary (K frames), and the reflexivity and transitivity for
S4 and reflexivity, transitivity and symmetry for S5 are properties of the PDL modal operator, and need not be
properties of the frames in question.

Relation to Hoare logic

The Hoare logic is a programming logic that may be used for proving the correctness of programs in procedu-
ral programming languages [Hoa69]. There are different variants of the logic, depending on the definition of
programs and the language in which the correctness assertions are expressed. Here we consider a propositional
variant of the logic, in which the assertions are propositional formulae.

We can consider atomic programs a that are associated with assertions {φ}a{ψ} explaining their behavior. As-
sertions about more complex programs can be proved by using these simplest assertions and inference rules
concerning the program constructs.

The Hoare logic has the following inference rules.

{φ}α{σ}, {σ}β{ψ}
{φ}α;β{ψ} (8.1)

{φ ∧ σ}α{ψ}, {¬φ ∧ σ}β{ψ}
{σ} if φ then α else β{ψ} (8.2)

{φ ∧ ψ}α{ψ}
{ψ} while φ do α{¬φ ∧ ψ} (8.3)

φ′ → φ, {φ}α{ψ}, ψ → ψ′

{φ′}α{ψ′} (8.4)

The counterparts of these inference rules hold in PDL.



Chapter 9

Model-Checking

Model-checking is the problem of testing whether M |= ϕ holds for a given model M and a formula ϕ, that is,
evaluating the truth-value of a formula.

Model-checking for the propositional logic is easy, as it only involves looking up the truth-values of the atomic
propositions and then computing bottom-up the values of all sub-formulas according to the truth-tables of the
different connectives.

For modal logics the model-checking problem becomes more difficult. First, there is a Kripke model instead of
single valuation, and second, in some logics there is an exponential number of different paths through the Kripke
model which all needs to be accounted for. For this reason the complexity of model-checking for linear temporal
logics like LTL and their extensions like CTL∗ are far harder.

9.1 Model-Checking Algorithms

Uni-modal logics like K can be model-checked with a simple labeling procedure, in which the worlds of the
Kripke model are labeled with all subformulas of ϕ that are true in it. This can be done in O(|ϕ| × |W |) time,
considering each subformula and world only once.

1. Label each world w with L(w) = {x ∈ X|M |=w x}
2. Consider all subformulas ϕ′ of ϕ in the order of increasing length:

For every world w, assign L(w) := L(w) ∪ {ϕ′} if
• ϕ′ = ψ1 ∧ ψ2 and ψ1 ∈ L(w) and ψ2 ∈ L(w), or
• ϕ′ = ψ1 ∨ ψ2 and ψ1 ∈ L(w) or ψ2 ∈ L(w), or
• ϕ′ = ¬ψ1 and ψ1 ̸∈ L(w), or
• ϕ′ = □ψ and ψ ∈ L(w′) for all w′ such that wRw′, or
• ϕ′ = ♢ψ and ψ ∈ L(w′) for some w′ such that wRw′.

logic logical consequence model-checking
propositional logic co-NP-complete P-complete
K PSPACE-complete P-complete
S4 PSPACE-complete P-complete
S5 co-NP-complete P-complete
PDL EXP-complete P-complete
CTL EXP-complete P-complete
CTL∗ 2-EXP-complete PSPACE-complete
LTL PSPACE-complete PSPACE-complete

Table 9.1: Complexity of Logical Consequence and Model-Checking
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w1 w2

w3

w4

w5

b
E(aUb)

a
E(aUb)

a
E(aUb)

a
E(aUb)

Figure 9.1: Labeling for E(aUb)

1: procedure EU(α,β)
2: T := {w ∈W |β ∈ L(w)};
3: for each w ∈ T do L(w) := L(w) ∪ {E(αUβ)};
4: while T ̸= ∅ do
5: take any w ∈ T ;
6: T := T\{w};
7: for each t such that tRw do
8: if α ∈ L(t) and E(αUβ) ̸∈ L(t) then
9: L(t) := L(t) ∪ {E(αUβ)};

10: T := T ∪ {t};
11: end if
12: end for
13: end while

Figure 9.2: Procedure for Model-Checking Formulas E(ϕUψ)

9.1.1 CTL Model-Checking

Temporal logics with state formulas only, which do not require making any path through the temporal model
explicit, can be model-checked with a similar labeling procedure. CTL temporal operators like EG and E(ϕUψ)
require a more complicated procedure: EG implicitly refers to an infinite path that exhibits itself as a cycle in
the temporal model, and E(ϕUψ) refers to a long path. For EG we need to detect cycles in the graph, whereas a
procedure for E(ϕUψ) is suggested by observing that the formula is equivalent ψ ∨ (ϕ ∧ EX (E(ϕUψ))).
All other CTL operators are reducible to EX , EG, EU by the following equivalences.

EFφ ≡ E(⊤Uφ) (9.1)

AFφ ≡ ¬EG¬φ (9.2)

AGφ ≡ ¬E(⊤U¬φ) (9.3)

AXφ ≡ ¬EX¬φ (9.4)

A(φUψ) ≡ ¬E(¬ψU(¬φ ∧ ¬ψ)) ∧ ¬EG¬ψ (9.5)

Labeling for E(ϕUψ) can be done after labeling for ψ and ϕ have been completed. First, label all those worlds
with E(ϕUψ) that have label ψ. Then, label all those worlds with E(ϕUψ) that include label ϕ and that have a
successor with label E(ϕUψ). This is procedure is illustrated in Figure 9.1 and given as pseudo-code in Figure
9.2.

Labeling for EGϕ requires checking for infinite paths in the temporal model.

1. Let Wϕ = {w ∈W |ϕ ∈ L(w)}.
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Figure 9.3: Procedure for Model-Checking EGϕ

2. Let G = ⟨Wϕ, R ∩ (Wϕ ×Wϕ)⟩.
3. Find the strongly connected components of G.
4. For each SCC C such that |C| > 1 or wRw for some w ∈ C, do L(w) := L(w) ∪ {EGϕ} for all w ∈ C.
5. For each w ∈Wϕ, if EGϕ ∈ L(w′) for some w′ such that wRw′ then L(w) := L(w) ∪ {EGϕ}.

This procedure is illustrated in Figure 9.3 and pseudo-code for it is given in Figure 9.4.

9.2 A model-checking algorithm for LTL

The model-checking algorithms for the temporal logics LTL and CTL∗ with pure path formulas not directly
prefixed with path quantifiers like in CTL are conceptually more complicated, and also computationally much
more expensive than the algorithm we gave for CTL.

The reason for this additional complexity is that we cannot talk about the truth of formulas in a state without

1: procedure EG(α)
2: S′ := {w ∈W |α ∈ L(w)};
3: SCC := {C|C is a SCC of ⟨S′, R ∩ (S′ × S′)⟩, |C| ≥ 1 or there is w ∈ C with wRw};
4: T := {w ∈ C|C ∈ SCC};
5: for each w ∈ T do L(w) := L(w) ∪ {EGα};
6: while T ̸= ∅ do
7: take any w ∈ T ;
8: T := T\{w};
9: for each t ∈ S′ such that tRw do

10: if EGα ̸∈ L(t) then
11: L(t) := L(t) ∪ {EGα};
12: T := T ∪ {t};
13: end if
14: end for
15: end while

Figure 9.4: Procedure for Model-Checking EGϕ
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making a reference to a particular path in the transition system. This causes a problem because the number of
different paths starting in a given state is often infinite. The number of finite paths of length n can be exponential
in n. At a first look this might seem to imply that we need to consider quantification over an infinite number of
paths, but fortunately this turns out not to be the case. It will suffice to consider only an exponential number of
different kinds of paths starting from the given state, without uniquely representing these paths in detail.

Consider a formula φ to be model-checked. For every state of the transition system, we need only consider all the
possible values the subformulas of φ, and formulas closely related to these subformulas, may have. For example,
when we are interested in the truth of a subformula ψUχ in a state s, we are interested in the truth of ψ and χ in
s, and the truth of ψUχ in the successor states of s, but it does not matter why ψUχ is true in the successor states,
that is, whether ψ and χ are true there or not.

There is a simple construction that uses the above ideas to provide a relatively efficient model-checking algorithm
for LTL. When testing M |=s φ by the algorithm, the runtime is exponential on the size of φ (because of the
possibly exponential number of different kinds of paths that have to be considered), but only polynomial in the size
of M. Because the formulas expressing useful properties of transition systems are often small, the exponentiality
in the size of the formula is usually not a problem, and hence the algorithm is applicable to very big transition
systems.

Consider LTL formulas with only the temporal operators X and U . The operators F and G are reducible to these
operators by the following equivalences.

Fφ ≡ ⊤Uφ (9.6)

Gφ ≡ ¬(⊤U¬φ) (9.7)

Only the subformulas of the formulas φ to be model-checked and a small number of formulas closely related to
them need to be considered by the model-checking algorithm. This is the set CL(φ).

Definition 9.1 The closure CL(φ) of a formula φ is the smallest set of formulas such that

1. φ ∈ CL(φ),
2. ⊤ ∈ CL(φ),
3. ψ ∈ CL(φ) iff ¬ψ ∈ CL(φ),
4. if ψ1 ∨ ψ2 ∈ CL(φ) then ψ1 ∈ CL(φ) and ψ2 ∈ CL(φ),
5. if Xψ ∈ CL(φ) then ψ ∈ CL(φ),
6. if ¬Xψ ∈ CL(φ) then X¬ψ ∈ CL(φ),
7. if ψ1Uψ2 ∈ CL(φ) then {ψ1, ψ2,X (ψ1Uψ2)} ⊆ CL(φ).

Above we identify ¬¬ψ and ψ so that the third rule does not cause the size of the set to become infinite.

The number of formulas in CL(φ) is linear in the size of φ: in addition to subformulas of φ and their negations it
contains at most one additional formula for each subformula of form ψ1Uψ2 and ¬Xψ.

Next we can proceed with the construction of the graph structure that represents all the different kinds of infinite
paths in the Kripke model M. This graph is obtained from M by taking all of its states and making several copies
of them, corresponding to all the possible executions they could be a part of.

Definition 9.2 Let M = ⟨S,R, V ⟩ be a Kripke model on which we are testing M |=s φ for s ∈ S. Then the
tableau1 of M is the graph ⟨S′, R′⟩ where S′ consists of all pairs ⟨s,K⟩ such that s ∈ S and

1. K ⊆ CL(φ) ∪ P ,
2. p ∈ K iff V (s, p) = 1, for every p ∈ P ,
3. ψ ∈ K iff ¬ψ ̸∈ K, for every ψ ∈ CL(φ),
4. ψ1 ∨ ψ2 ∈ K iff ψ1 ∈ K or ψ2 ∈ K, for every ψ1 ∨ ψ2 ∈ CL(φ),
5. ¬Xψ ∈ K iff X¬ψ ∈ K, for every ¬Xψ ∈ CL(φ),
6. ψ1Uψ2 ∈ K iff ψ2 ∈ K or {ψ1,X (ψ1Uψ2)} ⊆ K, for every ψ1Uψ2 ∈ CL(φ).

1This is not related to the proof procedures with analytic/semantic tableaux, and we use the word “tableau” for historical reasons.
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p q

¬p q

¬p ¬q

Figure 9.5: A transition system

and ⟨s,K⟩R′⟨s′,K ′⟩ whenever

1. sRs′

2. for every Xψ ∈ CL(φ), Xψ ∈ K iff ψ ∈ K ′.

Essentially, we have taken a model M and made all the different kinds of paths that could go through a state s
in M explicit in the elements ⟨s,K⟩ of the graph ⟨S′, R′⟩. The formulas in K describe the relevant properties of
one particular class of paths through the state s, and the number of these classes is finite even though the number
of all paths through s may be infinite.

Example 9.3 Consider the transition system (Kripke model) ⟨S,R, V ⟩ in Figure 9.5. We will model-check

φ = E(¬pU(p ∧ q)).

The unnegated formulas in CL(φ) are

⊤ p q p ∧ q ¬pU(p ∧ q) X (¬pU(p ∧ q))

Of these, only p, q, α = ¬pU(p ∧ q) and Xα, are not truth-functionally determined by simpler formulas.

The potential nodes in the tableau ⟨S′, R′⟩ therefore correspond to sets of formulas obtained by negating some
of {p, q, α,Xα}. Not all of these sets however occur in a node in the graph: for example, we cannot have
{p, q,¬α} ⊆ K for any K, nor {¬p,¬α,Xα} ⊆ K. The nodes in ⟨S′, R′⟩ correspond to the following sets.

{p, q, α,Xα} ⊆ K1

{p, q, α,¬Xα} ⊆ K2

{¬p, q, α,Xα} ⊆ K3

{¬p, q,¬α,¬Xα} ⊆ K4

{¬p,¬q, α,Xα} ⊆ K5

{¬p,¬q,¬α,¬Xα} ⊆ K6

The nodes S′ in the graph ⟨S′, R′⟩ are therefore

S′ = {⟨s1,K1⟩, ⟨s1,K2⟩, ⟨s2,K3⟩, ⟨s2,K4⟩, ⟨s3,K5⟩, ⟨s3,K6⟩}
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p q
X (¬pU(p ∧ q))
¬pU(p ∧ q)

(s1,K1)

¬p ¬q
X (¬pU(p ∧ q))
¬pU(p ∧ q)

(s3,K5)

¬p q
X (¬pU(p ∧ q))
¬pU(p ∧ q)

(s2,K3)

p q
¬X (¬pU(p ∧ q))

¬pU(p ∧ q)
(s1,K2)

¬p ¬q
¬X (¬pU(p ∧ q))
¬(¬pU(p ∧ q))

(s3,K6)

¬p q
¬X (¬pU(p ∧ q))
¬(¬pU(p ∧ q))

(s2,K4)

Figure 9.6: The tableau for the transition system

and the arcs described by R′ are
⟨s1,K1⟩R′⟨s2,K3⟩
⟨s1,K2⟩R′⟨s2,K4⟩

⟨s3,K5⟩R′⟨s1,K1⟩
⟨s3,K5⟩R′⟨s1,K2⟩

⟨s2,K3⟩R′⟨s3,K5⟩
⟨s2,K4⟩R′⟨s3,K6⟩

⟨s3,K5⟩R′⟨s2,K3⟩
⟨s3,K6⟩R′⟨s2,K4⟩

The graph ⟨S′, R′⟩ is depicted in Figure 9.6.

■

Notice that the sets K are maximally consistent subsets of CL(φ) ∪ P ∪ {¬p|p ∈ P}. For each ⟨s,K⟩ ∈ S′ we
have M |=s K ∩ P , that is, the atomic propositions true in s are contained in K.

We also have for any formula ψ ∈ CL(φ) with occurrences of the temporal operator X only: M |=λ ψ for some
path λ such that λ[0] = s if and only if ψ ∈ K and there is a path starting from ⟨s,K⟩ having length at least the
depth of nesting of X in ψ.

Our goal is to have this generalized to arbitrary formulas, that is, M |=λ K for some path λ starting from s. What
remains to be done is to have this for formulas with occurrences of U .

For formulas ψ1Uψ2 we need to guarantee that eventually a state in which ψ2 is true is reached. Put differently,
we have to identify infinite paths on which ψ1 is always true and ψ1Uψ2the formula is false because ψ2 will never
be true. For this purpose we introduce the notion of eventuality sequences.

Definition 9.4 An eventuality sequence π is an infinite path in ⟨S′, R′⟩ such that if ψ1Uψ2 ∈ K for some ⟨s,K⟩
on π, then there is ⟨s′,K ′⟩ on π not before ⟨s,K⟩ such that ψ2 ∈ K ′.
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Lemma 9.5 Let M be a Kripke model, φ a formula, and ⟨S′, R′⟩ the tableau for M and φ. Then M |=s Eφ if
and only if there is an eventuality sequence starting at ⟨s,K⟩ such that φ ∈ K.

Proof: So assume there is an eventuality sequence ⟨s0,K0⟩, ⟨s1,K1⟩, . . . starting at ⟨s,K⟩ = ⟨s0,K0⟩ such that
φ ∈ K. Let λ = s0, s1 . . ., that is, a computation path in M.

We show that for every ψ ∈ CL(φ), M |=λi ψ iff ψ ∈ Ki.

The proof is by induction on the structure of the formulas in CL(φ).

Base case 1, ψ = p for some p ∈ P:

By definition of ⟨si,Ki⟩, V (si, p) = 1 iff p ∈ Ki.

Inductive case 1, ψ = ¬ψ′:

By the induction hypothesis M |=λi ψ
′ iff ψ′ ∈ Ki. By definition of ⟨si,Ki⟩, now ψ′ ∈ Ki iff ¬ψ′ ̸∈ Ki. Hence

M |=λi ¬ψ′ iff ¬ψ′ ∈ Ki.

Inductive case 2, ψ = ψ1 ∨ ψ2:

By the induction hypothesis M |=λi ψj iff ψj ∈ Ki for j ∈ {1, 2}. By definition of ⟨si,Ki⟩, ψ ∈ Ki iff ψ1 ∈ Ki

or ψ2 ∈ Ki. Hence ψ ∈ Ki iff M |=λi ψ.

Inductive case 3, ψ = Xψ′:

By the definition of R′, ⟨si,Ki⟩R′⟨si+1,Ki+1⟩ holds because Xψ′ ∈ Ki iff ψ′ ∈ Ki+1. By the induction
hypothesis ψ′ ∈ Ki+1 iff M |=λi+1 ψ′. By truth-definition of X , M |=λi+1 ψ′. iff M |=λi Xψ′. Hence
Xψ′ ∈ Ki iff M |=λi Xψ′.

Inductive case 4, ψ = ψ1Uψ2:

Assume ψ1Uψ2 ∈ Ki, either ψ2 ∈ Ki or {ψ1,X (ψ1Uψ2)} ⊆ Ki. If ψ2 ∈ Ki then by the induction hypothesis
M |=λi ψ2 and hence M |=λi ψ1Uψ2. Otherwise M |=λi ψ1 by the induction hypothesis and ψ1Uψ2 ∈ Ki+1 by
the definition of R′. By definition of eventuality sequences there is some ⟨sj ,Kj⟩ with j ≥ i such that ψ2 ∈ Kj .
Let j be the minimal such time point. By the induction hypothesis M |=λj ψ2. An induction proof now shows
that M |=λk ψ1 for all k ∈ {i, . . . , j − 1}, and hence M |=λi ψ1Uψ2.

Assume M |=λi ψ1Uψ2. Therefore M |=λj ψ2 for some j ≥ i and M |=λk ψ1 for all k ∈ {i, . . . , j − 1}. By
the induction hypothesis ψ1 ∈ Kk for all k ∈ {i, . . . , j − 1} and ψ2 ∈ Kj .

Assume ψ1Uψ2 ̸∈ Ki. Because ψ1 ∈ Ki, now X (ψ1Uψ2) ̸∈ Ki, and hence X¬(ψ1Uψ2) ∈ Ki, and hence
¬(ψ1Uψ2) ∈ Ki+1. and ψ1Uψ2 ̸∈ Ki+1. Going inductively further we eventually get ψ1Uψ2 ̸∈ Kj , which
contradicts ψ2 ∈ Kj . Therefore it must be that ψ1Uψ2 ∈ Ki.

This finishes the inductive case 4 and the proof of the if direction of the equivalence. The only if direction follows.
So assume M |=s Eφ. Hence there is path λ = s0, s1, s2, . . . starting from s = s0 such that M |=λ Eφ.

DefineKi = {ψ ∈ CL(φ)|M |=λi ψ} for all i ≥ 0. It is easy to verify that ⟨s0,K0⟩, ⟨s1,K1⟩, . . . is an eventuality
sequence starting from ⟨s0,K0⟩. Further, by definition of CL(φ), φ ∈ K0. This concludes the proof. □

Now the algorithmic problem that remains is to find eventuality sequences. Like in the CTL model-checking
algorithm, also in this case the strong components are the means of identifying infinite paths having some property.

Definition 9.6 Let M be a Kripke model, φ a formula, and ⟨S′, R′⟩ the tableau for M and φ.

Then a non-trivial (either |C| > 1 or there is s ∈ C such that sR′s) strong component C ⊆ S′ of ⟨S′, R′⟩ is
self-fulfilling iff for every ⟨s,K⟩ ∈ S′ and ψ1Uψ2 ∈ K there is ⟨s′,K ′⟩ ∈ C such that ψ2 ∈ K ′.

A self-fulfilling strong component in the tableau yields infinite execution paths along which until formulas are
satisfied.

Lemma 9.7 Let M be a Kripke model, φ a formula, and ⟨S′, R′⟩ the tableau for M and φ.

There is an eventuality sequence starting at ⟨s,K⟩ ∈ S′ if and only if there is a path in ⟨S′, R′⟩ from ⟨s,K⟩ ∈ S′

to a self-fulfilling strong component.
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Proof: Assume there is an eventuality sequence σ starting at ⟨s,K⟩. Let C ′ be the set of all a ∈ S′ that occur
infinitely many times in σ. This set is a subset of a strongly connected component C of ⟨S′, R′⟩. Hence there is a
path from ⟨s,K⟩ to a strongly connected component. It remains to show that it is self-fulfilling.

Consider a subformula ψ1Uψ2 of φ such that ψ1Uψ2 ∈ K ′ for some ⟨s′,K ′⟩ ∈ C. Now there is a finite path from
⟨s′,K ′⟩ to C ′ because C is a strongly connected component and C ′ ⊆ C. If ψ2 ∈ K ′′ for some ⟨s′′,K ′′⟩ on that
finite path, then ψ2 ∈ K ′′′ for some ⟨s′′′,K ′′′⟩ ∈ C.

If ψ2 ̸∈ K ′′ for any ⟨s′′,K ′′⟩ on that finite path, then ψ1Uψ2 ∈ K ′′ for every ⟨s′′,K ′′⟩ on that finite path, and in
particular, its last element which is in C ′. Because C ′ is part of an eventuality sequence, there is ⟨s′′,K ′′⟩ ∈ C ′

such that ψ2 ∈ K ′′. Hence in both cases there is ψ2 in one of the nodes in C, and therefore C is a self-fulfilling
strong component.

Assume there is a path from ⟨s,K⟩ to a self-fulfilling strongly connected component C.

For any ψ1Uψ2 occurring in a node in C we can construct a path from that node to a node with ψ2, because C
is self-fulfilling. Hence we can construct an infinite cycle of nodes in C with the same property. To make this
infinite cycle an eventuality sequence, we also have to show that the path from ⟨s,K⟩ to C satisfies the required
properties, that is, any ψ1Uψ2 on that path is followed by ψ2. By the definition of R′, for every node on that path
following ψ1Uψ2 we either have ψ2, or X (ψ1Uψ2) and hence ψ1Uψ2 in the following node. In the first case we
have ψ2 on the path, and in the second we have ψ1Uψ2 in C, and because C is self-fulfilling we have ψ2 in C.
Hence the infinite path with the cycle is an eventuality sequence. □

Theorem 9.8 Let M be a Kripke model, φ a formula, and ⟨S′, R′⟩ the tableau for M and φ.

Now M |=s Eφ if and only if there is a path in ⟨S′, R′⟩ from ⟨s,K⟩ ∈ S′ (for some K) to a self-fulfilling strong
component.

Proof: By the preceding two lemmata. □

From the above result we can construct an algorithm for LTL model-checking that runs in O((|S|+ |R|)|2O(|φ|))
time, which is polynomial in the size of the transition system but exponential in the size of the formula to be
model-checked.

9.2.1 Fairness

Assume that we are verifying a specification of a computer system consisting of two processes P1 and P2 that
perform their computational otherwise independently but communicate once in a while. Because there is only
one CPU, there is a scheduler that decides when the computations proceed and for how long. When verifying the
correctness of the system we may want not to model the functioning of the scheduler, and assume that the scheduler
gives CPU to the both processes in a fair manner. This is the assumption of fairness that is used in connection
with concurrent systems. A fair scheduler could for example produce computation P1, P2, P1, P2, P1, . . ., or
possibly P1, P2, P2, P1, P2, P2, P1, P2, . . . if P2 has a higher overhead, but definitely not P1, P1, P1, . . . ignoring
P2 completely.

When model-checking such systems the assumption that the scheduler is fair should be taken into account. If it
is not, and the correct behavior of the system involves both P1 and P2, then it is not difficult to find behaviors
Eφ that violate the correctness properties φ. So, we often want to make the fairness assumption when doing
model-checking.

Fairness assumptions can be represented as sets of formulas Φ with the requirement that for every ϕ ∈ Φ, any
computation path contains infinitely many states in which ϕ is true.

In LTL handling fairness assumptions is easy. When model-checking E(Fφ) (test whether there is a “bad”
execution having undesirable property Fφ), just include the fairness assumptions as E(φ∧GFϕ1 ∧ · · · ∧ GFϕn)
where Φ = {ϕ1, . . . , ϕn}.

CTL cannot express fairness assumptions in the same way this is possible with LTL. In particular, adjoining
the formulas GFϕi as further conjuncts is not possible because of restrictions on path quantification. Instead,
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1: procedure MCρ(ϕ)
2: if ϕ = x then return BDD for x
3: if ϕ = ϕ1 ∨ ϕ2 then return MCρ(ϕ1) ∨ MCρ(ϕ2);
4: if ϕ = ϕ1 ∧ ϕ2 then return MCρ(ϕ1) ∧ MCρ(ϕ2);
5: if ϕ = ¬ϕ1 then return ¬MCρ(ϕ1);
6: if ϕ = EXϕ1 then return modelcheckEXρ(MCρ(ϕ1));
7: if ϕ = EGϕ1 then return modelcheckEGρ(MCρ(ϕ1));
8: if ϕ = E(ϕ1Uϕ2) then return modelcheckEUρ(MCρ(ϕ1),MCρ(ϕ2));

Figure 9.7: Symbolic Model-Checking Algorithm for CTL

1: procedure modelcheckEXρ(ϕ)
2: return ∃X ′.(ρ ∧ ϕ[X ′/X]);

Figure 9.8: Symbolic Model-Checking for EXϕ

researchers have defined variants of CTL (Fair CTL) with extra machinery for expressing fairness.

9.3 Symbolic Model-Checking

The scalability of standard model-checking algorithms for modal and temporal logics is limited by the size of the
models. The models are often represented succinctly by using logic-based representations, and model-checking
algorithms can be adapted to work with these succinct representations.

In this section we introduce the BDD-based model-checking algorithm for CTL, as well as bounded LTL model-
checking that reduces the model-checking problem to SAT, the satisfiability problem of the propositional logic.

9.3.1 Symbolic CTL Model-Checking

The BDD-based model-checking algorithm is given in Figure 9.7.

The connectives ∨, ∧ and ¬ are by the standard BDD operations, implemented with the apply procedure.

BDD-based procedures for model-checking EX , EG, and EU are given in Figures 9.8, 9.9 and 9.10, respectively.

Model-checking EXϕ in Figure 9.8 is simply by identifying states for which at least one successor state satisfies
ϕ. This is similar to the forward step we have in BDD-based reachability in Section 7.1, but we go backwards
from states that satisfy ϕ.

The procedure for EGϕ in Figure 9.9 finds states that are starting states for increasingly long sequences of states
that satisfy ϕ: S0 consists of state that satisfy ϕ, S1 consists of states that satisfy ϕ and that have a successor state
that satisfies ϕ, and so on. In general Si consists of sequences of length i + 1 satisfying ϕ. When Si = Si−1 for
some i, then it would also be Si+1 = Si, and more generally Sj = Sj−1 for every j ≥ i. This means that the
state sequences satisfying ϕ starting in states in Si have an infinite length (and it must be cycles in the transition
graph.) These sequences clearly satisfy EGϕ.

Last, the procedure for model-checking E(ϕUψ) is given in Figure 9.10. We find sequences of states that satisfy

1: procedure modelcheckEGρ(ϕ)
2: S0 := ϕ;
3: i := 0;
4: repeat
5: Si+1 := ϕ ∧ ∃X ′.(ρ ∧ Si[X ′/X]);
6: i := i+ 1;
7: until Si ≡ Si−1;
8: return Si;

Figure 9.9: Symbolic Model-Checking for EGϕ
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1: procedure modelcheckEUρ(ϕ,ψ)
2: S0 := ψ;
3: i := 0;
4: repeat
5: Si+1 = ψ ∨ (ϕ ∧ ∃X ′.(ρ ∧ Si[X ′/X]));
6: i := i+ 1;
7: until Si ≡ Si−1;
8: return Si;

Figure 9.10: Symbolic Model-Checking for E(ϕUψ)

s0 s1 sl−1 sl sl+1 sk−1 sk

Figure 9.11: Infinite Executions in Bounded LTL Model-Checking

ϕ except for the last state which satisfies ψ. Similarly to EG, we first find sequences of length 1, then 2, 3, and so
on, until we have covered arbitrarily long sequences.

Unlike in LTL, witnesses or certificates for the satisfaction (or falsification) of a CTL formula are not state se-
quences but have a tree structure, and are trickier to construct. We do not discuss this topic here.

9.3.2 Symbolic LTL Model-Checking

The SAT-based LTL model-checking algorithm [BCCZ99], known as Bounded Model-Checking (BMC), can be
viewed as a generalization of the SAT-based reachability method first introduced in connection with AI planning
[KS92].

LTL requires the representation of infinite loops, and to represent them in the propositional logic, they have to
be represented finitely. This is possible for paths of the form s0, s1, . . . ,

︷ ︸︸ ︷
sl, . . . , sk,

︷ ︸︸ ︷
sl, . . . , sk, sl, . . ., where the

segment sl, . . . , sk repeats infinitely many times. See Figure 9.11.

[[x]]l,ki = x@i [[Xϕ]]l,ki = [[ϕ]]l,ksucc(i)
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Above succ(i) = i+ 1 if i < k and otherwise succ(k) = l.

ϕ is true on some path (representable as a (k, l)-loop) iff [[ϕ]]l,k0 ∧I∧T [X@1/X ′]∧· · ·∧T [X@(k−1)/X,X@k/X ′]∧
T [X@k/X,X@l/X ′] is satisfiable.

The formula we have given has two parameters, l and k. There is no a priori way of determining their value, and
one needs to try different values for them. First, k is increased gradually, e.g. k = 1, k = 2, k = 3, . . ., and for
every value of k, different values l = 0, l = 1, l = 2, . . . with l < k are tried.

Another possibility is to device a slightly more complicated formula that is parameterized with k only, and alter-
native values of l < k are tried out by the SAT solver. This makes the search for right value of k one dimensional,
similarly to the SAT-based reachability method in Section 7.

Example 9.9 Consider the 2,4-loop in Figure 9.12. The reduction of LTL model-checking would give the follow-
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s0 s1 s2 s3 s4

Figure 9.12: Example: 2,4-loop

ing two formulas for this loop.

[[XGa]]2,40 = a@1 ∧ a@2 ∧ a@3 ∧ a@4

[[aUb]]2,41 = b@1
∨(b@2 ∧ a@1)
∨(b@3 ∧ a@1 ∧ a@2)
∨(b@4 ∧ a@1 ∧ a@2 ∧ a@3)

■

The main strength of the bounded model-checking method for LTL is its scalability to very large systems, as
long as the horizon length parameter k remains small enough. This makes the method especially useful as a bug
detector.

If there is no path satisfying the LTL formula, all the formulas for different values of k are unsatisfiable. Since
there is no obvious upper bound on the values of k, it is not clear when to stop. Therefore the bounded model-
checking method cannot in general be used for proving that certain behaviors are not possible. This is in contrast
to the enumerative and BDD-based model-checking methods that are complete.

For restricted correctness properties like safety, temporal induction [SSS00] is a highly scalable SAT-based method
that can provide completeness.



Chapter 10

Predicate Logic

Propositional logics are perfect for applications that can be represented in terms of a fixed number of atomic facts.
Many problems, even if superficially requiring more complex datatypes than just Booleans, for example multi-
valued variables and bounded integer variables, are often reducible to propositional logic, and can be solved with
propositional methods.

However, there are plenty of applications that are more complex in some way, requiring potentially infinitary and
unbounded models. These are often not practically reducible to the propositional logic.

The predicate logic is capable of representing relational data, about a finite or infinite universe (which might not be
explicitly represented) and relations over the objects in the universe, as well as reasoning about complex statements
about properties of relational data. This very much differs from what is (practically) possible in propositional
logics.

Predicate logic has been used in research on the foundations of mathematics, for example for expressing basic
concepts of arithmetic and set-theory.

Theories of the semantics of natural languages have extensively used predicate logic and its various variants and
extensions.

There are lots of applications of the predicate logic in computer science. As an example, much of database theory
is expressible in logical terms, and there is a close connection between relational database languages such as SQL
which are based on relational algebra, and the predicate logic. Relational database queries can be expressed in the
predicate logic equally well (and sometimes far more intuitively) as in SQL.

Outside database theory, the basic concepts of the predicate logic, like quantification, are useful also in many types
of high-level specification languages. The logic programming language Prolog is based on the predicate logic and
the automated reasoning methods developed for it, especially the resolution rule for automated reasoning.

In addition to usual forms of logical reasoning, the need to support relational data has been recognized in other
areas of computer science and artificial intelligence. Relational languages built on the predicate logic have been
broadly adopted in areas such as relational machine learning [MR06, NMTG15, DRKNP16] and probabilistic
reasoning [RD06].

10.1 Introduction

Predicate logic was originally introduced to analyze the concepts of quantification “for all” and “for some”, as
they appear in natural languages like English, and to express concepts in mathematics that require the same
quantification.

Similarly to the close connection between the Boolean connectives ∧, ∨ and ¬ and the natural language words
“and”, “or”, and “not”, the features of the predicate logic also have a natural language counterpart.

Example 10.1 Many simple sentences in natural languages like English can be straightforwardly encoded in the
predicate logic. Intransitive verbs and adjectives can be represented as unary (1-place) predicates, transitive verbs
can be represented as binary (2-place) predicates, proper names can be represented by constant symbols, and

69
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John is sad. sad(John)
John is sleeping. sleeps(John)
Somebody sleeps. ∃x.sleeps(x)
John admires Mary admires(John,Mary)
John admires somebody. ∃x.admires(John,x)
John admires a computer scientist. ∃x.(admires(John, x)∧computerscientist(x))
John is admired by somebody. ∃x.admires(x,John)
Somebody admires himself/herself. ∃x.admires(x,x)
Somebody does not admire anybody. ∃x.∀y.¬admires(x,y)
Everybody admires someone. ∀x.∃y.admires(x, y)
There is somebody everybody admires. ∃y.∀x.admires(x, y)
Everybody is admired by someone. ∀x.∃y.admires(y, x)
A bachelor is an unmarried male. ∀x.(bachelor(x) ↔ (male(x) ∧ ¬∃y.married(x, y)))

Table 10.1: Sentences in English translated into the Predicate Logic

words like “all” and “some” correspond to quantification.

A collection of sentences and their counterparts in the predicate logic are given in Table 10.1. ■

In the above example, notice the difference between “Everybody admires someone” and “There is somebody
everybody admires”, for which the formula is the same except the reversed ordering of the quantifiers. Two
universal quantifiers ∀x.∀y or two existential quantifiers ∃x.∃y can be reversed without changing the meaning of
the formula, but the ordering of consecutive different quantifiers cannot.

The above formulas could be reduced to the propositional logic if the domain of the quantified variables x and
y was a fixed finite set, for example {John,Mary, Jack}. Elimination of ∀x in ∀x.sleeps(x) in favor of the
conjunction connective leads to sleeps(John)∧sleeps(Mary)∧sleeps(Jack), and similarly ∃x.sleeps(x) corresponds
to sleeps(John)∨sleeps(Mary)∨sleeps(Jack). But in general, the domain or universe of a predicate logic theory
would not be fixed, or it would not be finite, and hence such a syntactic substitution of quantifications by chains
of conjunctions or disjunctions would not be possible.

Quantification can be viewed in terms of and-or trees.

Example 10.2 Consider quantification ∀x.∃y.Φ where x and y vary over {1, 2, 3}.

x=1 x=2 x=3

y=1 y=2 y=3 y=1 y=2 y=3 y=1 y=2 y=3

This is an and-or tree, where the root node is an and-node, and the internal nodes following labels x = i are
or-nodes. For the formula ∀x.∃y.Φ to be true, for every choice of x ∈ {1, 2, 3} there must be one (possibly
different) choice of y ∈ {1, 2, 3} so that Φ evaluates to true.

We could informally also view the quantification in terms of conjunctions and disjunctions as

(Φ(1, 1) ∨ Φ(1, 2) ∨ Φ(1, 3)) ∧ (Φ(2, 1) ∨ Φ(2, 2) ∨ Φ(2, 3)) ∧ (Φ(3, 1) ∨ Φ(3, 2) ∨ Φ(3, 3))

Where Φ(x, y) is parameterized with the possible values of x and y. The first or outer choice is conjunctive (and)
choice between values of x, and the inner choice is disjunctive (or) choice between values of y.

Clearly, reordering the quantifiers from ∀x∃yΦ to ∃y∀xΦ would change the meaning of the formula, as the
connectives ∧ and ∨ in the formula, and the and and or in the tree, would change places.
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For the formula ∃y.∀x..Φ to be true, there should be one choice of y ∈ {1, 2, 3} so that with every x ∈ {1, 2, 3}
the formula Φ evaluates to true. This is clearly different from the original formula ∀x.∃y.Φ. ■

One of the early applications of logics and the predicate logic was investigations of the foundations of mathemat-
ics.1

Example 10.3 (Peano Axioms) The following formulas belong to Peano’s formalization of natural numbers with
addition and multiplication.

1. ∀x(Zero ̸= Succ(x))

2. ∀x∀y(Succ(x) = Succ(y) → x = y)

3. ∀x(Plus(x, Zero) = x)

4. ∀x∀y(Plus(x, Succ(y)) = Succ(Plus(x, y)))

5. ∀x(Mult(x, Zero) = Zero)

6. ∀x∀y(Mult(x, Succ(y)) = Plus(Mult(x, y), x))

Additionally, Peano introduced an induction axiom, but it is not expressible in the predicate logic because it
requires quantification over all formulas ψ.

∀ψ.∀y1.∀y2. · · · ∀yk.(ψ(Zero, y1, y2, . . . , yk)
∧ ∀x(ψ(x, y1, y2, . . . , yk) → ψ(Succ(x), y1, y2, . . . , yk))

→ ∀x(ψ(x, y1, y2, . . . , yk)))

■

10.2 Syntax

The differences between the propositional logic and the predicate logic is the much more complex form of the
atomic formulas, as structured entities in the predicate logic, and quantification.

The predicate logic talks about the objects of a universe, the members of which, however, are not enumerate
explicitly. The objects in the universe can be given names by constant symbols, or they can be referred to by
terms that are formed from simpler terms and function symbols, which express functions from n-tuples of objects
to objects.

Definition 10.4 (Terms) 1. Constant symbols and variables are terms.
2. If t1, . . . , tn are terms and f is an n-ary function symbol, then f(t1, . . . , tn) is a term.

Definition 10.5 (Atomic Formulas) Atomic formulas are constructed from terms and predicate symbols.

1. If P is an n-ary predicate symbol and t1, . . . , tn are terms, then P (t1, . . . , tn) is an atomic formula.
2. If t1 and t2 are terms, then t1 = t2 is an atomic formula.

Definition 10.6 (Formulas) Formulas are constructed from atomic formulas by using Boolean connectives and
quantifiers.

1. Atomic formulas are formulas.
2. If ϕ ja ψ are formulas and x is a variable, then (¬ϕ), (ϕ∨ψ), (ϕ∧ψ), (ϕ→ ψ), (ϕ↔ ψ), (∀x.ϕ) and (∃x.ϕ)

are formulas.

To understand how quantification, it is important to understand what the variable x in a quantifier ∀x or ∃x refers
to.

Definition 10.7 (Scope of quantifiers, free and bound variables) The scope of the quantification ∀x in formula
∀x.ϕ (or in any formula in which this formula is a subformula) is ϕ. The variable x is bound in its scope. The
occurrences of x in ϕ bound by ∀x are bound occurrences of x. A variable occurrence that is not bound is free.

1These investigations led to groundbreaking results such as Gödel’s incompleteness theory for the theory of arithmetics.
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1

2 3

4 5

owes

knowsknows

kn
ow

s

values

teachers female

Figure 10.1: Diagrammatic illustration of relational data

Example 10.8 Consider variables in the following formula.

∀
bound︷︸︸︷
x

P (bound︷︸︸︷
x ,

free︷︸︸︷
y ,

free︷︸︸︷
z ) ∨ ∃

bound︷︸︸︷
y (Q(

bound︷︸︸︷
y ) → R(

bound︷︸︸︷
x ,

free︷︸︸︷
z ))

 .

All occurrences of the variable z are free, as there is no quantifier ∀z or ∃z. All occurrences of x are bound, as the
outermost quantifier ∀x binds them all. The first occurrence of y is free, but the rest are bound by the quantifier
∃y. ■

Quantification with the universal quantifier ∀ (read as “for all”) and the existential quantifier ∃ (read as “for
some”) is a core feature of the predicate logic. A formula ∀x.Φ denotes “for all objects x the formula Φ holds”,
and ∃x.Φ denotes “for some object x the formula Φ holds”.

Quantifiers ∀ and ∃ are dual to each other similarly to the duality between ∧ and ∨. Hence the universal quantifi-
cation ∀x.Φ is logically equivalent to ¬∃x.¬Φ, and ∃x.Φ is logically equivalent to ¬∀x.¬Φ, analogously to the
equivalences α ∧ β ≡ ¬(¬α ∨ ¬β) and α ∨ β ≡ ¬(¬α ∧ ¬β),
The analogy of ∀ and ∧ is more general. The universal quantification ∀x.Φ could be understood as a (potentially
infinitely long) conjunction Φ(v1) ∧ · · · ∧ Φ(vn) ∧ · · · for all possible values vi for the variable x. Similarly, the
existential quantification existsx can be viewed as equivalent to a long disjunction.

10.3 Semantics

First first discuss the semantics of the predicate logic informally in terms of examples, and after that proceed with
a formal definition.

Example 10.9 Consider the diagrammatic representation of a five persons, identified by the numbers 1, 2, 3, 4
and 5. We additionally have the following relations on the set of these persons, and the constant symbols (names)
a, b, c, d, and e to name the individuals in our universe {1, 2, 3, 4, 5}.2

relation interpretation constant interpretation
knows {(2, 3), (3, 2), (3, 4)} a 1
owes {(1, 2)} b 2
values {(3, 3)} c 3
female {4, 5} d 4
teachers {1, 2, 4} e 5

This diagram shows for example that person 1 owes something to person 2, that person 3 values himself/herself,
and that persons 4 and 5 are female and the rest are not, and person 4 is the only person of these five that is a
female teacher.

2Notice that in general there is no necessity to have a name for all elements in the universe, and there would not need to be any constant
symbols at all.
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Now we can view the following formulas in the predicate logic in regard to the relations knows, values and owes,
and the sets (unary relations) teacher and female.

1. ∃x∃y(knows(x, y) ∧ knows(y, x))
2. ∃x∃y(teacher(x) ∧ teacher(y) ∧ owes(x, y))
3. ∃x(values(x, x) ∧ ∃x(teacher(x) ∧ female(x)))
4. ¬∀x(teacher(x) → female(x))

5. ∀x(knows(x, c) → owes(a, x))

The first sentence is true (with respect to these relations), because we can find persons x and y so that knows(x, y)
and knows(y, x). There two possibilities: either x = 2, y = 3, or x = 3, y = 2. There are no other possibilities.

The fourth sentence says that “Not all teachers are female”. This is also true, because we can choose x = 1 or
x = 2, and the implication teacher(x)→female(x) is false, because both 1 and 2 are teachers and not female.

The truth of the remaining formulas can be verified similarly. ■

Next we go through the formal semantics of the predicate logic. In the propositional logic it was sufficient to give
a mapping from atomic formulas to truth values. In the predicate logic we have to first associate a meaning with
all terms, and in addition to the Boolean connectives ∧, ∨ and ¬, we also have the quantifiers ∀ and ∃ to give a
meaning to.

Definition 10.10 (Interpretation of symbols under a structure) A structure S for given constant, function and
predicate symbols) consists of a non-empty universe U , which can be finite or infinite, and interpretations J...KS

of those symbols.

1. Constant symbols c are mapped to JcKS ∈ U .
2. Variable symbols v are mapped to JvKS ∈ U .
3. Function symbols f of arity n map to functions JfKS : Un → U .
4. Predicate symbols P of arity n map to relations JP KS ⊆ Un.

Note that we typically leave the interpretations of variables symbols open when giving a structure. For example,
when evaluating ∀x.P (x) under some structure, that structure would not say anything about the value of x. It
is only the truth-definition of quantified formulas in Definition 10.13 that would bind different elements of the
universe when testing the truth of ∀x.P (x).
Interpretation of all symbols can be extended to an the interpretation JtKS of all terms as follows.

Definition 10.11 (Interpretation of terms under a structure) Given the interpretation of all constant symbols,
function symbols, and predicate symbols, we define the interpretations of all terms as follows.

• Constant symbols c are directly evaluated by JcKS .
• Variables v are directly evaluated by JvKS .
• For terms f(t1, . . . , tn), we have Jf(t1, . . . , tn)KS = JfKS(Jt1KS , . . . , JtnKS).

Definition 10.12 (Truth of atomic formulas under a structure) For atomic formulas P (t1, . . . , tn) we define
truth in S:

S |= P (t1, . . . , tn) iff (Jt1KS , . . . , JtnKS) ∈ JP KS

S |= (t1 = t2) iff Jt1KS = Jt2KS

Definition 10.13 (Truth of formulas under a structure) Let S be a structure and U its universe. For all formu-
las α and β and variables v we define the truth of formulas in the structure as follows.

1. For atomic formulas α, S |= α as defined earlier.
2. Define S |= α ∧ β, S |= α ∨ β and S |= ¬α as in propositional logic
3. S |= ∃v.α iff S[v 7→ a] |= α for some a ∈ U

4. S |= ∀v.α iff S[v 7→ a] |= α for all a ∈ U

Here S[v 7→ a] is a structure exactly like S except that it maps v to a.
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∀x.ϕ ≡ ¬∃x.¬ϕ
∃x.ϕ ≡ ¬∀x.¬ϕ

∀x.∀y.ϕ ≡ ∀y.∀x.ϕ
∃x.∃y.ϕ ≡ ∃y.∃x.ϕ
∀x.∀x.ϕ ≡ ∀x.ϕ
∃x.∃x.ϕ ≡ ∃x.ϕ

∀x.(ϕ1 ∧ ϕ2) ≡ (∀x.ϕ1) ∧ (∀x.ϕ2)
∃x.(ϕ1 ∨ ϕ2) ≡ (∃x.ϕ1) ∨ (∃x.ϕ2)

∀x.ϕ ≡ ϕ if x does not occur free in ϕ
∃x.ϕ ≡ ϕ if x does not occur free in ϕ

∀x.(ϕ1 ∨ ϕ2) ≡ (∀x.ϕ1) ∨ ϕ2 if x does not occur free in ϕ2
∃x.(ϕ1 ∧ ϕ2) ≡ (∃x.ϕ1) ∧ ϕ2 if x does not occur free in ϕ2

Table 10.2: Predicate Logic Equivalences

Notice how the nesting for quantifications of the same variable are handled in the definition.

Example 10.14 Given a structure S with universe U = {1, 2} and interprets P as {1}. The formula ∀x.∃x.P (x)
is syntactically well-formed. The truth-definition of ∀x iterates over all values in U for x, and then recursively
tests the truth of ∃x.P (x) in each case, first with the binding x = 1 and then with x = 2. But when evaluating
∃x.P (x), there is another iteration over U , where it is sufficient that P (x) is true for one value of x. Here the
values of x bound by ∀x are overwritten and therefore irrelevant. The truth value of ∀x.∃x.P (x) under this and
any structure is therefore the same as that of ∃x.P (x). Therefore these two formulas are logically equivalent. ■

10.4 Decision Problems

As in the propositional logic, the main decision problems in the predicate logic are satisfiability, validity, and
logical consequence.

• ϕ is satisfiable iff S |= ϕ for some S
• ϕ is valid iff for S |= ϕ for all S
• ψ |= ϕ iff S |= ϕ for all S s.t. S |= ψ

These definitions (implicitly) involve going through all (infinitely many) possible structures (with the given con-
stant, function and predicate symbols): this is the source of the very high complexity of these tasks.

There is no algorithm that is guaranteed to end with the answer “yes” or “no” to the question of satisfiability of a
given formula in the predicate logic. Therefore the satisfiability problem for the predicate logic is not decidable.
There is, however, a semi-decision procedure: one can systematically go through all different kinds of structures,
and if the formula is satisfiable, this procedure will eventually find a structure that satisfies the formula. This is
not a decision procedure, however, because there is no criterion for stopping the procedure and giving the answer
“not satisfiable”.

Practical algorithms for testing satisfiability and logical consequence don’t exhaustively go through all structures,
but do something more clever. One approach to automated reasoning in the predicate logic is based on a resolution
rule for the predicate logic. This rule is more complicated than the resolution rule for the propositional logic, as
the notion of CNF and clauses for formulas with quantifiers and structured atomic formulas is more complicated
that in the propositional logic. We do not discuss this rule here.

10.5 Equivalences

The propositional equivances listed in Table 2.1 hold for the predicate logic as is. Additionally, there are valid
equivalences that relate the quantifiers to each other and to the Boolean connectives, as shown in Table 10.2.
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rule example

S : NP VP

NP︷ ︸︸ ︷
A man

VP︷ ︸︸ ︷
owns a dog that sleeps

NP : DET CN
DET︷︸︸︷

a
CN︷︸︸︷
man

VP : TV NP
TV︷ ︸︸ ︷

owns

NP︷ ︸︸ ︷
a dog that sleeps

NP : DET RCN
DET︷︸︸︷

a

RCN︷ ︸︸ ︷
dog that sleeps

RCN : CN that VP

CN︷︸︸︷
dog that

VP︷ ︸︸ ︷
sleeps

VP : IV

IV︷ ︸︸ ︷
sleeps

S sentence
NP noun phrase
VP verb phrase
CN common noun
DET determiner
TV transitive verb
IV intransitive verb

Table 10.3: A grammar for a small fragment of English

10.6 Application: Natural Language

There are several semantic theories for natural languages. Here we present one theory that was developed by
Richard Montague, now known as Montague semantics or Montague grammar. It is based on a combination of
the λ-calculus (see Section A) and the predicate logic, and its important feature is that it is compositional, which
means that the meaning of a phrase is obtained as a function of the meanings of its components.

In Table 10.3 a very simple context-free grammar for a narrow fragment of English is given. The non-terminal
symbols represent different grammatical categories such as verb phrases and noun phrases.

Our goal in this section is to present a simple Montague-style grammar [Mon70, Mon73] that maps simple English
sentences to the predicate logic, as in the next table.

English predicate logic
John sees Mary. sees(John,Mary)
A man sleeps. ∃x.(man(x)∧sleeps(x))
A man owns a dog. ∃x.(man(x) ∧ ∃y.(dog(y)∧owns(x, y)))
A man owns a dog that sleeps. ∃x.(man(x) ∧ ∃y.(dog(y)∧owns(x, y)∧sleeps(y)))

To do this, we need to associate a type with each grammar category, as in the typed λ-calculus (see A). And then
we need to associate with each grammar rule an expression that forms the meaning of that expression from the
meanings of its sub-expressions.

One possibility is the following [VEU10].

• Verb phrase (VP): term → formula
• Noun phrase (NP): (term → formula) → formula
• Common noun (CN): term → formula
• Transitive verb (TV): term → (term → formula)

Here a verb phrase is associated with a function from terms to formulas. For example, if we have the term John,
and the verb phrase is “loves Mary”, expressed by the function λx.loves(x,Mary), we would obtain the formula
loves(John,Mary) as a result.

One of the less intuitive things about the above choice of types is that of noun phrases. In the preceding example,
it would seem sufficient to represent noun phrases like “John” as a term, from which the function associated with
a verb phrase like “loves Mary” would then immediately produce the formula for the whole sentence.

However, this is not more generally possible: consider the phrase “A young child loves Mary”, in which we cannot
represent the phrase “a young child” as a single term. The formula we are after is ∃x.(child(x)∧young(x)∧loves(x,Mary)),
and the meaning of “a young child” has to also include the atomic formula young(x) somehow, and this cannot be
expressed as a term.
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S : NP VP (NP V P )
NP : name λP.(P name)

: DET CN (DET CN)
: DET RCN (DET RCN)

DET : ”some” λP.λQ.∃x((P x) ∧ (Q x))
: ”a” λP.λQ.∃x((P x) ∧ (Q x))
: ”every” λP.λQ.∀x((P x) → (Q x))
: ”no” λP.λQ.∀x((P x) → (¬(Q x)))

VP : IV λx.IV (x)
: TV NP λx.(NP (λy.(TV y x)))

TV : transverb λx.λy.transverb(x, y)
RCN : CN ”that” VP λx.((CN x) ∧ (V P x))

: CN ”that” NP TV λx.((CN x) ∧ (NP (λy.(TV y x))))
CN : predicate λx.predicate(x)

Table 10.4: A grammar with semantics rules for a fragment of English

expression meaning
a λP.λQ.∃x((P x) ∧ (Q x))
man λx.man(x)
a man λQ.∃x(man(x) ∧ (Q x))
sleeps λx.sleeps(x)
a man sleeps ∃x(man(x) ∧ sleeps(x))
man that sweats λx.(man(x) ∧ sweats(x))
a man that sweats λQ.∃x(man(x) ∧ sweats(x) ∧ (Q x))
A man that sweats sleeps. ∃x(man(x) ∧ sweats(x) ∧ sleeps(x))
Sirpa sees Jarmo. sees(sirpa, jarmo)
Every woman sees a man. ∀x(woman(x) → (∃y(man(y) ∧ sees(x, y))))
Every woman sees a man that sleeps. ∀x(woman(x) → (∃y(man(y) ∧ sleeps(y) ∧ sees(x, y))))
A woman that eats sees a man that sleeps. ∃x(woman(x) ∧ eats(x) ∧ ∃y(man(y) ∧ sleeps(y) ∧ sees(x, y)))

Table 10.5: English sentences and their translations in the predicate logic

Instead, the meaning of a noun phrase will be a function that takes the meaning of the verb phrase (of type
term → formula), and maps it to a formula. This way the possibly quite complex meaning of the noun phrase can
be expressed. The meaning of a verb phrase is still of type term→ formula, so the only part of the noun phrase
this function uses is a term (either a constant symbol or a variable.)

A more complex grammar is given in Table 10.4.

Note that all variables x introduced in the DET rules must be new in the sense that they occur in their scope
only as explicitly stated in the grammar rule, and any possible quantified sentence that represent the meaning of a
sub-expression uses other variables.

Some examples of this translation are given in Table 10.5.

Natural language processing with these and related methods is discussed in detail in the literature [VEU10, FL89,
Fro06]. The original papers are by Richard Montague from the early 1970s [Mon70, Mon73].
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10.7 Application: Databases

Relational algebra [Cod72] is one of the fundaments of relational database systems and query languages such as
SQL.3 In this section we present predicate logic as a query language alternative to SQL and relational algebra.
While the relational algebra as a more procedural formalism leads more directly to effective implementations,
the predicate logic is arguably in many cases a far more intuitive and readable language for expressing complex
queries.

The relational calculus is a term applied to query languages directly based on the predicate logic, and there are
several variants presented in the literature [Cod72, Cod83, LP77]. Their commonalities include predicates as in
the predicate logic for referring to the relations in a database, and logical operations familiar from the predicate
logic, including the Boolean connectives ∧, ∨, ¬ and the quantifiers ∀ and ∃. In this section we do not follow
any of these faithfully, and instead try to use standard predicate logic syntax and concepts unchanged, to make the
connection to the predicate logic clear.

The idea in queries in these languages is to express the desired information as a logical formula, in which the free
variables indicate the information to be retrieved from the database. Queries without free variables test whether
the formula is true when interpreting the contents of the database as a structure (Section 10.3).

Example 10.15 Consider a relational database consisting of three relations called parent, male and female as
follows.

parent
parent child
Mary Jack
John Jack
Jack Jill
Jack Bob

female
person
Jill
Mary

male
person
Bob
Jack
John

The query parent(Mary,x) with the free variable x, is asking about all pairs in the relation parent in which the first
element (the column parent) has the value “Mary”, and returns the values in the column child.

A query for asking about grandparents of Jack could be formulated as ∃y.(parent(x, y)∧parent(y,Jack)).

A query for asking about grandmothers of Jack could be formulated as ∃y.(parent(x, y)∧parent(y,Jack))∧female(x).

■

The standard relational algebra operations are as follows. (See Appendix B for formal definitions.)

• natural join R1 ⋊⋉ R2 of two relations
• relational union R1 ∪R2 of two relations
• relational intersection R1 ∩R2 of two relations
• relational difference R1 −R2 of two relations
• projection πa1,...,an(R) which eliminates all columns from R except a1, . . . , an.
• (Cartesian) product R1 ×R2 that combines rows pairwise in all possible ways
• selection σϕ(R) which chooses those rows of R that satisfy condition ϕ, and
• renaming ρa/b(R) in which column b is renamed to a.
• division operation R1 ÷R2 that satisfies the property (Q× P )÷ P = Q

The division operation that is very often ignored, also is not (very unfortunately) part of SQL.

In the SQL query language the SELECT statement combines projection, selection and renaming to one construct,
and other operations like joins and unions are separate.

We present a translation from a large class of formulas of the predicate logic to the relation algebra. The relational
algebra expression can be further relatively easily translated to practical query languages such as SQL.

The general scheme in the translation is as follows.

3A main difference between relational databases that use SQL and relational algebra is that the former treat relations as multi-sets of
tuples, with the possibility of a tuple occurring in a relation multiple times, whereas standard relational algebra uses sets only. Other than
that, much of SQL is best understood as syntactic sugar for relational algebra, with various extensions on top of it.
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• Conjunction ∧ translates to a relational join operation.4

• Disjunction ∨ translates to a relational union operation.
• Negation ¬ translates to a relational difference operation.
• Existential quantification ∃ translates to a relational projection operation.
• Universal quantification ∀ translates to a relational division operation.

Atomic formulas with non-variable terms (constant symbols) translate to the selection operation, which we discuss
later in detail.

The translation from the predicate logic to the relational algebra is compositional in the sense that the translation
of a subformula is formed from the translations of the subformulas in a uniform way.

Example 10.16 We show how the query ∃x.(parent(Mary,x)∧parent(x,z)∧female(z)) is translated to a relational
algebra query. The results of this query are the female grandchildren of Mary. Let the column names be as in
Example 10.15.

The atomic formula parent(x,z) is translated to

ρx/parent,z/child(parent).

Hence the relation on the left is mapped to a relation on the right. Only the names of the columns change.

parent
parent child
Mary Jack
John Jack
Jack Jill
Jack Bob

x z

Mary Jack
John Jack
Jack Jill
Jack Bob

The column names in this and all the other intermediate results are the names of the variables in the formula.

The atomic formula parent(Mary,x) is translated in three steps. First, those rows from parent are selected in which
Mary is the parent:

σparent=Mary(parent)

Then the child column is projected.
πchild(σparent=Mary(parent)).

And finally, the child column is renamed to x.

ρx/child(πchild(σparent=Mary(parent))).

This expression maps the relation on the left to the relation on the right.

parent
parent child
Mary Jack
John Jack
Jack Jill
Jack Bob

x

Jack

The atomic formula female(z) has no constant symbols, and it is translated similarly to parent(x,z).

ρz/person(female).

This expression maps the relation on the left to the relation on the right.

female
person
Jill
Mary

z

Jill
Mary

4The special case in which both conjuncts have the same free variables corresponds to the intersection operation for relations. Essen-
tially, intersection is just a special case of the natural join.
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What remains is the conjunction and the existential quantification. The conjunction is done with the natural join
operation of the translations of all three conjuncts.

ρx/child(πchild(σparent=Mary(parent))) ⋊⋉ ρx/parent,z/child(parent) ⋊⋉ ρz/person(female)

x

Jack
⋊⋉

x z

Mary Jack
John Jack
Jack Jill
Jack Bob

⋊⋉
z

Jill
Mary

=
x z

Jack Jill

Finally, the outermost existential quantification ∃x means projecting the columns other than x.

πz(ρx/child(πchild(σparent=Mary(parent))) ⋊⋉ ρx/parent,z/child(parent) ⋊⋉ ρz/person(female))

This projection maps the relation on the left to the relation on the right.

x z

Jack Jill
z

Jill

The result of this relational algebra expression is a relation with a single column z that contains Mary’s all female
grandchildren. An automated translation would further produce the following SQL query.

SELECT x FROM
(SELECT child as x
FROM parent
WHERE parent=’Mary’)

NATURAL JOIN
(SELECT parent as x, child as z
FROM parent)

NATURAL JOIN
(SELECT person as z
FROM female)

■

The three operations not covered in this example are disjunction, negation, and universal quantification.

Disjunction corresponds to the relational union operation, but there is an issue when the set of free variables, or,
equivalently, the columns, in the two components to be unioned do not match.

Consider the formula P (x, y) ∨ Q(x). The disjuncts respectively correspond to a binary relation and a unary
relation. The unary relation for Q(x) would have to be made to a binary relation with columns x and y before the
union operation. Since Q(x) does not restrict the value of y at all, the y column in that relation should contain
all possible values of y from the universe in consideration. This corresponds to there being a unary relation U
that contains all elements of the universe, and a corresponding predicate, so that we can rewrite the disjunction to
P (x, y) ∨ (Q(x) ∧ U(y)).

Negation corresponds to relational difference. Examples like P (x) ∧ ¬Q(x) are unproblematic because this
directly corresponds to the difference of relations P and Q. But what if negation appears in the query without
being a part of a conjunction with some positive elements? The query ¬P (x), similarly to P (x, y)∨Q(x), would
require considering the universe, from which P (x) is to be deducted, to obtain the complement of P . Hence the
formula would be rewritten to U(x) ∧ ¬P (x), which can be translated to the relational algebra as the difference
of these two relations U − P .

Universal quantification can be translated with the relational division operation (not present in SQL), or grouping
and aggregation (present in SQL). Division can be effectively reduced to grouping and aggregation. Codd [Cod72]
points out that division is (inefficiently) reducible to the other standard operations with the (rather expensive)
complementation operation. We do not discuss the universal quantification here in more detail.

We now give the translation JϕK from predicate logic to the relational algebra formally.
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The notation Fr(ϕ) refers to the variables that are free in ϕ.

Each relation R has a degree Dgr(R) ≥ 1 that indicates how many columns it has. We assume an ordering on the
columns so that we can connect the relations to the predicates. The columns are numbered from 0 to Dgr(R)− 1,
and the name of column i is given by Coli(R).

Definition 10.17 The translation JϕK of a predicate logic formula ϕ into the relational algebra is as follows.

1. JP (t1, . . . , tn)K = ρtn1/Coln1 (P ),...,tnm/Colnm (P )(πColn1 (P ),...,Colnm (P )(σC(P ))) where
• n1, . . . , nm are indices of the subset of those terms t1, . . . , tn that are variables,
• C is Colk1(P ) = tk1 , . . . ,Colkl(P ) = tkl for the subset {k1, . . . , kl} of {t1, . . . , tn} that are constant

symbols,
• and we assume that no variable occurs twice in t1, . . . , tn.

2. Jϕ1 ∧ ϕ2K = Jϕ1K ⋊⋉ Jϕ2K
3. Jϕ1 ∨ ϕ2K = Jϕ1 ∧

∧
x∈Fr(ϕ2)\Fr(ϕ1) U(x)K ∪ Jϕ2 ∧

∧
x∈Fr(ϕ1)\Fr(ϕ2) U(x)K

4. J¬ϕK = J
∧
x∈Fr(ϕ) U(x)K − JϕK

5. J∃xϕK = πFr(ϕ)\{x}(JϕK)
6. J∀xϕK = JϕK ÷ JU(x)K
7. Jt1 = t2K = σt1=t2(J

∧
x∈Fr(t1=t2) U(x)K) (when Fr(t1 = t2) ̸= ∅)

8. Jϕ1 ∧ ¬ϕ2K = Jϕ1 ∧
∧
x∈Fr(ϕ2)\Fr(ϕ1) U(x)K − Jϕ2 ∧

∧
x∈Fr(ϕ1)\Fr(ϕ2) U(x)K

The last case describes the occurrence of the negation connective inside a conjunction. If all free variables inside
the negation also occur in the other conjunct, then introducing the U(x) atoms is avoided. Having a long con-
junction U(x1) ∧ · · · ∧ U(xn) results in an n-fold natural join over the U relation, which has a very high cost as
a database query operation. That is why it should be avoided as much as possible.

A formula can often be reformulated so that the first variant can be used with as small a set of variables as
possible for which the predicate U(x) is needed. For example, the formula P (x) ∧ (Q(y) ∧ (R(z) ∧ ¬V (x)))
can be equivalently be stated as ((P (x) ∧Q(y)) ∧R(z)) ∧ ¬V (x) for which the translation does not require any
additional conjuncts with the U predicate. The general case, in which the universal predicate is needed for all free
variables in ¬ϕ, is only used as a last resort. Also, the complexity arising from cases 8 and 4 would sometimes be
considerably reduced by translating the whole query formula to Negation Normal Form, so that negations would
only appear right in front of atomic formulas.

The translation of all of the other connectives also benefits from logical simplifications and optimizations. These
can be understood in terms of optimizing SQL queries, and some would be performed as a part of optimizations
performed by the SQL query optimizer. For example, rewriting by the equivalences in Table 10.2 that reduce the
scope of the quantifiers corresponds to moving relational projections deeper inside an SQL query, to reduce the
size of the intermediate tables.

The reduction from predicate logic formulas to the relational algebra could obviously be composed with the
translation from English to predicate logic in Section 10.6, to map database queries expressed in English to
conventional SQL queries.
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Appendix A

The λ-Calculus

The standard definition of functions in mathematics and in set-theory is as relations f ⊆ D1 ×D2 that satisfy the
condition that if (x, y) ∈ f and (x, z) ∈ f , then y = z, and where D1 is the domain of the the function and D2

is the range of the function. Functions are sets of pairs that map inputs to outputs. For example, the successor
function of natural numbers is represented by the infinite set {(0, 1), (1, 2), (2, 3), (3, 4), . . .}.

This definition does not say anything about how something is computed. Also, this definition is infinite for every
infinite domain, no matter how simple the function is.

Many functions can be represented finitely simply as a mathematical expression such as f(x) = x + 1. This
finite representation of functions is what is used in much of Computer Science. Besides the finite size, it has the
advantage of being implementable in a computer, as a sequence of computation steps.

Well-known formalization of computations as sequences of primitive computation steps include conventional real-
world CPU instruction sets as well as more theoretical models of computation such as Turing machines. These,
however, do not formalize the notion of function explicitly in any way.

A major model of computation that does precisely that is λ-calculus [Chu36, Bar84]. In addition to an abstract
model of computation, λ-calculus can also be used as a formal model of programming languages: many (pure)
functional programming languages can be viewed as λ-calculus extended with primitive functions for various
datatypes such as numbers and lists.

Here we give a brief introduction to λ-calculus.

A.1 Basics

First, we introduce the λ notation, which is also used in some programming languages for unnamed functions.
The intuition behind the λ notation is demonstrated by the following.

Example A.1 • λx.(x+1) is the unnamed function that increments its input by one. Applying this function to
the number 5 results in (λx.(x+ 1)) 5 = 5+1 = 6.

• λx.λy.(x + y) denotes a function that maps some number x to a function that maps some number y to the
sum x+ y

– (λx.λy.(x+ y)) 5 = λy.(5 + y)

– (λx.λy.(x+ y)) 5 7 = (λy.(5 + y)) 7 = 5 + 7 = 12

■

Next we proceed with the formal definition of the expressions of the pure λ-calculus.

Definition A.2 (Expression) 1. x is an expression if x is a variable,
2. (E1E2) is an expression if E1 and E2 are expressions,
3. (λx.E) is an expression if x is a variable and E is an expression.
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Example A.3 (Expressions)
x
(xy)
(λx.x)
((λx.x)(λy.y))
(λx.(λy.(xy)))

■

Parentheses can be dropped if it does not cause ambiguity.

expression shortform

(λx.(xy)) λx.xy
(λx.x)y (λx.x)y
((xy)z) xyz applicationleft− associative
(x(yz)) x(yz)

The notion of bound and free variables is analogous to the definition in the predicate logic.

Definition A.4 (Bound and free) In sub-expression λx.E of any expression, occurrences of x in E are bound.
Here E is the scope of x. An occurrence of x is free if it is not bound.

Example A.5
expression freevariables

λx.x none
λx.xy y
(λx.x)(λy.y) none
λx.λy.(xy) none
λx.((λy.(xy))y) y
(λx.((xy)z))u y, z, u

■

The primitive computation step in the λ-calculus is that of a single function application.

Definition A.6 (β-reduction) One step of β-reduction turns (λx.E1)E2 toE1[E2/x], which isE1 with every free
occurrence of x replaced by E2.

Note: When we say “every free occurrence of x” above, we refer to free occurrences of x in E1, not to free
occurrences of x in λx.E1.

Example A.7
expression resultofβreduction

(λx.x)y y
(λx.xx)y yy
(λx.x)(λy.y) λy.y
(λx.λy.y)z λy.y
(λx.xx)(λy.y) (λy.y)(λy.y)
(λx.(x(λx.x)))E E(λx.x)

■

There may be several possible β-reduction steps applicable to a given expression. When evaluating an expression
“until the end”, different choices for the next β-reduction step lead to different evaluation strategies.

Definition A.8 (Normal order evaluation) In normal order evaluation the leftmost β-reduction is performed
first.
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(λx.x)((λy.yy)E)

(λy.yy)E (λx.x)(EE)

EE

Figure A.1: Example of two evaluation orderings leading to the same result

Definition A.9 (Applicative order evaluation) In applicative order evaluation, in any sub-expression (λx.E1)E2,
all β-reductions in E2 performed before the outermost/leftmost β-reduction that substitutes E2 for x.

Example A.10 With normal order evaluation we get (λx.xx)((λz.z)E)⇝ ((λz.z)E)((λz.z)E).

With applicative order evaluation we get (λx.xx)((λz.z)E)⇝ (λx.xx)E ■

Almost all programming languages use applicative order: in f(E), expression E is evaluated before “calling”
the function f . Lazy functional programming languages use a form of normal order that avoids evaluating an
expression multiple times. Normal order evaluation makes it possible for example to create an “infinite list”, and
any computation that uses only a finite portion of it will still terminate.

A central result in the λ-calculus is its Church-Rosser property, which means that no matter which evaluation
strategy is used, all terminating evaluation sequences will lead to the same result. This is illustrated in Figure A.1.

Theorem A.11 (Church-Rosser) Any two terminating maximal β-reduction sequences end in the same expres-
sion.

A.2 Types

Expression in the λ-calculus, similarly to programming languages, can be assigned types.

We first consider functions that have a type that uniquely determines the types of its inputs and outputs.

Example A.12 The Successor function S(n) = n+ 1 has type N→ N. The addition function A(x, y) = x+ y
has typeN×N→ N. ■

Next we formally define types.

Definition A.13 (Types) 1. Atomic types are types
2. If t0 and t1 are types, then so is t0 → t1

Example A.14
t
t→ t
t→ (t→ t)
(t→ t) → t
(t→ t) → (t→ t)
t→ ((t→ t) → (t→ t))

■

Example A.15 Assume that the type N for natural numbers is the primitive type. Then we can assign types to
the following expressions.
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expression type
λx.(1 + x) N→ N

λx.λy.(x+ y) N→ (N→ N)
λx.λy.λz.(x+ y + z) N→ (N→ (N→ N))
λf.λx.(1 + f(x+ 1)) (N→ N) → (N→ N)
λi.λf.λx.(1 + f(x+ 1 + i)) N→ ((N→ N) → (N→ N))

■

Remark A.16 E1 : t0 → t1 can be applied to E2 : t2 only if t0 = t2. Then E1E2 has type t1.

Example A.17 E1 = λi.λf.λx.(f(x+ 1 + i)) has type N→ ((N→ N) → (N→ N))

Application E1E2 is possible only if E2 has typeN.

(λi.λf.λx.(f(x+ 1 + i)))7 results in λf.λx.(f(x+ 1 + 7)). ■

Clearly, a function λx.x is applicable to objects of any type, so we do not need to fix the type of its input. We could
use type variables t instead, and say that the type of λx.x is t → t. We do not discuss this topic here, because
it would require more complex concepts such as type unification to be able to define when application E1E2 is
possible. The possibility to have type variables in the types of a function is extensively used in programming
languages with a polymorphic type system [Mil78]. Examples of such languages are the ML family (Standard
ML, OCAML) and lazy functional languages such as Haskell and Miranda. The advantage of such type systems
it that any type errors are detected during the compilation process, and hence type errors are impossible when the
program is run.

A.2.1 Type Inference

There are only two principles in typing λ-expressions:

P1 For EF , type of E is T1 → T2, type of F is T1, and type of EF is T2, for some types T1 and T2.

P2 For λx.E, type of X is T1, type of E is T2, and type of λx.E is T1 → T2, for some types T1 and T2.

In the examples in the course material, in non-pure λ-expressions, we additionally can type some variables based
on the types of “built-in” functions, such as arithmetic operators, such as x as INT if x occurs e.g. in x+1. These
are always specific to the functions and operators in question, and we do not use them below.

Now, the problem is how to figure out what these T1 and T2 are in each case. The general algorithms for doing
this recursively go through a λ-expression, assign each subexpression some types T1, T2, T3, ..., and then do type
unification to establish connections between the types. For example, if in EF we got type T1 for E and type T2
for F, then from the principle P1 we have that it must be T1 = T3 → T4 for some types T3 and T4, and T2 must
be T3.

Example A.18 In λx.x, x is of some unknown type T1, so λx.x has type T1 → T2 by P1. Obviously, it must be
that T2 = T1, because the body is just x. So the type of λx.x is T1 → T1. ■

Example A.19 Next we find the typing for λx.λy.xy by systematically assigning a type to each sub-expression,
and in the end unifying the types.

1. By Principle P2, from λx.λy.xy we get
(a) x has type T1
(b) λx.λy.xy has type T1 → T2
(c) λy.xy has type T2

2. By Principle P2, from λy.xy we get
(a) y has type T3
(b) λy.xy has type T3 → T4
(c) xy has type T4

3. By Principle P1, from xy we get
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(a) x has type T5 → T6
(b) y has type T5
(c) xy has type T6

Now we unify these, as some expressions have different types assigned to them in (1), (2) and (3).

• For x we get: T1 = (T5 → T6)

• For y we get: T5 = T3
• For xy we get: T6 = T4
• For λy.xy we get: T2 = (T3 → T4)

• For λx.λy.xy we get: (T1 → T2)

And then replace every simpler type with the equal more complex type: T1 replaced by T5 → T6 and T2 replaced
by T3 → T4:

• For x we get: T1 = (T5 → T6)

• For y we get: T5 = T3
• For xy we get: T6 = T4
• For λy.xy we get: T2 = (T3 → T4)

• For λx.λy.xy we get: ((T5 → T6) → (T3 → T4))

Additionally, T3 = T5 and T4 = T6, so eliminate one of these type variables in each pair (we arbitrarily choose to
eliminate the second one):

• x : T3 → T4
• y : T3
• xy : T4
• λy.xy : T2 = (T3 → T4)

• λx.λy.xy : ((T3 → T4) → (T3 → T4))

■

One could read the same typing more directly from λx.λy.xy: x is a function with input of the type y, so we have

• x : T1 → T2
• y : T1
• xy : T2
• λy.xy : T1 → T2
• λx.λy.xy : (T1 → T2) → (T1 → T2)

A.3 Expressive Power of Pure λ-Calculus

Pure λ-calculus is Turing-equivalent, and it can express all computations expressible as Turing machines.

There are several schemes for encoding natural numbers with addition and arithmetic operations in λ-calculus,
and this is one route to reducing Turing-machine computations to λ-calculus.

Well known combinators expressible in λ-calculus include the following.

• I = λx.x

• K = λx.(λy.x)

• S = λx.λy.λz.xz(yz)

• Y = λf.(λx.f(xx))(λx.f(xx))

• Θ = (λxy.y(xxy))(λxy.y(xxy))

Combinators S and K are enough to express all computations, and they have been used as primitives in imple-
menting functional programming languages. The identity function I can be expressed as I = SKK.

The lack of names of functions in λ-calculus prevents the direct expression of recursion, as reference to the
function itself inside its body is not possible. Instead, the fixpoint combinators Y and Θ can be used for expressing
recursion.
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Relational Algebra

Relational algebra is one of the fundamental formalisms used in database research. The implementation of rela-
tional databases, which is the most powerful class of databases in wide use, is based on relation algebra operations.
SQL is a query language for relational bases, and much of the core functionality of SQL uses operations from
relational algebra. The SELECT construct of SQL combines projection, renaming and selection in one syntax,
and inside SELECT there can be join, union and other relational operations.

A relation in mathematics is a set of fixed-length sequences of some values. A binary relation is a set of pairs
(e1, e2), a ternary relation is a set of triples (e1, e2, e3), and so on. In each element of a relation the component
values can be referred to based on their position in the element.

In contrast, in relational algebra, the positions are named. For example, the following relation could represent the
relation “to be the parent of”.

parent child
Jack Mary
Jack John
Jill Mary

This can be represented as a conventional mathematical relation as the set {(Jack,Mary), (Jack, John), (Jill,Mary)}.

In relational algebra, we refer to parent and child as columns. For many of the central operations in the relational
algebra, including natural join, it is critical that the columns have names.

To represent the relational algebra relations faithfully with set-theoretic concepts, we view the elements of a
relation as mappings from columns to values. This leads to – following the standard definition of mappings or
functions as sets – representing the above relation as the following set sets.

{ {(“parent”, “Jack”), (“child”, “Mary”)},
{(“parent”, “Jack”), (“child”, “John”)},
{(“parent”, “Jill”), (“child”, “Mary”)}}

Notice that unlike in the standard mathematical definition of relations where there is an ordering on every tuple in
the relation, in this definition the columns are not ordered, and the following is set-theoretically exactly the same
entity as the previous one, with both columns and rows written in a different order.

{ {(“child”, “Mary”), (“parent”, “Jack”)},
{(“child”, “Mary”), (“parent”, “Jill”)},
{(“parent”, “Jack”), (“child”, “John”)}}

Now we can formally define the operations of the relational algebra.

Some operations of the relations algebra are trivial, including union, intersection, and difference, because they are
the standard set-theoretic operations.

name symbol definition
union ∪ R1 ∪R2 = {e|e ∈ R1 or e ∈ R2}
intersection ∩ R1 ∩R2 = {e|e ∈ R1 and e ∈ R2}
difference − R1 −R2 = {e|e ∈ R1 and e ̸∈ R2}
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Relational algebra allows these three set-theoretic operations on relations only when the columns for the two
relations are the same.

One of the core operations in the relational algebra is that of natural join. This operations combines two relations
to a new relation that has all the columns of the two components, and each element is a combination of two
elements from the two components so that the joint columns contain the same value.

The natural join ⋊⋉ is defined by

R1 ⋊⋉ R2 = {r1 ∪ r2|r1 ∈ R1, r2 ∈ R2,∀c ∈ Cols(R1) ∩ Cols(R2).r1(c) = r2(c)}.

Here Cols(R) denotes the column names in relation R, defined by Cols(R) = {n|r ∈ R, (n, v) ∈ r for some v}.
Notice that the empty relation always has no columns, and this is not problematic for the definition of the natural
join operation.

The intersection ∩ of two relations is defined directly by set-theoretic intersection, whenever the columns of the
two relations are the same. Note that the intersection is a special case of natural join, and that’s why it is often not
introduced as a separate operation.

The Cartesian product of two relations that do not share columns can be defined as follows.

R1 ×R2 = {r1 ∪ r2|r1 ∈ R1, r2 ∈ R2}

So here we require that Cols(R1) ∩ Cols(R2) = ∅. Note that this is a special case of natural join: if the columns
are disjoint, there are no values that have to coincide, and all pairs of elements from the two relations end up in
the resulting relation. For this reason the Cartesian product operation is used in place of the join operation mostly
just to emphasize that there are no common columns in the two relations.

The projection operation πn1,...,nk
(R) eliminates some of the columns, keeping only those listed in n1, . . . , nk. It

is defined as follows.
πn1,...,nk

(R) = {{(n, v) ∈ r|n ∈ {n1, . . . , nk}}, r ∈ R}
The renaming operation changes the names of one column of a relation.

ρn1/n0
(R) = {{(n, v) ∈ r|n ̸= n0} ∪ {(n1, v)|(n, v) ∈ r, n = n0}}|r ∈ R}

The selection operation selects the subset of those elements of a relation that satisfy a given condition. The
condition can refer to the values in the different columns in one element. In general it could be any Boolean
combination of comparisons between the values in the different columns and any constants.

σϕ(R) = {r ∈ R|ϕ}

We could allow all Boolean connectives in ϕ (∨,∧,¬,↔,→, . . .) and use equalities t1 = t2 as the atomic condi-
tions in ϕ, where t1 and t2 are either column names, evaluating to the value in that column in a given element, or
constants of the type the column is (e.g. strings, integer, dates, times, or whatever value is stored in that column.)
In addition to equality =, for numeric values of course comparisons <, ≤ and so on could be used.

Finally, the relational division operation is defined by

R1 ÷R2 = {cut(r1, R1, R2)|r1 ∈ R1, ∀r2 ∈ R2.((cut(r1, R1, R2) ∪ r2) ∈ R1)}

where we define cut(r1, R1, R2) = {(n, v) ∈ r1|n ∈ Cols(R1) − Cols(R2)}. This is the row r1 of relation R1

limited to the columns that only occur in R1 and not in R2. For the division to be well-defined, we require that
Cols(R2) ⊆ Cols(R1).

The division operation can be reduced to the other operations by

R1 ÷R2 = πC1(R1)− πC1(πC1(R1)×R2 −R1) (B.1)

where C1 = Cols(R1) − Cols(R2). The computation of the right-hand side of the difference is expensive and
generally impractical, and that is the reason why this reduction is rarely used, and why it is important to keep
division as one of the primitive operations.

Doing what is (implicitly) universal quantification is also one of the main motivations for the aggregation opera-
tions in SQL. Many complex database queries used in practice are essentially about universal quantification, and
SQL makes it possible to express them by using aggregation and related features.
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Example B.1 We have two relations, TeamLeader (column “person”), which lists all company employees that
are team leaders, and Skill (columns “person” and “skill”), which indicates which skills different people have.

Consider the following two queries.

1. “Find all team leaders with at least one of the skills Python, SQL, Javascript”
2. “Find all team leaders with all of the skills Python, SQL, Javascript”

Let these skills be in the relation BasicSkills, with only one column “skill”. So the three relations needed in these
queries could for example be as follows.

TeamLeader
person
Derek
Jack
Jill
Mary
Rebecca

Skill
person skill
Derek Fortran
Hamish Python
Hamish SQL
Hamish Javascript
Jack Python
Jack MUMPS
Jill Python
Mary Python
Mary SQL
Mary Javascript

BasicSkills
skill
Python
SQL
Javascript

The first query is done as a join followed by projection as

πperson(Employee ⋊⋉ Skill ⋊⋉ BasicSkill).

This is trivial to express in SQL as follows.

SELECT person FROM Employee NATURAL JOIN Skill NATURAL JOIN BasicSkill

The second query has universal quantification in the word “all”, and it is done most naturally by using division
(but could be reduced to the other operation, as shown in Equation (B.1), but very inefficiently.)

πperson((TeamLeader ⋊⋉ Skill)÷ BasicSkills).

This is more complicated, and we go through it step by step. First compute TeamLeader ⋊⋉ Skill as follows.

TeamLeader
person
Derek
Jack
Jill
Mary
Rebecca

⋊⋉

Skill
person skill
Derek Fortran
Hamish Python
Hamish SQL
Hamish Javascript
Jack Python
Jack MUMPS
Jill Python
Mary Python
Mary SQL
Mary Javascript

=

person skill
Derek Fortran
Jack Python
Jack MUMPS
Jill Python
Mary Python
Mary SQL
Mary Javascript

Then we divide the resulting relation by BasicSkills.

person skill
Derek Fortran
Jack Python
Jack MUMPS
Jill Python
Mary Python
Mary SQL
Mary Javascript

÷

BasicSkills
skill
Python
SQL
Javascript

=
person
Mary
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The result is obtained by picking all those persons in the leftmost table for which the skill column includes all skills
in BasicSkills. The corresponding SQL query is quite a bit more complicated, involving a sub-query, COUNT,
and GROUP BY.

SELECT person
FROM
TeamLeader NATURAL JOIN Skill
GROUP BY person
HAVING COUNT(*) = (SELECT COUNT(*)

FROM BasicSkills)

This could be done with more basic SQL by using nested DIFFERENCE/EXCEPT operations, as shown in Equa-
tion (B.1), but that would be very inefficient.

■


