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Preface

ALTHOUGH FINLAND IS, and has been since independence, a superpower
in the field of geodesy, there does not seem to be a modern geodesy
textbook in the Finnish-language area. Finnish-language textbooks, as
well as and popular books, do exist, but they are either badly outdated or
treat only a certain sub-area of geodesy. Of these, we may mention the
writings by Martti Tikka on measurement and instrument techniques
and geodetic computation (Tikka, 1991, 1985), now largely obsolete, and
Salmenperä (1998). The work on satellite positioning by Poutanen (1998)
has now been updated (2017) and is very useful. The book by Kallio
(1998) explains the least-squares statistical computation technique used
in geodesy. All these sources have been helpful in writing this book.

Internationally, clearly more geodesy textbooks are on offer, and
we have benefited from Torge (2001), Vaníček and Krakiwsky (1986),
Kahmen and Faig (1988) in measurement and instrumental techniques,
Heiskanen and Moritz (1967) in physical geodesy, and Hofmann-
Wellenhof et al. (2001) in satellite geodesy.

The material in this book divides naturally into two parts: classical
geodesy and modern geodesy. Each could be the textbook for its own
course, which would each be worth three ECTS points.

The subjects discussed in the classical geodesy part (chapters 1–10) are
the history of geodesy, the figure of the Earth and gravity, the reference el-
lipsoid, co-ordinates and heights, basics of geodetic measurements, units
of measurement, uncertainty of measurement; Helmert transformations,
the direct and inverse geodetic problems; levels and levelling, height
systems, the geoid; theodolites and total stations, angle measurements;
distance measurement using electromagnetic radiation and propagation
of the measurement ray in the atmosphere; geodetic networks, measure-
ment classes, network hierarchy; base and mapping measurements; area
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ii PREFACE

and volume calculations.

In the part on modern geodesy (chapters 11–18), we concentrate instead
on the development, during the past century, from geodesy closely tied
to the Earth’s surface to genuinely three-dimensional geodesy, compris-
ing space and satellite geodesy and truly three-dimensional positioning
methods based on electromagnetism. We discuss three-dimensional refer-
ence systems, hyperbolic positioning systems and the global positioning
system GPS; GPS satellites, orbits, signals, receivers; measurements of
pseudo-range and carrier phase, measurement geometry, differencing of
observations, integer-valued ambiguities and their fixing; processing GPS

observations, relative and differential as well as real-time positioning.
We also dive deeper into the statistical foundations of geodesy, including
the least-squares method, residuals, statistical testing, outlier detection,
reliability, and planning of measurement networks. Finally, we look at
the borderlands between geodesy and geophysics, comprising the gravity
field of the Earth and the gravimetric geoid; space geodesy, the rotational
and orbital motions and deformations of the Earth; satellite orbits and
the role of geodesy in geophysical research.

We have chosen in this text to concentrate on conceptual and funda-
mental matters. That also means describing the internal workings of
instruments and processes which are in today’s systems handled auto-
matically by smart software — even if to some, this may feel like we are
teaching outdated skills.

Helsinki, 9th December, 2020,

Martin Vermeer

Second edition

A second, extensively corrected and improved edition was published on
25th September, 2022. No substantive content was added. The original
text was archived.
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^ The history and societal status of
geodesy

11
[. . . ] Nous avions été sur le fleuve, fort incommodés de

grosses Mouches à tête verte, qui tirent le sang par-tout où
elles picquent ; nous nous trouvâmes sur Niwa [Nivavaara],
persécutés de plusieurs autres espèces encore plus cruelles.

Maupertuis (1738), PDF page 44, page 16

^ 1.1 The figure of the Earth, early conceptions

In traditional societies, undoubtedly the most common conception of
the figure of the Earth was that the Earth is a flat disc extending to
the horizon, with the sky curving like a dome over her. On the inner
surface of the dome, the celestial bodies describe their complicated orbits.
Children also have generally the same conception. Only with formal
education does this “naïve world model” give way. Psychologically, from
the viewpoint of childhood development, this is by no means an easy
process, surely as difficult as it was for society as a whole, back in time
as a stage in the historical development of science.

However, the antique Hellenes were already aware of the spherical
shape of the Earth. Free of preconceptions, they had observed how, during
a lunar eclipse, the Earth cast her shadow on the surface of the Moon.
They also observed that a lunar eclipse that was high in the sky at one
end of the Mediterranean happened near the horizon at the other end.
Assuming that this was one and the same event, this could only mean
that the Earth’s surface must be curved at least in the east-west direction.
And the colder climes found further north were a sign to early observers
that the Earth is also curved in the south-north direction.

Eratosthenes, the “father of geography”, lived 276–195 BCE.1 He was 1
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12 THE HISTORY AND SOCIETAL STATUS OF GEODESY

FIGURE 1.1. A lunar eclipse. The shape of the shadow, always circular, shows
that the Earth must be a sphere.^

the first to measure the size, or radius, of this spherical Earth. The
measurement was the same in principle as the later grade measurements:astemittaus

measure the length of an arc on the surface of the Earth by geodetic
means, and the difference in direction between the plumb lines at theluotiviiva

ends of the arc by astronomical means. By combining the length ℓ of the
arc and the difference between the plumb-line directions γ one obtains

X

ℓ

Plumb line
North Pole

γ

Equator
Earth
centre

Direction
of the Sun

Syene

AlexandriaAlexandria

FIGURE 1.2. The grade measurement of Eratosthenes.^

1“Before the common (or Christian) era”.

í  Õ ! ¤.� û



The figure of the Earth, early conceptions 1.1 3
for the radius of the Earth

R = ℓ
γ . (1.1)

See figure 1.2.

The information on the directions of the plumb lines was obtained from
the midsummer Sun, which in Syene (today’s Aswan) did not throw any
shadows at all.2 In Alexandria, on the other hand, the Sun was not in 2

the zenith but, based on the lengths of shadows, some fiftieth part of a
circle further to the south. Eratosthenes obtained a value for the radius
of the Earth3 of 6317–7420km — pretty close to the current best value of 3

6371km.

More information can be found in Torge (2001), pages 5–6.

The principle of triangulation, so important in geodesy, that, in a kolmiomittaus

network consisting of triangles, the geometry may be uniquely determined
if, in addition to the angles of the triangle, only one distance is measured,
was presumably discovered by Gemma Frisius4 in 1533 (Crane, 2002, 4

pages 56–57).

The use of the method for grade measurement also happened for the
first time in the Netherlands, using the numerous church towers dotting
the prosperous but flat country. Snellius5 was among the first to use tri- 5

angulation to determine the length of an arc ℓ. By measuring one length
in the network, and otherwise only angles, he managed to determine the
distance between two cities, Bergen op Zoom and Alkmaar, although the
cities are separated by the broad river branches of the Rhine delta. See
figure 1.3.

The secret of triangulation is that with the aid of angle measurements
one can build, either computationally or graphically, a scale model of
the whole measurement network, where all proportions and shapes are
correct. To determine the true scale, it suffices to measure just one
distance in the model also in reality. In the case of Snellius, this was the
distance pq, in the meadow by Leiden, a baseline of only 326 “roeden”.6 perusviiva

6
2The story that he used the circumstance that the Sun illuminated the bottom of a well
is apparently a misunderstanding (Dreyer, 1914).

3In fact he obtained his results in a unit called the stadium, the length of which varies.
The length used by Eratosthenes is controversial.

4Gemma Frisius (1508–1555) was a Dutch polymath.

5Willebrord Snell van Rooyen (1580–1626) was a Dutch astronomer and mathematician.

6The version of the unit used by Snellius was the “Rijnlandse roede”, 3.766m.
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Plumb line

Bergen op Zoom

Polaris

Polaris

Bergen op Zoom Plumb line
Breda

Utrecht

Alkmaar

RotterdamRotterdam
Gouda

DordrechtDordrecht

Alkmaar
A

rc
length

A
rc

lengthThe HagueThe Hague

LeidenLeiden

V

W

BaselineBaseline
pq

AmsterdamAmsterdam

Z

BaseBase
extensionextension

networknetwork

FIGURE 1.3. The Snellius grade measurement. The length of baseline pq is
326.45 roeden (1229m). This length was derived through a lo-
cal base extension network from the only measured length, the
original baseline of length 87.05 roeden (328m) (personal commu-
nication L. Aardoom).
V = Voorschoten, W = Wassenaar, Z = Zoeterwoude.^

Using astronomical position determination, one may determine the
difference between the directions of the plumb line in two locations,
see figure 1.4. When travelling along the meridian in the north-south
direction, the absolute direction of the local plumb line, the direction
with respect to the stars, changes. The local plane of the horizon, always
perpendicular to the plumb line, the local direction of gravity, also turns
by the same amount in the same direction.

The direction in space of the rotation axis of the Earth is very stable
due to the gyroscope phenomenon. It points to a place in the sky near
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Newton’s laws and the figure of the Earth 1.2 5
α UMi (Polaris)

Pole height

Plumb line

Plane of horizon

North Pole

dd

∆Φ∆Φ

RR

FIGURE 1.4. Astronomically determining the difference in the north-south direc-
tion ∆Φ of plumb-line directions. From the direction difference and
the metric distance d, one can determine the radius of curvature
of the Earth R = d

/︁
∆Φ , assumed constant.^

the star α Ursae Minoris, or Polaris. This star gives us the direction
of the north. The latitude Φ of a location is obtained by determining
astronomically the elevation angle of this celestial pole above the horizon.
This is easiest to do using Polaris, although a precise determination is a
little more involved.

By thus measuring astronomically the difference in plumb-line direc-
tions between Alkmaar and Bergen of Zoom, and combining this with
the metric distance obtained by triangulation, Snellius managed to deter-
mine the radius of curvature of the Earth. The method is referred to as
grade measurement.

^ 1.2 Newton’s laws and the figure of the Earth

The understanding of the figure of the Earth made a great leap for-
ward when Newton7 published in 1687 his main work, the Principia 7

(Philosophiæ Naturalis Principia Mathematica, “Mathematical principles
of natural philosophy [physics]”). In this opus he created the foundations
of the whole of classical mechanics, including celestial mechanics.

7Sir Isaac Newton (1642–1727) was an English physicist and mathematician, the father
of classical mechanics.
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Newton: 1
/︁

230.
Mass evenly distributed

Huygens: 1
/︁

578.
All mass in the centre

Current understanding: 1
/︁

298.
Denser core inside mantle, thin

crust (green)

FIGURE 1.5. Different mass distribution models for the Earth, and their theo-
retical flattening values.^

The universal law of gravitation Between two masses m1 and m2

acts an attraction F of strength

F =G m1m2
r2 ,

in which r is the distance separating the masses. The constant G
is Newton’s universal gravitational constant, the value of which is
6.674 ·10−11 m3/︁

kgs2 .

This attraction acts between all pairs of masses. So, not only does the
Earth’s attraction act on the Moon and the Sun’s attraction on the Earth,
but the Moon’s attraction also affects the Earth, etc. In geophysics again,
we know that the attraction works between all parts of the Earth: the
sea, atmosphere, mountains all affect the gravitational field surrounding
the Earth. And, because our Earth consists of materials that — however
more of less reluctantly — deform under the influence of external force,
gravitation also shapes the physical figure of the Earth.

In the Principia, Newton calculated, using his famous laws, that a
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Newton’s laws and the figure of the Earth 1.2 7
Length of a degree in Lapland

rPrP

rL

Meridian

Length of a
degree in Peru

b

a
a

FIGURE 1.6. Parameters of an ellipsoid of revolution.^

homogeneous, liquid Earth, in equilibrium and rotating once in 24 hours,
with gravitation acting between its elements of liquid, would be flat-
tened at the poles by centrifugal force (figure 1.6). The definition of the
flattening (oblateness) is

f = a−b
a , (1.2)

in which a and b are the semi-major and semi-minor axes of the Earth iso- ja
pikkuakselin
puolikkaat

ellipsoid; in other words, the equatorial and polar radii.

The theoretical flattening calculated by Newton was f = 1
/︁

230.

The assumption that the Earth is of homogeneous density is not cor-
rect. Christiaan Huygens calculated in 1690, by assuming that all the
Earth’s mass is concentrated in her centre — or at least, that the Earth’s
attraction emanates from her centre — that the flattening would only be
f = 1

/︁
578. As we know today, the truth lies between these two extremes:

the density of the Earth’s crust is about 2.7g
/︁

cm3 , that of the underlying
mantle is 3.0–5.4 g

/︁
cm3 , and the density of the iron core of the Earth is

10–13 g
/︁

cm3 . The average density of the whole Earth is about 5.4g
/︁

cm3 . So,
while the density increases a great deal toward the centre of the Earth, a
large part of the Earth’s mass is nevertheless far from her centre.

In Newton’s days there were influential scientists, like the astronomer
Cassini,8 who believed that the Earth was elongated like a rugby ball, 8

b > a, and not flattened. An empirical answer to the question was needed!

The flattening issue remained unsolved until half a century later, when

8Jean Dominique (Giovanni Domenico) Cassini (1625–1712) was an Italian-French
astronomer — explorer of the Saturn system — mathematician, map maker, and
engineer.
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the French Academy of Sciences organised two expeditions, one to Finnish
Lapland — then part of the Swedish empire — (1736–1737), the other
to Peru, South America (1735–1744). The goal of the expeditions was to
measure, by geodetic and astronomical means, the length of a meridian
arc of one degree on two different latitudes, one close to the equator in
Peru, the other close to the North Pole in Lapland in the Torne river
valley. This was thus a similar grade measurement to the one Snellius
had carried out over a century earlier. . . . but this measurement took
place far away from the home country, in strange lands in different
climate zones, one of them even beyond the ocean.

The idea of the measurement is illustrated in figure 1.6. Using as-
tronomical measurements, a baseline is established in the north-south
direction, at the end points of which the directions of the plumb line differ
from each other by one degree. Over land, the distance between the points
is measured in metres.9 If Newton was right, the length of a degree close9

to the North Pole would be greater than that of one close to the equator,
in other words, the radius of curvature of the Earth would, at the poles,
be longer than at the equator:

rL > rP .

The joint result of both expeditions was an empirical flattening of f =
1
/︁

210. For comparison, the current best value for the flattening of the
Earth is f ≈ 1

/︁
298.257.

Much has been written about the adventures of the expedition led
by Pierre L. M. de Maupertuis in the Torne river valley 1736–1737, for
example Rovaniemi, The Degree Measurement Expedition, and in the
French original (Maupertuis 1738).

Of the later grade measurements we may mention Struve’s10 Russian-10

Nordic grade measurement (the “Struve chain”) 1816–1855, which
extended from Norway’s Atlantic coast all the way to the Black Sea
(Wikipedia, Struve Geodetic Arc). Some points of the chain have also
been preserved on Finnish territory.

9In reality, the French Academy of Sciences measurements used the toise as the unit of
length, as the metre had not been invented yet.

10Friedrich Georg Wilhelm von Struve (1793–1864) was a Russian astronomer and
geodesist.
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FIGURE 1.7. The grade measurement project of the French Academy of Sciences:
the Lapland grade measurement network.^

^ 1.3 The mathematical figure of the Earth or geoid

The changes from place to place in the direction of the plumb line along
an arc on the Earth’s surface can thus be used to find out about the
true figure of the Earth. In the previous section we described how the
grade-measurement project of the French Academy of Sciences exploited
this phenomenon for determining the figure of the Earth, assuming that
the Earth has the figure of an ellipsoid of revolution.

With the aid of more precise geodetic measurements it was noticed that
this assumption does not precisely apply. Already in the context of the
Peru grade measurement, Pierre Bouguer11 noticed that the direction 11

of the plumb line on both sides of the Andes had a tendency to deflect

11Pierre Bouguer (1698–1758) was a French polymath, mostly a geophysicist and
shipbuilder.
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FIGURE 1.8. The northernmost point of the Struve chain in Fuglenes, Norway,
Franz (2005).^

towards the mountain range, and he interpreted this correctly as an
expression of Newtonian gravitation or attraction. George Everest12 in12

India noticed the same phenomenon near the Himalayas. As geodetic
measurements, especially astronomical determinations of the direction of
the plumb line, progressed, the understanding spread that the figure of
the Earth is irregular.

People started to speak about the “mathematical figure of the Earth”
or geoid (J. B. Listing,13 1873), the continuation of mean sea level under13

the continental masses, a surface that is everywhere perpendicular to
plumb lines, and along which a fluid at rest — like sea water — would
settle. See figure 1.9.

In 1862, under the leadership of the Prussian J. J. Baeyer,14 the “Mittel-14

europäische Gradmessung” (“Central European Grade Measurement”)

12Sir George Everest (1790–1866) was a geodesist and geographer born in Wales,
director-general of the Survey of India. In 1865 the highest peak in the Himalayas was
named Mount Everest in his honour but against his protestations.

13Johann Benedict Listing (1808–1882) was a German mathematician, the inventor of
topology.

14Johann Jacob Baeyer (1794–1885) was a Prussian military officer, geodesist, and
diplomat of geodesy.
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FIGURE 1.9. Deviations of the plumb line and the shape of the geoid.^

was established, which later developed into the global organisation IAG,
International Association of Geodesy. Its task was determining the figure
of the Earth or geoid, especially on the European territory, and uniting
the geodetic networks of Europe into a single network. This objective was
not properly achieved until 1950, when the first joint European network
adjustment ED50, “European Datum 1950”, was completed, even though verkkotasoitus

only on the Western European territory.

Elsewhere, for example in North America, continental-scale trian- kolmiomittaus-
verkkogulation networks were being measured, to determine the figure and

flattening of the Earth as well as the locations of points on the Earth’s
surface in support of map-making. Determining the general figure of the
Earth is however difficult from the Earth’s surface using classical geode-
tic techniques, because extended networks on the Earth’s surface are not
geometrically strong, and their unification across oceans is impossible.

Satellites have fundamentally changed this picture: satellite tech-
niques have provided precise data on, for example, the flattening of the
Earth by exploiting the rapid precession of the satellite orbital plane it ratatason

prekessiocauses. Several weeks after the launch of Sputnik, much better values
were already becoming available for the flattening, and the American
Vanguard 1 satellite showed the Earth to be “pear shaped” — although
only very, very slightly.
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B

A

B
A

B

A

FIGURE 1.10. The geodesic in the plane, on the sphere and on the ellipsoid of
revolution. The arrows depict the local normal to the surface.
The plane of the normal section is not uniquely defined for the
ellipsoid of revolution.^

^ 1.4 The geodesic

In the plane, the shortest path between two points is the straight line.
On the curved surface of a sphere, or of an ellipsoid of revolution, thepyrähdys-

ellipsoidi shortest path is a curve. In the case of the sphere it is an arc of a great
isoympyrä circle;15 in the case of the ellipsoid it is a surface curve that is ever so

15
slightly S-shaped.

Figure 1.10 shows this general concept of “the shortest path within a
surface” or geodesic.geodeettinen

viiva The figure shows another curiosity: both in the plane and on the sphere,
the plumb lines, or normals, to the surface at the end points A and B lie
in the same plane, together with the connecting line or curve itself. This
plane is called the normal section. In the case of an ellipsoid of revolution,normaali-

leikkaus this is however not the case: in the general case there is no normal section
containing both surface normals. This effect is indeed extremely small
and it can be ignored in all but the most precise calculations.

Traditional geodetic measurement networks on the Earth’s surface,
especially triangulation networks, can be considered to consist of mea-

15Between any two points there are two great-circle arcs, one the shortest and the other
the longest between the points. Only in the case of antipodes is there an infinity of
great-circle arcs, all 180◦ long.
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The flattening of the Earth and gravity 1.5 13
surement lines that are geodesics on some reference surface, usually a
reference ellipsoid.

In practice, the geodetic instruments and signals are never precisely on tähys

the reference surface, but are some distance above or, more rarely, below
it. Then, a reduction of the raw observations to this reference surface
must be made. This applies to both angle and distance observations.
Generally, the corrections needed are small.

^ 1.5 The flattening of the Earth and gravity

As we explained above, the Hellenes were already well aware of the
sphericity of the Earth and even her approximate size. During the 17th

and 18th centuries, the idea developed of the flattening of the Earth, that
is, the ellipsoid of revolution as descriptive of the figure of the Earth.
Astronomers observed the flattening of Jupiter, describing it correctly as
a dynamic phenomenon caused by the planet’s fast rotation.

On a flattened Earth, of course also gravity changes with latitude. This
was in fact observed with a pendulum clock, the pendulum of which had
to be shortened when travelling to Cayenne in French Guyana (Jean
Richer,16 1672), so the clock would run on time again. Gravity is weaker 16

near the equator than in France. Upon returning to France, Richer had
again to lengthen his pendulum, so it would swing on time.

Newton and Huygens calculated theoretically a value for the Earth’s
flattening f , equation 1.2. A. C. Clairaut17 again derived his famous equa- 17

tion giving the relationship between flattening f and “gravity flattening”

β= γb −γa
γa

.

Here, γa and γb are the accelerations of gravity on the equator and on the
poles, respectively. Clairaut’s theorem’s approximate but elegant form is
(Heiskanen and Moritz, 1967, equation 2-99)

f +β= 5
2
ω2a
γa

,

in which ω is the rotation rate or angular velocity of the Earth. The
expression ω2a

/︁
γa represents the centrifugal force on the equator caused

by the Earth’s rotation as a fraction of gravity there.

16Jean Richer (1630–1696) was a French astronomer.

17Alexis Clairaut (1713–1765) was a French mathematician and astronomer.
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^ 1.6 Reference surfaces and reference systems

As a reference surface for heights, the geoid is used, that level surface, or
equipotential surface, of the gravity field of the Earth, which is on average
on the same level as the mean sea level. This is thus the surface, the
minimum state of potential energy, which sea water would reach if there
were no currents in the ocean, no salinity or temperature differences,suolaisuus

no variations in air pressure above it, and so on. In reality, all these
disturbing factors exist and the global mean sea level deviates by over
one metre from this equipotential surface, both above and below it. Of
this deviation, part varies in time, like the tides, part is permanent, the
sea-surface topography.meritopografia

The levelled heights of countries may be understood as heights above
this geoid surface. In practice, the heights are tied to sea-level obser-
vations by tide gauges or mareographs operating on the coast, and the
reference level is transferred inland by levelling, thus creating a height
system.

More about the geoid and heights can be found in chapter 4.

A space geodetic measurement method, like GPS, provides a way to
determine the height of a point from the reference ellipsoid, because the
ellipsoid of revolution is a simple mathematical surface in space. The ref-
erence ellipsoid is also otherwise a good approximation of the true figure
of the Earth, which has traditionally been used as a reference surface for
the adjustment of national or continental triangulation networks.tasoitus

In very small areas and for many purposes, the “flat Earth approxima-
tion”, the assumption that the curvature of the Earth may be neglected,
continues to serve us. The locations of points may be described by two
plane co-ordinates and the height by one height co-ordinate, the vertical
distance in metres from the reference surface. Depending on the applica-
tion, a “small area” may be a building site, a city, or all of Finland — or,
in special situations, taking special care, even an area the size of Europe,
for example Strang van Hees (1990).

^ 1.7 The sub-fields of geodesy

Geodesy is defined as “the science of measuring and mapping the Earth’s
surface” (Helmert, 1880; see Torge, 2001 page 1). This definition contin-
ues to hold today. Geodesy also includes the mapping of the sea floor, asmerenpohja

well as the determination of the gravity field of the Earth, or geopotential.
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The sub-fields of geodesy 1.7 15
More and more, the study of changes in the shape of the Earth and of the
physical mechanisms causing these, geodynamics, has also become a part
of the geodetic research field.

Thus, geodesy, in particular physical geodesy, belongs to the Earth sci-
ences. However, geodesy also clearly belongs to the engineering sciences.
In Finland, geodesy is currently (2018) being taught both at the Univer-
sity of Helsinki (two docents, external lecturers) and at Aalto University
(one professor, docents, external lecturers).

According to Torge, geodesy may be divided into three sub-fields:

Global geodesy, also “measuring the Earth” (geomensuration, German
Erdmessung). More precisely (Torge, 2001, page 2):

“The problem of geodesy is to determine the figure and
external gravity field of the earth and of other celestial
bodies as a function of time, from observations on and
exterior to the surfaces of these bodies.”

Figure of the Earth:

◦ The physical figure of the Earth: the solid surface of the Earth,
the interface between solid and gaseous or liquid matter —
atmosphere, ocean — with all its mountains and depths.

◦ The mathematical figure of the Earth or geoid: the equipo-
tential surface of the Earth’s gravity field that on average
coincides with the mean sea surface, and that may be consid-
ered the continuation of the mean sea surface under the land
masses. See section 1.3.

Geodetic surveying, surveying science. To this belongs the measure-
ment of national — and today, international — geodetic and gravi-
metric base networks as a basis for mapping. In this work, the runkoverkko

Earth’s curvature and gravity field must be taken into account.

Ordinary surveying (“plane surveying”). To this belong, for example,
topographic surveying and engineering surveying measurements. maastomittaus

These measurements are of such areal extent and accuracy level,
that in all calculations the curvature of the Earth may be neglected
or taken into account by simple correction formulas.

These measurements are made, besides by geodetic means, often
also photogrammetrically by means of aerial photography. The
objective of the work is always the production of geometrically
precise and correct mapping material for use by society.
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Computations may be done using plane co-ordinates x and y. Maps
for small areas may be drawn without the use of a map projec-
tion, and the separate height co-ordinate H may be assumed to
be purely metric (“metres above sea level”) without unpleasant
consequences.

^ 1.8 Topographic surveying: from terrain to map

The booklet “Maastomittaus ja kartoitus” (“Topographic Surveying and
Mapping”) (Heiskanen and Härmälä, 1963) states:

“Topographic surveying and the mapping that goes with itmaastomittaus

most often serve to provide of a larger or smaller area a
depiction that is as correct and precise as possible, in the form
of a map.”

Society needs maps and location-based information for many purposes.
In today’s society, the ownership of real estate, its buying and selling, and
especially its use as collateral (mortgage) for loans aimed at maintaininghypoteekki

and developing the property’s value, are foundational for a modern society
with a high level of investment. To this end exists the cadastral system,
which registers as reliably as possible the state of properties and the
rights tied to them. There are millions of real-estate properties and
parcels and their collective monetary value is astronomical.1818

Another use of maps and geospatial information that is importantpaikkatieto

to society, is the planning and construction of infrastructure:19 roads,19

railways, bridges, tunnels, canals, airports, harbours, power plants, water
works, telephone and data networks and so on. This is a vital public
service from the viewpoint of economic productivity.

In every developed society, construction is limited in some sense. You
may not build what and how you wish, even on land that you own. Zoningkaavoitus

regulates in a co-ordinated way the purposes for which land may and
may not be used. These regulations are contained in zoning plans, thekaava

18According to a report by RAKLI ry (2014) “All of Finland’s building stock together has
a value, including parcels, of some 480 billion euros”. This means almost a hundred
thousand euros for every Finnish man, woman and child.

19There are many definitions of infrastructure. The most perceptive one is undoubtedly
that it is “those things the importance of which does not reach our awareness until they
stop working”.
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approval process of which is statutorily prescribed, public and consisting
of several stages. The reason for this is that zoning affects the value
of real-estate property, so the legal status of property owners requires
that the democratic approval process of zoning plans contains adequate
instruments of appeal. Maps and other surveying-based information
sources are essential for this process.

In Finland, the planning of land use and the associated local infrastruc-
ture construction happens for the most part in the public administration,
most often in municipalities. We speak of spatial planning. yhdyskunta-

suunnitteluTopographic surveying is, in terms of volume, the overwhelmingly
largest field of application of land-surveying.

^ 1.8.1 Spatial planning

Spatial planning is a continuous activity, to which belongs zoning, plan-
ning of land use and the built environment, and managing building
activity. In spatial planning a major role falls to the municipality. City
planning and regional planning are forms of spatial planning.

The technical planning and building of a community require reliable
information on the environment which is being planned and built. Figure
1.11 gives an idea of all the places where geospatial information plays a
role in the continuous process of spatial planning and construction.

Topographic surveying is present in the whole process:

◦ Topographic information must be measured onto the map in a maastotieto

certain co-ordinate reference frame.

◦ When the zoning plan is ready, it has to be set out on the terrain.

◦ The properties have to be measured and mapped.

◦ The technical structures must be placed onto the terrain.

Topographic surveying has the following technical tasks:

◦ Creating a base network for mapping: getting the measurements
into a certain, known co-ordinate frame.

◦ Mapping terrain details while using base-network points: detail kartoitus-
mittaussurvey.

◦ Setting out: the transfer of a plan onto the terrain, to be realised in maastoon
merkintäits correct location. Setting or staking out is, in a way, the inverse

problem of mapping.
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^ 1.8.2 Carrying out the tasks of topographic surveying

Successfully carrying out the tasks of topographic surveying requires
that the surveyor understands the following things:

◦ geodetic instruments

◦ measurement technique, measurement planning, measurement
conditions

◦ geodetic computation: co-ordinates and transformations, derived
quantities, accuracy

◦ zoning-plan calculations, setting out

◦ geographic information systems

◦ maps, printing, reporting.

Professor Matti Martikainen drafted an attractive tableau, here pre-
sented as tableau 1.1, on the role of the measurement plan and the
place of topographic surveying in the whole of the measurement and
mapping process. Our version is slightly modernised. The various parts
of the tableau belong to the sub-fields of geodesy, photogrammetry, and
cartography.

^ 1.8.3 The end product of topographic surveying

The visible end product of topographic surveying is a map. A map must
be, before all else, correct, but also clearly drawn, give all relevant infor-
mation, and it is nice if it is attractive as well (Heiskanen and Härmälä,
1963).

A suitable scale is chosen for the map, which defines the level of accu-
racy of the information presented. The scale is chosen to suit the purpose
of use of the map. The objects to be presented need to be generalised in ayleistys

suitable way: too-small details should be taken out, however, essential
details should be made clearer.2020

Many maps are digital. Then, the significance of the scale is not quite
as clear.

Furthermore there is much location-related information in numerical
form (geospatial information, consisting of location and attribute data)sijainti- ja

ominaisuustieto

20For example, on a road map, the widths of the drawn roads have no relationship
whatever with the widths of the roads in the terrain! The drawn width expresses the
importance of the road to traffic. This is how generalisation works.
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FIGURE 1.11. The roles of the map and topographic surveying in spatial planning and civil engineering.^
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as well as “metadata”: data describing other data, for example map
information. The legend on a paper map is an example of metadata.

The following items of information are or can be part of the end product:

◦ Plane co-ordinates. These state the location inside a municipality,
a country, the world. On the map, co-ordinate curves, a co-ordinate
grid.

◦ Height information, for example height contours, height values ofkorkeuskäyrä

points, possibly profiles.

◦ The forms of the physical Earth’s surface, presented in various
ways.

◦ Attribute data. The measured objects are shown on the map in ac-ominaisuustieto

cordance with an agreed presentational style. A suitable identifier
or symbol is given to every piece of information.

The information shown on the map may also be divided into natural and
cultural data. See table 8.3.

^ Self-test questions

1. You have a car with an FM radio, a clock, a passport, a few weeks
of free time, and money for food and lodgings and fuel. How do you
establish to your own satisfaction that the Earth is round, not flat?

Leah (2017).

2. How does Newton’s universal law of gravitation explain that the
larger celestial bodies are approximately spherical? Why are they
not precisely spherical?

3. Describe the hypotheses of Newton and Huygens on the interior
mass distribution of the Earth and its effect on the Earth’s flatten-
ing.

4. Describe the idea of grade measurement as well as the objective of
the grade-measurement project of the French Academy of Sciences.

5. What is, in equation 1.1, the unit in which the angle γ is expressed?

6. What is the “mathematical figure of the Earth”, and how is it related
to the direction of the plumb line?

7. What is the geoid, and what is the reference ellipsoid?

8. Clairaut’s theorem gives the relationship between the rotation of
the Earth, her flattening, and her “gravity flattening”. Intuitively,
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^ TABLEAU 1.1. Topographic surveying as part of the whole measurement and mapping process.

Measurement plan

Base network measurement (GNSS), computation

Collection of
topographic data

Mapping surveying
(often GNSS-RTK)

Existing maps Digital imagery Laser
scanning

Photographs

Processing of
topographic data

Geodetic computation Digitisation Image processing Processing Stereo
photogrammetry

Data integration Geographic information system (GIS)

Products Graphical Numerical Textual Metadata

Data presentation to
the end user

Topographic maps
Thematic maps
Special maps
Customer printouts 3D
visualisation

Point data bases
Elevation models
Digital CAD models

Reports
SMS alerts
Navigator voice
instructions

Map legend
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give two reasons why gravity on the equator should be weaker than
at the poles, and one reason why it should be stronger.

9. What is a geodesic?

10. What is the task of topographic surveying according to Heiskanen
and Härmälä?

11. Name the three main fields of application of topographic surveying
in society.

12. What are the three technical tasks of topographic surveying?

13. What is generalisation of map information? Give an example.

14. Think of reasons why society would want to disallow building a
bicycle factory in the middle of the residential area of Eira, Helsinki.
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^ Geodetic measurements and
co-ordinates

22
METPΩ XPΩ

”Use measure”, Pittacus of Mytilene (640–568 BCE),
appears in the seal of the BIPM

^ 2.1 Units of measurement

^ 2.1.1 Definitions

When we talk in geodesy, like more generally in physics, about measure-
ment units to be used, we distinguish between units and quantities. For
example, length is a quantity, the unit of which may be, for example, the
metre [m].1 So, for example: 1

The length of the distance AB is 15 metres, or 15m.

Quantity Value Unit Symbol

Length 15 Metre m

In the literature, the term dimension is also used, for example the
dimension of volume is length3, the dimension of acceleration is length×
time−2. This way is used to express how the definition of a certain
quantity depends on the definitions of other quantities. For example,
if one wants to precisely measure accelerations, one has to precisely
measure both lengths (distances) and time intervals. This belongs to the
field of metrology, the science of measurement.

1The official symbol of a unit according to the SI system is always written in upright
letters, not in italics! Italics is used for mathematical symbols. So E = mc2, but
J= kg m2/︁

s2 .
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FIGURE 2.1. A public standard metre in Paris. Wikimedia Commons, Standard
metre in Paris.^

In Finland, as in most countries of the world, the SI system or Interna-
tional System of Units (SI = Système International d’Unités) is used.

The system consists of base units and derived units. There are seven
base units, BIPM, SI base units, table 2.1.

^ 2.1.2 Prefixes

One may add to the SI units (but not to the additional units,2 see subsec-2

tion 2.1.3!) a prefix indicating the order of magnitude according to tableetuliite

2.2. The table is not complete.

^ TABLE 2.1. Measured quantities, units and their symbols. The list of derived
quantities is incomplete.

Quantity Unit Symbol How derived

Base units Length Metre m
Mass Kilogram kg
Time Second s
Electric current Ampere A
Temperature Kelvin K
Luminous intensity Candela cd
Amount of substance Mole mol

Derived units Plane angle Radian rad
Solid angle Steradian sr
Frequency Hertz Hz s−1

Force Newton N kgms−2

Pressure Pascal Pa Nm−2

Energy Joule J Nm
Power Watt W Js−1

Electric tension Volt V WA−1

Electrical resistance Ohm Ω VA−1
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^ TABLE 2.2. Prefixes indicating decimal order of magnitude in the SI system.

Value Prefix Symbol Value Prefix Symbol

+1 deca da +6 mega M
+2 hecto h +9 giga G
+3 kilo k +12 tera T

−1 deci d −6 micro µ

−2 centi c −9 nano n
−3 milli m −12 pico p

Example: 1MHz= 10+6 Hz.

^ 2.1.3 Non-SI units accepted for use with SI

In daily life, and in many scientific disciplines, a generous number of
non-SI units are in widespread use and are not going away soon. For
example, a calendar, or a clock, would not be very practical in kilo- and
megaseconds. The international metrological community, realising this,
has created a category for these units, “Non-SI units accepted for use with
the SI” (Wikipedia, Non-SI units mentioned in the SI).

Table 2.3 gives some often-used additional units “accepted for use with lisäyksikkö

the SI”.

^ TABLE 2.3. Non-SI units accepted for use with the SI.

Quantity Base unit Accepted unit Symbol

Time s Hour, minute, second h m s
Day d
Year a

Plane angle rad Degree, minute, second ◦ ′ ′′

Gon gon, g

Temperature K Degree Celsius ◦C
Volume m3 Litre l
Mass kg Tonne t

2This is nevertheless widely done, for example kcal means kilocalorie, a traditional unit
of energy content of chemical substances and food. In computing again, the prefix k, or
sometimes K, expresses the non-standard binary order of magnitude 1024× (Wikipedia,
Kilobyte). And the monetary unit k$ is also used!
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Celsius temperature is obtained from temperature in kelvin by sub-
tracting 273.15K from it:

T1 = 0◦C= 273.15K, T2 = 0K=−273.15◦C.

Temperature differences are the same on the Celcius and Kelvin scales:
∆T = 1 ◦C= 1K.

^ 2.1.4 Length and time

Of the base units, both length and time are based on atomic phenomena.

The metre is the distance travelled by light in a vacuum in
1
/︁

299792458 seconds. In practice, the metre is realised by an iodine-
stabilised helium-neon laser, the wavelength of which is very precisely
(2.5 parts in 1011) known (Penzes, undated).

The second, again, is “the duration of 9192631770 oscillation periods of
the radiation corresponding to the transition between the two hyperfine
levels of the ground state of the 133Cs atom” [official SI definition]: it is
based on the use of a caesium clock (Hardis, 2018).

^ 2.1.5 Units of angle

The radian and steradian units are dimensionless numbers (“bare num-
bers”) because they are ratios. For example, an angle in radians is the
ratio between the length of a circular arc and its radius, and thus dimen-
sionless. There exist however other units of angle, like the degree and
the gon. Therefore it makes sense, in a way, to also treat all of these as
units.

The situation is somewhat similar for logarithmic scales: Richter (total
energy of earthquakes), the magnitude scale of stars, the decibel (dB)
scale, the ◦DIN scale for the light sensitivity of photographic emulsions,
and the pH, the degree of acidity of a solution.

Degrees In ordinary life we use as unit of angle the degree, symbol ◦.
Geographical latitude and longitude as read from a map are also
commonly given in degrees. A right angle is 90◦, and a straightoikokulma

angle 180◦. In addition to degrees, we have as traditional units the
minute (′) and the second (′′). These behave like their namesakes
in time measurement: one degree is 60 minutes and one minute
60 seconds.
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Calculation example Convert degrees, minutes, seconds to de-

grees and decimals:

56◦47′33′′ = 56◦+
(︂

47
60

)︂◦
+
(︂

33
60×60

)︂◦
=

= 56◦+0◦. 783333 . . .+0◦. 0091666 . . .= 56◦. 7924999 . . .

Convert back in the other direction (note the rounding er-
ror!):

56◦. 7925= 56◦+ (60×0.7925)′ =
= 56◦+47′.55=
= 56◦47′+0′.55=
= 56◦47′+ (60×0.55)′′ = 56◦47′33′′.

Gon In geodesy and geodetic instrumentation, the gon is often used
as a measurement unit.3 Sometimes the name “new degree” is 3

used. A new minute, or centigon, is 0.01gon, a new second, or
decimilligon, 0.0001gon. One notation is 1.2345gon = 1g 23c 45cc.
In units of gon, a right angle is 100g.

Radians A full circle contains 2π radians, 360 degrees (360◦) and 400
gon (400g). A right angle thus has 2π

/︁
4 = π

/︁
2 radians.

Here are some useful equations to convert an angle given in radians to
gon and degrees. See Kahmen and Faig (1988).

A full circle is

2πrad= 400g = 360◦,

1rad=
(︂

360
2π

)︂◦
≈ 57◦. 2957795=

(︂
400
2π

)︂g
≈ 63g.6619772,

αrad=
(︂

360
2π α

)︂◦
=
(︂

400
2π α

)︂g
.

And

α◦ =
(︂

400
360α

)︂g
= 1.1111 · · ·×αg, αg =

(︂
360
400α

)︂◦
= 0.9×α◦.

^ 2.2 Measurement error and uncertainty

No measurement is perfectly accurate. Land surveying, being a human
activity, is also prone to error. Just like in computer programming, one

3Another name used is grad. The unit was taken into use by the French in connection
with the Revolution and introduction of the metric system. Today, it is only used in the
land-surveying field.
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should not even try to measure completely errorlessly. A more realistic
goal is, in addition to the usual carefulness, to develop methods by which

◦ Errors of a certain size can be noticed and removed from the obser-
vational material (statistical testing).

◦ The impact of not removed, or not even noticed, errors on the end
result can be evaluated and minimised (adjustment calculus).tasoituslasku

With these methods, measurement errors may be taken into account and
as correct as possible measurement results be produced, the quality of
which, their accuracy, is known, and the magnitude of any errors possibly
still hiding out in them is also known or at least guessable.

The processing of the measurements, the adjustment, will yield thetasoitus

following results:

◦ The “best” value for the unknown quantities, based on the measure-
ments:

– the most likely value

– the statistical expectancyodotusarvo

– a value with respect to which the remaining deviations are as
little damaging as possible.

◦ A judgement on the “goodness” of the original measurements, their
precision.4 We speak of standard deviation or mean error. Nowa-4

days the official term is standard uncertainty.

◦ Similarly, a judgement on the “goodness” or precision of the end
results, the computed values (estimates) of the unknown quantities
of interest.

◦ A judgement on the possible occurrence of gross errors and theirkarkea virhe

maximal magnitude after statistical testing has been done: relia-
bility.

◦ A judgement on the possible presence of systematic errors and their
magnitude.

Measurement error is the difference between the value to be measured55

and the measured value. The measured value is the result of an, often

4In English the terms “precision” and “accuracy” are used. Precision refers only to
statistical spread, the variability of measurement values, whereas accuracy refers to
the deviance of the observation values from the “correct values”. The latter concept thus
also includes systematic errors.

5The “true value”, although one may philosophically ask if it even exists.
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complex,6 measurement process. 6

^ 2.2.1 Types of errors

We may divide the errors arising from this measurement and reduction
process into the following categories:

Random errors represent the inherent, natural imprecision of the mea-
surement process. Often it is assumed that these random errors
are normally distributed, meaning the distribution of errors is
a pretty Gaussian bell curve or normal distribution — on which
more later on.

If this is so — and one should not assume this without further
testing! — one has available the least-squares adjustment method, pienimmän

neliösumman
tasoitus

which minimises the joint impact of random errors in the end
result.

Gross errors are caused by human mistakes or measurement device karkea virhe

malfunctions. They happen only now and then, and they cannot
be described by a statistical distribution. An example of a gross
error is writing a digit wrong into an observation notebook.

One strives to eliminate gross errors by statistical testing. Sta-
tistical testing is a broad scientific subject. As a rule of thumb,
one may say that if a function of measurements differs from its
known expectancy (for example zero) by more than three times its
own, known standard deviation (mean error) σ, there is reason to
suspect that one or more measurements are in error. This criterion
is called the three-sigma rule.

Systematic errors are a sign that there are deficiencies in the theories
used to describe the measurement process, observation geometry
and physics of the observation situation. The occurrence of signifi-
cant systematic errors should lead to a study and re-assessment
of the theoretical assumptions. As an example, we know that the
sum of the angles of a triangle must be 180◦: the triangle condition.
If the sum of the measured angles of a plane triangle differs sig-
nificantly and consistently from this value, one must, for example,
suspect

◦ lateral refraction in the atmosphere

6Sometimes the measurement process includes a pretty complex reduction chain or
modelling effort.
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x

y

(a)
Small random

(b)
Large random

(c)
Correlated

(d)
Systematic

(e)
Gross

FIGURE 2.2. Examples of different error types. Random precise, random impre-
cise, correlated, systematic, gross.^

◦ the triangle is so large, that on the curved surface of the
Earth we no longer have a plane triangle and the theorem no
longer applies.

Uncertainty, knowledge concerning the possible size of errors, can also be
divided into different categories (GUM, 2008):

Type A uncertainty is standard uncertainty or standard error calcu-
lated for example from repeated measurements. This type of
uncertainty can be handled by means of statistical theory: the
concept corresponds to that of random errors.

Type B uncertainty is uncertainty that can not be determined by sta-
tistical means from the measurements, but needs to be assessed
in some other way. For example, systematic errors can be deter-
mined by calibration, obtained from information by the device
manufacturer, etc.

There is no uncertainty concept corresponding to gross errors. They
should be avoided or eliminated using statistical testing.

^ 2.3 Stochastic quantities

^ 2.3.1 Discrete stochastic quantities

A measurement process is a random or stochastic quantity. A stochastic
quantity is obtained by doing something the outcome of which is random.
For example, casting a die creates a stochastic quantity n, the realisations
(“throws”) of which are n1,n2,n3, . . . .

The possible values of a die cast are the integer numbers
{︁

1,2,3,4,5,6
}︁

.
It is the same with a coin flip, if we take as the values heads being a 0
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^ TABLE 2.4. Die-cast statistics.

Number of
throws

Value Mean ± standard
deviation1 2 3 4 5 6

60 14 8 9 12 9 8 10±2.4
% 13.33 23.33 13.33 15.00 20.00 15.00 16.67±4.08

600 103 91 106 114 87 99 100±9.9
% 16.50 17.17 15.17 17.67 19.00 14.50 16.67±1.65

6000 973 1007 1003 962 1015 1040 1000±28.5
% 17.33 16.22 16.78 16.72 16.03 16.92 16.67±0.47

60 000 10138 9936 10057 10029 9925 9915 10000±89.5
% 16.52 16.90 16.56 16.76 16.72 16.54 16.67±0.15

and tails being a 1. We say that the value set or codomain is
{︁

0,1
}︁

, a arvojoukko

discrete value set.

If we perform a die cast again and again — meaning that we collect
realisations ni, i = 1, 2, 3, . . . — we may always after a certain total
number of casts tabulate the results. We obtain the example table 2.4,
which expresses how many casts of the total number were ones, how
many twos, etc.

According to experience, the greater the number of die casts, the
smaller tends to be the deviation of the end result from the ideal outcome,
the outcome in which the frequency of occurrence of every value in per-
cents would be 16.666 . . .%, or 1

6 . This empirical result is called the law of
large numbers.

^ 2.3.2 Expectancy

Based on this, we may assign to the outcomes of die casts a theoretical
probability value, which expresses how often, “in the long run”, a certain
value will happen. For a balanced (“fair”) die, the probability values are

p(1)= p(2)= . . .= p(6)= 1
6 .

In the discrete case, the expectancy — the value around which the casts odotusarvo

group themselves, their “centre of mass” — is computed by the equation7 7

E{n} def=
N∑︂

i=1

i · p(i) (2.1)
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which yields 21
6 = 3.5. Here, N is the number of alternatives. The value

3.5 is not even a possible cast value!

In the case of a fair coin

p(0)= p(1)= 0.5,

and the expectancy is, by the same equation, 0.5. This value is also not a
possible throw.

^ 2.4 Statistical distributions

^ 2.4.1 Real-valued quantities and density distributions

Geodetic measurements are generally stochastic quantities, the value set
or codomain of which is a sub-set of the real numbers R: a continuous set.
For example, the result of a distance measurement is a distance in metres,
and it is a real8 number. It is the same for angle measurements. The8

value set may be bounded, α ∈ [︁0,360◦)︁, but it is in any case continuous.

In the case of a continuous value set, we speak of a probability density
distribution, or a distribution in short. If we make a large number of
measurements of the same object, we may draw a histogram. Divide
up the value set into “baskets”, and count and show the numbers of
measurement results that fall into each basket.

As an example of a continuous statistical distribution may serve the
places of the goals of a football match scored in the goal gate, figure 2.3.

The more measurements, the more bars we may draw, and the narrower
we may make them. In the limit for an infinite number of measurements
we obtain a continuous curve, the probability density distribution, which
expresses the probability with which a measurement result will fall
within some value interval

[︁
x1, x2

]︁
. See figure 2.4 for an example.

If on a certain interval
[︁
x1, x2

]︁
the integral

ˆ x2

x1

p(x)dx

7More generally,

E{n} def=
N∑︂

i=1

vi · p(i),

in which vi is the value alternative with serial number i. For a die, vi = i.

8Actually a rational number ∈Q.
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x

y

x-histogram

Two-dimensional histogram

y-
hi

st
og

ra
m

FIGURE 2.3. An example of a stochastic quantity on a continuous (two-
dimensional) value set. Also histograms are drawn, both according
to arguments x and y and according to both together. The blue
curve is a possible probability density distribution function.^

is zero, we say that it is impossible for a value x in this interval to occur
as a realisation of the stochastic quantity. If the integral is 1, we say that
the occurrence of some x ∈ [︁x1, x2

]︁
is certain. In all other cases, the value

of the integral gives the probability that the realisation of the stochastic
quantity would hit inside this interval. The value of the probability is

x (second series)
x (first series)

x

p(x)

E
{︁

x
}︁

FIGURE 2.4. The probability density distribution p(x) of a real-valued stochas-
tic quantity as the limit of histograms. The expectancy E{x} and
the averages of the two measurement series, the second containing
twice the number of measurements of the first, are also drawn.^
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Mean error

Value space

Expectancy
µ= E

{︁
x
}︁

Probability
density p(x) +σ

x

−σ

More precise Less precise

σσ
σ σ

σ σ

FIGURE 2.5. Important properties of the normal distribution.^

thus always between zero and one.99

Always ˆ +∞

−∞
p(x)dx = 1,

because the joint probability that the measurement value will be any real
number, is 1, in other words, 100%: it is certain.

For a continuous stochastic quantity one can also compute an ex-
pectancy. The expectancy integral looks similar to the discrete coun-
terpart 2.1:

E{x}=
ˆ +∞

−∞
x · p(x)dx.

The expectancy is the x co-ordinate of the centre of mass of the area under
the density distribution curve p(x).

^ 2.4.2 The Gaussian bell curve

In geodesy we use almost always the normal or Gaussian distribution
(“bell curve”).

In figure 2.5 we see the expectancy µ= E{x}. The expectancy may be
understood as the “true value” of the observed quantity x, which is not
itself measurable, but around which the measurement values group under
the influence of their random errors. In the figure we also see the mean
error10 σ, which describes the tendency of an individual measurement10

9Mathematically, probability is a measure, like, for example, surface area or volume.

10. . . or standard deviation, or standard uncertainty.
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σ 2σ 2σ 3σ 3σ

Area total 32% Total 4.5% Total 0.27%

σ

FIGURE 2.6. Probability values for the normal distribution.^

to differ from the expectancy. In the case of the normal distribution,
deviations equal in magnitude to the mean error µ±σ are located in the
curve’s inflection points. taivutuspiste

A concept by the name of variance is also used, the square of the mean
error:

Var{x}=σ2,

the formal definition of which is11 11

Var{x} def= E
{︂(︁

x−E{x}
)︁2
}︂

. (2.2)

Here E{·} is the expectancy operator as defined above.

Like expectancy, variance is also the kind of “true value” that theoreti-
cally exists, but that we never actually really measure. When we have
available a finite number of observations or sample, we may calculate the otos

sample mean and sample variance, that, for the number of observations
increasing, move ever closer and closer to the expectancy and variance.
This phenomenon is also called the law of large numbers.

The mathematical expression p(x) for the normal distribution — which
we do not present here — gives through integration the following proba-
bility values:

◦ the probability that x deviates from E{x} more than an amount σ
(in either direction): 32%

◦ the probability that x deviates from E{x} more than an amount 2σ:
4.5%

◦ the probability that x deviates from E{x} more than an amount 3σ:
0.27%.

11So, the expectancy of the square of the deviation of a stochastic quantity from its
own expectancy. This is a kind of cost function: if the cost of the “error” x−E{x} is
proportional to its square, then Var{x} is the expected cost of the error.
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In practice, a normally distributed stochastic quantity really never
deviates from its expectancy by over three times its mean error.

This rule of thumb, the three-sigma rule, is made use of in statistical
testing.

There exist a large number of different statistical distributions in
addition to the normal distribution. These are contained in software
packages used for statistical computation, such as MATLAB and R, and in
the numerical libraries accompanying general programming languages.1212

^ 2.4.3 Covariance and correlation

When there are two stochastic quantities x and y, one can, besides their
separate behaviours, also study how they behave together.

Let us give the name covariance to the expression

Cov
{︁

x, y
}︁ def= E

{︃(︁
x−E{x}

)︁(︂
y−E

{︁
y
}︁)︂}︃

. (2.3)

This definition is analogous to the one for variance, equation 2.2, but
describes the “behaving in the same way” property of the quantities x
and y; the similarity in their random behaviours.

Often it makes sense to scale this covariance relative to the variances
of the quantities x and y in the following way:

Corr
{︁

x, y
}︁ def= Cov

{︁
x, y
}︁√︂

Var{x}Var
{︁

y
}︁ .

This is how correlation is defined between the quantities x and y. Corre-
lation always lies in the interval

[︁−1,1
]︁
, or

[︁−100%,100%
]︁
.

The correlation (and covariance) between statistically independent
quantities x and y equals 0. The non-vanishing of correlation may be a
sign of a cause-and-effect relationship — but one cannot say that x is the
cause and y the effect! y may be the cause of x, or x and y may have a
common cause z.

If the correlation is 1, or 100%, we speak of perfect correlation. In this
case there exists an exact functional relationship between x and y. If the
realisation value of one quantity is given, the corresponding realisation
value of the other can be calculated precisely.

12A good overview is Easton and McColl.

í  Õ ! ¤.� û



Statistical distributions 2.4 37
y

x

(a)
Non-existent

(b)
Weak

(c)
Strong

(d)
100%

(e)
Anticorrelation

(f)
−100%

FIGURE 2.7. Some examples of correlation.^

If the correlation is negative, we speak of anticorrelation. If the cor-
relation is −1, or −100%, there exists a perfect correlation between the
quantities x and −y, and we speak of perfect anticorrelation.

Figure 2.7 shows some examples of correlation.

^ 2.4.4 Propagation law of errors

An important property of mean errors is the propagation law of errors. virheiden
kasautumislakiIf a stochastic quantity z is a linear combination of two other stochastic

quantities x and y,
z = ax+by,

we may also write
E{z}= aE{x}+bE

{︁
y
}︁

,

and thus (︁
z−E{z}

)︁= a
(︁
x−E{x}

)︁+b
(︂

y−E
{︁

y
}︁)︂

.

This is probably intuitively clear. Now according to the definition of
variance, equation 2.2, it follows that

Var{z}= E
{︂(︁

z−E{z}
)︁2
}︂
=
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= a2E
{︂(︁

x−E{x}
)︁2
}︂
+b2E

{︃(︂
y−E

{︁
y
}︁)︂2
}︃
+

+2ab E
{︃(︁

x−E{x}
)︁(︂

y−E
{︁

y
}︁)︂}︃

.

The definitions 2.2 and 2.3 now yield

Var{z}= a2 Var{x}+b2 Var
{︁

y
}︁+2abCov

{︁
x, y
}︁

. (2.4)

This equation is called the law of propagation of variances.varianssien
kasautumislaki In the case where Cov{x, y}= 0 — meaning that the quantities x and y

are uncorrelated — we obtain

Var{z}= a2 Var{x}+b2 Var
{︁

y
}︁

,

or, in a more compact notation,

σ2
z = a2σ2

x +b2σ2
y .

This can be generalised to more than two quantities. For example, if

w = ax+by+ cz,

we obtain
σ2

w = a2σ2
x +b2σ2

y + c2σ2
z.

A special case is the situation in which z is the sum or difference of
x and y, so a =±1, b =±1, and x and y are statistically independent of
each other. Then we get a simple, Pythagoras-like, much-used equation:

σ2
z =σ2

x +σ2
y .

Often, this special case is referred to as the law of error propagation.

Example We have measured the distance between points A and B in
three parts,

sAB = s1 + s2 + s3

(so a = b = c = 1), in which

s1 = 10m±0.05m, s2 = 20m±0.2m, s3 = 15m±0.1m.

We observe that

σ1 = 0.05m, σ2 = 0.2m, σ3 = 0.1m,
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FIGURE 2.8. A two-dimensional probability density distribution.^

and

σ2
AB =σ2

1 +σ2
2 +σ2

3 = (0.05m)2 + (0.2m)2 + (0.1m)2 =
= 0.0525m2,

so σAB =
√︂
σ2

AB ≈ 0.23m, and the result is

sAB = 45m±0.23m.

(The three measurements are assumed to be statistically indepen-
dent of each other.)

^ 2.4.5 Multi-dimensional distributions

Often, like in the above football example (figure 2.3), we speak of stochas-
tic quantities consisting of several components. An example is given by
the co-ordinates (x, y) of a point in a plane. In the same way as described
above, we may draw two-dimensional histograms and speak about the
probability density distribution p(x, y).

Figure 2.8 shows a two-dimensional normal density distribution, and
its standard ellipse or error ellipse. It is the two-dimensional counterpart
to the mean error. A vertical cross-section again always produces a one-
dimensional Gaussian bell curve, the mean-error points µ±σ of which
are precisely the intersections of the cutting plane and the error ellipse.
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^ TABLEAU 2.5. On correlation.

Correlation is a curious thing. It is always good to remember that statistical
dependence does not necessarily mean that there is a direct cause-and-effect
relationship, only that the observations have something in common. The con-
nection may be indirect, like in the famous case in which the ice-cream sales
over summer correlated with drowning statistics. The connection may also be
uninteresting, like the correlation between two phenomena both trending in
time, for example, between the Ethiopian gross domestic product and Danish
wind-power output.

Whereas the mean-error points of the one-dimensional distribution are
at x = µ±σ, the equation for the error ellipse is more complicated. The
expectancy (“true value”) of the stochastic co-ordinate pair

(︁
x, y
)︁

is itself
a co-ordinate pair, (µx,µy), the centre of the error ellipse.

In the general case where the axes of the error ellipse are not parallel
to the co-ordinate axes (and of different lengths!), the pair of stochastic
quantities x, y can no longer be treated as independent variables: they
correlate with each other. This means that the most probable value of
x will depend on the actual value of y, and vice versa. In adjustment
calculus, this statistical dependence must be taken into account in order
to arrive at the best possible — optimal — estimates both of µx and of µy.

In three-dimensional space there exist probability density distributions
of three arguments p(x, y, z), the visual representations of which are
triaxial (and three-dimensional) error ellipsoids.

^ 2.4.6 The variance matrix

The variances of multi-dimensional stochastic quantities themselves also
become multi-dimensional: they become variance matrices. Let1313

x
def=
[︄

x
y

]︄
,

then the variance (or variance-covariance) matrix is

Var{x} def=
[︄

Var{x} Cov
{︁

x, y
}︁

Cov
{︁

x, y
}︁

Var
{︁

y
}︁ ]︄

=
[︄

σ2
x σxy

σxy σ2
y

]︄
=Σxx,

13. . . and of course also the expectancy is a vector: E{x}=
[︄
µx

µy

]︄
!
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in which again apply the definitions

Var{x} def= E
{︂(︁

x−E{x}
)︁2
}︂

,

Var
{︁

y
}︁ def= E

{︃(︂
y−E

{︁
y
}︁)︂2
}︃

,
Cov

{︁
x, y
}︁ def= E

{︃(︁
x−E{x}

)︁(︂
y−E

{︁
y
}︁)︂}︃

,

and in which we see the often-used notation14 14

Var{x}=σ2
x , Var

{︁
y
}︁=σ2

y , Cov
{︁

x, y
}︁=σxy.

In appendix A a short explanation is given of the basics of matrix
calculus.

In fact, the error ellipse is a graphical representation of this 2×2 sized
variance matrix. If σxy = 0, we say that x and y do not correlate with
each other, or, carelessly,15 that they are statistically independent of each 15

other.

In addition, the propagation law of variances, equation 2.4,

Var{z}= a2 Var{x}+b2 Var
{︁

y
}︁+2ab Cov

{︁
x, y
}︁

,

may be written into a more general form: if we form the row vector

a
def=
[︂

a b
]︂

,

and the corresponding column vector16 16

aT =
[︂

a b
]︂T

=
[︄

a
b

]︄
,

we obtain

Var{z}=
[︂

a b
]︂
·
[︄

Var{x} Cov
{︁

x, y
}︁

Cov
{︁

x, y
}︁

Var
{︁

y
}︁ ]︄

·
[︄

a
b

]︄
= a ·Var{x} ·aT.

Understanding this requires knowing how to multiply matrices (row
× column), see appendix A. Writing it out gives us back the original
equation 2.4.

This is presented in the literature symbolically in somewhat varying
notations:

σ2
z = a Var{x}aT = aΣxxa

T.

We will discuss the propagation of variances in linear models of many varianssien
kasautuminenvariables more generally in section 14.7.

14Sometimes we see in older texts Var{x}= m2
x , Var

{︁
y
}︁= m2

y, Cov
{︁

x, y
}︁= mxy, as back

then, typewriting Greek letters was difficult.

15. . . because there may be a more complicated statistical dependence that does not
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^ 2.5 Geodetic observables

^ 2.5.1 Angles, directions

Traditionally, the large national or continental geodetic networks have
always been triangulation networks. Directions are measured betweenkolmiomittaus-

verkko the network stations, and the measurements in the network are adjusted:
from the measured values, small contradictions caused by the uncertainty
of measurement are computationally removed, leading to the solution of
the triangulation. Back in time, distance measurement was difficult over
larger distances, as the only working technique was measurement using
mechanical means, such as measuring tapes and rods.

In triangulation, the procedure is that in a network, all feasible di-
rections are measured, plus one single distance. From these measured
values, all the other distances and point locations are computed. This is
how Snellius carried out his famous grade measurement between Bergenastemittaus

op Zoom and Alkmaar, cities 130km apart, by measuring directly only
the baseline 87 roeden long, built by him in a meadow! The Laplandperusviiva

grade measurement was similar: the baseline was built during winter
1736 on the ice of the Torne river, and all other measurements were
directions between the points of the triangulation network.

The basic idea of triangulation can be explained using the plane table.17kolmiomittaus
17 At point A on the terrain, a plane table is erected, a sheet of transparent

mittapöytä paper placed on it, and all directions to the terrain points B, C, D and
E18 are drawn. Move to point B, and draw a similar set of directions to18

targets A, C, D and E. In the office, the sheets of paper are placed on top
of each other. The result is a miniature image of the true geometry of the
terrain — at a scale of m = ab : AB. So, if the distance AB in the terrain
is 3km, and on the superposed papers ab = 30cm, then the scale of the
“map” thus obtained is 1 : 10000.

Nowadays, directions are measured using a theodolite, a precise instru-
ment for measuring horizontal and vertical angles, and creating the map
takes place computationally.

show as correlation.

16We often use the transpose notation to make it easier to write a column vector in
running text.

17German Messtisch, French planchette, Dutch meettafel, Swedish lantmätartavla,
Danish, Norwegian målebord.

18The drawing is made easier by using an alidade, German kippregel.
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FIGURE 2.9. Triangulation by means of a plane table and alidade. Centre image
Wikimedia Commons, Plane table with alidade.^

In photogrammetry there is a three-dimensional analogue to the plane
table method, stereo model restitution, which however nowadays is also
invariably realised fully digitally. Figure 2.10 shows how from two aerial
images a stereo model is formed using a viewing device. Similarly, in a
stereo restitution instrument, a model is formed, inside which a floating avaruus-

mittamerkkimark may be moved around three-dimensionally. The co-ordinates of the
mark are continuously output to a computer hooked up to the instrument,
and a map can be drafted immediately.

Aerotriangulation is also based on forming stereo models. ilmakolmiointi

A fairly modern geodetic technique based on the idea of the plane
table but in three dimensions, is Yrjö Väisälä’s19 stellar triangulation. 19

tähti-
kolmiomittaus

This technique, in which the stellar background is used for measuring
directions, is discussed in section 17.3.

19Yrjö Väisälä (1891–1971), “the Wizard of Tuorla”, was a Finnish astronomer, physicist,
geodesist, metrologist, builder of telescopes, finder of comets and asteroids, recreational
sailor and Esperanto practitioner.
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Stereo model

TerrainTerrain

Aerial photography

Stereo viewer

Stereo image pair

Image 1 Image 2

FIGURE 2.10. Forming a stereo model in photogrammetry.^

^ 2.5.2 Distances, distance differences

In the past, distances could only be measured mechanically, using mea-
suring wires, tapes, or rods. The precision achieved in the measurements
was often impressive thanks to careful procedures.

In local surveying, steel measuring tapes continue to be used, as they
are inexpensive and easy to use and carry along. One should only remem-
ber to clean and grease them after use. The lengths are 20–60m. The
precision measuring wires of old were made of invar, a steel alloy with a
very low thermal expansion coefficient.

Today, distance measurements are done electronically or electro-
optically. Only a straight line of sight between points is needed. The
devices may use microwaves (Tellurometer) or more often visible light
(Kern Mekometer), laser light (Geodimeter),20 or, in the case of most20

modern range-finders (distance measurement devices) and total stations,etäisyysmittari
takymetri infrared light produced by a light-emitting diode (LED). The effect of
hohtodiodi atmospheric delays on signal propagation must always be carefully taken

20Geodimeter™ is a Swedish invention and the name is a trademark of Trimble AB,
Danderyd, Sweden.
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into account in processing the observations.

Terrestrial geodetic measurement instruments are able to measure
both horizontal and vertical angles as well as slant ranges. They are
called electronic tacheometers,21 and they thus combine the properties 21

of a theodolite and a range-finder into one integrated, fully electronic,
highly automated instrument.

Satellite geodesy also uses electronic distance measurement. The GNSS,
Global Navigation Satellite Systems — like the Global Positioning System
GPS — in broad use today are based on distance measurements made
by microwaves — more precisely, distance difference measurements.22 22

Satellite lasers on the other hand (like the instrument at the Metsähovi
research station) measure the travelling time from the observation station
to a satellite reflecting the light, and back.

The advantage of using electronics is, that the incredibly high precision
of frequency measurement is thus harnessed as distance measurement
precision. When the precision of frequency measurement can well be
1 : 1012, it is understandable that with GPS, we measure intercontinental
distances with a relative precision of even 1 : 109. Satellite techniques
are even more precise than terrestrial ones, because most of the signal
propagation takes place outside the denser parts of the atmosphere.

^ 2.5.3 Potential differences, levelling

Measurement of geopotential differences is traditionally done by levelling:
one measures the height difference between two points in metres, and
converts this difference into a potential difference using local gravity g.
If the height difference is ∆H and the difference in geopotential is ∆C,
we use the equation23 23

∆C = g∆H.

The measurements are repeated along a line, and the differences ∆Ci

obtained are summed up. From the lines, a levelling network is built, in
which the potential differences calculated around closed loops must sum
to zero. The network is adjusted using this condition.

21Tacheometer, Greek rapid measurer. Called more often total stations.

22Hyperbolic positioning systems, like Decca, Transit/Doppler, and also GPS and the
other satellite positioning systems, are based on distance difference measurement.

23This is an example of “work is force times path”. Work (per unit of mass) is ∆C, path
is ∆H, and force (per unit of mass: according to Newton’s law F = ma, acceleration) is g.

í  Õ ! ¤.� û



246 GEODETIC MEASUREMENTS AND CO-ORDINATES

In subsection 4.3.1 a few more exotic height determination alternatives
to traditional levelling are presented, many of which are based on the
direct physical comparison of geopotential values, for example using a
fluid surface.

^ 2.6 About co-ordinates

In geodesy we use co-ordinates in order to describe the figure and size of
the Earth and to determine the locations of points on or near the Earth’s
surface.

The co-ordinate reference systems used in geodesy are generally three-
dimensional, as the Earth is a three-dimensional object in a three-dimen-
sional space. As an example we may mention latitude, longitude, and
height (ϕ,λ, h), which let us present the location of a point in an intuitive
way.

“Two-dimensional” co-ordinate reference systems are really map pro-
jection co-ordinates, derived quantities not of direct interest to geodesy.
They belong more to the field of cartography, although they are used very
broadly in applied surveying. For example, on older Finnish topographic
maps one encounters KKJ co-ordinates, which are map-plane co-ordinates,
the kind of co-ordinates (x, y) used on a map sheet, directly measurable
by ruler.

In addition to spatial co-ordinates, time, for describing processes of
change, and in physical geodesy, as a kind of co-ordinate, geopotential, the
potential of the gravity field of the Earth, are also used. See subsection
4.1.1.

^ 2.7 Why we use plane co-ordinates

Because the Earth is a three-dimensional object, geodesy is a three-
dimensional science. The Earth and points associated with her are located
in three-dimensional space, and the task of geodesy is to determine and
present these locations using three-dimensional co-ordinates, such as
(X ,Y, Z). Modern measurement systems, like the global positioning
system GPS, are able to directly measure three-dimensional co-ordinates.

Geodesy, however, is also an applied branch of science and engineer-
ing serving people. Humankind lives, forced by gravity, in a quasi-two-
dimensional “subspace”, in which there is freedom of movement almost
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only in the horizontal direction, along the surface of the Earth. Further-
more, the important medium of communication called paper is uncondi-
tionally two-dimensional, and maps are commonly drawn on paper!

For this reason, plane co-ordinates are very generally used in geodesy
and surveying: rectangular, two-dimensional co-ordinates in the horizon-
tal plane.

There exist a multitude of practical plane co-ordinate reference systems
suitable for surveying work. The main differences between them are:

◦ The location of the origin and the orientation of the axes. The origin,
the starting point where x = y= 0, must be known. Generally the
axes are x to the north and y to the east, but not always, and not
necessarily accurately.

◦ The technology of determination, in other words, geocentricity:
modern plane co-ordinates are obtained from geocentric, three-
dimensional co-ordinates produced using GNSS.

Geodetic plane co-ordinates are, in fact, map projection co-ordinates: they
are calculated, using map projection formulas, from originally three-
dimensional co-ordinates through geodetic latitude and longitude (ϕ,λ).

In a very small area, like a building site, no proper map projection is
needed. In those kinds of areas, plane co-ordinates may be understood
as a special, rectangular case of topocentric (observation-site centric)
co-ordinates.

^ 2.8 Co-ordinates of location in three dimensions

Three-dimensional co-ordinates can be of different types, for example
rectangular or geodetic, also called geographical. The most common co-
ordinate reference system used is the three-dimensional rectangular or
Cartesian (X ,Y, Z) system. Often it is also geocentric.

Geocentricity means literally, that the origin coincides (to a certain
accuracy) with the centre of mass of the Earth. In addition, the Z axis
of a geocentric system points along the Earth’s axis of rotation, to the
celestial North Pole.

In a geocentric co-ordinate reference system, the direction of the X
axis is in principle arbitrary and thus conventionally agreed. For a
geocentric system on the Earth’s surface, the meridian which contains
the direction of the plumb line at the Royal Observatory Greenwich serves luotiviiva

as an international standard24 for fixing the direction of the X axis. 24
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FIGURE 2.11. The Greenwich meridian for tourists. Wikimedia Commons, The
prime meridian (Greenwich).^

The X axis lies both in the plane of the Greenwich meridian and in the
equatorial plane, and is thus perpendicular to the Z axis. The Y axis in
turn is perpendicular to both the Z and X axes, so that all three axes are
mutually perpendicular. See figure 2.12.

Three-dimensional rectangular co-ordinates X , Y and Z may be gen-
erally applicable, but they are not particularly intuitive. For example,
the co-ordinates of the GPS antenna at the Metsähovi research station
are, expressed in the Finnish EUREF-FIN reference frame (see subsection
3.2.3):

X = 2892571.1204m, Y = 1311843.2621m, Z = 5512633.9521m.

The numbers are interesting looking, but do not give a very enlightening
or easy to grasp answer to the question “where is Metsähovi?”. . .

As a first step to more practical co-ordinates, we construct geodetic
co-ordinates. First we construct mathematically a reference ellipsoid,

24The treaty of Washington DC of 1884 made the Greenwich meridian the world’s zero
or reference meridian. At the same time, a “world time” or universal time was agreed:
Greenwich Mean Time, GMT. The basic idea was that civil times of countries would
differ from GMT by a whole number of hours, for Finland +2h in winter (EET) and +3h
in summer (EEST). Without this time-zone system, international traffic (by sea, air, or
telephone) would be cumbersome.

í  Õ ! ¤.� û



Co-ordinates of location in three dimensions 2.8 49

X

h

ϕ
λ

P

North
Pole

Greenwich
observatory

Greenwich
meridian

Ellipsoidal
normal

Y

Z

ϕ

FIGURE 2.12. Rectangular and geodetic co-ordinates.^

a suitably flattened ellipsoid of revolution the measures of which are pyörähdys-
ellipsoidireasonably close to those of the real Earth.25

25
A point is projected along the ellipsoidal normal onto the surface; the

distance of projection, h, is the ellipsoidal height, the direction angles
of the projection line or ellipsoidal normal26 are ϕ, the geodetic latitude 26

reckoned from the equator, and λ, the geodetic longitude, reckoned from
the Greenwich meridian. The triplet (ϕ,λ, h) — or often only the pair
(ϕ,λ) — is referred to as geodetic co-ordinates. The geodetic co-ordinates
of, for example, Metsähovi are

ϕ= 60◦13′2′′.89046, λ= 24◦23′43′′.13336, h = 94.568m, (2.5)

. . . and this tells people already a whole lot more about where this point
is located!

There is a simple mathematical relationship between rectangular and
geodetic co-ordinates: each can be converted into the other without losing
precision. They are equivalent27 presentations of the location of a point: 27

25For example, the GRS80 reference ellipsoid: equatorial radius 6378137.0m, polar
radius 6356752.3141m (some 21km shorter), and flattening 1 : 298.257222101.

26The ellipsoidal normal generally does not go through the centre of the ellipsoid! See
figure 2.12.

27So, if (X ,Y , Z) is given, then (ϕ,λ, h) can be calculated, and the reverse is also true.
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FIGURE 2.13. Geodetic co-ordinates.^

(X ,Y, Z)
equation
←−−−−→
equation−1

(ϕ,λ, h)

. . . and both are geocentric and three-dimensional. The differences
between them are:

◦ Rectangular co-ordinates are more convenient to handle in numeri-
cal work.

◦ Geodetic co-ordinates are more intuitive, closer to the human un-
derstanding.

In addition to geocentric co-ordinates, topocentric co-ordinates often are
encountered; co-ordinates reckoned relative to some local origin. Topocen-
tric co-ordinates are naturally produced by measurements in which the lo-
cation of the measuring instrument becomes the origin of the co-ordinate
system: one measures a direction — azimuth or horizontal direction
angle, and elevation angle above the horizon — and a distance from thekorkeuskulma

instrument’s location to the points to be measured.

^ Self-test questions

1. What is a measurement unit, a measured quantity, and its dimen-
sion? Describe and explain the differences.

2. “Three score years and ten”. How much is this in gigaseconds?
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Exercise 2–1: Co-ordinates and a street address 51
3. Scour the Internet for examples of confusion around physical units

causing damage, loss or accidents.

4. The mean temperature of the Earth for 2016 was an estimated
14.8◦C. How much is this in kelvin?

5. Explain random errors, gross errors, and systematic errors.

6. Consider a pack of 52 playing cards, with the numbers 2–10, a jack
counted as 11, a queen as 12, a king as 13, and an ace as 1. What is
the expectancy for a card drawn at random from the pack?

7. Look up the equation for the standard normal distribution’s prob-
ability density p(x). What is the function value p(x) for x =µ±σ?
And for x =µ? And what is the ratio p(µ±σ)/︁p(µ)?

The standard normal distribution is the normal distribution for the
parameter values µ= 0 and σ= 1.

8. Would you expect that the incidence of bush fires in Australia
and the thickness of snow cover in Lapland would be correlated?
Anticorrelated? Uncorrelated? Why?

9. Why do we use also two-dimensional (plane) co-ordinates in
geodesy?

10. How is geocentricity defined?

11. What is the advantage of using geodetic co-ordinates (ϕ,λ, h) over
rectangular co-ordinates (X ,Y, Z)?

^ Exercise 2–1: Co-ordinates and a street address

A riddle for seafarers:

1. To what street address do the geodetic co-ordinates in the accompa-
nying picture, figure 2.13, refer?

2. What is the general nature of the object at the address? Give a
picture!

3. Are the co-ordinates geocentric? On which reference ellipsoid?

4. Find the “Easter egg” in the index of this text.
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^ Map projections, datums and
transformations

33
Le 24 février dernier, la Chambre des députés adoptait un
projet de loi, dû à l’initiative parlementaire et ayant pour

objet de fixer à nouveau l’heure légale de notre pays. Il était
ainsi formulé : l’heure légale, en France et en Algérie, est
l’heure, temps moyen, de Paris, retardée de 9 minutes 21

secondes.

How France legislated in 1898 civil time in France and
Algeria to be Greenwich Mean Time. Dastre (1898)

^ 3.1 Map projections

Although geodetic co-ordinates are more user friendly than rectangular
ones, even better co-ordinates, closer to the human user, can be produced
by using the method of map projection.

The practice of depicting the Earth’s surface on a two-dimensional
plane or map is an old one. Cartography is the science that has grown
around this art. If the area to be depicted is small, the method of depiction
is straightforward and error-free: local horizontal rectangular landscape
co-ordinates (x, y) can be depicted, through a scale, onto the paper map
plane. We speak of a plan.1 In most countries, including Finland, the x 1

axis points north and the y axis east.

For a larger area, we use a map projection, a mathematical method
to map the location, or latitude and longitude (ϕ,λ), of a point to the
map plane. Thus we can draw a graphical representation of the Earth’s
surface onto paper, a map. Many digital applications, like CAD software,

1Swedish plankarta (archaic; nowadays the term refers to zoning maps), Dutch platte-
grond.
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that do not actually even require the use of a paper map, are nevertheless
based on the intuitive use of the map plane.

In the simplest approach we use the co-ordinate pair (ϕ,λ) directly
as map co-ordinates x and y: x = Sϕ, y= Sλ, S being the nominal scale.
This is a pathetic solution, because

◦ The co-ordinates ϕ and λ are in degrees, angular units, whereas
the map co-ordinates have to be in metric units.

◦ One degree of longitude λ expressed in kilometres diminishes to-
ward the poles. At the latitude of Helsinki, a degree of longitude
is only 55km, when at the equator it is 111km. A slightly better
approach is to use the co-ordinate pair (ϕ,λcosϕ).

Better solutions are offered by map projection science. Thus we may mapkarttaprojektio-
oppi the parameter pair (ϕ,λ) on the surface of the reference ellipsoid onto the

pair (x, y) in the map plane in a sensible way. Unfortunately a method
that depicts everything exactly correctly does not exist. Something is
always distorted (Wikipedia, Theorema Egregium).

In map projections we always make approximations. We always lose
something. There are no projections that do not distort anything or
have the same scale throughout the map plane. A projection is chosen
according to the purpose of use, so that something that is important to
the user is preserved: the shapes of objects, their surface areas, some
distances, the compass direction.

◦ If angles and ratios of distances are preserved, we speak of a con-kulmatarkka

formal or angle-preserving projection. In this case both the linear
scale — distances — and the scales of surface areas are distorted,
except at some special points of the map.

◦ If surface area is preserved, we speak of an equivalent or equal-areapinta-alatarkka

projection. Here, angles and shapes are distorted, again with the
exception of special points or lines.

◦ If distances are preserved, we speak of an equidistant projection.etäisyystarkka

A projection can be equidistant only along certain lines, never
everywhere.

◦ In navigation it is important that compass directions are preserved.
In that case, loxodromes or rhumb lines (Wikipedia, Rhumb line),
lines of constant compass direction, are straight. The normally
oriented Mercator projection has this property.

◦ If great circles are depicted as straight lines, we have the gnomonicisoympyrä
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FIGURE 3.1. Depicting the curved surface of the Earth to the map plane using
different projections. Something will always be distorted!^

projection. It is used in aviation and in connection with meteor
observations — the track of an aircraft on the Earth’s surface or
the track of a meteor on the sky is mapped to a straight line, which
may be drawn with a ruler.

It is important to be aware that there is no “correct” projection! The
choice is dictated by the purpose of use and the distortions considered
acceptable. In a way they are all “wrong”. On the other hand, they are
also all useful.2 2

Philosophically one may be of the view, that map co-ordinates (x, y) are
not actually geodetic quantities. Genuinely geodetic quantities are always
three-dimensional. Map projection co-ordinates are derived quantities.

A high-level introduction into the mathematics of map projections is
offered by Grafarend et al. (2014).

^ 3.2 The various co-ordinate solutions used in Finland

In Finland, like everywhere on Earth, several different co-ordinate refer-
ence frames3 are in use for historical reasons. This complicates the use of 3

geographic information and co-ordinate materials. It is a precondition for
the use of co-ordinate data, that we know in which co-ordinate reference
frame the material is. If necessary, one transforms from one frame to

2“Essentially, all models are wrong, but some are useful” – George E. P. Box (1919–2013),
British statistician.

3Here, we do not yet make any clear distinction between co-ordinate reference systems
and reference frames. Find more on this in section 3.8.
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FIGURE 3.2. The systematic shift between the road network and the aerial pho-
tograph base could have something to do with the use of different
co-ordinate reference frames. Google Earth™. Google terms of use.
Map data © 2009 Google. Image © 2010 DigitalGlobe, © 2010 Tele
Atlas, © 2010 Europa Technologies.^

another before use.

The most fundamental distinction between different co-ordinate ref-
erence frames is, whether we have a “traditional” one, created before
the satellite era using traditional geodetic measurement methods, or a
“modern”, geocentric, one created using satellite positioning technology.
In the following, we explain more about co-oordinate reference frame
alternatives and the transformations between them.

However, even if it is clear in principle what co-ordinate frame geospa-paikkatieto

tial data is in, small differences in how the data was processed and
connected to known locations on the ground may lead to visible discrep-
ancies in the resulting co-ordinates. See figure 3.2 for an example.

^ 3.2.1 National Map Grid Co-ordinate System (KKJ)

In Finland, the old, in its time official, and now largely obsolete, co-
ordinate reference frame is KKJ, the National Map Grid Co-ordinate
System (Parm, 1988). The system was created based on the results of
the national triangulation effort. It is also a good example of the use of akolmiomittaus

map projection for mapping a national territory onto a two-dimensional
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map plane. More about this map projection in subsection 3.3.1.

^ 3.2.2 Helsinki system (VVJ)

The Helsinki system, or VVJ, was the predecessor of KKJ. The national
triangulation was a huge project (Puupponen and Järvinen, 2008), lasting
over half a century. The users of accurate co-ordinates, however, could not
wait. Thus, VVJ was created “on the fly” in support of practical mapping
work. The co-ordinates were calculated stage after stage, as the Finnish
triangulation progressed from Southern Finland towards the north. Not
until the 1970s, when the national triangulation was almost completed
and its complete adjustment carried out, was the KKJ system formed as a tasoitus

nationally unified system.

The co-ordinate differences between the Helsinki system and KKJ are
up to a few metres (Häkli et al., 2009, page 18).

Ancient as the Helsinki system may be, it was still in use in many
municipalities in the 2010s: for example Tuusula did not move away from
it — directly to EUREF-FIN — until 2013. . .

^ 3.2.3 The EUREF-FIN reference frame

With the spread of satellite positioning, as early as in the 1990s it was
possible to determine three-dimensional co-ordinates for everywhere on
Earth, in a system that was geocentric on the several-centimetre level:
the origin of the three-dimensional co-ordinates (X ,Y, Z) coincides to
that level of precision with the centre of mass of the Earth. In addition,
the Z axis of a geocentric co-ordinate system points in the direction of the
Earth’s axis of rotation, whereas the X and Y axis directions lie within
the equatorial plane.

Geocentric systems are global. In Europe, the International Association
of Geodesy IAG4 created the geocentric reference system ETRS89, the 4

European Terrestrial Reference System 1989. The system has been
realised by measurements many times: the first Europe-wide realisation,
or co-ordinate reference frame, was EUREF89, which was based on a
space geodetic measurement campaign (Overgaauw et al., 1994). Later,
Finland created its own national realisation under the name EUREF-FIN,5 5

4This was done by its European reference-frame subcommission EUREF. The name
EUREF was proposed by the Danish geodesist Knud Poder. Knud Poder (1925–2019)
was an eminent Danish land surveyor and mathematical geodesist and a pioneer in
computational geodesy.
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Greenwich or
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Map projection

FIGURE 3.3. Mapping the curved Earth’s surface as a narrow zone onto a plane.
This is the principle of both the Gauss–Krüger and UTM projections.
Both projections are used in Finland. The distortions remain
acceptably small only in a relatively narrow area.^

which has in recent decades been taken into use by the national mapping
agencies and most other actors.

In subsection 3.3.3 we explain more about the map projections chosen
for use with the EUREF-FIN reference frame.

^ 3.3 Map projections used in Finland

In Finland we encounter currently two different plane or projected co-
ordinate reference frames: the old KKJ, and the new system based on
EUREF-FIN. In the old KKJ, the Gauss–Krüger projection was used, in the
new system is used, in addition to Gauss–Krüger, also the UTM (Universal
Transverse Mercator) map projection. See figure 3.3.

^ 3.3.1 The map projection system of the KKJ

In order to map the Earth’s surface to the map plane without large
distortions, Finland was divided into six KKJ projection zones, every oneprojektiokaista

of which has its own co-ordinate frame in the projection plane. The zones

5The often-used name WGS84 refers to the system — with actually half a dozen reali-
sations — maintained by the US defence authorities. The system’s latest realisations
are consistent with ITRF frames on the centimetre level. Consistency with the various
ETRS89 realisations is poorer than that, although better than a metre. See Malys et al.
(2016). Often the name WGS84 is used, erroneously, as shorthand for all of these.
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FIGURE 3.4. The zone division of the Finnish KKJ system’s Gauss–Krüger pro-
jection. The zones 0 (central meridian 18◦) and 5 (33◦) have been
left out.^

were numbered from zero to five: the central meridians of the zones are
at longitudes 18◦, 21◦, 24◦, 27◦, 30◦ and 33◦ east.

The co-ordinates within a projection zone are x (northing) and y (east-
ing). The projection used is conformal and goes by the name of Gauss–
Krüger, one type of transversal Mercator projection. The reference ellip- poikittainen

soid used in the projection calculations is the Hayford or International
Ellipsoid of 1924.

In the several zones, the same co-ordinates appear multiple times.
Therefore, to obtain unique values, the zone number is prepended to the
y co-ordinate as its first decimal (except when it was 0). See figures 3.4,
3.5. This multi-zone system is referred to as the basic co-ordinate system perus-

koordinaatistoof the KKJ.

The x co-ordinate origin is on the equator, and the values grow along
the central meridian. Because of this, the x co-ordinates in Finland are
in the range 6600000–7800000m.
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FIGURE 3.5. The geometry of one zone of the Finnish KKJ system (stretched in
the east-west direction).^

The y co-ordinate describes distance from the central meridian. In order
to avoid negative y co-ordinates, 500km is added to them, so that a point
on the central meridian has a y co-ordinate of 500000m (false easting).
The y co-ordinates could theoretically be in the interval 0–1000000m; in
practice, however, the range of values is 420000–580000m, due to the
narrowness of the zones at Finnish latitudes.

For example, according to figure 3.5, the bottom-left corner co-ordinates
of the area of the first zone would be

x = 6600000.000m, y= 1420000.000m.

Similarly the bottom-left corner of the third zone:

x = 6600000.000m, y= 3420000.000m.

On the central meridian of the projection, the distortion is zero: the
nominal scale of the map applies exactly.

In the case where KKJ co-ordinates were used within a small area,
the leftmost digits were often left off, as they are all the same. Thus
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one obtained truncated co-ordinates, which may still be encountered in katkaistut

koordinaatitmunicipal calculation documents.

The map projection system employed by the Helsinki system (VVJ) was
similar to that of KKJ, except that the notation was y = 21◦420000, so
the y co-ordinate was prefixed with the longitude of the central meridian
itself.

^ 3.3.2 The KKJ’s Uniform Co-ordinate System

In addition to KKJ, for small-scale maps6 only, the Uniform Co-ordinate 6

yhtenäis-
koordinaatisto

System (Finnish acronym: YKJ) of KKJ was taken into use, which mapped
the whole territory of Finland using one and the same Gauss–Krüger
projection with a central meridian of 27◦. As there is only one zone,
nothing is prepended to the y co-ordinate.

^ 3.3.3 The map projections of EUREF-FIN

In connection with the new reference frame we use EUREF-FIN map
projection co-ordinates (JUHTA, 2016b), which thus are plane co-ordi-
nates (x, y). The new map projections, which use the geocentric GRS80
reference ellipsoid, are, depending on the map scale, either the familiar
Gauss–Krüger, or alternatively UTM, Universal Transverse Mercator, a
projection type that is also conformal and is in broad international use.

◦ For small-scale maps which depict all of or a large part of Finland,
one chooses the new ETRS-TM35FIN7 projection co-ordinate frame, 7

which is based on the three-dimensional EUREF-FIN co-ordinate
frame and the UTM projection for central meridian 27◦E. This
replaces the old KKJ Uniform Co-ordinate System. The projection
also forms the basis for the whole Finnish map-sheet division.

◦ ETRS-TM35FIN is also used for topographic maps.

◦ For large-scale maps, intended for local use, one uses the Gauss–
Krüger projection like before, but with a zone width of 1◦. These

6A small-scale map is a map the scale number M of which is large, if the scale is 1 : M.
A scale of 1 : 1000000 is small: even large objects look small on the map, but the area
mapped is large. A scale of 1 : 2000 is large: even small details are well discernible, but
the area covered by the map is small.

7The name is a tongue and memory breaker. Alternative names circulating in the user
community are “Finnish UTM” and “Finnish Map Grid”.
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projections are named ETRS-GKn, in which n is the degree num-
ber of the central meridian, for example 23◦E, in which case the
name of the projection is ETRS-GK23. For practical reasons, however,
this rule is bent; for example, in order to get a whole municipality
mapped onto a single zone. Due to the choice of projection type,
these maps are useful for applications where no larger distortions
of the scale can be accepted, like zoning and infrastructure construc-kaavoitus

tion, where map co-ordinates are moved straight to construction
projects as terrain co-ordinates.

The UTM system is also much used internationally. UTM differs from
Gauss–Krüger in two ways:

◦ The scale on the central meridian is 0.9996 rather than 1.0. This
means that on the central meridian the map depicts details 400ppm
(parts per million) smaller than they ought to be based on the map’s
nominal scale. That amounts to 40cm for every kilometre.

◦ The width of the projection zones is 6◦, not 3◦ or 1◦. This means
that the scale distortion, which on the central meridian amounts
to −400ppm, turns positive going to the edges of the zone, to about
+1000ppm, calculated on the equator. At Finnish latitudes the
distortion remains quite a bit smaller than that.

These two choices aim to keep the scale distortion over the whole area
of the zone within certain bounds, in spite of the zone’s large width.

Both Gauss–Krüger and UTM are conformal projections: angles and
length ratios are preserved locally, so circles map to circles and squares
to squares — but only if they are small.88

^ 3.3.4 The triangulated affine transformation of the Finnish National

Land Survey

The Finnish National Land Survey provides on its web-site a service
that allows one to transform point co-ordinate sets between the older
KKJ (actually, the Uniform Co-ordinate System YKJ) and the new ETRS-

TM35FIN. The service is based on a division of the Finnish territory
into triangles using a Delaunay9 triangulation, and an affine or bilinear9

8If the square is too large, the nonlinearity of the map projection will cause it to be
mapped to a curved quadrangle. A large circle maps to a circle only for the stereographic
projection, otherwise it too will be deformed.
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FIGURE 3.6. Scale distortion of Gauss–Krüger and UTM projections.^

Delaunay’n
kolmiointitransformation within every triangle. The transformation is linear within

every triangle and continuous across triangle boundaries, JUHTA (2016b).
See figure 3.7.

The method is simple: for the triangle △ABC we define first for the
vertices A, B, and C the co-ordinate differences ∆x and ∆y between the
co-ordinate frames:

∆xi
def= xi,YKJ − xi,ETRS−TM35FIN

∆yi
def= yi,YKJ − yi,ETRS−TM35FIN

}︄
i = A,B,C.

After this, we define barycentric co-ordinates for an arbitrary point P,
co-ordinates (x, y):

pA def= ωA

ω , pB def= ωB

ω , pC def= ωC

ω ,

with (the vertices A, B, and C of the triangle are assumed to be in

9Boris Nikolayevich Delaunay (1890–1980) was a Russian mathematician and moun-
taineer. His grandson Vadim Nikolayevich Delaunay (1947–1983) was a poet who
participated in the 1968 Red Square demonstration against the occupation of Czechoslo-
vakia. Apparently not related to the French celestial mechanicist Charles-Eugène
Delaunay (1816–1872).
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FIGURE 3.7. The triangulated affine transformation of the Finnish National
Land Survey. Triangle network used.^

clockwise order):

ωA def= 1
2 det

⎡⎢⎣ 1 1 1
xB xC x
yB yC y

⎤⎥⎦ , ωB def= 1
2 det

⎡⎢⎣ 1 1 1
xC xA x
yC yA y

⎤⎥⎦ ,

ωC def= 1
2 det

⎡⎢⎣ 1 1 1
xA xB x
yA yB y

⎤⎥⎦ , ω
def= 1

2 det

⎡⎢⎣ 1 1 1
xA xB xC

yA yB yC

⎤⎥⎦ ,

all determinants. Note that ωA, ωB, and ωC, like pA, pB, and pC, are
linear functions of the co-ordinates (x, y) of the arbitrary point P. If we
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FIGURE 3.8. Geodetic plane co-ordinates and the quadrants of the plane I–IV.^

write, for point P, the co-ordinate corrections as

∆xP
def= pA∆xA + pB∆xB + pC∆xC,

∆yP
def= pA∆yA + pB∆yB + pC∆yC,

(3.1)

we are carrying out a bilinear interpolation between the points A, B, and
C.

It is easy to show that

◦ Equations 3.1 reproduce the corrections for the vertices: ∆xP→∆xA

if P→ A, etc.

◦ The corrections are continuous across triangle edges: for example,
on edge AB, a straight line, the functions (∆xP ,∆yP) are linear
along the edge, and reproduce (∆xA,∆yA) ,(∆xB,∆yB) at both ends.
They must be the same for both triangles sharing the edge AB.

◦ As a result of this, the interpolation is continuous for the whole
triangulation cover. kolmiointi

^ 3.4 More about plane co-ordinates

The plane co-ordinates used in geodesy differ a little from the familiar
mathematical (x, y) system. See figure 3.8. While in mathematics, the x
axis points to the right and the y axis to the upper edge of the paper, in
geodesy it is the habit that the x axis points north (“northing”) and the y
axis east (“easting”).

In addition to rectangular co-ordinates (x, y), polar co-ordinates (α, s)
are used. Sometimes the symbols used are (A, s). In geodesy, the azimuth
or horizontal direction angle α (or A) turns clockwise from the north,10 10

10In astronomy, sometimes, especially in older texts, the azimuth turns from the south
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FIGURE 3.9. A local co-ordinate frame.^

that is through the east, unlike in mathematics. s is the distance from
the co-ordinate origin O.

The following trigonometric relations exist between rectangular and
polar co-ordinates:

y= ssinα =⇒ sinα= y
s ,

x = scosα =⇒ cosα= x
s ,

tanα= sinα
cosα = y

x =⇒ α= arctan y
x +k ·200g, x ̸= 0.

In this equation, the small integer k is chosen such, that the result α lies
in the correct quadrant: arctan( y

/︁
x) is always in the interval

(︁−π
2 ,+π

2

)︁
,

that is in the quadrants I or IV. This is easiest to verify by making a
sketch.

The Pythagoras theorem yields the distance s:

s =
√︁

x2 + y2.

^ 3.4.1 Local co-ordinates

Local, often old, co-ordinate frames were long used in many Finnish
municipalities, and one comes across them in older documents.

to the west, that is also clockwise. In geodesy, too, practices vary: one must always
check.
The word “azimuth” originates from the Arabic as-sumût, “directions”.
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FIGURE 3.10. Temporary co-ordinates.^

The origin is generally located so, that everywhere in the municipality
there are only positive x and y values. Often the origin is just a computa-
tional point without realisation on the terrain, for example “truncated”
KKJ co-ordinates.

The connection to the national frame may be that one also knows the
co-ordinates of a church spire or some other landmark in the KKJ system.
Then, one can transform local and national co-ordinates into each other
by adding constant shifts, translations, to both co-ordinates x and y. siirto

In more precise work, one point is not enough: a sufficient number of
common points is needed, and their co-ordinates must be known in both
the local and the national system.

^ 3.4.2 Temporary co-ordinates

Sometimes it makes sense to use in measurements a temporary co-ordi-
nate frame that deviates from the general system. Even the directions of
the axes may deviate from the customary north and east directions.

A temporary or project-specific co-ordinate frame is only used during
measurement or, for example, during a construction project. Later on, the
co-ordinates may be transformed to a more permanent, local or national,
correctly oriented system.

The origin and axes orientation can be chosen in accordance with the
measurement at hand, for example along the walls of a building.
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FIGURE 3.11. The forward geodetic problem in the plane.^

^ 3.5 The geodetic forward and inverse problems

The “direct or forward geodetic problem” means the determination of thegeodeettinen
päätehtävä co-ordinates of an unknown point, when the co-ordinates of a starting

point and both the azimuth (horizontal direction) and the distance from
the starting point are given.

In the general case, on an arbitrary curved surface, the forward geodetic
problem has no easy solution. On a sphere, however, a closed — though
not particularly simple — solution already exists. On the surface of a
reference ellipsoid the solution is obtained numerically. An on-line service
is offered by, among others, the US National Geodetic Survey on their
web-site NGS, Computation utilities.

In a plane co-ordinate system, two-dimensionally, the forward geodetic
problem is simpler, as we shall see next.

^ 3.5.1 The forward geodetic problem in the plane

Let there be in the plane two points P1 and P2, figure 3.11. The plane co-
ordinates (x1, y1) of starting point P1, as well as the azimuth α and length
s of vector

−−→
P1P2 , are given. The co-ordinates (x2, y2) of the unknown

point P2 are to be calculated.

The solution is obtained as follows:

sinα= ∆y
s =⇒ ∆y= ssinα,

cosα= ∆x
s =⇒ ∆x = scosα,

and

x2 = x1 +∆x =x1 + scosα,

y2 = y1 +∆y=y1 + ssinα.
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Example Given point A with co-ordinates

xA = 6800000m, yA = 400000m.

If the distance from point B is s = 2828.427m, and the azimuth
(direction angle) α= 50g, solve the forward geodetic problem for
the points A and B.

Solution

∆x = scosα= 2828.427m ·cos(50g)= 2000m,

∆y= ssinα= 2828.427m ·sin(50g)= 2000m,

xB = xA +∆x = 6800000m+2000m= 6802000m,

yB = yA +∆y= 400000m+2000m= 402000m.

^ 3.5.2 The inverse geodetic problem in the plane

The inverse geodetic problem means the determination of the azimuth geodeettinen
käänteistehtävä(horizontal direction) and distance between two given points.

Let there be given again two points in the plane, P1 and P2 (figure 3.11).
Let their rectangular co-ordinates be (x1, y1) and (x2, y2). To be calculated
are α and s.

Solution

s =
√︁
∆x2 +∆y2 =

√︂
(x2 − x1)

2 + (y2 − y1)
2,

tanα= ∆y
∆x = y2 − y1

x2 − x1
. (3.2)

We rather do not use sinα= ∆y
/︁

s or cosα= ∆x
/︁

s for determining
α: the sine formula becomes imprecise when α ≈ 100g + k ·200g,
and the cosine formula when α≈ 0g +k ·200g, k ∈Z.

In those points, the functions sinα and cosα are stationary: a
large change in α causes only a small change in the function
value sinα= ∆y

/︁
s , and therefore, from the given values ∆y and s,

precise as they may be, one can calculate α only imprecisely.

It is better to calculate α from equation 3.2:

α= arctan
(︂ y2 − y1

x2 − x1

)︂
+k ·200g, k =

⎧⎨⎩0 if (x2 − x1)> 0,

1 if (x2 − x1)< 0,

α=
⎧⎨⎩100g if x1 = x2 and y2 > y1,

300g if x1 = x2 and y2 < y1.
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FIGURE 3.12. The half-angle formula for the arc tangent.^

It must be remembered here that the values of the arctan function
are, according to the definition, always in the interval

(︁−π
2 ,+π

2

)︁
.

The correct α value may however well be outside this interval,
like when (x2 − x1)< 0. This is why there is the conditional term
k ·200g.

Many programming languages offer the function atan2(x,y) with two
arguments, which also finds the correct quadrant automatically.

A more elegant solution is to use the half-angle formula:1111

α= 2 ·
(︂
α
2

)︂
= 2arctan ∆y

∆x+ s = 2arctan ∆y
∆x+

√︁
∆x2 +∆y2

.

See figure 3.12.

Example Given point A: xA = 6800000m, yA = 400000m, and point C,
co-ordinates xC = 6793000m, yC = 407000m, solve the inverse
geodetic problem for points A and C.

Solution

∆x = xC − xA = 6793000m−6800000m=−7000m,

∆y= yC − yA = 407000m−400000m=+7000m.

11This formula too breaks down in the edge case ∆y = 0 and ∆x < 0, because then
α= 2arctan 0

/︁
0 is undefined, when the correct solution is α= 200g.
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1. The traditional method:

αAC = arctan∆y
∆x +k ·200g =

= arctan(−1)+k ·200g =−50g +k ·200g.

The correct solution is apparently

αAC =−50g +200g = 150g.

2. The half-angle formula:

αAC = 2arctan ∆y
∆x+

√︁
∆x2 +∆y2

=

= 2arctan 7000
−7000+7000

⎷
2
=

= 2arctan
(︂

1⎷
2−1

)︂
= 2 ·75g = 150g.

And
sAC =

√︁
∆x2 +∆y2 = 7000m ·

⎷
2= 9899.495m.

^ 3.6 The similarity co-ordinate transformation

The similarity12 or Helmert transformation is a transformation between yhden-
muotoisuus-
muunnos
12

two rectangular co-ordinate frames, usually in the plane, or two-dimen-
sionally. It is encountered very often in practical measurement and
computation tasks, when bodies of co-ordinate material in two or more
co-ordinate frames need to be combined for joint use. In the general
case we find a sufficient number of common points — often benchmarks kiintopiste

— from the area, the co-ordinates of which are known in both systems,
and carry out an adjustment. The special case in which we have only
two common points, which is minimally sufficient for determining the
transformation, is simpler.

We know the co-ordinates of two benchmarks A and B in both coordi-
nate systems:

(xA, yA) ,(xB, yB) , (uA,vA) ,(uB,vB) .

12In Swedish: likformighetstransformation, in German: Ähnlichkeitstransformation, in
French: similitude.
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FIGURE 3.13. Friedrich Robert Helmert (1841–1917) was a great German geode-
sist and a developer of adjustment calculus and its theory. Hum-
boldt University Berlin (2017).^

In addition, we are given a set of points with co-ordinates only in the
(u,v) system:

(u1,v1) ,(u2,v2) , . . . ,(ui,vi) , . . . ,(un,vn) .

The problem now is to compute a similarity transformation for this point
field:

(ui,vi) ↦→ (xi, yi) , i = 1, . . . ,n.

u

y

v

A

B

αuv

x

s xy=
Ks uv

Ouv

u A
B

yAB

vAB

x A
B

x0Oxy

y0

−θ

αxyαxy

FIGURE 3.14. A similarity or Helmert co-ordinate transformation in the plane.^
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See figure 3.14. The transformation is carried out in the following steps:

1. A shift, or translation, of the origin Ouv ↦→Oxy, translation parame-
ters (x0, y0). The components of the origin translation vector t are
(−x0,−y0) in the (x, y) frame.

2. A rotation of the whole (u,v) co-ordinate axes frame by an angle kierto

θ. The rotation angle of the axes is positive clockwise, but must
be subtracted from the directions between points when going from
(u,v) to (x, y).

(In the figure, θ is negative.)

3. A scale transformation of the (u,v) co-ordinates to the scale of the
(x, y) co-ordinates, by multiplying with the scale factor or scale ratio
K .

The Helmert transformation in the plane is also called a four-parameter
transformation. The parameters are x0, y0, θ, and K .

The general form of the Helmert transformation is (figure 3.14):

x = x0 +K cosθ ·u+K sinθ ·v,

y= y0 −K sinθ ·u+K cosθ ·v,
(3.3)

in matrix form — see appendix A:[︄
x
y

]︄
=
[︄

x0

y0

]︄
+K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
u
v

]︄
. (3.4)

^ 3.7 Determining the transformation parameters

Determining the transformation parameters unambiguously requires at
least four “observations” — for example, the total of four co-ordinates of
two points (xA, yA), (xB, yB). Then we obtain four equations:

xA = x0 +K cosθ ·uA +K sinθ ·vA,

yA = y0 −K sinθ ·uA +K cosθ ·vA,

xB = x0 +K cosθ ·uB +K sinθ ·vB,

yB = y0 −K sinθ ·uB +K cosθ ·vB,

again in matric form:⎡⎢⎢⎢⎣
xA

yA

xB

yB

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
1 0 vA uA

0 1 −uA vA

1 0 vB uB

0 1 −uB vB

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x0

y0

K sinθ
K cosθ

⎤⎥⎥⎥⎦ .
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FIGURE 3.15. The stages of the Helmert transformation in the plane in terms
of changes of the co-ordinate axes: axis rotation angle θ, scaling
of axis units K−1, translation vector of the origin t. Note that
the changes to the origin location, axes directions and axis unit
lengths are precisely the opposite of what happens to point co-
ordinates and numerical direction and distance values between
points.^

If the old co-ordinates (uA,vA), (uB,vB) of the same points A and B are
also known, one may from these equations solve four transformation
parameters (x0, y0) and (K sinθ,K cosθ) ↦→ (K ,θ) uniquely.

Difference transformation Subtraction yields[︄
xAB

yAB

]︄
=
[︄

xB − xA

yB − yA

]︄
=

=
[︄

vB −vA uB −uA

−(uB −uA) vB −vA

]︄[︄
K sinθ
K cosθ

]︄
=

=
[︄

vAB uAB

−uAB vAB

]︄[︄
K sinθ
K cosθ

]︄
,

with the logical definitions

xAB
def= xB − xA, yAB

def= yB − yA,

uAB
def= uB −uA, vAB

def= vB −vA.

Arrange the terms cleverly anew:[︄
xAB

yAB

]︄
=
[︄

vAB uAB

−uAB vAB

]︄[︄
K sinθ
K cosθ

]︄
=
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= K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
uAB

vAB

]︄
. (3.5)

This equation, the difference transformation, applies for arbitrary
point pairs.

The scale ratio or scale factor is obtained with Pythagoras’ theorem:

K = sxy
suv

=

√︂
x2

AB + y2
AB√︂

u2
AB +v2

AB

.

The rotation angle is13 (positive clockwise, i.e., turning from the x axis kiertokulma
13to the y axis):

θ =αuv −αxy = arctan vAB
uAB

−arctan yAB
xAB

. (3.6)

The translation vector is computed starting from the Helmert differ- siirtovektori

ence transformation, equation 3.5. Let us look at the point pair A
and Ouv, the origin of the old (u,v) co-ordinate system. The points
have co-ordinates (xA, yA) and (x0, y0) in the new system, and
co-ordinates (uA,vA) and (u0,v0) = (0,0) in the original system.
Then

uAO = uA −u0 = uA, vAO = vA −v0 = vA,

and also

xAO = xA − x0, yAO = yA − y0.

The difference transformation now gives[︄
xA − x0

yA − y0

]︄
= K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
uA

vA

]︄
,

so the translation vector is[︄
x0

y0

]︄
=
[︄

xA

yA

]︄
−K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
uA

vA

]︄
,

just the translation parameters we are after.

For an arbitrary point (x, y) the Helmert transformation equations
are now, after all transformation parameters have been solved for:

x = x0 +K cosθ ·u+K sinθ ·v,

y= y0 −K sinθ ·u+K cosθ ·v,
(3.3)

the same equations 3.3 already given above.

13Forget for a moment the quadrant problem. In principle, a term k ·200g should be
added, with k a small integer.
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Symbolic matric form The Helmert transformation in matric form is[︄
x
y

]︄
=
[︄

x0

y0

]︄
+K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
u
v

]︄
. (3.4)

This can be written compactly:

x= x0 +KRu, (3.7)

in which the definitions of the vectors (column matrices) and ma-
trix are

x def=
[︄

x
y

]︄
, x0

def=
[︄

x0

y0

]︄
, u def=

[︄
u
v

]︄
, R def=

[︄
cosθ sinθ
−sinθ cosθ

]︄
.

Often one writes K = 1+ m, in which m is the scale distortion.
Usually this number is small and is expressed in the unit ppm
(parts per million).

The transformation equations 3.4 and 3.7 are called the similarity or
Helmert transformation in the plane.

Example

1. Given the co-ordinates of points A and B in the (u,v) co-
ordinate system:

uA = 0m, vA = 0m,

uB = 1500m, vB = 1500m,

and in the (x, y) co-ordinate system:

xA = 2000m, yA = 3000m,

xB = 3500.150m, yB = 4500.150m.

Assuming that the transformation between the (u,v) and
(x, y) systems is a Helmert transformation:[︄

x
y

]︄
=
[︄

x0

y0

]︄
+K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
u
v

]︄
, (3.4)

calculate its parameters K , θ, x0, and y0.

2. Given the co-ordinates of point C in the (u,v) system:

uC = 1000m, vC = 2000m.

Calculate xC and yC.
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Solution

1. We see immediately that

uAB = 1500m, xAB = 1500.150m,

vAB = 1500m, yAB = 1500.150m.

From this we infer visually, with the help of the difference
transformation 3.5, that K = 1.0001 and θ = 0.

After this, for point A:

xA = x0 +1.0001 ·uA =⇒ x0 = xA −1.0001 ·uA = 2000m,

yA = y0 +1.0001 ·vA =⇒ y0 = yA −1.0001 ·vA = 3000m.

2. Calculate

xC = x0 +1.0001 ·uC = 2000m+1000.1m= 3000.1m,

yC = y0 +1.0001 ·vC = 3000m+2000.2m= 5000.2m.

^ 3.8 Datums and datum transformations

Geodetic co-ordinates are not just mathematical quantities. Mea-
surements are carried out between points on the terrain, and their
co-ordinates are computed, based on given starting or datum points.
The choice of starting points is always to some extent arbitrary. Every
choice made creates what geodesists call a geodetic datum. In other
words, when geodetic measurements are made on a part of the Earth’s
surface using a certain set of measurement points, and co-ordinates are
conventionally assigned to starting points chosen from this set, we get,
in real life, a solution that represents only a realisation of a certain
reference system.14 14

A co-ordinate reference frame or datum is generally established locally.
When it meets another, similarly established (but based on different
starting points) frame, the co-ordinates of the same points are generally
not the same. For example, in the places where the Finnish and Swedish

14In English, we call the formal definition a co-ordinate reference system, whereas we
call the realisation on the terrain a co-ordinate reference frame. For example, ETRS

= European Terrestrial Reference System and ETRF = European Terrestrial Reference
Frame. In Finnish, the corresponding terms are gaining traction, too: vertausjärjestelmä
against its realisation or vertauskehys.
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precise levelling networks meet at the border in the Torne river valley,
we get two different height values for the same point, which are both
correct.

In the case of horizontal networks we also speak of datums, horizontaltasoverkko

datums: where networks meet at borders, the horizontal co-ordinates
(ϕ,λ) of the same point are generally not precisely the same in both
datums. The differences are, for classical triangulation networks, of the
order of seconds of arc.

For the purpose of transforming the co-ordinates of points in one datum
into co-ordinates of another datum, the literature offers datum transfor-
mation equations.

^ 3.8.1 Example: height network

Let us look at the example of height measurement, levelling. The Finnish
official height system until September 25, 2007, N60, was based on the
height of a certain point. This starting or datum point is a granite pillar
located in the garden of Helsinki astronomical observatory, and a certain
polished surface on that pillar. Here a role is played by historical accident,
by the fact of Helsinki being the Finnish capital. The height value of
the datum point was chosen such, that the heights of points were rather
precisely reckoned from mean sea level in Helsinki harbour at the start
of 1960. Scientifically the choice of Helsinki was arbitrary.

The new Finnish height system, N2000, uses as its starting or datum
point the fundamental benchmark PP2000 at the Metsähovi researchpääkiintopiste

station — 40km to the west of Helsinki — the height value of which was
chosen so that the heights are relative to the Amsterdam mean sea level
NAP, one of the oldest in the world. The choice of Amsterdam is also the
product of history, not science.

The national precise levelling has brought official heights to everywhere
in the country. It is clear that the precision of a calculated point height in
this system will depend on the point’s distance from Helsinki. A height in
Kevo, Northern Lapland, will be clearly more poorly known than a height
in Jyväskylä. And the height of Turku is somewhat imprecise, because
the levelling from Helsinki to Turku was not absolutely precise. On the
other hand, the heights measured for points in the Helsinki area are very
precise, because the datum point, be it Observatory Hill or Metsähovi, is
so nearby.
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FIGURE 3.16. Fundamental benchmark PP2000 of the N2000 height datum
at the Metsähovi research station. Established by the Finnish
Geodetic Institute, today the Finnish Geospatial Research Insti-
tute (FGI) of the National Land Survey of Finland.^

Imagine for a moment, that not Helsinki but Turku were the capital
of Finland,15 and that a benchmark in the wall of Turku Cathedral were 15

chosen as the datum point for the Finnish height system. In that case,
all heights of points close to Turku would be very precise, but the points
in the Helsinki area would be similarly imprecise as points in the Turku
area are in the present system, as the levelling between Turku and
Helsinki is somewhat imprecise.

The precision picture depends on the viewpoint, on the chosen datum.

Figure 3.17 shows a levelling network of four points. The height dif-
ferences AB, BC, CD, and DA are given — measured. Furthermore, the
heights above mean sea level of coastal points A and B, measured by a
mareograph or tide gauge are also given.

1. First we adjust the levelling loop, table 3.1a.

15Not hard to imagine, as this is how it was 1809–1812, and informally before that
during the Swedish imperial era.
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D

FIGURE 3.17. Alternative vertical datums A and B.^

2. Use point A as datum point and calculate the heights of the points,1616

table 3.1b.

3. Do the same calculation, but now using point B as the datum point,
table 3.1c.

It is seen that in the latter case all calculated heights are greater by
0.019m. The height differences are of course the same. The difference

^ TABLE 3.1. Alternative vertical datums A and B.

(a)
Adjusting the levelling loop

Interval Observed Correction Adjusted

AB −0.925 −0.004 −0.929
BC +0.548 −0.004 +0.544
CD +0.321 −0.004 +0.317
DA +0.072 −0.004 +0.068

Closing error +0.016 ↑ 0.000

(b)
Point heights, datum A

Point Height Mean error
A 3.443 ±0.000
B 2.514 ±0.010
C 3.058 ±0.014
D 3.375 ±0.010

(c)
Point heights, datum B

Point Height Mean error
A 3.462 ±0.010
B 2.533 ±0.000
C 3.077 ±0.010
D 3.394 ±0.014

16The mean errors in the table are made up though realistic-looking.
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of 0.019m is precisely the “difference of height differences” of points A
and B between the two methods: (1) levelling plus adjustment, and (2)
mareographs. The difference stems from the uncertainty, or “measure-
ment error”, of the levelling and of the mareograph measurements, and
from the circumstance that the true mean sea surface is not a level or
equipotential surface.

The datum difference between datum A and datum B is 0.019m.

The datum transformation is

H(B)
i = H(A)

i +0.019m,

more generally
H(B)

i = H(A)
i +

(︂
H(B)

A −H(A)
A

)︂
.

Every adjustment produces precision estimates of the computed values,
or mean errors. If we assume that, as a given value, the height value of
the datum point is errorless (mean error zero), the mean errors of the
point heights will grow moving away from the datum point. Table 3.1
contains (invented) mean errors behaving in just this way. They are also
drawn in figure 3.17 as error bars. We see that the precision behaviour of
the network depends on the datum-point choice.

^ 3.8.2 Horizontal co-ordinate datums

As already said, horizontal networks can also have different datums,
horizontal datums. Figure 3.18 depicts one network both in datum AB
and in datum PQ.

◦ The AB datum is created by taking already known approximate
co-ordinate values for points A and B as the formal truth, and
adjusting the whole network without changing these. In this way
one calculates the co-ordinates of the other points, including P and
Q, in the same AB datum.

◦ The PQ datum is again created in the same way, but by fixing the
co-ordinates of points P and Q to prior given approximate values,
and adjusting the network while keeping these fixed. Thus one also
solves the locations of the other points in the network, but now in
the PQ datum.

The figure shows that the point co-ordinates are different in the AB and
PQ datums. The shape of the whole network is nevertheless the same,
independently of whether datum AB or PQ is chosen for calculating
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PQ datum

BA

Q

P

AB datum

FIGURE 3.18. Two different datums of a horizontal network, the AB and PQ
horizontal datums with their starting or datum points. Point
error ellipses and inter-point (relative) error ellipses have been
drawn. Note how the error vanishes in the datum points, the
co-ordinates of which are part of the datum definition and thus
assigned values.^

the solution. In this case, the transformation between the datums is a
similarity or Helmert transformation.

The prior known co-ordinates for the points A, B, P, and Q originate
generally from previous network adjustments, astronomical positionverkkotasoitus

determinations, or are read from a map: they are approximate values of
the co-ordinates. Determining a datum is thus the same as choosing the
datum points: points the approximate co-ordinates of which are taken as
the formal truth in the network adjustment.

It would be a coincidence if the computation of the network in the AB
datum produced the same co-ordinates as computation in the PQ datum.
The differences between the co-ordinates computed in different ways
are comparable in magnitude to the goodness of approximation of the
approximate co-ordinates used. The differences are often so small, that
the transformation parameters are close to zero or unity. In the Helmert
transformation 3.3:

x = x0 +K cosθ ·u+K sinθ ·v,

y= y0 −K sinθ ·u+K cosθ ·v,

the rotation angle θ is so small, that sinθ ≈ θ and cosθ ≈ 1. Writing
K = 1+m, with m the scale distortion, m is also a small number, and we
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obtain

x = x0 + (1+m)u+ (1+m)θv ≈ x0 +u+mu+θv,

y= y0 − (1+m)θu+ (1+m)v ≈ y0 −θu+v+mv,

as a matric equation[︄
x
y

]︄
=
[︄

u
v

]︄
+
[︄

x0

y0

]︄
+
[︄

m θ

−θ m

]︄[︄
u
v

]︄
,

an elegant equation in which the second and third terms on the right-
hand side are small, because they contain only the small transformation
parameters x0, y0, m, and θ. Thus, the co-ordinate differences x−u and
y−v are also small, as we observed already above.

^ 3.9 Map projections and height systems in a

three-dimensional world

Although the real Earth and her gravity field are three-dimensional
phenomena, which we can describe and handle correctly only in three
dimensions, nevertheless, means of description are very widely used that
are based on “two-plus-one-dimensional” thinking. For this are used map
projections and height systems, which together describe the world by
means of 2D+1D co-ordinates (x, y, H).

Although we have here three co-ordinates, one cannot speak of gen-
uinely three-dimensional co-ordinates because, on the one hand, (x, y)
and on the other, H, are not comparable.

Among ordinary people — and even among land surveyors — there is
a conceptual model of a “shoebox world”: rectangular, the sides oriented
in the northern and eastern directions, and the height co-ordinate being
simply the distance from the bottom of the shoebox, “sea level”.

It would be easy to be judgemental about this way of thinking. Re-
member, however, that in a small area, the shoebox model is — may
well be — an acceptable approximation. For example, inside cities, plan
maps and rectangular co-ordinates are used without bad repercussions.
The question of the acceptability of this approximation demands careful
analysis.

If the (x, y, H) representation is acceptable, then it is simpler, as a
representation of location and height, than the Earth’s true geometry,
true locations with their rectangular geocentric co-ordinates and true
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heights with their geopotential numbers. However, in the general case it
is actually a more complicated way of representing location and height:
the complexity of map projections and the gravity field pervades all co-
ordinates thus defined. Errors caused by misconceptions are easy to
make.

Therefore in precise scientific work in geodesy, geocentric, three-
dimensional co-ordinates and geopotential numbers should always
be used. “Plane co-ordinates” — more precisely, map-projection
co-ordinates — and metric heights should always be seen as
derived quantities, on the basis of which no precise computations
should be attempted.

See the following diagram, in which the signs “←→” designate operations
used:

(X ,Y, Z)
reference ellipsoid←−−−−−−−−→ (ϕ,λ, h)

⎧⎨⎩(ϕ,λ)
map projection←−−−−−−→ (x, y)

h
geoid model←−−−−→ H

(3.8)

Reference ellipsoid A co-ordinate conversion between rectangular and
geodetic co-ordinates is a mathematical, exact operation. The
choice of reference ellipsoid is, however, arbitrary. Today, GRS80
is the standard. In Finland, however, historically the Hayford or
International Ellipsoid of 1924 has also been used.

Map projection A mathematical, exact operation. Many alternatives
are on offer.

Geoid model The height type may be orthometric, normal (or variants
of those two) or dynamic. A geoid model (or similar) is always
needed, see section 4.1.

In diagram 3.8 on the left are the more abstract quantities, whereas on
the right are the more concrete quantities, closer to daily life.

^ 3.10 The time co-ordinate

In geodesy we use, in addition to co-ordinates of place, other co-ordinates
as well. The first of these is time. Time describes the changes happening
in the Earth, the research into which belongs to the field of geodynamics,
on which more in section 18.1. With the measurement precision of modern
geodesy, the Earth lives and changes continuously:
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◦ Due to the solid-Earth tide, the ground below our feet moves peri-

odically, twice a day, up and down — even in Finland a couple of
decimetres. We do not notice this of course, because a more stable
reference point is lacking: everything around us moves up and
down with us.

◦ Because of plate tectonics, all continental plates move evenly. The
velocity of motion is of the order of a few centimetres per year, and
can be precisely monitored with GNSS technology.

◦ The rotation of the Earth is irregular. With space geodetic observa-
tion techniques it is possible to follow the variations in the direction
of the Earth’s rotation axis, both relative to the solid Earth — polar
motion — and relative to the celestial sphere — precession and
nutation — and variations in rotation rate — LoD, length of day. vuorokauden

pituusThese phenomena together are called “Earth orientation parame-
ters” (EOP).

◦ In Fennoscandia, Canada and elsewhere, the Earth’s surface is
rising slowly after the last ice age, glacial isostatic adjustment
(GIA).

◦ There are other, more local motions too, some of them caused by
human activity.

^ Self-test questions

1. How are map projections classified based on what they distort and
what they preserve?

2. What is the main distinction between “traditional” and “modern”
co-ordinate reference frames?

3. What are the differences between the old KKJ datum and the new
EUREF-FIN datum for the territory of Finland?

4. Name and describe geodetic plane co-ordinates and geodetic polar
co-ordinates. How do you convert between them?

5. Describe the geodetic forward problem in the plane, and its solution.

6. Describe the geodetic inverse problem in the plane, and its solution.

7. Describe the Helmert transformation in the plane. How many free
parameters does the transformation contain? Describe them.

8. What is a datum, and how is one established?
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9. Describe briefly the various phenomena that geodynamics studies.

^ Exercise 3–1: Distances

We find the co-ordinates of two points in Finland: the GNSS fundamen-
tal station Metsähovi (METS), and the GNSS station at the Sodankylä
Geophysical Observatory (SODA). The EUREF data centre (ROB, EU-
REF Permanent GNSS Network) offers the following approximate ITRF

co-ordinates:

Station X (m) Y (m) Z (m)

METS 1 2892571.00 1311843.28 5512634.01
SODA 2 2200147.00 1091638.20 5866870.60

From this, we

1. compute the latitude and longitude ϕ and λ, again using the NLS

online service Finnish National Land Survey, Paikkatietoikkuna.

The software asks for 3D Cartesian (rectangular) co-ordinates in
the ETRS89 system, which is not quite the same as approximate
ITRF; we just pretend it is.

2. From these, we compute the distance, on the surface of the GRS80
reference ellipsoid, between the points, solving the inverse geodetic
problem. Use the NGS web-site NGS, Computation utilities to obtain
the distance s1.

3. Instead of a reference ellipsoid, we may use a spherical approxi-
mation, with the mean Earth radius being R = 6371.008km. The
angular distance between METS and SODA can be computed from
their latitude and longitude, using the equation17 (cosine rule on17

the sphere)

cosψ= sinϕ1 sinϕ2 +cosϕ1 cosϕ2 cos(λ2 −λ1).

And then, the metric distance along the surface of the sphere is

s2 =ψR.

4. Alternatively, the chord distance in spherical approximation:jänne-etäisyys

s3 = 2R sin
(︁1

2ψ
)︁
.
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5. We return to the NLS web-site (Finnish National Land Survey,

Paikkatietoikkuna) and convert the co-ordinates (ϕ,λ) to ETRS-

TM35FIN, a two-dimensional map projection system.

6. Now, using these two-dimensional map projection co-ordinates (x, y)
for METS and SODA, we compute the distance between the two
stations using the Pythagoras theorem in two dimensions:

s4 =
√︂
(x2 − x1)

2 + (y2 − y1)
2.

7. Now, as the icing on the cake, compute the chord (three-dimensio-
nal) distance, also using Pythagoras, from the original rectangular
co-ordinates:

s5 =
√︂

(X2 − X1)
2 + (Y2 −Y1)

2 + (Z2 −Z1)
2.

All these distances are different. Some of the differences are small,
some substantial. Complete the exercise by explaining where all these
differences come from, and draw a figure with all distances marked.

Do all calculations in millimetres rounding accuracy.

17Smart readers will note that this equation produces, for short distances ψ, a cosine
close to unity, leading to a loss of accurate digits when ψ is recovered by the arccos
function.
It is possible to convert the equation to a “half-angle version” in the following way:
substitute

cosψ= 1−2sin2 ψ

2
,

cos(λ2 −λ1)= 1−2sin2 λ2 −λ1

2
,

yielding

1−2sin2 ψ

2
= sinϕ1 sinϕ2 +cosϕ1 cosϕ2

(︃
1−2sin2 λ2 −λ1

2

)︃
=

= (sinϕ1 sinϕ2 +cosϕ1 cosϕ2)−2cosϕ1 cosϕ2 sin2 λ2 −λ1

2
=

= cos(ϕ2 −ϕ1)−2cosϕ1 cosϕ2 sin2 λ2 −λ1

2
=

= 1−2sin2 ϕ2 −ϕ1

2
−2cosϕ1 cosϕ2 sin2 λ2 −λ1

2
,

from which
sin2 ψ

2
= sin2 ϕ2 −ϕ1

2
+cosϕ1 cosϕ2 sin2 λ2 −λ1

2
, (3.9)

the half-angle version of the spherical cosine rule which is well behaved for points that
are close together (compared to the size of the Earth).
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^ Height measurement and the
levelling instrument

44
Lattamiehentie, 01260 Vantaa

Lattamiehentie, 80100 Joensuu
Vaakitsijantie, 90650 Oulu

Lattamiehentie, “Rodman Road”, Vaakitsijantie, “Leveller
Road”, street addresses

^ 4.1 Height, geopotential, and the geoid

Heights express the locations of points in the vertical direction, the
direction of the local gravity vector, the vertical or plumb line. luotiviiva

Intuitively this is based on the naïve “shoebox model” of the Earth’s
figure, where height is the third co-ordinate, the straight, metric distance
from the bottom of the shoebox, sea level.

The shoebox model is also called the “flat Earth approximation”: some-
where below the land surface there is a reference surface, assumed to
be a plane, that coincides with mean sea level. Height is the distance in
metres from this level surface.

In reality, the Earth is not flat and the reference surface is curved,
even undulating. The reference surface is called the geoid. It is a level
or equipotential surface of the Earth’s gravity field, a surface on which
every point has the same value for the geopotential, the potential of the
Earth’s gravity field.

The direction of gravity, the plumb line, is everywhere perpendicular
onto this surface. The distance of a point from this surface, measured
along the plumb line, is called its orthometric height. Thus, orthometric
height has a simple geometric interpretation, and it is of course a metric
quantity.
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^ 4.1.1 The geopotential

Physical geodesy is the branch of geodesy concerned with the gravity field
and gravity potential of the Earth. The geopotential W could be taken
as the fifth “co-ordinate” after the three co-ordinates of place X , Y , Z,
and time. The geopotential describes the energy level of points in relation
to sea level. This corresponds to the popular conception of “height”. We
have a habit, mostly appropriate in daily life, of expressing height as a
metric quantity. . . but what really interests us is the potential energy
that comes with height. The effect of gravity on our daily activities is
so strong, that “height determination”, the study, determination, and
presentation of the geopotential, forms a large part of practical geodesy
and surveying.

Water “Height”, or potential, represents energy. The energy may be
recovered or stored — hydro-power. The energy may also be de-
structive — floods — for which one has to be prepared. Sewers
have to have a sufficient slope so they will work.

Air The levels of equal pressure in the air follow fairly precisely the
levels of the geopotential. The phenomenon is exploited in baro-
metric height determination. An aircraft also measures its “height”
using an air-pressure sensor.

Traffic Gravity affects the planning of traffic routes. Slopes may not be
too steep, and limited variations in potential, or energy level, along
the route are desirable. In the case of waterways, this happens
automatically in a natural way.

The geopotential is closely related to gravity. Surfaces having the same
value for the geopotential, equipotential surfaces, are what are ordinarily
called “horizontal surfaces”. A freely flowing fluid — sea water, lake
water, air — will settle along an equipotential surface. In the sea, the
hydrostatic pressure is a constant along the equipotential surfaces of
the gravity field, just like, in the atmosphere, barometric pressure — at
least approximately: disturbances are due to salinity and temperaturesuolaisuus

variations in water and temperature variations in air, and to the currents
these cause.

^ 4.1.2 Metric heights

Heights are “humanised” in a similar manner to what map projections
do for location data. One invents a way in which height “above sea
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FIGURE 4.1. Different height types map geopotential numbers C in different
ways to metric heights (differences exaggerated).^

level” can be expressed as a metric quantity, as a height H from some
reference surface, usually mean sea level. The first step is always to
compute the difference between the geopotential values of the point
under consideration and of mean sea level, the geopotential number C of
the point. This number is positive from mean sea level upwards.

Unfortunately, just like with map projections, there is no solution that
is in all respects satisfactory. Something is always distorted.

In the same way as with map projections, there are also different height
types, like

◦ orthometric height H

◦ normal height H∗

◦ dynamic height Hdyn.

They all have their good and bad properties.

Earlier, in the section on geometric co-ordinates (section 2.8), we be-
came acquainted with co-ordinates bound to the reference ellipsoid, of
which one was the height from the reference ellipsoid, h. This co-ordinate
describes the location of a point in a vertical direction and is in a way
also the height of the point. It is nevertheless reckoned from the reference
ellipsoid, a surface that is not physically useable as a reference surface
in daily life. Moreover, it does not describe the energy level with respect
to sea level, like H, H∗, and Hdyn (and of course geopotential numbers C)
do.

If all this appears at this stage difficult and theoretical, it may be
worthwhile to come back to this section later in the course and read it
again.
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P

TopographyH

Shaft

Reference ellipsoid

Sea level, geoid

Tunnel

Plumb line

FIGURE 4.2. Orthometric heights are metric distances from the geoid, the water
surface that would form if sea water could freely move under
the topography in an imaginary tunnel network. In that case,
orthometric heights H could be directly measured along the plumb
line through a shaft like the one depicted.^

^ 4.2 Orthometric height

Orthometric (Greek “correctly measured”) heights H correspond the most
precisely to our concept of “height above sea level”. They are in principle
just metric heights above the geoid. The geoid is that equipotential
surface of the gravity field which on average is on the same level as
mean sea level. In other words, mean sea level continued under the land
masses.

If we could excavate a network of tunnels under the continents (figure
4.2) on the level of the sea surface, the water would spread throughout
the network in such a way, that its surface would be a physical realisation
of the geoid. A point’s orthometric height would be its distance from this
fluid surface. This direct physical interpretation is the reason why many
geophysicists, and many countries — among them Finland until 2007 —
have chosen to use an orthometric height system.

Building a tunnel network like the one depicted is of course not prac-
tical. Inland, the geoid is realised computationally, by carrying out the
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FIGURE 4.3. Important reference surfaces and height concepts.^

calculation of a height or levelling network, starting from a chosen coastal
point or set of coastal points. Thus, we disseminate orthometric heights
throughout the country, to everywhere that the levelling network extends
to.

In Finland up until 2007, the official height system or vertical datum
was N60, the zero point of which was Helsinki’s mean sea level at the
start of 1960. N60 heights are to a good approximation orthometric. In
2007, the N2000 height system was taken into use, with the zero level as
the mean sea level according to the official Amsterdam or NAP (Normaal
Amsterdams Peil, Amsterdam Ordnance Datum) datum. N2000 heights
are normal heights, the definition of which differs a little from that of
orthometric heights. For Finland, the difference is of little practical
significance.

^ 4.3 Height determination and levelling

^ 4.3.1 Exotic methods for height determination

The most direct way of measuring height differences is to realise an
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of Finland). This map shows the heights of the geoid above the
geocentric GRS80 reference ellipsoid. Unit m.^

equipotential surface of the gravity field by means of a fluid surface. This
is how one can transfer geopotential values from one place to another.

◦ In Denmark and the Netherlands hydrostatic levelling has been
employed, in which a long hose or tube filled with distilled water
is used to transfer the level of the geopotential (the “height”) from
one island to another or between island and mainland. The dis-
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tances over which measurements have been done have been tens of
kilometres.

◦ By using water gauges in interior waters, heights may also be vesiasteikko

transferred hydrostatically. As in the water-hose technique, here
the air pressure difference between the terminals must also be
taken into account, as well as the effects of wind and currents. The
method, which works best under an ice cover, has been tested, for
example, in the Netherlands (IJsselmeer, Rijkswaterstaat 1996–97,
Reijnoudt, 1996) and Finland.

◦ Barometers have also been traditionally used for measuring height ilmapuntari

differences. A careful procedure taking into account natural air-
pressure variations due to weather will yield a best-case accuracy of
about one metre. See Heiskanen and Härmälä (1963) pages 84–87.

The geophysical modelling of sea currents has been attempted, for exam-
ple, in the Åland Sea.

Trigonometric traverse levelling must also be mentioned here, see linjavaaitus

figure 6.8 (Takalo, 1995).

A certain hi-tech method for measuring potential differences uses pre-
cise atomic clocks and the slowing of clocks predicted by general relativity
theory. At the time of writing there exist optical lattice clocks, atomic
clocks operating at optical frequencies, which should have the relative
precision of 1 : 1018 required for one-centimetre precision.

Another hi-tech method which is already in use (Gruber et al., 2014) is
the construction of precise, high-resolution geopotential models, which
may be used to calculate a point’s precise geopotential immediately when
satellite positioning has determined the point’s precise geocentric location.
The already completed satellite gravity mission GOCE (2009–2013) is key
to this.

^ 4.3.2 Levelling

The already mentioned levelling technique is the standard method for
determining heights referred to mean sea level. Levelling measures the
height difference between two points, figure 4.5. The distance between
points measured in one measurement set-up is short. By chaining point
intervals into a traverse levelling, height differences between points at
great distances from each other may be determined, and thus heights
mapped over wide areas.
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FIGURE 4.5. The geometry of levelling.^

In Finland, like elsewhere, the levelling network covers the whole coun-
try and provides the opportunity to determine the heights of points in the
height system of the network. There is a hierarchy for levelling networks:
the precise-levelling network, which was measured and maintained in
Finland by the Finnish Geodetic Institute, covers the whole country but
is sparse, the loops of the network being hundreds of kilometres long. The
lower-order levellings by the National Land Survey densify this network,
and local actors — municipalities, builders — connect their own levelling
networks to this system. This brings official heights within the reach of
all users.

The height contours appearing on topographic maps are also in thekorkeuskäyrä
maastokartta official system, earlier N60, nowadays N2000.

^ 4.3.3 Creating a height system

The height differences ∆H provided by geometric traverse levelling may
be added together only within a small area, where local gravity is con-
stant. In larger areas, the height differences ∆H must first be converted
to geopotential differences ∆C:

∆C = g ·∆H,

in which g is local gravity. After that, it holds for geopotential differences
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that, around a closed loop, ∑︂

closed loop

∆C = 0,

although for raw height differences∑︂
closed loop

∆H ̸= 0 !

In other words, while the sum of height differences
∑︁B

A∆H depends on
the path chosen from A to B — and is thus not unambiguous — the sum
of potential differences

∑︁B
A∆C is independent of the choice of path. Being

unambiguous, the geopotential is better suited as the basis for the height
system of an area.

^ 4.4 The levelling instrument (“level”)

^ 4.4.1 Construction and function

Levelling (geometric levelling, figure 4.5) depends on a horizontal line of
sight: the optical axis of the levelling instrument’s measuring telescope,
or sight axis, is horizontal. To achieve this, the instrument has a spirit tähtäysakseli

level. Both the spirit level and the telescope are connected to the body of tasain

the instrument.

A traditional levelling instrument (figure 4.6) includes among other
things a measuring telescope, a small circular or bull’s-eye level for ap- rasiatasain

proximate levelling, and a precise tubular level. The instrument also tasaus

has a tripod and footscrews. The optical axis of a well-adjusted level-
ling instrument, the sight axis — the line defined by the crosshairs in hiusviiva-

ristikkothe eyepiece — is parallel to the horizontal as defined by the level, the
okulaarihorizon.

At every instrument station, the levelling instrument must be levelled
anew. Many levelling instruments have a separate lifting screw for
precisely levelling the instrument. This is done before every forwards
and every backwards measurement.

The accurate parallellity of the sight axis and the tubular level’s horizon
is achieved using an adjustment screw when checking up the instrument.

^ 4.4.2 Classification

Levelling instruments are classified according to their accuracy, purpose
of use, and construction, in order of increasing accuracy, table 4.1.
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Tubular level

Footscrews
Lifting screw

FIGURE 4.6. Levelling instrument.^

We speak of precise levelling, if the precision on a one kilometre double
run is below 0.5mm. Instruments of this accuracy class have an optical
levelling micrometer, see figure 4.17. The size and magnification of
the measuring telescope grows with accuracy class, from 20× to 40×
magnification. The levelling staff or rod is also chosen to correspond to
the accuracy class, see table 4.2.

^ 4.5 The measuring telescope

A measuring telescope is found in many optical geodetic measuring in-

^ TABLE 4.1. Classification of levelling instruments.

Instrument type Levelling type

Builder’s level Construction, earthwork levelling
Engineer’s level Engineering, construction levelling
Precise level Base network levelling
High-precision level Precise levelling

í  Õ ! ¤.� û



The measuring telescope 4.5 99

Object

Entrance pupil

Eyepiece
Objective

F

Virtual
imageReal

imageExit pupil

ffdd
D

FIGURE 4.7. Telescope.^

struments, like the theodolite, chapter 5, and the levelling instrument.

A telescope is an optical device presenting an enlarged, and thus more
detailed, image of a remote object. Telescopes for use at night-time also
serve to collect as much light as possible from dim objects, in order to
present a bright image.

The telescope in figure 4.7 has an objective of diameter D, also called
the entrance pupil or aperture, and a focal length F. An eyepiece is used aukko

with a focal length f . If the object is at infinity, the objective first forms
a real image of it in the focal plane, which the eyepiece projects as an
enlarged virtual image to infinity. The magnification equals the ratio
µ= F

/︁
f .

All the light leaving the telescope passes through the exit pupil, the
diameter of which is d = D

/︁
µ . The exit pupil is the image of the entrance

pupil formed by the eyepiece. For example, for binoculars specified as kiikarit

7×50, we have D = 50mm, µ = 7×, and d ≈ 7mm. Young people with
a pupil diameter at night of 8mm can thus place their eyes at the exit
pupils and capture all incoming light.

The tasks of the measuring telescope are to

◦ give a sharp image of the aiming target, the levelling staff

◦ form the sight axis by placing the crosshairs1 which are in the 1

eyepiece, onto the image of the far away levelling staff.

Both tasks demand precise focusing, the movement of lenses along the

1The crosshairs are nowadays usually engraved onto a glass plate, a reticule. Still in
the 1930s, threads from a spider’s nest web were used! See Bedini (2005a,b).
Crosshairs were apparently invented by the astrometrist William Gascoigne (1612–
1644), who accidentally noticed the suitability of spider silk for this purpose. He was
killed in combat in the English Civil War.
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Eyepiece

Sight or collimation axis S

Focusing lens

X

Image plane= crosshairs

Objective

Movement (1)

Movement (2)

FIGURE 4.8. Measuring telescope and focusing. The object of study is to the
right (at a great distance!), the observer’s eye to the left. A mea-
suring telescope is used in many optical geodetic measuring in-
struments, such as the theodolite, chapter 5, and the levelling
instrument.^

telescope axis, in order to achieve a sharp image of both the object and
the crosshairs. See figure 4.8.

Focusing is done as follows, usually by turning actuator rings or screws
on the telescope:

1. The eyepiece is turned so that the image of the crosshairs becomes
sharp.

2. The focusing element of the instrument is turned so that the image
of the target also appears sharp.

In this case, the image of the target formed by the objective, the focal
plane of the eyepiece,2 and the plane of the crosshairs all coincide.2

In levelling, commonly equal distances to the front and back staffs are
chosen. If this is not possible because of the terrain, one should focus
carefully at every instrument station before every reading. If not, one
may get parallax: the apparent direction of the telescope’s optical axis
will depend on the position of the observer’s eye in relation to the eyepiece.
Observing through a poorly focused telescope also causes eye fatigue.

2This only applies if the target is at infinity and the eye of the observer is error-free.
More precisely, the eyepiece + the possible eyeglasses of the observer + the living optics
in their own eye project a sharp image of crosshairs and target image onto the retina.
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FIGURE 4.9. Parallax of a measuring telescope. If the image and crosshairs are
not in the same plane, moving the eye with respect to the eyepiece
will cause them to move with respect to each other.^

One must always focus carefully!

Eyeglasses can be taken off if they are ordinary glasses and not cylindrical
(astigmatism) or prismatic3 (heterophoria), because near- or farsighted- 3

ness can be corrected by focusing the eyepiece.

^ 4.6 The tubular level

The construction of a tubular spirit level is explained in figure 4.10.
The adjustment screw seen in the picture is only used for adjusting the
instrument, rarely in the field. Its purpose is to get the level axis or
horizon L and the sight axis S of the telescope (figure 4.8) precisely
parallel. The level axis is horizontal when the bubble is in the middle, a
precondition for measurement.

The task of the tubular level is to help the observer bring the sight
axis of the levelling instrument into the horizontal plane, perpendicular
to local gravity. With it, the instrument is levelled in the measuring
direction in connection with every reading.

3Prismatic glasses are relevant only when using binoculars.
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Adjustment screwHorizon L

Not levelled Levelled

α

a

FIGURE 4.10. Tubular spirit level. Above, the construction, left below, the
bubble seen through the prism system in a coincidence level. The
angle α is the sensitivity.^

The distance a is the interval between the level’s graduations. Gen-
erally a ∼ 2mm. The sensitivity of the level is expressed by the angleosa-arvo

α.

In a coincidence level, a system of reflective prisms is used to show the
opposite heads of the bubble side by side, improving the precision of the
levelling achieved.

^ 4.7 Checking and adjusting a levelling instrument

^ 4.7.1 Field check

At certain time intervals one must verify that the sight axis S of the
levelling instrument is parallel with the axis, or horizon, L of the level.
Due to the influence of the environment, every instrument “lives” and
changes, for example, with variations in temperature and air pressure,
and due to handling and wear.

A check is carried out using levelling observations (field check): the
measuring distance ℓ is chosen as 25–50m, depending on weather condi-
tions: the measurements are best done during overcast weather.

The checking method is based on the circumstance that, when mea-
sured from A, the measurement result, that is the height difference, is
correct, whereas when measured from B, the measurement result con-
tains an error 2ν, in which ν is the error caused by the difference in
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FIGURE 4.11. The geometry of a field check (Kukkamäki method).^

direction between the sight axis and level horizon, at staff distance ℓ. We
readily obtain

∆hA = (b1 −ν)− ( f1 −ν)= b1 − f1,

∆hB = (b2 −3ν)− ( f2 −ν)= b2 − f2 −2ν.

These height differences are identical. From this condition we solve for ν:

b1 − f1 = b2 − f2 −2ν =⇒ ν= 1
2

(︁
(b2 − f2)− (b1 − f1)

)︁
.

The figure shows that

f ′2 = f2 −ν, b′
2 = b2 −3ν.

These are readings that can now be calculated. This enables the correc-
tion of the difference in direction between the sight axis and level horizon
in the field, using the adjustment screw meant for just that.

^ 4.7.2 Adjusting a levelling instrument

When, as a result of the field check, it is known that the staff reading is
off by an amount ν, one proceeds as follows to adjust the instrument:

◦ The instrument has an adjustment screw for the tubular level,
which tilts the level with respect to the telescope (figure 4.12a). The
assembly of telescope and tubular-level is attached to the base by a
lifting screw.

1. Level the instrument first approximately using the footscrews,
then precisely using the lifting screw, all the time keeping an
eye on the tubular level.

2. Take the staff reading f .
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FIGURE 4.12. Adjusting the horizon of a levelling instrument.^

3. Move, using the lifting screw, to the staff reading f ′ = f −ν,
where ν comes from the field check.

Note! Do not use the footscrews for this, because then the
instrument may also tilt in the transversal direction —
the footscrews are not in line with the sight axis of the
measuring telescope. Their only role is the approximate
levelling of the instrument using the bull’s-eye level.
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4. Now the bubble in the tubular level is no longer in the middle.

Use the adjustment screw for the level to get the bubble in the
middle again. After that, L ∥ S.

◦ The instrument has an adjustment screw for the measuring tele-
scope: the telescope tilts with respect to the level (figure 4.12b). The
assembly of telescope and tubular level is again attached to the
base with a lifting screw.

An equivalent, popular technical solution is an adjustment screw
that shifts the crosshairs plate in the vertical direction within the
image plane (figure 4.12c).

1. Level the instrument.

2. Take a staff reading f .

3. Move, using the telescope’s (or crosshairs glass plate’s) adjust-
ment screw, to the new staff reading f ′ = f −ν.

4. The tubular-level bubble is still in the middle!

^ 4.8 Self-levelling instrument

Self-levelling or automatic levelling instruments use gravity to obtain a
horizontal sight direction.

Early models used gravity to level the whole measuring telescope
according to the pendulum principle (figure 4.13). It is clear that such an
instrument is difficult to use under field conditions due to disturbances
caused by wind and observer proximity.

In today’s instruments, only a prism or mirror guiding the light is used
as a pendulum. It is suspended inside the telescope: a pendulum com-
pensator is built into the telescope. In order to function, the instrument
must already be approximately levelled, for example with the aid of a
bull’s-eye level.

The principle of the self-levelling levelling instrument is shown in
figure 4.14.

The principle of operation of the pendulum compensator is explained
conceptually in figure 4.15, in which the path of the light beam has
been folded open. The figure shows the situation in a co-ordinate frame
attached to the measuring telescope.

A small tilt of the telescope away from the horizontal causes a tilt of the
incoming light beam of α. In order for the image to remain in the same
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g
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FIGURE 4.13. Principle of operation of an early self-levelling levelling instru-
ment. An instrument built in this way is not very practical.^

place in the image plane of the telescope, the compensator bends the light
beam by an amount 2α, assuming that the distance between the objective
and compensator s is equal to that between the compensator and image
plane, in other words, the compensator is precisely in the middle between
them. A freely suspended mirror turns, relative to the telescope, by an
amount α, and the direction of the reflected beam changes by an amount
2α, just as intended. See Kahmen and Faig (1988) pages 334–336.

The strength of compensator instruments is their ease of use. However,
in the early days there were technical issues, such as magnetism of the
mirror suspension (Kukkamäki and Lehmuskoski, 1984). These problems
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FIGURE 4.14. A modern self-levelling levelling instrument.^
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FIGURE 4.15. Principle of operation of the pendulum compensator.^

appear to have been solved.

^ 4.9 Digital levelling instrument

Nowadays digital levelling instruments are generally used, as the au-
tomation of measurement that they bring with them saves costs. The
measurements are stored directly into the instrument’s memory, and the
necessary checks are done immediately.

The staff used together with a digital levelling instrument bears a
bar-code that, at least in principle, is no different than that found on viivakoodi

merchandise. Thanks to it, height values can be machine read using the
instrument’s CCD sensor and processor system. As a side result, a crude
staff distance is also obtained, as well as a warning signal if the fore and
back distances are too different.

Unlike a traditional levelling staff, on which the measurement always
uses the edges of no more than two graduation lines, with a digital or
bar-code staff always a whole area is used, of size 30cm in the case of
the Zeiss (Trimble) DiNi12 instrument. This has both advantages and
disadvantages.

Advantage In the measurements, some sort of average over the edges
of many staff graduations is used. Therefore, the accuracy of
manufacture of the graduations and the accuracy of calibration of
the staff are less critical. The staffs last longer in a useable state.

Disadvantages

◦ The whole interval on the staff that is being used should be
visible. In forested areas, this may cause problems.

◦ The calibration must always be done as a system calibra-
tion: the instrument and staff are calibrated as a “black box”,
together. On the other hand, by combining the calibration
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FIGURE 4.16. With a traditional levelling staff, one may also read through
foliage. A bar-code staff causes confusion more easily.^

of staff graduations and system calibration, one may recon-
struct how the instrument weights the graduations it uses,
and thus get the black box ajar.

The digital method of levelling is in widespread use, even in precise
levelling, and has been the subject of active research (Takalo et al., 2001;
Takalo and Rouhiainen, 2004).

^ 4.10 The levelling staff

The levelling staff or levelling rod is a scale, in Finland a metric one, with
which the height differences between two points are measured using a
levelling instrument. There are many alternatives for the graduation ofjaotus

the scale, figure 4.17:

“E” graduation Simplest of all. Its weakness is that a bright white
small square appears a little larger than a dark red small square
— the Helmholtz4 brightness illusion. When one interpolates the4

millimetres visually, small systematic effects easily occur.

Chessboard graduation Here, the above mentioned weakness has
been corrected.

Line graduation Used in precise levelling. The line interval is 10 or
5mm.

4Hermann Ludwig Ferdinand von Helmholtz (1821–1894) was a German physician and
physicist and a student of vision.
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levelling
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Bar-code

gradu-
ation

(e)
Levelling micrometer

FIGURE 4.17. Graduation alternatives for the staff scale: “E” graduation, chess-
board graduation, precise-levelling staff, bar-code graduation. On
the right, an optical levelling micrometer to be placed in front of
the objective.^

Instruments for precise levelling have an optical levelling microm-
eter, with which a better accuracy is obtained than by visually
interpolating the graduations. The micrometer in front of the tele-
scope objective contains a turnable glass plate, with which one
places the horizontal crosshair on one of the graduation lines. The hiusviiva

reading from the line gives the crude value, the turning scale of
the micrometer plate completes it to a precise reading.

Bar-code graduation To be used with digital levelling instruments. viivakoodi-
jaotus

The staffs are often manufactured from wood, better ones from alu-
minium. In precise levelling, an “invar staff” is used, on which the
graduations are painted on an invar tape, which is mounted on a wooden
or aluminium-alloy frame, and kept under tension by a spring.5 For 5

precise-levelling staffs, a graduation of half a centimetre is used — the

5The force of the spring is known — 200N — and its effect on the length of the invar
tape is computable. The coefficient of thermal expansion of invar is close to zero, and
metal, unlike wood, is insensitive to moisture.

í  Õ ! ¤.� û



4110 HEIGHT MEASUREMENT AND THE LEVELLING INSTRUMENT

^ TABLE 4.2. Classification of levelling staffs.

Type of staff Length (m) Other

Simple 3–5 Foldable or telescoping, wood or aluminium, two
to four parts, “E” graduation

Base-network levelling staff.
In German Zweiskalenlatte

3 Stiff, wooden, chessboard or line graduation, dou-
ble scale or scale on both sides (reversal staff),
bull’s-eye level

Precise-levelling staff 3 Wooden or aluminium frame, invar tape on which
double scale

Bar-code staff 3 Aluminium, invar tape. Used with digital level-
ling instrument

Industrial staff Double-scale staff of extreme precision

Self-calculating staff See subsection 4.11.2

“staff unit” is 5mm. There are two graduation scales, slightly shifted
with respect to each other, as a double-check on reading mistakes and to
randomise reading errors. Sometimes the scales are on different sides of
the staff: a “reversion staff”.kääntölatta

Upmarket levelling staffs always sport a built-in bull’s-eye level. The
staff must be precisely vertical at the moment of reading!

Staffs are classified according to their purpose of use, see table 4.2,
which describes Central European practice.

A self-calculating staff or area-levelling staff has the following proper-
ties, see figure 4.21:

◦ The graduation increases from above going downwards.

◦ At the lower end is an adjustable foot, which may be pulled out on a
known point, so that the correct fraction of a metre becomes visible.
After that, one goes into the terrain to map any number of point
heights.

In high-precision work, the staffs need to be regularly calibrated, at least
before and after the field season. Digital levelling instruments and the
bar-code staffs they use should be calibrated as a system.

Suitable staff supports may be benchmarks, temporary wooden spikeskiintopiste

hammered into the ground, and the like. Standard staff supports are
depicted in figure 4.18. A levelling spike is used when the soil is soft,kiila
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Handle

Staff

(a)
Change plate

Blow protector

Mallet

(b)
Spike

Staff

(c)
Rail shoe

FIGURE 4.18. Various temporary levelling-staff supports: change plate (Ger-
man: Frosch — “frog” —), levelling spike, rail shoe.^

whereas a change plate is used on a hard substrate. A rail shoe is used kilpikonna

when levelling along railways. It may be left in place when a train speeds
past. During the first and second precise levellings of Finland, many
levelling lines ran along railways, but since, more and more, highways
have been used.

^ 4.11 Levelling methods

^ 4.11.1 Traverse levelling

Line or traverse levelling is used in base-network measurements. Its runkomittaus

objective is to bring the official height system close to all users in the
nation, to be used for example as the reference level for detail surveys. kartoitus-

mittausThe precise-levelling network is the national height base network. It is
korkeusrunko

realised hierarchically by successive network densifications, section 8.3.

The heights are computed for the user community in the national height
system. The heights for the third and last Finnish precise levelling were
still computed in the N60 system; today the national height system is
N2000. All levelling network computations are however first carried out
with geopotential numbers, from which then either orthometric (N60) or
normal (N2000) heights are calculated.

Traverse levelling is done by summing the measurements between
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b1 f1

b2 f2
fnbn

FIGURE 4.19. Traverse levelling.^

successive instrument stations (figure 4.19) into a height difference:66

∆H = (b1 − f1)+ (b2 − f2)+·· ·+ (bn − fn)=
n∑︂

i=1

(bi − f i) .

◦ The line runs from known point to known point. Sometimes this
is impossible, and we speak of a “spike”. In this case we measurepiikki

carefully in both directions: check.

◦ A well-planned levelling network incorporates all measurements
and points into closed loops: check.

◦ In order to minimise the impact of weather- and instrument-related
errors, one makes the fore and back staff distances as equal as
possible: ℓback ≈ ℓfore. The staff distances also may not be too
long, for example in precise levelling, 50m, however depending on
weather conditions. In overcast weather one can use longer staff
distances; in sunny weather with strong shimmer, staff distances
have to be shortened (Kääriäinen, 1966).

◦ If a levelling line runs along a railway or highway, safety arrange-
ments must be in order.

^ 4.11.2 Area levelling

Area levelling is explained in figure 4.20. With this method, the heightpintavaaitus

situation of a whole area is mapped using one known starting point.
Among the points to be measured, there must be at least one other known
point: check.

6The formula is exact only within a small area where gravity is constant. See section
4.1.
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f

f

fb

f

b

Benchmark

f

f

f
f f

f f

Instrument

FIGURE 4.20. Area levelling. One backwards (b) observation, many forwards
( f ) observations.^

Area levelling is an ideal opportunity to use a self-calculating levelling
staff, see figure 4.21. At the starting point, the leg of the staff is pulled
out until in the levelling instrument one sees the correct decimal fraction
of a metre: if the height of the point is known to be 12.75m, the leg is
pulled out until the observer sees in the telescope the number ⟨n⟩ .750,
with ⟨n⟩the number of whole metres. The leg is screwed tight, and the
staff is transferred to the first observation point. The observer must keep
track of the whole metres; the fractions show directly in the telescope.

The results of area levelling are needed and used for

◦ mapping the height situation on a building site before starting to
construct the foundation

◦ creating digital terrain models locally and at high resolution

◦ calculating earthwork volumes to be moved. maamassa

.88

New point, fore ( f )

12.88

12.75

.75

Known, back (b)

FIGURE 4.21. Self-calculating levelling staff. How the leg of the staff is set to
the right length.^
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For the area levelling to be useful, the approximate horizontal locations
of the measured points must have been established by some other means.

Proper checks are important: in addition to the starting point, other
points with known heights should be included in the measurement. An
erroneous starting height would propagate in full to the whole area,
which would be, in sewer construction for example, a fatal and expensive
mistake.

^ 4.11.3 Technical levelling

Installation measurement in industry and construction belongs to the
field of engineering geodesy.

◦ Extreme case: the CERN Large Hadron Collider (LHC) in
Geneva, circumference 27km, precision on the level of mil-
limetres (Schrock, 2014).

◦ Paper machines, shipyards.

◦ Road construction, bridges, tunnels, railways.

Deformation measurement and monitoring For this purpose, lev-
elling is only one of many methods: deformations are usually
three-dimensional. See section 18.1.

◦ Extreme case: post-glacial land uplift.

◦ Deformations caused by the pumping of natural gas,
petroleum, or drinking or irrigation water, anthropogenic
land subsidence. Venice.maan

vajoaminen ◦ Deformations of dams, reservoirs, bridges, high steel.
vesiallas

◦ Old buildings and archeological artefacts, the tower of Pisa
and the good ship Vasa (Vasamuseet, Deformation Monitor-
ing).

^ 4.11.4 Levelling of profiles and cross-sections

Profiles and cross-sections are measured in connection with construction
projects, especially of roads, railways and canals.

A profile is a longitudinal section of the Earth’s surface, usually along a
planned trajectory of a road, railway or waterway.77

The work starts with setting out the trajectory into the terrain.maastoon
merkintä

7In this case, a parallel line is used.

í  Õ ! ¤.� û



Levelling methods 4.11 115

g

Laser,
freely
suspended

45◦

Pentagon
prism

Light plane

Motor

FIGURE 4.22. Principle of operation of a laser level.^

Cross-section

Line, e.g., a road trajectory

Benchmark

Cross-section

FIGURE 4.23. A profile and cross-sections.^
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Markers are placed at 25, 50 or 100 metre intervals, as well as at
sharp terrain features. The markers are numbered: the number
signs are placed outside the work area. The heights are measured
with a builder’s level.

At least two tie measurements to benchmarks of the height base
network in the area are made, at the start and end points of the
profile. If the use of two benchmarks is not possible, the loop must
be closed as a double-check by measuring back and forth. Closing
errors are corrected in proportion to the levelled distances.

A cross-section is a transversal section of the Earth’s surface, perpen-poikkileikkaus

dicular to the trajectory of the profile. At corners, the angle is split
equally. Cross-sections are typically 20–50m long. The purpose
of cross-sections is to support the planning work and enable the
calculation of earthwork masses to be moved. The height measure-
ment of the cross-sections is carried out in the same manner as
area levelling. The point density is chosen in accordance with the
terrain and the intended use.

^ 4.11.5 The laser level

Often used in area levelling are laser levels, figure 4.22. Laser levels arelasertaso

instruments stabilised by a pendulum compensator, which projects laser
light though a rotating pentagon prism8 into the environment, in order to8

form a horizontal plane.

These instruments are handy on building sites, where they realise a
horizontal plane, which the user can make visible with a stick. Spreading
sand, laying floors, or bricklaying a wall along a straight line become
easier. A staff equipped with a suitable sliding receiving device will
directly give the height of the point on which it stands.

A laser level can also usually be quickly reconfigured to produce a
vertical plane of laser light. This is also useful on building sites.

^ Self-test questions

1. What is the reference surface for orthometric heights?

8Inside the prism are two reflective surfaces with an angle between them of 45◦. The
angle between the incoming and outgoing rays is thus always 90◦ or 100g.
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FIGURE 4.24. Metsähovi research station from the air. Google Maps™. Google
terms of use. Images © 2019 Google, © 2019 Maxar Technologies.
Map data © 2019 Google.^

2. What is the relationship between the geoid surface and deviations
of the plumb line?

3. How is the sight axis of a levelling instrument (or a theodolite)
defined?

4. How does one focus a measuring telescope?

5. What is parallax, and how does one avoid it?

6. What are the graduation alternatives for levelling staffs?

7. Name three standard levelling-staff supports.

8. In levelling, what is the role of the rodman, the person holding the
staff?

9. Describe the Kukkamäki method of field testing a levelling instru-
ment. What is the purpose of the test?

10. Describe how an automatic or self-levelling levelling instrument
works. Make a drawing!

11. Describe how a laser level works.

í  Õ ! ¤.� û

https://about.google/brand-resource-center/products-and-services/geo-guidelines/
https://about.google/brand-resource-center/products-and-services/geo-guidelines/


4118 HEIGHT MEASUREMENT AND THE LEVELLING INSTRUMENT

^ Exercise 4–1: Heights

Earlier we gave the geographical or geodetic co-ordinates (on the GRS80
reference ellipsoid) of the GPS antenna at Metsähovi research station,
equation 2.5:

ϕ= 60◦13′2′′.89046, λ= 24◦23′43′′.13336, h = 94.568m. (2.5)

1. Use the geoid model given on the UNAVCO web page (UNAVCO,
EGM96 geoid calculator), which is good to ±25cm on the Finnish
territory, to determine the geoid height N at Metsähovi. Alterna-
tively use Karney, which also gives the newer EGM2008 model.

2. Compute the height H above “sea level”, as represented by the
EGM96 model. The relationship you need is given in figure 4.3.

3. From the air, Metsähovi research station looks like figure 4.24. The
METS GNSS antenna is mounted on the tall steel grid mast to the
right.

The height, in the N2000 system, that is, above sea level, of the
fundamental benchmark PP2000, figure 3.16, is 54.4233m. Assumepääkiintopiste

that this is also the approximate height of the terrain at the foot of
the steel grid GNSS mast, ±1m.

Question: how tall is this steel grid mast?

4. Go to Google Maps and measure the latitude and longitude of the
foot of the mast. Compare with the above values for latitude and
longitude. How large are the differences? Discuss.
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^ The theodolite

55
Our money’s all spent, to the deuce it went!

The landlord, he looks glum,
On the tap-room wall, in a very bad scrawl,

He has chalked to us a sum.
But a glass we’ll take, ere the grey dawn break,

And then saddle up and away —
Theodolite-tum, theodolite-ti, theodolite-too-ral-ay.

From the folk song “The Old Survey”, around 1905 (The
Institute of Australian Culture, 2012)

THE THEODOLITE WAS probably invented by Leonard Digges. The in-
vention was published by his son Thomas in his land-surveying textbook
Pantometria in 1571. The origin of the name is unclear. The first theodo-
lites did not yet have a telescope, which was possibly not invented — or
at least attempted to be patented — until 1608 by Hans Lippershey in
the Netherlands.

The theodolite is an angle measurement instrument which measures
horizontal and vertical angles relative to the local horizon (horizontal
plane) and plumb line (direction of gravity). Modern instruments called luotiviiva

electronic tacheometers or total stations also measure distances. Here,
we shall call all of these “theodolites”.

^ 5.1 Horizontal angles and zenith angles

Theodolite measurements are always made inside the Earth’s gravity
field. The vertical axis of the theodolite is levelled to be in the direction
of the local plumb line. Directions and direction differences may be
expressed, in these natural instrument co-ordinates, as horizontal and koje-

koordinaatit
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Alidade level

Micro-
scope

Index
level

Non-
standard
level

Tele-
scope

Micro-
scope

Horizontal circle

Vertical circle

FIGURE 5.1. An old-fashioned theodolite. Note the external horizontal and
vertical circles and reading microscopes. Base image Wikimedia
Commons, Exploration theodolite.^

vertical angles.

Let there be (figure 5.2) a difference in direction, as seen from the
instrument, between points A and B. The points are projected along the
plumb line onto the local horizontal plane of the instrument, yielding
points A′ and B′. The difference in direction between points A′ and B′,
the angle α, is the horizontal angle between points A and B. Both the
horizontal directions and horizontal angles are counted positive in the
clockwise direction.

The angles ζA and ζB are the vertical or zenith angles of points A and
B.

Horizontal angle The angle α formed by the projections OA′ and OB′

of the rays OA and OB in the horizontal plane.

Zenith angle The angle formed by the plumb line and the ray OA (ζA)
or OB (ζB). The zenith angle is always positive.

The plumb line or vertical, the direction of a freely suspended plumb wire,
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Horizontal plane

FIGURE 5.2. Horizontal angle and zenith angle.^

is the local direction of the Earth’s gravity vector. The plumb line points
at the centre of mass of the Earth, but only approximately.1 1

^ 5.2 The axes of a theodolite

A theodolite has three axes, figure 5.3:

◦ the vertical axis or standing axis, which must be directed along the
local plumb line or gravity vector

◦ the horizontal axis or trunnion axis, around which the telescope
turns

◦ the sight or collimation axis, the axis of the telescope tube passing tähtäysakseli

though the crosshairs of the eyepiece. hiusviiva-
ristikko
okulaari

A theodolite has two circles, the horizontal and vertical circle, figure 5.3.

vaaka- ja
pystykehä

Theoretical objective for a well-adjusted theodolite:

◦ Hz, V and S intersect at the same point.

◦ V ⊥ Hz. If not, the error is called trunnion-axis tilt. tappikaltevuus

◦ S ⊥ Hz (but not S ⊥V ! Why not?). The error is called collimation

1Approximately, mainly because the Earth is an ellipsoid of revolution and not a sphere.
The deviation of the plumb line from the direction to the Earth’s centre of mass due to
the flattening is at its largest as much as 11′ at latitudes ±45◦.
The plumb line is also ever so slightly curved. In addition, there are local, varying
deviations of the plumb line from the surface normal to the ellipsoid of revolution, of an
order of magnitude ranging from a few seconds of arc in even terrain to over a minute
of arc in the mountains.
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Vertical angle
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FIGURE 5.3. The axes and circles of a theodolite.^

error.

◦ Hz and V pass though the centres of the vertical and horizontal
circles. If not, we speak of circle eccentricity.jakokehän

epäkeskisyys

^ 5.3 Construction of a theodolite

See figure 5.4.

^ 5.3.1 Measuring telescope

The measuring telescope of a theodolite is in principle the same as that
of a levelling instrument (figure 4.8): a complicated assembly of lenses,
prisms and mirrors. The telescope turns around the horizontal axis and
is joined in its movement by either the vertical circle itself, or by thepystykehä

index and reading microscope of the vertical circle, depending on the
instrument type.
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Vertical circle

Horizontal axis (Hz)

Reading optics (microscope)
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lockscrew
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microscope

Vertical-circle fine
motion screw
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screw
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VerticalVertical
axis (V )axis (V )

FIGURE 5.4. Theodolite construction.^

^ 5.3.2 Reading devices

The theodolite contains reading devices for the horizontal and vertical
circles:

◦ Most often, the images are led by prisms to a microscope eyepiece
beside the eyepiece of the measuring telescope, to facilitate the
work of the observer.
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◦ The scale microscope and the optical micrometer are means to
obtaining a greater reading accuracy, see Kahmen and Faig (1988)
pages 66–67.

◦ In a coincidence microscope, readings are taken from two opposite
places on the horizontal or vertical circle. In this case, an optical
micrometer is also always used (Kahmen and Faig, 1988, pages
72–76).

^ 5.3.3 Alidade

The alidade (Arabic al-idhâdah, ruler) is the central part of the theodolite,
which turns around the vertical axis, carrying the telescope with it. It
contains a tubular level, the alidade level, to precisely level the theodolite,
see subsection 5.4.4.

^ 5.3.4 Base

The base of the theodolite is the fixed part to which the horizontal circlerunko

is attached, and on which the alidade rests in its bearing.

◦ The base contains a forced-centring or footscrew device called apakkokeskistys-
laite tribrach.

◦ The upper part of the base sits forcibly centred in this device: it
may be detached from and reattached to precisely the same place.

◦ The forced-centring device is attached to the tripod head using
a large screw.2 In the middle of the tripod head there is a large2

round hole and a mechanism to allow enough horizontal motion for
centring.keskistys

◦ The footscrews are for levelling the theodolite: the vertical axis oftasaus

the theodolite is oriented along the local plumb line.

◦ A bull’s-eye level is used for crude levelling, while the alidade levelrasiatasain

helps in precise levelling.

◦ The attachment for a string plummet, and an optical or laser plum-riippuluoti

met, are for centring.

^ 5.4 Theodolite handling in the field

As an expensive fine mechanical and optical instrument, a theodolite
should always be treated with due respect:

2The screw conforms to the geodetic standard of 5
8 inch, 11 threads per inch.
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FIGURE 5.5. Forced-centring device or plate.^

◦ Transport, especially over longer distances, is always done in the
carrying case.

◦ The parasol is for the instrument, not the observer. It also offers
some protection against rain.

◦ The instrument is never aimed directly at the Sun: the glass plate
with the engraved crosshairs would crack, after which the instru-
ment would need to be repaired and re-calibrated. Further damage
occurs if the instrument contains a range-finder. etäisyysmittari

◦ Careful book-keeping is important: write up anything that might
be relevant, like weather conditions (metadata).

^ 5.4.1 Monuments and point descriptions

Unlike a levelling instrument, a theodolite must be placed precisely over
the point to be measured, so that the theodolite measurement refers to
the point.

In figure 5.7 the point Q has been monumented in the terrain, a mea-
surement point with a central mark. Figure 5.6 shows some examples of
monument types in use. maastomerkki

The choice of monument type must be made such that

◦ The point is clearly and uniquely defined. If one intends to do both
precise horizontal positioning and heighting, it is best to use a steel
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FIGURE 5.6. Various monument types.^

bolt with a round head with a small hole in the middle.

◦ The monument withstands the impacts of the weather and environ-
ment — frost heaving! A bedrock point is the best. Iron monumentsrouta

peruskallio should be protection painted (rust-protection paint; “red lead” is no
lyijymönjä longer recommended for toxicity reasons).

◦ The monument can be easily found — point description!

◦ The point number is marked on the monument or painted (and
chiselled!) next to it.

When a point is monumented for future use, a point description mustpistekortti

always be drafted, which helps to find the monument even after decades.
The point description may contain the following information:

◦ The distances of the point from at least three features in the nearby
landscape which are believed to be permanent — trees, building
corners, etc. — measured by tape. In the point description, a sketch
is included of the relative positions of the point and the reference
features.

◦ An approach map including kilometre counts for car drivers, road
signs, description of the landscape, and other useful details.

◦ Precise co-ordinates for hand-held GNSS.

◦ Well-chosen photographs.

^ 5.4.2 Centring and levelling

In order to ensure that angles measured from the point are correct, two
actions need to be performed: centring and levelling.

Centring In figure 5.7, points Q and O, the monument and the inter-keskistys

section point of the theodolite’s axes, must be on the same plumb
line.

Levelling The vertical axis V of the theodolite must be aligned withtasaus

the plumb line. Then, when the theodolite is turned around the

í  Õ ! ¤.� û



Theodolite handling in the field 5.4 127

Horizontal axis Hz
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Vertical axis V

Sight axis S

Plumb
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Hz⊥VHz⊥V
S ⊥ Hz

O

Q

FIGURE 5.7. Theodolite axes. Q is a point monumented in the terrain.^

vertical axis, the horizontal axis Hz will maintain a constant angle
with the plumb line: ideally, without trunnion-axis tilt, 100g. The
horizontal axis will thus always be in the horizontal plane.

Centring and levelling are commonly done alternatingly, until the desired tasaus ja
keskistysend result is achieved.

^ 5.4.3 Crude centring

◦ The tripod is placed on the right spot, judging by eye and by chang-
ing the lengths of the legs.

◦ It is also judged by eye that the tripod head is horizontal.

^ 5.4.4 Precise levelling

The precise levelling of the theodolite using the alidade level is done in
the following steps, see figure 5.8:

1. Crude levelling is done with the bull’s-eye level.

2. Level first in the direction of footscrews 1–2, by turning the screws
simultaneously in opposite directions. Take into account, if neces-
sary, the zero error from step 4.

3. Turn the alidade 100g, and also level in this direction using
footscrew 3.

4. Turn the alidade 200g. If the alidade level is adjusted correctly, the
bubble must again be in the middle. If not, move the bubble back
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FIGURE 5.8. Precise levelling of a theodolite using the alidade level.^

half of the difference, that is to the equilibrium position, using the
footscrews. The zero error of the level is half the shift of the bubble
between steps 3 and 4.

5. Repeat 2–4 until the levelling no longer changes.

Make sure that the bubble can move freely and its end does not attach to
the edge of the level.

If the difference found in step 4 is large, then the alidade level is in
need of adjustment.

^ 5.4.5 Precise centring

The method of centring will depend on the type of plummet used. The
most common is the optical plummet.

No plummet is exact. Moreover, measuring the height of the instrument
over the monumented point is subject to error. Because of this, in special
measurements, when the precision requirement is sub-millimetre, one
uses instrument pillars permanently anchored in the bedrock or on a
deep support (frost heaving!) instead of tripods.

String plummetriippuluoti

◦ Traditional.

◦ Attached in such a way, that levelling does not change the
centring.

◦ Centring: shift the forced-centring device of the theodolite
over the surface of the tripod head in such a way that the tip
of the plummet points at the monumented point. Tighten the
attachment screw of the theodolite. The central hole in the
tripod head gives room to play.

◦ Levelling with the theodolite’s footscrews.
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String

Plummet

g
Gravity

Tip

g
Gravity

200 gon

Rod

FIGURE 5.9. String plummet and rod plummet.^

Problem: sensitive to the wind.

Rod plummet sauvaluoti

◦ A telescoping tube, the upper end of which is attached to the
forced-centring device (through the central hole in the tripod
head), with the lower end placed precisely on the central
mark.

◦ The rod has a bull’s-eye level.

◦ Centring:

1. Move the forced-centring device so that the bull’s-eye
level on the rod is in the middle.

2. Turn the level 200g to the opposite side of the rod: if
the bubble remains in the middle, centring has been
achieved.

3. If not, move the forced-centring device so that the bub-
ble moves half way back to the middle, that is to the
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equilibrium position.

The rod plummet comes as part of certain types of tripods (Kern),
which are often used in accurate engineering surveying measure-
ments.

Optical plummetoptinen luoti

◦ In the forced-centring device’s side (or in the side of the
theodolite) there is a small telescope with a prism, which
looks straight down. In the focal plane of the telescope’s eye-
piece there are crosshairs or something similar, called an
index. Katso kuva 5.10.

◦ The forced-centring device must have been levelled using the
bull’s-eye level.

◦ Centring and levelling procedure using an optical plummet
(figure 5.12):

1. Using the footscrews of the forced-centring device, place
the index initially on the point marker — meaning that
levelling is lost!

2. By changing the lengths of two of the tripod’s legs, get
the bubble of the bull’s-eye level in the middle again.
The forced-centring device describes a circular movement
around the tip of the third leg, and the place of the index
on the image of the point changes only little.

3. By a parallel shift — loosen the big screw of the forced-
centring device just a little — get the index of the optical
plummet back on the point marker.

Note! Shift, do not turn, because then the levelling will
change!

◦ Because in practice both the levelling 3 and the place of the
index 2 will nevertheless always change a little, repeat proce-
dure 1–3 until the desired end result is achieved. Fortunately
the procedure converges rapidly.

^ 5.4.6 Problem situations

Normally, the centring and levelling procedure as described above will
quickly produce a satisfactory result. In real-life field work, however,
pathological situations are guaranteed to arise, as in figure 5.13. We
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Monumented point

Shift
(no turn!)

Level

FIGURE 5.10. Optical plummet.^

leave these as an exercise for the reader.

^ 5.4.7 Forced centring

In precise measurements, a forced-centring device or tribrach is used:
instrument and signal fit into the same device, figure 5.14. In this way tähys

FIGURE 5.11. A benchmark (tube monument) seen though an optical plummet.
After focusing, both the target and the crosshairs are sharp.^
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FIGURE 5.12. An optical plummet and a bull’s-eye level are used at the same
time to achieve centring and levelling.^

FIGURE 5.13. Problem situation.^
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Signal

Attachment screw
(do not open!)

X

Forced-
centring

device

Optical plummet

Instrument

GNSS antenna

“Tribrach”

Lock screw

FIGURE 5.14. Principle of forced centring. The instrument and the signal fit
into the same device.^

one eliminates many of the errors arising from the centring of a tripod.

In really precise measurements, like in engineering geodetic measure-
ments, we use a separate optical plummet. Over short distances, centring
may be the largest error source.

In the measurement, care is taken that every side is measured in both
directions: in a network of three points, the procedure may be according
to figure 5.15. From every instrument station, measure to all (nearby)
points to be equipped with signals.

Forced centring is also useful in situations where we measure on the pakkokeskistys

same point with both the satellite technique (GNSS) and a terrestrial
instrument. The antenna is then attached, through an adapter, to the
forced-centring device, figure 5.14.
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FIGURE 5.15. Measuring a network using forced centring.^

^ 5.4.8 Checking an optical plummet

The most common plummet is the optical plummet — although the laser
plummet is gaining ground. A laser plummet works practically in the
same way as an optical plummet, only the light travels in the opposite
direction (Crawford, 2009).

The weak spot of the optical plummet is that it must be adjusted so
that it looks really straight down when the bubble of the level is in the
middle — the same problem as with a levelling instrument’s sight axis
and tube-level horizon having to be parallel, figure 4.12. This property,
achieved by adjustment, can easily be lost in the handling of the device.
For this reason it must be checked at regular intervals.

One procedure for checking is described in Kahmen and Faig (1988),
on pages 95–96:

1. Mount the forced-centring device — or the whole theodolite, if the
optical plummet is built-in — onto a tripod, level it, and mark the
point on the floor seen in the plummet’s eyepiece on paper taped to
the floor.

2. Mark the outline of the forced-centring plate with pencil or chalk
on the tripod head.

3. Loosen the forced-centring device from the tripod, rotate it 120◦,
and place it carefully back into the drawn outline. Level, and mark
on the floor again the point under the crosshairs of the plummet’s
eyepiece.

4. Repeat 3.

5. If the points drawn in steps 1, 3 and 4 on the floor are identical,
then the plummet is in good adjustment. If not, shift the crosshairs
of the eyepiece, using its adjustment screws, to the centre of mass

í  Õ ! ¤.� û



Theodolite handling in the field 5.4 135

1

4

2 3

FIGURE 5.16. Checking an optical plummet. The plummet should be adjusted
so that it always points to the centre of mass of the three points,
the black cross.^

of the three points on the floor.

A non-adjusted optical plummet makes the observational material col-
lected with it worthless. A regular check of the state of adjustment, for
example before and after field work, is just as important as measuring
the theodolite instrument height over the point.

^ 5.4.9 Sighting and targeting

◦ As with a levelling instrument, always do the focusing carefully.

◦ At the beginning of the observation work, focus the crosshairs by
adjusting the eyepiece. If you wear ordinary eyeglasses, leave these
off, as explained in section 4.5.
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FIGURE 5.17. Good signals for horizontal angles.^

◦ For every target, focus carefully on the signal using the focusing
screw.

◦ During precise measurements using the method of complete sets,sarjahavainto-
menetelmä one is not allowed to re-focus during measurement, as then the

collimation will change a little. This presupposes that all targets
are sufficiently far away.

Problem situations:

◦ The signal is thin, for example very far away, and partly covered by
the crosshair line. This is not a problem if the crosshairs look like
figure 5.18a.

◦ One side of the signal is in shadow as sunlight comes from the side.
The asymmetry causes an error called the phase error. See figure
5.18b.

Black-and-white signals are always best.

^ 5.5 Taking readings

In demanding theodolite measurements it is good practice to measure
always in both faces,3 face left and face right. The instrument has two3

face positions because it has two axes: turning it around both axes by
an amount of 200g will make the measurement telescope point at the
same object again. This redundancy4 allows the elimination of a number4

of systematic errors. The first position, “face left”, meaning the verticalkojeasento I

3The inventor of the theodolite with two faces, or “transit”, was presumably William J.
Young of Philadelphia, USA, in 1831.

4See for theoretical background Wikipedia, 3D rotation group, Topology.
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(a)
Better crosshairs

Shadow

X

Sunlight

(b)
Phase error

FIGURE 5.18. Targeting. On the left, better crosshairs. Here, both a single and
a double line are available for use. On the right, the effect of
asymmetric lightfall (“phase error”).^

circle to the left of the telescope as seen by the observer, yields vertical
angles near 100g if the sighting direction is close to the horizontal. The
second position, “face right”, yields values close to 300g. kojeasento II

The traditional method of complete sets, which further reduces a num-
ber of instrument errors, is no longer used:

◦ The measurement of first-order or national base networks has fully runkoverkko

transitioned to using satellite positioning.

◦ Digital angle measurement techniques automatically carry out
a procedure equivalent to the method of complete sets, without
observer intervention.

^ 5.5.1 Graduation circles and the classification of theodolites

The graduation circles of a theodolite are generally made of glass. The jakokehä

diameter is 60–100mm, for the most precise instruments 250mm. The
interval for the main scale is 1, 0.5, 0.2, or 0.1 gon, depending on the
precision class of the instrument. The traditional method draws a dense
line pattern using a “graduation machine” into a layer of wax covering jaotuskone

the glass, the lines are etched into the glass using acid, and filled with
dye. This was for a long time a carefully protected Swiss business secret
(Penry and Ingram, 2013).

Theodolites are classified, traditionally and somewhat unofficially,
into “one-minute theodolites”, “one-second theodolites”, and precision
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Estimate

109.33

109108 110

(a)
Line microscope

Estimate

106 107

503020100 40

106◦17′.2

(b)
Scale microscope

FIGURE 5.19. Various types of reading microscopes.^

theodolites. The boundaries separating these classes are not well defined.
One source (Simonen, 2012) gives > 1mgon for one-minute theodolites,
0.5−1.0mgon for one-second theodolites, and < 0.5mgon for precision
theodolites. See also Anon. (1971).

^ 5.5.2 Reading devices and fine-reading methods

The reading device magnifies the image of the scale on the graduation
circle though a microscope. With it, a fine reading is interpolated between
the numbers on the main scale.

Reading microscopes are divided into two types (figure 5.19):

◦ Line microscope:

– Magnification of the main scale and an index line.

– The fine readings are estimated visually, precision is about
one tenth of a graduation interval.jakoväli

◦ Scale microscope:

– An additional scale, the length of which is the same as the
graduation interval of the main scale: generally, main inter-
val is 1gon, the interval of the additional scale 0.01gon, 100
graduation lines.jakoviiva
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Index line

Graduation

Image plane

∆

Plan
plate

α
D

Estimated digit

111

10 605020 30 40

109 110110

110.367

FIGURE 5.20. Optical micrometer and its reading.^

– The graduation line of the main scale is used as the index of
the additional scale.

The line microscope may be equipped with an optical micrometer in order
to achieve a better reading precision, figure 5.20.

When the glass plate is turned by angle α (assumed small), the light
ray shifts in a parallel fashion by an amount5 5

∆= D sinαcosα
(︂

1− 1
n

)︂
≈αD

(︂
1− 1

n

)︂
,

in which n is the index of refraction of the glass. The mechanism for taitekerroin

turning the glass plate has a scale showing the value ∆ in the angular
units of the main scale.

The graduation lines of the main scale are double lines, so aligning
with them is easy.

5Because

PQ = D sinα,

PQ′ = D sinα′ = D
sinα

n

⎫⎬⎭ =⇒ Q′Q = D sinα
(︂

1− 1
n

)︂
,

α

α′

Q′
P

∆

D

Q
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Circle

Illumination
mirror

Eyepiece

Micrometer

FIGURE 5.21. Reading the graduation circle. One circle location.^

The nonius or vernier is no longer used in theodolites. In Heiskanen
(1943) it is told that the Portuguese Pedro Núñez (Petrus Nonius) in-
vented a precursor to the nonius as early as in 1542, and the Frenchman
Pierre Vernier today’s nonius in 1631. See also Kahmen and Faig (1988)
page 65.

^ 5.5.3 Reading the circle

◦ One circle location is read, figure 5.21.

◦ In precision theodolites, two opposite circle locations are simulta-
neously read. In this way the eccentricity error of the circle is
cancelled out. See figure 5.22. The crude reading is taken from the
circle, the fine reading from the micrometer: 244+0.4+0.0617 (in
which 7 is estimated) or 244.4617.

A single circle reading is used in one-minute theodolites, whereas the
method using two opposite readings, using a coincidence microscope, is
usually found in one-second and precision theodolites.

The same methods are used for reading the horizontal and the vertical
circles. Generally the diameter of the vertical circle is less than that of
the horizontal circle, so the reading precision is correspondingly less.

The reading device includes furthermore

it follows that
∆=Q′Q cosα= D sinαcosα

(︂
1− 1

n

)︂
.
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Linked
motion of
glass plates

Opposite-sides
circle readings

245

4445

0 10 20

244 245

50 70 8060

4445

244

0.0617 (7 estimated)

Before micrometer setting. . . . . . and after.

244.4

FIGURE 5.22. Reading the graduation circle. Two opposite circle locations.^

◦ A reading microscope, to which all the readings of the optics are
guided. In the field of view of the microscope, usually both hori-
zontal and vertical readings can be seen. One has to be careful to
choose the correct and wanted numbers. Often, the vertical reading
is marked with the letter V and the horizontal reading with H or
Hz.

◦ An illumination system:

– a mirror that can be turned to guide light to the reading optics

– a light source with a battery to be mounted in the place of the
mirror or in its own socket.
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Crosshairs

Hz

S

S′

Image
plane

V

Objective

X
Collimation error c = S−S′

200g

200g

FIGURE 5.23. Adjusting the sight axis by shifting the crosshairs.^

^ 5.6 Instrumental errors of a theodolite

The instrumental errors of a theodolite are divided into the following
groups:

◦ Axis errors:

– The axes are not perpendicular to each other: collimation error
and trunnion-axis tilt, subsections 5.6.1 and 5.6.2.

– The axes do not intersect at the same point.

◦ Eccentricity errors:

– eccentricity of the graduation circles

– eccentricity of the measuring telescope.

◦ graduation errors of the circles.jaotusvirhe

In modern theodolites the eccentricity and graduation errors are small.

The instrumental errors cannot in general be corrected, but they can
be determined, in calibration.

^ 5.6.1 Collimation error

The most consequential error is the collimation error, which is easy to
determine and correct. Collimation error means that the angle between
the sight axis S and the horizontal axis Hz is not a right angle: S ̸⊥ Hz.

The sight axis S is realised by the crosshairs in the measuring telescope
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(more precisely, S is the straight line going through the optical centre of
the objective and the crosshairs, figure 5.23). This is why by shifting the
crosshairs one adjusts to S ⊥ Hz.

◦ If there is no collimation error (c = 0), the readings of the same
target A in face left and face right are a1 and a2, where a1 = kojeasennot I

ja IIa2 ±200g.

◦ If there is collimation error (c ̸= 0) and the telescope is turned
through from face left to face right (200g around both the horizontal
and the vertical axis), then A will not show under the crosshairs
until the telescope is turned an amount 2c more.

Assume that object A is approximately in the horizontal plane. Take, in
face left, reading a1, and, in face right, reading a2.

The correct readings, without collimation error, would be A1 and A2,
and we would have exactly A1 = A2 ±200g.

In reality we obtain a1 = A1 + c and a2 = A2 − c. Their difference is

a1 −a2 = 2c±200g,

from which one obtains

c = 1
2 (a1 −a2 ±200g) . (5.1)

In this way one may determine c, usually a small number.

Because c is so small, only fractions of a gon are of interest, not the
integer number of gons. Therefore we use the following notation:

[︁
a
]︁

signifies the rounding residue of a, the difference between the
precise value and the value rounded to an integer. So

[︁
127.4531

]︁=
0.4531,

[︁
16.9850

]︁=−0.0150, and so on. The outcome of the opera-
tion is always between the values −0.5gon and +0.5gon.

Then
c = 1

2

[︁
a1 −a2

]︁
.

This can be calculated from the observation notebook, if the same objects
have been measured in both faces.

[c]= 1
2

[︁∑︁
a1 −

∑︁
a2
]︁

n =
∑︁[︁

a1 −a2
]︁

2n .

a1 reading taken in face left
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a2 corresponding reading in face right (correspondence means both
the same set and the same direction)

n number of readings (sets × directions).

Correcting collimation error Carry out, in face left, a turning of the
instrument so that the reading is the precomputed “true value”
A1 = a1 − c. Shift6 the crosshairs (focal plate) to be on top of the6

image of the target A. Verify, in face right, that the second “true
value” A2 = a2+c is obtained when the crosshairs are on the target.

A calculation example from an observation notebook (all values in gon):

Face 1 2 3 4
∑︁4

i=1

Left 40.5223 88.6932 119.7601 205.7571 454.7327
Right 240.5217 288.6924 319.7591 5.7564 854.7296

a1 −a2 −199.9994 −199.9992 −199.9990 200.0007 −399.9969[︁
a1 −a2

]︁
0.0006 0.0008 0.0010 0.0007 0.0031

The number of observations per face n = 4, so[︁
c
]︁= 3.1mgon

8 = 0.3875mgon= 3cc.875.

This is a good field check. In this example, there is hardly any collimation
error.

^ 5.6.2 Trunnion-axis tilt

The second axis error is the trunnion-axis tilt t. This error means thattappikaltevuus

the horizontal axis, or trunnion (Wikipedia, Trunnion) axis, Hz, is not
actually horizontal even after levelling the instrument: it and the vertical
axis V are not perpendicular, V ̸⊥ Hz.

The trunnion-axis tilt may be determined by using a target far away
from the horizontal (ζ ̸= 100g). Then it holds that

a1 = A1 + c+ tcosζ, a2 = A2 − (c+ tcosζ) ,

from which the combined term c+ tcosζ can be determined in the same
way as explained above for c. Separating the errors c and t requires
measurements at two different vertical angles ζ. If one of these is ζ =
100g (cosζ= 0), we get back the original formula 5.1 for calculating the
collimation error.

6This is a task for maintenance: the screws are small and hidden.
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V

Hz′
Hz

Trunnion-axis tilt

FIGURE 5.24. Trunnion-axis tilt.^

^ 5.6.3 Zenith-angle measurement and index error

Measuring a zenith angle with a theodolite requires that the index of pystykehän
indeksithe vertical circle — the place where the values for the zenith angle are

being read — is in the horizontal plane. For this purpose a theodolite has
its own fine-motion screw (figure 5.25) with which the frame on which
the index or indices of the vertical circle and the vertical-index level
(collimation level) are mounted together is moved. The frame can be
turned slightly around the horizontal axis. The measuring telescope and
the vertical circle are similarly connected to each other.

Before every zenith-angle measurement it must be ascertained, using
the fine-motion screw of the level and index, that the vertical-circle indices
are really in the horizontal plane. Of course one may not assume that
the vertical-index level has been adjusted so that the index really gives
exactly 100g and 300g precisely when the optical axis of the measuring
telescope is horizontal. This error is called the index error (i). It can
be eliminated by measuring in both faces, left and right. One moves
between faces by “plunging the instrument through”: turn the telescope
200g around the vertical axis, and 200g around the horizontal axis. The
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S

V

Vertical index level or
collimation level

Index

Index

Fine-motion screw for
level and index

AlidadeAlidade

300

0
100

FIGURE 5.25. Observing a zenith angle.^

measurement values obtained in both faces are added together:

ζ1 +ζ2 = 400g +2i,

from which the index error i follows.

Both observations ζ1 and ζ2 are corrected by an amount −i:

ζ′1 = ζ1 − i, ζ′2 = ζ2 − i.

After this, the condition
ζ′1 +ζ′2 = 400g

holds exactly.

See figure 5.26, which depicts (unlike figure 5.25) a theodolite of which
the vertical circle is read only in one place. In the figure, the sight axis is
in the horizontal plane, so ζ= 100g. The formulas given below, however,
apply generally.

In the left image, the angle ζ is measured and the reading ζ1 = ζ+ i
is obtained, in which i is the index error. In the right image, the same
angle ζ is measured, but in face right, and the reading obtained is ζ2 =
(400g −ζ)+ i. We obtain:

ζ1 +400g −ζ2 = ζ+ i+ζ− i = 2ζ.
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True zenith angle: ζ 100
Reading: ζ1 98
Index error: i = ζ1 −ζ −2

True zenith angle: ζ 100
Reading: ζ2 298
Index error: i = ζ2 +ζ−400 −2

“True value”:

ζ= ζ1 −ζ2 +400
2

100 “Inferred index error”:

i = ζ1 +ζ2 −400
2

−2

X

−i −i

200g

200g

V

0

200

300

10
0

−i −i

100

0

30
0

200

Hz

FIGURE 5.26. Index error.^

The angle ζ:
ζ= 1

2 (ζ1 −ζ2 +400g) .

The angle i:

ζ1 +ζ2 −400g = ζ+ i−ζ+ i =⇒ i = 1
2 (ζ1 +ζ2 −400g) .

The corrected reading is

ζ= ζ1 − i = 400g −ζ2 + i.

Removing the index error Assume the construction in figure 5.25.

1. Aim at a target of which the “true angle” ζ has been calcu-
lated.

2. Turn the index and collimation level together, using the fine-
motion screw, to reading ζ.

3. The bubble of the level will move, adjust the level with its
adjustment screw(s)7 until the bubble is in the middle again. 7

7The adjustment screws are small and may be somewhat hidden. Adjustment is a
maintenance job.
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Check

1. Observe the target in face left (ζ1) and immediately after, the
same target in face right (ζ2).

2. Calculate the sum ζ1 +ζ2. If the index error i = 0, ζ1 +ζ2 =
400g. This is also a good field check.

In figure 5.25 there is a manual vertical-circle index (height index). An
automatic height index is more common. The principle is similar to that
used in a self-levelling levelling instrument, and like it, the index must
already be approximately level:

◦ A pendulum compensator.

◦ A liquid compensator using silicone oil. The light to the reading
microscope is either refracted through the liquid or reflected from
its surface. See Kahmen and Faig (1988) pages 394, 395.

◦ In electronic theodolites, this compensation mechanism has been
implemented digitally using a digital tilt meter. So, the index is not
adjusted but rather, the reading is corrected computationally based
on the reading from the tilt meter.

In zenith-angle measurements, instrumental errors are largely the same
as for horizontal angles. Some are eliminated by measuring in both
faces. Measuring complete sets will certainly not diminish the impact of
vertical circle graduation errors, because the vertical circle, unlike the
horizontal circle, cannot be loosened and turned, see section 6.3. It does
allow however for a check on the correctness of the measurements.

The observations in face left and face right should be made as quickly
as possible in succession. For this reason, vertical angles should always
be observed separately, never together with horizontal angles.

^ 5.7 Electronic theodolites

In electronic theodolites all measurements are obtained in numerical
form, facilitating automatic storage, correctness check in connection
with the measurements, and forwarding. The monetary savings in the
measurement activity can be substantial, not just in measurement time
saved, but also in quality gain, when the error-prone reading and manual
writing down of observations is eliminated.

However, though electronic theodolites record the observations on their
own — typically raw data is not even recorded but already pre-processed
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

FIGURE 5.27. A four-bit Gray code.^

data — the information to go with the data (“metadata”) must still be
carefully recorded.

In electronic theodolites, the edges of the graduation circles have been
imprinted with different line patterns.

^ 5.7.1 Absolute encoding circles

The Gray code8 is often used, which consists of bit strings in which, at 8

every step, only one bit changes. In figure 5.27 we see an example of a
four-bit Gray code, which has 16 different values.

In realistic applications, more bits are used, for example if one wants
a horizontal-angle resolution of 0.1gon, there must be 400 ·10 = 4000
different values. This already requires 12 bits.9 9

The code is a black-and-white pattern imprinted on the circle, which a
row of light sensitive diodes, photodiodes, scans, figure 5.28 left. valodiodi

The advantage of the Gray code is that one knows constantly, unam-
biguously, which place on the circle one is reading; in other words, there
is a zero direction marked on the circle. This is why the encoding is called
absolute. In the example case, four photodiode rows side by side are
needed, one for each bit field.

The patterns on the circles are observed electro-optically, in our exam-
ple using a row of photodiodes, nowadays an integrated microelectronic
circuit, like a CCD sensor. The light detector observes the edges between
the black-and-white fields on the circle. Crude, absolute values originate
from the edges of the pattern on the circle; more decimal places are ob-
tained from the interpolating property of the diode array — or imaging
light sensor.

8Frank Gray (1887–1969) was an American physicist and electronicist, a developer of
television technology. The Gray code is part of a patent awarded to him in 1953.

9. . . because 212 = 4096≳ 4000.
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FIGURE 5.28. An absolute and an incremental encoding circle.^

^ 5.7.2 Incremental encoding circles

There is no zero direction marked on the encoding circle. We may onlykoodauskehä

follow changes in the instrument orientation by counting lines, figure
5.28 right. In the incremental solution, at least two diode detectors are
needed to establish the turning direction: in the depicted example there
are ten. The incremental method of course can only measure direction
differences, that is angles. Crude readings come from counting lines on
the circle, more decimal places are again obtained by interpolation.

^ 5.7.3 Modern automatic instruments

In electronic theodolites, commonly an ATR, automatic target recognition,
system is used. For this purpose, a CCD image sensor has been placed
in the image plane of the measuring telescope. The telescope is aimed
visually at the object. The uncorrected reading comes, as usual, from the
digital encoding-circle system. To the reading is added programmatically,
by means of image processing, a correction from the CCD image.

With electronically readable circles one uses many read-out detectors of
which each reads the code from a different place on the circle, figure 5.29.
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Processor

Alidade

Hor. circle

Base

FIGURE 5.29. Electronic readout of the horizontal circle: readings are taken
from all parts of the circle. This replaces the method of complete
sets known from optical theodolites.^

All readings are collected in a processor, which averages them. In the
average, the periodic and random errors of the circle are eliminated or
essentially reduced. Compare this with the method of complete sets used
with optical theodolites, section 6.3.

With electronic theodolites, locking and unlocking the horizontal circle, vaakakehä

and turning it — and thus applying the method of complete sets by
hand — is unnecessary and impossible. Turning over the telescope and
measuring in both faces is however still necessary, for the same reasons
as with optical instruments (section 5.5).

In some instruments, a rapidly spinning circle is used, drawing on the
same technology used in spinning computer disc drives. In this dynamic
solution, the light detectors transform the line pattern on the circle into
a block signal, figure 5.30. The time shift between two block signals
together with the circle’s spinning velocity ω gives directly the angle α(t)
between the detectors as a function of time — plus an unknown constant,
the “ambiguity”,10 which does not depend on time. For this reason, the kokonaisluku-

tuntematon
10
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α

Base

Horiz.
circle

∆t = α

ω

Alidade

ωω

FIGURE 5.30. A spinning circle converts the measurement of angles into one of
time differences.^

spinning circle method is also incremental: it can only measure changes
in the angle.

The advantages of the method are:

◦ It converts angle measurement into electronic time-difference mea-
surement, which can be extremely precise.

◦ The precision with which the graduation lines on the circle are
produced is not critical; the even spinning speed of the circle is.

The range of measurement systems and technical solutions for elec-
tronic theodolites is broad and rapidly developing. Therefore we only
take a closer look at one case.

^ 5.8 Case: Leica robotic tacheometer TCA2003

TCA2003 (Leica, 1997) is a good example of a fairly modern electronic
theodolite or tacheometer. The instrument measures horizontal angles

10Obviously because to the detector, every line on the circle looks like every other.
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FIGURE 5.31. Leica TCA2003 robot tacheometer control panel (in Finnish).^

and zenith angles as well as slant ranges. The calculation capabilities of vinoetäisyys

its built-in software are quite versatile.

FIGURE 5.32. Leica TCA2003 robot tacheometer.^
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Measurement precision as stated by the manufacturer amounts to 0′′.5
or 0.15mgon in horizontal and vertical angle measurement, and 1mm+
1ppm in distance measurement. The longest measurement distance
under normal conditions is 3.5km.

The instrument has co-axial ATR (automatic target recognition, subsec-
tion 5.7.3), which also takes part in angle measurement. The CCD sensor
measures the deviations in the horizontal and vertical directions of the
laser beam reflected by the prism, and guides the motors so that the
crosshairs are placed almost over the prism. The small remaining devia-
tion is measured in the CCD image and the angle readings are corrected
correspondingly.

The ATR system can also be programmed to follow a moving target, or
to systematically seek — scan for — a target if it is not in the expected
place.

The instrument has self-calibration facilities, a measurement pro-
gramme for determining the vertical-circle index error (subsection 5.6.3),pystykehän

indeksivirhe the collimation error (sight axis not perpendicular to horizontal axis,
subsection 5.6.1), the trunnion-axis tilt (horizontal and vertical axes not
perpendicular to each other, subsection 5.6.2) as well as the zero point
or constant error of the distance measurement device or range-finder
(subsection 7.4.4).

Many “corrections”, or rather reductions, of distance measurement, like
weather corrections, reduction to the horizontal plane, and even reduction
to the map projection plane (for example using the Gauss–Krüger or UTM

projections) can be done within the instrument itself.

The instrument has a laser plummet, which works in the same way aslaserluoti

an optical plummet — the precision is also similar, a little better than
±1mm — but the light moves in the other direction, from the theodolite
down to the ground. Levelling and centring procedures are otherwise the
same as with an optical plummet.

The instrument has, in addition to a bull’s-eye level, an accurate elec-
tronic level. The display is an LCD and looks the same as a real bull’s-eye
level. It is self-calibrating, and it is not necessary to turn the instrument
by 100g or 200g every time it is levelled (figure 5.8).

The instrument is highly automated and offers a pre-programmed
monitoring measurement of 50 points. This is useful especially in defor-
mation measurements in industry and construction. Two programming
languages are on offer: GSI (Leica) for simple use, and GeoCOM for
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advanced use. In addition, the GeoBasic environment allows the develop-
ment of more applications in the PC environment, and their upload to the
instrument.

The exchange of data between the instrument and a computer can be
done in two ways:

◦ Through a serial interface (RS232). This technique is obsolete:
modern devices use a USB port or Bluetooth.

◦ Using a non-volatile PCMCIA memory card. Storage capacity may
be 512kB–4MB. The format of the card is the MS-DOS file system
FAT. This solution has also been obsolesced by USB memory sticks.

The format of the observations themselves is the Leica-designed GSI

(Leica) (Geo Serial Interface), documented in the manual.

^ Self-test questions

1. Describe the three axes of a theodolite. Which of them are mutually
perpendicular?

2. Before measuring from a known point, a theodolite must be cen-
tred and levelled. Describe the stages in which this is done, for a
theodolite equipped with an optical or laser plummet.

3. Explain the idea of forced centring. Why is it useful?

4. Reading the circles. What is a scale microscope, what is a coinci-
dence microscope? Make a drawing!

5. Explain Gray codes.

6. What is the difference between absolute and incremental encod-
ings?

7. What is ATR, automatic target recognition?

8. Describe collimation error, trunnion-axis tilt and index error. How
are they determined?

9. A theodolite should never be aimed directly at the Sun. Are there
exceptions to this rule? Google “Roelofs prism”.
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66
[. . . ] When preparing a third American edition for the press,

Blunt decided that Bowditch had revised Moore’s work to
such an extent that Bowditch should be named as author.

The title was changed to The New American Practical
Navigator and the book was published in 1802 as a first

edition. Bowditch vowed while writing this edition to “put
down in the book nothing I can’t teach the crew,” and it is

said that every member of his crew including the cook could
take a lunar observation and plot the ship’s position.

Nathaniel Bowditch biography, in The American Practical
Navigator, Bowditch, 2017 edition

^ 6.1 Horizontal angle measurement

In traditional topographic surveying, horizontal angles are measured to maastomittaus

be used in three different contexts:

1. One carries out a triangulation, where horizontal angles and dis- kolmiomittaus

tances, or side lengths, are measured between points of the triangle
network. The triangle sides may be as long as tens of kilometres.
From the observations, the geodetic co-ordinates of the triangle
points are computed, hierarchically in densification stages of the
network. In this way, the first-order triangulation network mea-
sured by the Finnish Geodetic Institute has been densified by the
Finnish National Land Survey.

2. As a further densification of the triangle network, traverse measure- monikulmiojono

ments are carried out. In this method, side lengths and bending
angles are measured between successive points of a traverse (figure
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α

(a)
Triangulation

α

(b)
Radial survey

α

(c)
Traversing

FIGURE 6.1. Use situations for horizontal angle measurement.^

6.1c) in order to determine traverse point co-ordinates. To make
calculation possible, the starting and closing points of the traverse
need to be known, for example from a higher-order triangulation.

3. From the points of a traverse, radial surveys, for example, may be
conducted, figures 6.1b and 8.10.

Many of these observation techniques have been replaced by GNSS mea-
surement. Triangulation is no longer done anywhere, while traverse
measurements are done only in situations where GNSS is not useable,
such as underground — tunnels — or in high-rise urban landscapes.

^ 6.2 Intersection and resection

Geometries that are commonly used are intersection and resection,1 figure1

6.2.

Intersection works as follows: let the known points A and B have co-
ordinates (xA, yA) and (xB, yB). Let the perpendicular projection
point between these two points of the unknown point C be P, and

1In Finnish eteen- ja taaksepäin leikkaus, in Swedish avskärning och inskärning, in
Dutch voorwaartse en achterwaartse insnijding, in German Vorwärtsschnitt und Rück-
wärtsschnitt.
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FIGURE 6.2. Intersection and resection.^

its co-ordinates (xP , yP). Then

PC = AP tanα= PB tanβ,

so

AB = AP +PB = PC cotα+PC cotβ= PC (cotα+cotβ) .

From this
PC = AB

cotα+cotβ
and

AP = ABcotα
cotα+cotβ , PB = ABcotβ

cotα+cotβ .

Now we use these distances, or equivalently, the coefficients cotα
and cotβ, as weights in calculating the co-ordinates of point P as
weighted averages of the co-ordinates of points A and B:

xP = xA cotβ+ xB cotα
cotα+cotβ , yP = yA cotβ+ yB cotα

cotα+cotβ .

After this, the direct calculation formulas for the co-ordinates of
intersection point C are

xC = xP + tanα(yP − yA)= xP + yB − yA
cotα+cotβ ,

yC = yP − tanα(xP − xA)= yP − xB − xA
cotα+cotβ .
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Resection is inherently more difficult, because it is an inverse problem.
The problem was studied as early as the 17th century by Snellius
and Laurent Pothenot2 and is often named after them.2

Let (figure 6.2b) M be the midpoint of points A and B. If from the
unknown point P the angle θ1 between points A and B has been
measured, then this point is on the circumference of a circle that
passes through points A and B, and seen from the centre point K1

of which the angle between points A and B is 2θ1.

The line segment MK1 stands perpendicularly on AB: the co-
ordinates (xM , yM) of the midpoint M are calculated using the
formulas derived above for the special case α=β. The co-ordinates
of point K1 are calculated in the following way — remember that
in the role of α we now have 90◦−θ1:

xK1 = xM + 1
2 cotθ1 (yB − yA)= 1

2 (xA + xB)+ 1
2 cotθ1 (yB − yA) ,

yK1 = yM − 1
2 cotθ1 (xB − xA)= 1

2 (yA + yB)− 1
2 cotθ1 (xB − xA) .

The radius of the circle is obtained by the Pythagoras theorem:

R1 = 1
2sinθ1

√︂
(xB − xA)

2 + (yB − yA)
2.

Now, because there is also another point pair B and C through
which runs a circle of its own, with centre point K2 and radius R2,
we have a pair of quadratic equations describing two circles:

(x− xK1)
2 + (y− yK1)

2 = R2
1, (x− xK2)

2 + (y− yK2)
2 = R2

2.

From this, the co-ordinates (x, y) of the unknown resection point
P can be solved — at least in principle. There are many ways of
solving this, for example, linearisation with respect to a pair of
approximate values (x0, y0) with an iterative solution.

These two circles have two intersection points, from which the right
solution must be chosen, and it is not point B. . .

Singularity The precision of resection depends on the geometry
of the points. If points A, B, C, and the unknown point lie
on the same circle, the solution is even impossible: we speak
of a singularity. Then, the circles are identical, and any
point on that circle serves as a solution. We also speak of the
dangerous circle: already close to this geometry, precision
deteriorates ominously.

2Laurent Pothenot (1650–1732) was a French mathematician and geodesist.
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Note also that the situation is conceptually similar if two distances
R1 = PK1 and R2 = PK2 are measured to the now known points
K1 and K2. Here, P is the unknown point, co-ordinates (x, y), and
a singularity occurs when K1, K2, and P are on a straight line.

When using distance measurement, we do not speak of intersection
and resection, but they are similar situations.

^ 6.3 Observation method of complete sets

The graduation of the horizontal circle of an optical theodolite has been vaakakehä

manufactured with great care, but is always imprecise. Every gon of the
graduation should be the same size, precisely one gon, but in reality is not.
However, the sum of all the gons of the graduation will always be exactly
400gon. This is why the effect of graduation errors can be diminished by jaotusvirhe

measuring the same angle using different sectors of the horizontal circle,
and taking the average of those. This principle is implemented in the
observation method of complete sets. sarjahavainto-

menetelmäIn this method, traditionally used in the measurement of base networks,
runkoverkko

the same fan of directions is measured multiple times — complete sets —
such that between the sets, the horizontal circle is unlocked3 and turned 3

(by roughly 200g/︁
n , in which n is the number of complete sets). In this

way one makes use of the different sectors of the horizontal circle, and
systematic errors, for example due to graduation errors of the horizontal
circle, are minimised as one takes the average of the sets.

In this observation method, the instrument’s telescope is also always
turned over — both axes by 200g — so one measures in both faces, face kojeasennot I

ja IIleft and face right.

The following errors are eliminated by observing in two faces: collima-
tion error and trunnion-axis tilt, axes intersection error, eccentricities of
horizontal circle and measuring telescope. In the method of complete sets,
the impact of horizontal-circle graduation errors is essentially diminished.
Levelling or centring errors are not eliminated! tasaus ja

keskistysRejection of observations:

◦ If, in the method of complete sets, the sets do not agree with each
other, they must all be measured again. One may not reject only a

3The locking screw of the horizontal circle is protected by a lid. In that way, the circle is
not turned by accident during measurement.
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FIGURE 6.3. Observation method of complete sets. In this case a measurement
of two complete sets of three directions is made in both instrument
faces.^

single set, because that would distort the statistical properties of
the observational material.

◦ An individual sighting direction may be rejected from all sets.

One does not apply the method of complete sets with an electronic theodo-
lite — or more precisely, the instrument does so itself internally, see
section 5.7.

^ 6.4 Station adjustment of horizontal angles

Station adjustment, the merging of the several complete sets of horizontalasematasoitus

direction measurements into one optimal solution or measurement set, is
an adjustment problem, although a simple one. Ordinarily it was already
solved at the observation-notebook stage.

Modern electronic tacheometers or total stations do not need station
adjustment as they do not collect multiple observation sets in the way
described in section 6.3. We describe it here nevertheless briefly for
historical and methodological interest. There will be a more thorough
discussion of adjustment calculus in chapters 14 and 15.
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^ 6.4.1 Observation equations

In the following calculation example, four complete sets to three sighting
directions have been measured. The two instrument faces for each series,
face left and face right, have already been merged. In the example, the
number of complete sets is s = 4, the number of directions r = 3, so the
number of observations is n = rs = 12. The number of unknown directions
in the complete-set average is r−1 = 2. In each complete set there is
one orientation unknown4 also to be estimated. The number of excess 4

observations (redundancy, number of degrees of freedom) is thus

b = rs− (r−1+ s)= (r−1)(s−1) .

The observation equations are

θi j +vi j = ˆ︁αj − ˆ︁Ωi, (6.1)

in which i = 1, . . . , 4 — generally i = 1, . . . , s — is the number of the
complete set, j = 1, . . . , 3 — generally j = 1, . . . , r — is the number of the
sighting direction, Ωi the orientation unknown of the horizontal circle for
the complete set, αj the direction unknown of the target (the azimuth of
the measured direction), and θi j the (raw) direction reading.

We use the “hat” notation for estimators as is standard in statistics,
and we underscore stochastic quantities.

If the vector of observations is

ℓ=
[︂
θ11 θ12 θ13 θ21 θ22 θ23 θ31 θ32 θ33 θ41 θ42 θ43

]︂T

and the vector of unknowns

ˆ︁x= [︂ ˆ︁α1 ˆ︁α2 ˆ︁α3 ˆ︁Ω1 ˆ︁Ω2 ˆ︁Ω3 ˆ︁Ω4

]︂T
,

then the design matrix is, for the case of four complete sets and three rakennematriisi

4The orientation unknown captures the reality that a theodolite cannot measure absolute
horizontal directions or azimuths. It can measure only direction differences, that is,
angles. Therefore the unknown azimuth of the zero mark on the instrument’s horizontal
circle for every measured series is added as an unknown to the adjustment problem.

The situation is similar to that in GPS measurement. There, too, all observations from
a receiver contain a common clock-error unknown ∆T, which is why the observable
is called pseudo-range and not range. Similarly we could talk here about “pseudo-
direction observations”. These uninteresting additional unknowns are called nuisance
parameters.
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sighting directions,

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

1 −1
1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

bringing the observation equations into the standard form

ℓ+v= Aˆ︁x,
with v the vector of residuals.jäännös-

virheiden
vektori

In order to get a unique solution, one must also fix one direction, or
linear combination of directions — one cannot solve absolute directions
from relative angle measurements alone. So, in addition is required, say,

α1 = 0. (6.2)

This is totally arbitrary. One could choose just as well α2 = 0, α3 = 0, or
why not α1 +α2 +α3 = 0, which would at least be “democratic”.

In the following we present, without formal proof, how one may calcu-
late the result of a station adjustment, and how the calculation can be
arranged in a simple template. The procedure is statistically optimal.

^ 6.4.2 Angle transformation

First, we carry out the angle transformation: we subtract from every
observation θi j which is not the first of a complete set, precisely that first
observation of that set θi1:

θ′i j
def= θi j −θi1, i = 1, . . . , s, j = 2, . . . , r.

Subtract the rows of the system of observation equations 6.1 from each
other, yielding

ℓ′+v′ = A′ˆ︁x
in which

ℓ′ =
[︂
θ′12 θ′13 θ′22 θ′23 θ′32 θ′33 θ′42 θ′43

]︂T
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and

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0
−1 1 0
−1 1 0
−1 1 0
−1 1 0
−1 1 0
−1 1 0
−1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=⇒ A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

if we shorten the vector of unknowns accordingly:

ˆ︁x= [︁ ˆ︁α1 ˆ︁α2 ˆ︁α3 ˆ︁Ω1 ˆ︁Ω2 ˆ︁Ω3 ˆ︁Ω4
]︁T

=⇒ ˆ︁x= [ ˆ︁α1 ˆ︁α2 ˆ︁α3 ]
T .

Now we may define the following implicit unknowns:

ˆ︁α′
j

def= ˆ︁αj − ˆ︁α1, j = 2, . . . , r,

which corresponds to further simplifying the design matrix as follows:

A′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=⇒ A′′ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
if the new unknowns are

ˆ︁x′ = [︂ ˆ︁α′
2 ˆ︁α′

3

]︂T
.

These new unknowns are now in relation to the first direction, they are
thus angle-transformed direction unknowns.

The observation equations are now⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

θ′12

θ′13

θ′22

θ′23

θ′32

θ′33

θ′42

θ′43

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v′12

v′13

v′22

v′23

v′32

v′33

v′42

v′43

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1

1
1

1
1

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[︄ ˆ︁α′
2ˆ︁α′
3

]︄
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or [︄
θ′i2
θ′i3

]︄
+
[︄

v′i2
v′i3

]︄
=
[︄

1
1

]︄[︄ ˆ︁α′
2ˆ︁α′
3

]︄
=
[︄ ˆ︁α′

2ˆ︁α′
3

]︄
, i = 1, . . . ,4. (6.3)

The optimal solution is the average, see equation 14.6. For the general
case

ˆ︁α′
j = 1

s

s∑︂
i=1

θ′i j, j = 2, . . . , r.

The adjusted angle transformation is the average over complete
sets of the angle transformations.

Furthermore we may define consistently

ˆ︁α′
1

def= 1
s

s∑︂
i=1

θ′i1
def= 1

s

s∑︂
i=1

(θi1 −θi1)= 0.

The α′ values are adjusted but still relative directions, not absolutetasoitus

azimuths.

We have eliminated the orientation unknowns Ωi from the observation
equations, and good riddance. We are however interested in the residuals.

^ 6.4.3 Residuals and degrees of freedom

Now that the unknowns ˆ︁α′
j have been calculated, more precisely esti-

mated, with the least-squares method, we can also calculate the residuals.pienimmän
neliösumman

menetelmä
jäännösvirhe

Equation 6.3 gives us residuals of sorts:

v′i j = ˆ︁α′
j −θ′i j, i = 1, . . . , s, j = 2, . . . , r.

These have the problem that direction 1 is not included: if it were, its
residual would always be

v′i1 = ˆ︁α′
1 −θ′i1 = 0−0= 0.

The proper residuals are obtained by

vi j = v′i j − 1
r

r∑︂
k=1

v′ik, i = 1, . . . , s, j = 1, . . . , r, (6.4)

of which the average over directions, including direction 1, for each set
vanishes. Calculation 6.4 shows what happens to the residuals when
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every complete set i = 1, . . . , s is assigned its own orientation unknown
Ωi, minimising the sum of squared residuals within that set.

Let the mean error σ of the direction observations θi j be the same for
all, and let the direction observations be uncorrelated. In that case the
variance matrix of the observations is

Σℓℓ =Var{ℓ}=σ2Is×r,

in which Is×r is the unit matrix of size (s× r)× (s× r).

In this case, the quantity (“shifting variate”, Baarda, 1968) siirtosuure

1
σ2E = vTΣ−1

ℓℓ v= 1
σ2

s∑︂
i=1

r∑︂
j=1

v2
i j = 1

σ2

∑︂
i, j

v2
i j

is distributed according to the χ2
b distribution, the expectancy of which is odotusarvo

b, the number of degrees of freedom, or “excess” observations. See section
15.4.

Earlier we saw that b = (r−1)(s−1), the number of angle transforma-
tions (independent direction measurements) multiplied by the number of
excess complete sets. Thus, E

/︁
σ2 is distributed according to χ2

(r−1)(s−1)
and its expectancy is (r−1)(s−1). So:

E
{︃

1
σ2

∑︂
i, j

v2
i j

}︃
= (r−1)(s−1) =⇒ σ2 = E

{︃ ∑︁
i, j v2

i j

(r−1)(s−1)

}︃
,

and we see that ˆ︂σ2 def= 1
(r−1)(s−1)

s∑︂
i=1

r∑︂
j=1

v2
i j

is an unbiased estimator of the variance σ2 of a single observation: harhaton
estimaattori

E
{︁ˆ︂σ2

}︁=σ2.

For the quantity σ we use the name “mean error of unit weight”. It painoyksikön
keskivirherepresents the uncertainty, the mean error, of a typical observation, in

this case, a single, raw direction reading.

We shall return to the subject of adjustment in chapter 14.

^ 6.4.4 Calculation table for station adjustment

A station adjustment consists of the following steps: asematasoitus
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1. We fix the arbitrariness in the definition of the directions, like by
fixing the first direction to zero, θ′i1 = 0; this is called the angle
transformation. We do it by subtracting the first observed direction
reading from the other direction readings in the same complete set.

2. We compute the average over all complete sets (“complete-set aver-sarjakeskiarvo

age”)

1
s

s∑︂
i=1

θ′i j, j = 1, . . . , r

for every sighting direction j.

3. We compute the residuals of the observations relative to these
complete-set averages:

v′i j = θ′i j − 1
s

s∑︂
k=1

θ′k j, i = 1, . . . , s, j = 1, . . . , r.

4. We compute the averages of the “first residuals” v′i j over all direc-
tions within every complete set:

1
r

r∑︂
j=1

v′i j = 1
r

r∑︂
j=1

(︄
θ′i j − 1

s

s∑︂
k=1

θ′k j

)︄
, i = 1, . . . , s.

5. We compute the final residuals

vi j = v′i j − 1
r

r∑︂
k=1

v′ik, i = 1, . . . , s, j = 1, . . . , r,

which corresponds precisely to those residuals we would obtain
if we gave each complete set its own orientation unknown ˆ︁Ωi in
addition to the direction unknowns ˆ︁αj, like in the original system
of observation equations.

The end result is the calculation template presented in table 6.1, which
contains these operations and ought to be self evident.

After filling in the template — in the order: average over complete sets,
v′, sum per series, v — the mean error of a single direction, or unit weight,
is calculated by first calculating the quadratic sum of the residuals over
all series and directions:

vTv=
s∑︂

i=1

r∑︂
j=1

v2
i j =

[︁
vv
]︁
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^ TABLE 6.1. Calculation template table for station adjustment.

Angle transformation (gon) v′ (cc) v (cc)

1. Complete set 0.0000 0 −3.7
68.8430 +4 +0.3

209.1880 +7 +3.3
Complete set sum, average +11 +3.7

2. Complete set 0.0000 0 −1.3
68.8425 −1 −2.3

209.1878 +5 +3.7
Complete set sum, average +4 +1.3

3. Complete set 0.0000 0 +2.3
68.8424 −2 +0.3

209.1868 −5 −2.7
Complete set sum, average -7 −2.3

4. Complete set 0.0000 0 +2.7
68.8425 −1 +1.7

209.1866 −7 −4.3
Complete set sum, average -8 −2.7

Average over complete sets 0.0000
(“complete-set average”) 68.8426

209.1873

(the latter notation was invented by Gauss and is sometimes still used).
Then, we calculate, or estimate5 5

ˆ︁σ=
√︂ˆ︂σ2 =

√︄
vTv

rs− (r+ s)+1
=
√︄

vTv
(r−1)(s−1)

= 3.8cc .

Here

◦ rs is the number of observations (r directions in s complete sets).

◦ r+ s is the number of unknowns (r direction unknowns α j, s orien-
tation unknowns Ωi).

◦ The number +1 represents the defect of the problem, the dimen-
sion of the solution space: the circumstance mentioned above, that

5Note that E
{︁ˆ︂σ2

}︁=σ2, however E
{︁ˆ︁σ}︁ ̸=σ! So ˆ︁σ is not unbiased although ˆ︂σ2 is. The

reason for this is that the E operator and the square root may not be interchanged: in
general, E

{︁⎷x
}︁ ̸=√︂E

{︁
x
}︁

.
Counter example: if the probability distribution of x is p(1) = 0.5, p(4) = 0.5, and
elsewhere p(x)= 0, we obtain E

{︁⎷x
}︁= 1.5 but

√︁
E{x}=⎷

2.5≈ 1.58.
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adding an amount ∆ to both the directions α j and the orientations
Ωi does not affect the observations in any way that can be observed,
and that thus, the solution is not unique without one extra condi-
tion,6 for example, fixing α1 to some value, such as zero.6

The number b = rs− (r+ s)+1 = (r−1)(s−1) is called the number of
degrees of freedom.

After this, the estimate of the mean error of the average taken over all
complete sets is ˆ︁σs = ˆ︁σ/︁⎷s = 1.9cc.

^ 6.5 Traverse measurement and computation

A traditional method for densifying lower-order base networks has been
traverse measurement or traversing. In spite of the existence of satellitejonomittaus

positioning, and especially real-time kinematic positioning (RTK), theretosiaikainen

continue to be situations where traversing is the best, or even the only,
method of base-network measurement. Such situations include indoors
measurements, underground — mine or tunnel — measurements, and
measurements in high-rise urban landscapes, “urban canyons”, where
GNSS measurement has problems due to the blocking of signal by build-
ings, and spurious signal reflections off buildings, the multipath problem.monitie

Going back in history, then, in 1807 Nathaniel Bowditch7 won a compe-7

tition for the most appropriate way to compute a traverse. The prize was
ten US dollars (Cooper, 1982, pages 147–150).

The variant of the Bowditch method presented here, a traditional
separate adjustment of directions and co-ordinates, is suboptimal. Yet it
is worth looking at as an example of geodetic computation.

A traverse is a line of measurement stations, where at every stationmonikulmiojono

one measures directions and distances to the previous and next stations.
The instrument used is generally a total station or tacheometer. The
measurement is usually the last stage in bringing co-ordinates (x, y) to
reference points in the immediate vicinity of objects to be measured.

There are two types of traverses: open and closed. See figure 6.4. We

6This extra condition can also be understood as a “pseudo-observation”: then, the
number of observations is rs+1.

7Nathaniel Bowditch (1773–1838) was an American mathematician, student of naviga-
tion at sea, and scientific translator and textbook author. One of his writings was “The
American Practical Navigator”, published in 1802. The modern edition of the book, “The
Bowditch”, can be found on the Internet: Bowditch (2017).
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Closed traverse

A

Starting
auxiliary
point AA Open traverse

Traverse point

Closing point Z

Starting point A

Z

Closing
auxiliary
point ZZ

2
2

3

n−1

3

n−1

FIGURE 6.4. An open and a closed traverse.^

always know the co-ordinates (x, y) of the starting and closing points.
The difference between an open and a closed traverse is in the use of
auxiliary points in the latter. These points, the co-ordinates of which are liitospiste

known, help to orient the traverse correctly.

^ 6.6 Open traverse

Generally, we try to measure a closed traverse, because it gives the
possibility to check and adjust both the measured angles and distances.
There are, however, situations where this is impossible or difficult and
where one has to use an incompletely closed traverse. vaillinaisesti

suljettuThe common case is where we know neither the starting nor the closing
direction. See figure 6.5.

We know

◦ (xA, yA), starting point

◦ (xZ , yZ), closing point.

We need to compute, or estimate,8 co-ordinates for the traverse points 8

(ˆ︁xi,ˆ︁yi), i = 2, . . . , n−1.

8Using again the “hat” notation for estimators, as well as underscoring stochastic
quantities.
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xAZ

yAZy′AZ

x′AZ

A = 1

Z = n

x

n

y

−θ

n−1

2

α′
AZα′
AZ

αAZαAZ

FIGURE 6.5. An open traverse.^

^ 6.6.1 Starting direction

Because we do not know the starting or closing directions, we cannot
adjust directions. Computing the direction α12 is not possible as we lack
a starting direction. We may obtain one in two different ways:

◦ by setting the direction angle of the first side α′
12 = 0, figure 6.5, or

◦ (preferred) obtaining somehow, for example by measuring in a map,
an approximate value α′

12 for α12.likiarvo

^ 6.6.2 Computing the traverse

We carry out the calculation of traverse directions in the familiar way:

α12 =α′
12,

α23 =α12 −200g +∠α2,
...

αi,i+1 =αi−1,i −200g +∠αi,
...

αn−1,n =αn−2,n−1 −200g +∠αn−1.

Using these, we calculate co-ordinates for the points using the forwardgeodeettinen
päätehtävä
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geodetic problem recursively:

x′2 = xA + s12 cosα12, y′2 = yA + s12 sinα12,

and so forth:

x′i = x′i−1 + si−1,i cosαi−1,i, y′i = y′i−1 + si−1,i sinαi−1,i.

Finally

x′n = x′n−1 + sn−1,n cosαn−1,n, y′n = y′n−1 + sn−1,n sinαn−1,n.

This calculation has been carried out in the correct way, but in a wrongly
oriented co-ordinate frame. The closing errors

wx
def= x′n − xZ , wy

def= y′n − yZ

do not tell us anything about measurement errors, but rather about the
approximativeness of the assumed starting direction α′

12. For this reason,
it is not permissible to eliminate the closing errors by adjustment as is
done in a closed traverse.

The whole traverse is rotated by an angle amount θ, and should be
rotated back by a Helmert or similarity transformation.

Because starting point A is the common turning point between both co-
ordinate systems, we may simply calculate the scale ratio K and rotation kiertokulma

angle θ between them:

K =

√︂
∆x2

AZ +∆y2
AZ√︂

(∆x′AZ)
2 +(︁∆y′AZ

)︁2
,

θ = arctan
∆y′AZ
∆x′AZ

−arctan∆yAZ
∆xAZ

— or with the half-angle formula, with the definition

y // x def= y
x+
√︁

x2 + y2
:

θ = 2
(︂

arctan
(︁
∆y′AZ //∆x′AZ

)︁−arctan
(︁
∆yAZ //∆xAZ

)︁)︂
.

Also used is the notation

∆xAZ = xZ − xA, ∆yAZ = yZ − yA,

∆x′AZ = x′n − xA, ∆y′AZ = y′n − yA.
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Let us construct a transformation:

c = K cosθ, s = K sinθ,

with the help of which we obtain as the co-ordinates of the traverse points
i = 1, . . . , n:

ˆ︁xi = xA + c (x′i − xA)+ s
(︁

y′i − yA
)︁

,ˆ︁yi = yA − s(x′i − xA)+ c
(︁

y′i − yA
)︁

.

In matric form [︄ ˆ︁xiˆ︁yi

]︄
=
[︄

xA

yA

]︄
+
[︄

c s
−s c

]︄[︄
x′i − xA

y′i − yA

]︄
.

Note that in the matrix

M =
[︄

c s
−s c

]︄
= K

[︄
cosθ sinθ
−sinθ cosθ

]︄
the direction correction θ is dominated by the assumed starting direction,
when again the scale correction K contains only a correction for the
closing error caused by the imprecision of the measurements:9 even if9

the starting direction α12 were guessed exactly correctly, nevertheless(︁
x′n, y′n

)︁
would not necessarily coincide precisely with point (xZ , yZ). In

the sideways direction however, perpendicular to the traverse, there will
remain observation error, which is not adjusted away, but more precisely
is “absorbed” into θ.

A useful final sanity check is

xZ
?= ˆ︁xn, yZ

?= ˆ︁yn.

In addition to this, one should check that K is realistically valued, mean-
ing close enough to the value 1 in view of the known precision of distance
measurement.

^ 6.7 Closed traverse

We know

◦ (xA, yA) and (xAA, yAA): starting point A and auxiliary start-alkuliitospiste

ing point AA,

◦ (xZ , yZ) and (xZZ , yZZ): closing point Z and auxiliary closingloppuliitospiste

point ZZ.

9. . . in other words, it is a primitive adjustment.
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(xAA, yAA)

(xZZ , yZZ)

α′
ZZ

∠α2

∠αn−1

(xZ , yZ)

∠αn

αAA −200g

αZZ

X
∠α1

(xA, yA)

FIGURE 6.6. The geometry of a closed traverse. Only angles and starting and
closing directions are marked.^

See figure 6.6.

We observe

◦ n bending angles ∠α1, . . . , ∠αn,

◦ n−1 distances or side lengths s12, s23, . . . , sn−1,n.

We must compute, or estimate

the co-ordinates (ˆ︁xi,ˆ︁yi) for the traverse points i = 2, . . . , n− 1. jonopiste

There are n−2 new points.

^ 6.7.1 Computing the auxiliary starting and closing directions

The auxiliary starting and closing directions are obtained by solving the alku- ja loppu-
liitossuuntainverse geodetic problem:
geodeettinen
käänteistehtäväαAA = arctan yAA − yA

xAA − xA
+k ·200g,

αZZ = arctan yZZ − yZ
xZZ − xZ

+k ·200g,
(6.5)

where k ∈ {0,1} needs to be chosen so the result is in the correct quadrant.

The approximate Bowditch-like method that we shall use has two
stages. First we process the directions, then the co-ordinates.

^ 6.7.2 Adjustment of directions

Compute the directions or azimuths αAA, α12, . . . , αn−1,n, αn,n+1, in which
αAA is known, and αn,n+1, which is computed from the observations,
corresponds to the above computed auxiliary closing direction αZZ . As
follows:10 10
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α12 =αAA +∠α1,

α23 =α12 −200g +∠α2,
...

αi,i+1 =αi−1,i −200g +∠αi, (6.6)
...

αn−1,n =αn−2,n−1 −200g +∠αn−1,

α′
ZZ

def= αn,n+1 =αn−1,n −200g +∠αn.

At the end we thus obtain the value α′
ZZ , which, if all the angle observa-

tions αi were errorless, would be equal to αZZ computed from co-ordinates
by equation 6.5. In reality though, the direction closing error amounts to

wα
def= α′

ZZ −αZZ .

This closing error is removed, or adjusted, by dividing it evenly among
all the bending angles, so to every measured bending angle we apply a
correction:

δα=−wα
n ,

after which we again carry out the calculation of angles, producing the
adjusted directions:

ˆ︁α12 =αAA + (∠α1 +δα) ,ˆ︁α23 =α12 −200g + (∠α2 +δα) ,
...ˆ︁αi,i+1 =αi−1,i −200g + (∠αi +δα) ,
...ˆ︁αn−1,n =αn−2,n−1 −200g + (∠αn−1 +δα) ,ˆ︁α′

ZZ =αn−1,n −200g + (∠αn +δα) .

^ 6.7.3 Co-ordinate adjustment

Using the thusly adjusted directions we compute, for the points 2, . . . ,n−1,
co-ordinates by applying the forward geodetic problem:

◦ Point 2:

∆x12 = s12 cos ˆ︁α12, ∆y12 = s12 sin ˆ︁α12,

10For the first bending angle ∠α1 we do not subtract 200gon! And to keep the directions
αi,i+1 in the interval

[︁
0,400g

)︁
, one may sometimes have to add or subtract 400gon.
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with the aid of which

x2 = xA +∆x12, y2 = yA +∆y12.

◦ General point i (and also closing point i→ n):

∆xi−1,i = si−1,i cos ˆ︁αi−1,i, ∆yi−1,i = si−1,i sin ˆ︁αi−1,i,

with the aid of which

xi = xi−1 +∆xi−1,i = xi−1 + si−1,i cos ˆ︁αi−1,i,

yi = yi−1 +∆yi−1,i = yi−1 + si−1,i sin ˆ︁αi−1,i.

◦ Generally — remember (xA, yA)= (x1, y1):

xk = xA +
k∑︂

i=2

si−1,i cos ˆ︁αi−1,i, yk = yA +
k∑︂

i=2

si−1,i sin ˆ︁αi−1,i.

By substitution of k → n we obtain the equations and co-ordinates(︁
xn, yn

)︁
of the closing point. If the observations were errorless, we would

have xn = xZ and yn = yZ , but they are not. The co-ordinate closing errors
are

wx
def= xn − xZ , wy

def= yn − yZ .

Closing errors are adjusted by giving a weight coefficient qi−1,i for each
point interval, and the closing errors wx and wy are distributed over the
point intervals in proportion to these weight coefficients.

Small weight coefficient ←−−→ large weight,

large weight coefficient ←−−→ small weight!

We compute the standard correction corresponding to the sum of weight
coefficients, separately for the x and y co-ordinates:

δx =− wx∑︁n
i=2 qi−1,i

, δy=− wy∑︁n
i=2 qi−1,i

.

The adjusted co-ordinates become

ˆ︁xi = ˆ︁xi−1 + si−1,i cos ˆ︁αi−1,i + qi−1,i δx,ˆ︁yi = ˆ︁yi−1 + si−1,i sin ˆ︁αi−1,i + qi−1,i δy,

or, counting from starting point A,

ˆ︁xk = ˆ︁xA +
k∑︂

i=2

(︁
si−1,i cos ˆ︁αi−1,i + qi−1,i δx

)︁
,

ˆ︁yk = ˆ︁yA +
k∑︂

i=2

(︁
si−1,i sin ˆ︁αi−1,i + qi−1,i δy

)︁
.
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^ TABLEAU 6.2. Traverse calculation template, separate adjustment of angles
and co-ordinates (“Bowditch method”).

i ∠αi αi,i+1 δαi,i+1 ˆ︁αi,i+1

A (= 1) 345.3750
1 212.2345 157.6095 +7 157.6102
2 151.4565 109.0660 +15 109.0675
3 221.9823 131.0483 +22 131.0505
4 175.9831 107.0314 +29 107.0343
5 165.3467 72.3781 +37 72.3818
Z (= 5) 72.3818

Closing error wα −0.0037 ↑

i ˆ︁αi,i+1 si,i+1 s cos ˆ︁α s sin ˆ︁α xi yi δxi δyi ˆ︁xi ˆ︁yi

1 157.6102 502.345 −395.038 +310.315 1000.235 256.256
2 109.0675 487.241 −69.164 +482.307 605.197 566.571 +9 -37 .206 .534
3 131.0505 445.981 −209.001 +393.977 536.033 1048.878 +18 -73 .051 .805
4 107.0343 512.125 −56.472 +509.002 327.032 1442.855 +26 -110 .058 .745
5 72.3818 270.560 1951.857 +35 -146 .595 .711
Z (= 5) 270.595 1951.711

Closing errors wx,wy −0.035 +0.146 ↑ ↑

^ 6.7.4 Calculation template

The whole calculation may be carried out using the template in tableau
6.2, which is readily automated. Let it be given that αAA = 345.3750gon
and αZZ = 72.3818gon, as well as the co-ordinates of starting point A
and closing point Z. The number of stations n = 5. Weighting used:
uniform. The values for the starting and closing points are underlined,
observations are in black, computed values in red, closing errors and
adjustment corrections in blue. This kind of diagram is good enough for
practical work in local base-network measurement.

Some remarks:

◦ The adjustment method described above is approximate, meaning
sub-optimal. In a proper least-squares adjustment, the directionpienimmän

neliösumman
tasoitus

and co-ordinate corrections are computed simultaneously, as they
correlate with each other. The results will then be slightly different.

Nevertheless, if the traverse is relatively straight — the sides are
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roughly in the same direction — the suboptimality will be small,
and a proper adjustment would only lead to small changes in the
final co-ordinates.

On the other hand, it is not desirable that the sides are in precisely
the same direction: that would make finding gross errors more karkea virhe

difficult.

◦ Here, the calculation of the traverse was done in the plane. The
measurements however have been obtained three-dimensionally,
in space. Of course it is assumed that instrument and signal are tähys

precisely and correctly centred and that the instrument is levelled,
and that all relevant reductions to the observations have been done.

This includes especially the slope reduction, equation 7.9. Also,
depending on size and topography of the measurement area, the
height reduction (same equation 7.9) may be necessary.

◦ In computing plane co-ordinates, directions are always referred to
the map north, and distances are also reduced to the map plane,
meaning that the scale distortion caused by the map projection
used, equation 7.10, is accounted for.

◦ Only then can it be said that

– The horizontal angles are plane angles.

– The reduced distances are horizontal distances in the map
plane.

^ 6.8 Zenith angles and refraction

In the measurement of zenith angles, because of the stratification of the kerrostuneisuus

atmosphere, the overwhelmingly greatest source of error is refraction.
On must always be careful concerning weather and the landscape when
choosing time and place, and when processing observations. For example,
hot asphalt in summer can be treacherous.

The effect of refraction does not show in the check ζ1+ζ2 = 400, subsec-
tion 5.6.3: measuring in both faces does not help. kojeasennot

^ 6.8.1 Refraction coefficient

In geodesy, the habit has formed to characterise refraction by a quantity
named the refraction coefficient, symbol k. This quantity characterises the refraktiokerroin

curvature of the measurement ray or path in the atmosphere compared
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FIGURE 6.7. The effects of refraction and Earth curvature on zenith-angle mea-
surement.^

to the curvature of the Earth:

k = ray curvature
Earth curvature = R

ρ , (6.7)

in which

R radius of curvature of the Earth. 1
/︁

R is the curvature of the
Earth’s surface. The curvature is the inverse of the radius of
curvature!

ρ radius of curvature of the measurement ray. 1
/︁
ρ is the curvature

of the measurement ray.

Typical k values in the atmosphere are kL = 0.13 for visible light, and
kM = 0.25 for microwaves, see Kahmen and Faig (1988) page 167. The
curvature of the measurement ray is thus 4–8 times weaker, and the
radius of curvature 4–8 times larger, than the curvature, respectively
radius of curvature, of the Earth’s surface. However, during an atmo-
spheric inversion, exceptionally large k values may occur, even 0.3–0.4,
see Grafarend et al. (1987).

^ 6.8.2 Trigonometric heighting

In figure 6.7 one sees on the left-hand side, how one may determine
the height difference between two points A and B using zenith-angle
measurement. The applicable trigonometric equation is

hB = hA + scotζ,

í  Õ ! ¤.� û



Zenith angles and refraction 6.8 181
in which s is the horizontal distance — the slant range projected onto the vinoetäisyys

horizontal plane — and ζ the measured zenith angle.

When, in reality, both the surface of the Earth and the measurement
ray’s path in the atmosphere are curved, in practice the right-hand side
figure applies, in which, however, the curvatures have been exaggerated.
Based on the figure, one should add to the above equation two correction
terms:

c1 ≈ s2

2R ,

the correction due to the Earth’s curvature, and

c2 ≈− s2

2ρ =−k s2

2R ,

the correction due to the curvature of the measurement ray — assuming
that, unlike in the figure, the height difference between the points is
small compared to their distance.

Everything together:

hB = hA + scotζ+ (1−k) s2

2R .

If we still take along the height of the theodolite, or instrument, i over
point A and the height of the signal or target t over marker B underneath
it, we obtain

hB = hA + scotζ+ (1−k) s2

2R + i− t, (6.8)

the fundamental equation of trigonometric heighting.

^ 6.8.3 Simultaneous measurement in opposite directions

If we carry out zenith-angle measurements simultaneously at points A
and B, we obtain

hB = hA + scotζA + (1−k) s2

2R + iA − iB,

hA = hB + scotζB + (1−k) s2

2R + iB − iA.

Here, for the measurement done in A, the instrument height is iA and
the signal height iB, and for the measurement done in B, the instrument
height is iB and the signal height iA. So, we assume the heights of
instrument and signal in the opposite-direction measurements to be the
same at the same point — easy to do with forced centring, subsection pakkokeskistys

5.4.7.

í  Õ ! ¤.� û



6182 ANGLE MEASUREMENT

s2

∆H
s1

ζt,1
ζt,2ζe,2

ζe,1

FIGURE 6.8. Trigonometric levelling traverse.^

Rearranging the terms and subtraction yields

hB = hA + 1
2 s(cotζA −cotζB)+ iA − iB, (6.9)

from which the term describing atmospheric refraction has vanished.

This method for determining height differences between points has
been found to be good and has also been much-used over long distances.
It assumes the distance s to be known with sufficient precision.

This method is used in trigonometric levelling (figure 6.8). The method
can replace traditional levelling, for example, in terrain with great height
variations, where the staff distance of levelling would become short and
the work laborious. In the method, two total stations and two signal-takymetri

reflector assemblies are used, and the observation data is transmitted
by radio modems from one instrument to the other for processing, error
control and storage. Movement to the next point is by car where the
terrain allows (Takalo, 1995).

^ 6.8.4 Ölander’s method

As early as in the 1930s, V. R. Ölander11 used in the Finnish primary11

triangulation a method for refraction modelling which was based on
approximately simultaneous measurements from each triangulation point
to all neighbouring points. This is thus a method essentially different
from that of simultaneous measurements in opposite directions.

Ölander assigned every triangulation point in the network its own
refraction coefficient as an unknown, which were all solved for by means
of network adjustment (Ölander, 1932, see also Grafarend et al., 1987).verkkotasoitus

11Victor Rafael Ölander (1897–1973) was a Finnish geodesist and astronomer who
played a central role in the Finnish national primary triangulation.
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FIGURE 6.9. Heights of instrument and signal.^

^ 6.9 Heights of instrument and signal

Even though the instrument is levelled and centred on the point, it is
nevertheless always eccentrically set up in the height direction.

The zenith angle to be measured is the angle between the plumb line luotiviiva

and the sight axis of the telescope, figure 6.9. Thus, one must measure tähtäysakseli

the height of the instrument i. Generally the aiming is at a signal on a
tripod, not the point marker (monumented point) itself, so the signal or
target height t must also be measured. So, one must always measure

◦ at the instrument, the height difference between the marker or
monumented point, and the horizontal instrument axis

◦ at the signal, the height difference between the marker (monument)
and the signal target point.

In the depicted situation (figure 6.9), the aiming point is the upper
edge of the white triangle, and it is the height t of that point that must
be measured.

In the height direction, both the instrument and the signal are eccen-
trically set up.

The figure also includes the heights of the monumented points from a
computational reference surface (“sea level”), which the measurements
aim to determine:

◦ height of the instrument from the reference level: HP + i

◦ height of the signal or target from the reference level: HQ + t.
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^ Self-test questions

1. What three basic topographic surveying measurement types use
horizontal angle measurement?

2. What is station adjustment? What is an orientation unknown?

3. What is the difference between an open and a closed traverse? How
many closing errors (redundancy, degrees of freedom) are there in
each, which can be used to check for mistakes, or gross errors?

4. Why is traversing not entirely obsolete in spite of the existence of
GNSS?

5. Why is atmospheric refraction a particular concern when measuring
vertical angles, and not so much when measuring horizontal angles?
Could you think of situations where horizontal-angle measurement
could also suffer from refraction?

6. What is the refraction coefficient k?

7. What is trigonometric levelling, and in what situations is it used?
How is the effect of atmospheric refraction eliminated?

8. What was Ölander’s refraction modelling method like?
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Nils T o Klara Svensson.

Erik Östen Bergstrand (1904 – 1987), inventor of the
Geodimeter, Who is Who, Harnesk and Davidsson (1962)

^ 7.1 Mechanical distance measurement

The SI unit of distance, or rather, of length, is the metre, see section 2.1.
Traceability to the metre standard is of central importance in precise jäljitettävyys

distance measurement.

Although today, even short distances are measured electronically or
electro-optically, it is good to understand the oldest1 and technically 1

simplest length measurement method, tape measurement. It continues
to be used in local measurements, when distances are short and the
precision afforded by tape measurement suffices.2 And of course the 2

1Back in the day, the scale of the Finnish primary triangulation was transferred from
the Nummela baseline to the baselines of the twelve principal sides of the network using
invar wires. Invar is an iron-nickel alloy (64% iron, 36% nickel) which has a very small
coefficient of thermal expansion. In the Lapland grade measurement by Maupertuis,
the scale of the triangle network was also obtained mechanically from a baseline —
during winter 1736 on the ice of the Torne river!

2Careful tape measurement is surprisingly precise!
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FIGURE 7.1. Sag correction of measuring tape.^

equipment required is inexpensive!

In tape measurement, four corrections must be taken into account.

The tape correction is a tape-specific reduction. It is determined by
calibration in a comparator, the true length of which is known
precisely — thanks to comparison, through the traceability chain,jäljitettävyys-

ketju with the standard metre. The tape correction ∆ℓ0 is now the
difference between the comparator’s true length ℓ0 +∆ℓc and its
length ℓ0 +∆ℓm measured by the tape to be calibrated:33

∆ℓ0 =∆ℓc −∆ℓm.

Here, ℓ0 is the nominal length of the tape, for example ℓ0 = 30m.

The temperature correction is caused by the thermal expansion of
steel, and thus requires the temperature of the tape to be mea-
sured. The temperature correction is assumed zero for a standard
temperature of t0 = 20◦C. If the coefficient of thermal expansion
of steel is α, the temperature correction is

∆ℓt =αℓ0 (t− t0) .

Here, α is expressed in micrometres per metre and degree. For
example, the coefficient of thermal expansion of a certain steel
alloy is 11.34µm/m◦C, or α= 11.34·10−6 (◦C)−1, because µm/m = 10−6.
If a measuring tape is 30 metres long and the temperature is 28◦C,
it follows that

∆ℓt = 2.7mm.

Sag correction During measurement, the tape is tensioned with apainumis-
korjaus

3Question: why do we use the algebraic sign like this? Why not

∆ℓ0 =∆ℓm −∆ℓc?
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Mechanical distance measurement 7.1 187
known force F. No matter how strong this force is, the tape will
always settle into a catenary, in fact a cosinus hyperbolicus (cosh ketjukäyrä

function) figure. We thus need to measure the tensioning force of
the tape, figure 7.1. The theory of the phenomenon is surprisingly
complicated. The end result, the sag correction, the difference in
length between the chord and arc, is jänne

∆ℓs =− µ2

24F2ℓ
3,

proportional to the length of the tape to the third power. In this
equation, µ is the weight of the tape per metre, and F the tension-
ing force of the tape. Alternatively one can measure the sag s in
the middle and use the equation

∆ℓs =−8s2

3ℓ .

The slope correction is actually not a correction but rather a reduc-
tion, which is necessary if, instead of the slope distance or slant vinoetäisyys

range, one wishes to obtain the horizontal distance between the
points, the projection of the slant range onto the horizontal plane.

In routine tape measurements, the tape correction, temperature correc-
tion and sag correction are often ignored. Their detailed description with
formulas is found in the literature, for example Kahmen and Faig (1988)
pages 122–130. The slope reduction can however be significant: if it is
given that the height difference of the end points of a distance ℓ is ∆h,
then the horizontal distance is, according to Pythagoras’ theorem,

ℓ⊥ =
√︁
ℓ2 −∆h2. (7.1)

If we only know the slope angle α, sinα= ∆h
/︁
ℓ , between end points, we

obtain the horizontal distance as follows, figure 7.2:

ℓ⊥ =
√︁
ℓ2 −ℓ2 sin2α= ℓcosα.

Equation 7.1 may be written with sufficient precision for small slopes

ℓ⊥ = ℓ
√︃

1−
(︂
∆h
ℓ

)︂2
≈ ℓ
√︃

1−
(︂

κ
100

)︂2
≈ ℓ− 1

2
κ2

10000ℓ
def= ℓ+∆ℓ⊥,

in which the slope reduction

∆ℓ⊥ =− ℓκ2

20000 (7.2)

is presented as a function of the slope percentage κ
def= 100∆h

/︁
ℓ⊥ ≈

100∆h
/︁
ℓ .
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FIGURE 7.2. slope reduction of slant ranges.^

^ 7.2 Electromagnetic radiation

Light, radio waves and many other forms of radiation are examples of
electromagnetic radiation.

In physics, it has been long considered whether visible light is a wave
motion (Huygens) or a stream of particles (Newton). The finding of inter-
ference phenomena resolved the controversy in favour of the wave-motion
theory. This was also decisively helped by the development, by James
Clerk Maxwell,4 of the field theory of electromagnetism, which, using4

partial differential equations, presents electromagnetic waves as a natu-
ral wave phenomenon occurring in this field. Maxwell even succeeded in
calculating theoretically the propagation speed c, which was close to the
already observed speed of light. . .

Being a wave motion, electromagnetic radiation has a phase φ. Whenvaihe

we describe a wave motion as the projection of a uniform circular motion
onto one dimension5 (figure 7.3), then φ is the angle at the centre of5

−→ t

φ

FIGURE 7.3. The phase φ of a wave motion as a function of time t. The name
“phase” probably originates from the Moon’s phases.^

4James Clerk Maxwell FRS FRSE (1831–1879) was a Scottish mathematical physicist
who set the theory of the electromagnetic field on a mathematical footing, and also
contributed essentially to theoretical thermodynamics.

5Equivalently: as the real part of the complex wave function exp(iφ)= cosφ+ isinφ.
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Electromagnetic radiation 7.2 189
that circle that measures this uniform motion. The relationship between
phase φ and frequency f is

φ(t)=φ(t0)+2π f (t− t0),

in which t is time and t0 reference time. Clearly, the phase is periodic and
repeats after one cycle, or 2π. Therefore we may always reduce the phase
angle to the interval

[︁
0,2π

)︁
without changing its physical meaning.

Nowadays one can measure the wavelengths and frequencies of the
various forms of electromagnetic radiation very precisely; between them
there is the relationship

λ f = c,

in which f is the frequency and λ the wavelength. The quantity c is the
speed of light (in vacuum), which according to Einstein — or actually
already Maxwell — is a constant of nature. See figure 7.4.

However, quantum theory has made the particle model relevant again.
Light can be described as a stream of particles, photons, the energy of
each of which is

E = hf ,

in which h is Planck’s6 constant. The particle model is especially fertile 6

for high energy levels, the left side of figure 7.4.

The electromagnetic field is a vector field. Therefore electromagnetic
radiation is a transversal wave motion, and may be polarised.7 Figure 7.5 poikittainen

aaltoliike
76Max Karl Ernst Ludwig Planck (1858–1947) was a German physicist and organiser of

German physics. He is remembered for his discovery that the thermal radiation spec-
trum of a black body is caused in a natural way by the quantisation of electromagnetic
radiation.

7The correct understanding of polarisation was the achievement of Thomas Young
(1773–1829) and Augustin-Jean Fresnel (1788–1827). In studying polarisation, a cer-
tain mineral, clear calcite (CaCO3), Iceland spar, had a central role. The crystal is
birefringent (“doubly refracting”) and splits light into two parts according to their direc-
tion of polarisation. Apparently the Vikings used it in navigating by the Sun in overcast
weather. The Dutch Christiaan Huygens (1629–1695), the father of the wave theory of
light, spent ample time on the experimental study of Iceland spar.

Another background story links polarisation to the chemistry of life. Chiral (non-mirror-
symmetric, “handed”) molecules, like sugar, rotate the plane of polarisation of light
passing through them: optical activity. Already Louis Pasteur (1822–1895) was studying
the background of the optical activity of organic tartaric acid, and today we know that
the phenomenon is linked to the chirality of life itself, its “handedness”, like the winding
direction of the helix of the DNA molecule. The polarimeter is a vital tool in the medical
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Väisälä interferometry 7.3 191
shows both linearly and circularly polarised radiation. One can choose
two independent directions of polarisation, for example up-down and left-
right, of which all others can be composed by combination. For example,
circularly polarised radiation is obtained by combining two mutually
orthogonal, linearly polarised rays with a phase difference between them
of π

/︁
2. This also works the other way around: by combining clockwise

and anti-clockwise circularly polarised rays, one obtains again a linearly
polarised ray.

An intermediate form between linear and circular polarisation is repre-
sented by elliptically polarised radiation, the field vector of which turns
along an ellipse-shaped path.

In particle language one might say that the electromagnetic field is
the quantum theoretical wave function of the photon, which thus is a
vector-valued function. The photon is a vector particle, having an intrinsic
angular momentum, or spin, of magnitude h

/︁
2π . This spin — which may

be visualised as an angular-momentum vector — may be oriented along pyörähdys-
momenttithe flight direction, or opposite to it, which corresponds to either clockwise

or anti-clockwise circular polarisation. Linearly polarised radiation may
again be described as an equal mix of both spin directions (Wikipedia,
Photon polarization).

^ 7.3 Väisälä interferometry

One classical distance measurement technique which continues to be in
use is Yrjö Väisälä’s white-light interferometry technique, invented as
early as in the 1920s, for the precise measurement of the lengths of long
baselines. See figure 7.6. perusviiva

The method works as follows. White light travels from a source to the
observation instrument along two paths:

◦ directly, by being reflected from the far mirror

◦ by being reflected multiple times — in the figure, four times — back
and forth between the near mirrors.

The light used is white and contains all the different wavelengths that
make up white light. Therefore the coherence length of the light is very
short, only 1.3µm.

and food industries.

Iceland spar was also used in military equipment, for which reason it was long classified
as a strategic material (Cicala, 2013).
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FIGURE 7.5. Polarisation of electromagnetic radiation. The arrows show the
field vector E. On the left, a linearly polarised wave motion; on the
right, a circularly polarised wave motion. Photograph of Iceland
spar Wikimedia Commons, A calcite crystal.^

This is why the interference fringes will only show up if both paths are,
at this accuracy, equally long:8 so, if the distance of the far mirror is a8

multiple of the distance between the near mirrors.

This enables the multiplication of a given distance. Say that the dis-
tance between mirrors 0 and 1 is precisely 1m. Then we can, using
interference, place the far mirror at distance 6m — precisely. After that,
we take mirror 1 away, and using the same method, using now the mirror
pair 1 and 6 as near mirrors, place the far mirror at 24m. And so on. . .

In practice, this does not quite work this way. There will always remain
a small difference between the path lengths, which is eliminated and
at the same time measured, using a turnable glass plate of constant
thickness: a compensator plate.

The instrument described is actually an analogue optical correlator.
See figure 7.7. We will go deeper into the correlation method in subsection
12.5.1, in connection with the GPS.

Realising the original distance of one metre between the 0 and 1 mirrors
is not quite simple, either. This uses a one metre long quartz gauge,9kvartsimitta

9

8This is why laser light will not do! It would produce interference fringes even when
the distances are unequally long.

9Calibrating those precisely is again a story of its own. . .
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FIGURE 7.6. Väisälä’s interference method.^

which is allowed to touch the surface of one mirror. In the air gap between
the other mirror and the end of the gauge — which has been polished to
be slightly convex — Newton rings will now show, an interference pattern.
By observing the rings in sodium light, the width of the air gap can be natriumvalo

determined.

The Väisälä interferometry method is extremely time consuming. Mea-
surement conditions are suitable only very rarely for measuring the
longest distance, 864m. Moreover, setting up the mirrors, their orien-
tation, and the transfer of their measured places to the underground
permanent markers by projection measurements, is a complex operation
demanding its own time. During measurements, the air temperature
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Analogues in geodesy:
◦ Väisälä white-light interferometry
◦ GPS measurement with pseudo-random

codes
◦ VLBI — very long baseline interferometry
◦ Plate tectonics, sea-floor magnetic stripes

FIGURE 7.7. Dendrochronology: dating of wood using tree rings.^
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is continuously read from precision thermometers suspended all along
the line, providing gainful employment and physical exercise to two
measurement assistants.

The method has been used for measuring baselines as long as 8641010

metres in Nummela, Finland, and in many places around the world.
The precision achievable is at its best ±0.02mm. The interference mea-
surement itself is more precise still: the bottleneck is the projection
measurement, the transfer of the measurement values from the mirrors
to the underground markers.

^ 7.4 Electronic distance measurement

^ 7.4.1 The speed of light

The speed of light in a vacuum is a constant of nature. Apparently Galileo
(1564–1642) already tried to measure it in 1638 using two lamps and an
assistant: a cover was taken off one lamp, and the assistant on another
hill responded in the same way. Of course the result was useless: the
speed of light would, according to the experiment, be very large, possibly
infinite.

The first terrestrial distance measurement devices or range-findersetäisyysmittari

were developed to determine the speed of light. The prototype of the
method is Fizeau’s11 instrument, consisting of a light source, a reflector11

and a rapidly spinning camwheel. If the wheel spins at the right speed,hammaspyörä

light leaving through an opening between the teeth will on return be
blocked by a tooth. With a slightly greater or smaller rotation speed,
however, some light will get through. In Fizeau’s tests, the distance
measured was 8.6km.

Fizeau’s camwheel is a primitive modulator. Nowadays electronic or
electro-optical modulators are used, the task of which is to vary or modu-
late the intensity of outgoing light periodically at a certain frequency.

10864= 2×2×3×3×4×6.

11Armand Hippolyte Louis Fizeau MIF FRS FRSE (1819–1896) was a French physicist.
He also measured the speed of light in flowing water and found in it an anomaly which
only special relativity could explain. He is one of the 72 French scientists and engineers
whose names were inscribed on the Eiffel Tower, outside and below the first balcony
(Eiffel Tower, 72 names).
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FIGURE 7.8. Fizeau’s method for measuring the speed of light. The distance
used for the 1849 measurement was from Montmartre to Mont
Valérien, in the municipality of Suresnes, 8633m.^

^ 7.4.2 Electronic distance measurement instruments

When the superior accuracy of the devices developed to determine the
speed of light became clear, the picture changed. Today, the speed of light
in a vacuum is no longer measured: instead it is a quantity derived from
the definitions of the metre and the second (subsection 2.1.4) which has
the conventionally agreed value of exactly 299792458m

/︁
s .

Electronic distance measurement devices or range-finders can be of
three types of construction:

◦ separate: the device is placed into the forced-centring device. This pakkokeskistys-
laitesolution has become rare due to the devices becoming ever smaller.

◦ a separate part that is locked onto the theodolite’s measuring tele-
scope. This solution has also become impractical:

– An instrumental tilt correction must be made.

– For example, the classical Distomat range-finder was placed
on top of the theodolite’s telescope, preventing it from being
plunged through to the other face. kojeasento

◦ integrated with the theodolite. One speaks of a coaxial solution: the
light moves in both directions through the theodolite’s measuring
telescope and uses the same optics.

Electronic distance measurement is, based on the frequency range used,
divided into two main types:
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∆t = t− t0

Clock
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−→ t
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FIGURE 7.9. One method of electronic phase measurement: zero phase starts /
stops an electronic counter or “clock”.^

◦ electromagnetic, using microwaves. This is obsolete as a terrestrial
method — but satellite positioning also uses microwaves!

◦ electro-optical:

– visible light, white: Mekometer

– laser light or light-emitting diode (LED), visible or near in-hohtodiodi

frared. Monochromatic.

Independent of the device type, the measurement takes place by modulat-
ing either light (or infrared) or radio waves (microwaves) with a certain
frequency, and measuring the phase difference between the outgoing ra-vaihe-ero

diation and the radiation returning from the target. Electronic phase
measurement can be very precise, but does not tell us how many whole
wavelengths fit in the distance: the ambiguity problem.

The travel time of the signal is

∆t =
(︂
∆φ
2π +N

)︂
1
f ,

in which f is the frequency, ∆φ the measured phase difference in radians,
and the integer N the unknown ambiguity. Because the measured phasekokonaisluku-

tuntematon difference is assumed to lie in the interval
[︁
0,2π

)︁
, the measurement is

not yet enough to fix ∆t. We can certainly calculate a possible travel time

∆t = ∆φ2π
1
f ,

but it would be a coincidence if it were the true travel time.

Phase measurement can be done through the measurement of time
differences: when the reference signal passes through zero in the positive
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λ1

λ2

λ3

Common solution
Run time t− t0−→ Sent

Received

FIGURE 7.10. Ambiguities, or integer unknowns, are resolved by using several
wavelengths. The figure shows signals on three different wave-
lengths and assumes that the phase angles of the transmitted
signals are all zero at the moment of transmission t0. The only
possible travel time is the one for which also the calculated phase
angles of all three received signals are identical to their measured
values, here also assumed to be zero. See also figure 13.4.^

direction, it starts a counter, and when the returning measurement signal
does the same, the counter stops and the value is read out. See figure 7.9.

From the phase measurement ∆φ the distance is computed:

s = 1
2 c∆t = 1

2 (c∆t+Nλ)= 1
2

(︂
∆φ
2π +N

)︂
λ,

in which λ= c
/︁

f is the wavelength, and N ∈Z an unknown number of
whole wavelengths. Determining the integer unknowns or ambiguities N
is a similar problem as seen in connection with GPS carrier-phase mea- kantoaallon

vaihesurements. In a range-finder, several different modulation frequencies
f i (or, equivalently, wavelengths λi = c

/︁
f i ), are used, which have been

chosen so that only one distance s, and corresponding travel time ∆t, is
compatible with integer-valued unknowns Ni for all wavelengths. See
figure 7.10.

Nowadays there exist small and inexpensive hand-held range-finders,
which work either based on an infrared beam or an acoustic (ultrasound)
beam. They are handy in construction projects, and even real-estate
brokers use them.

^ 7.4.3 Reflectors

In order for electro-optical devices to work, they need a reflector placed
at the target. Typically, a so-called corner-cube prism is used, figure kuutioprisma

7.11. The principle of operation of a corner-cube prism is based on using
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x

y

−→z

FIGURE 7.11. Corner-cube prism.^

three reflective surfaces that are perpendicular to each other, of which
the first inverts the x co-ordinate of the light ray to the −x direction, the
second, the y co-ordinate to −y, and the third, the z co-ordinate into the
−z direction. The end result is a complete inversion of the light ray:⎡⎢⎣ x

y
z

⎤⎥⎦ =⇒

⎡⎢⎣ −x
−y
−z

⎤⎥⎦ .

The light ray hitting the prism will be reflected back in precisely the
opposite direction, independently of which direction it came from — as
long as it is within the prism’s opening angle.

Over short distances, reflective stickers can also be used, or the light
be reflected by the target itself, without aids. Then, the accuracy of the
measurement is not necessarily the best possible!

Over longer distances one may use, instead of a single prism, an as-
sembly of three prisms. Over very long distances (tens of kilometres)
one can combine many prisms into a “pack”, figure 7.12. Nowadays such
distances (vectors) are however measured using GNSS.

The prism assembly fits into a forced-centring device.

Warning When using a signal equipped with a prism, one may not placetähys

the theodolite’s crosshairs on the prism “crosshairs”! It likely ishiusviiva-
ristikko not aiming straight, and was never meant to be used for this. Use

the triangular markings on the signal instead, figure 7.13.

^ 7.4.4 Instrumental errors of electronic range-finders

The systematic instrumental error of an electronic range-finder consists
of two parts:
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FIGURE 7.12. A prism pack for measurement over long distances.^

◦ the zero-point or constant error

◦ the scale or frequency error.

The constant error is an instrumental constant to be determined by
calibration. The frequency error is a scale error, which is also determined
by calibration: frequency calibration.

The constant or zero-point error is caused by the circumstance that the
electric centre of the instrument is at a different place than its nominal
one. Inside the device, the signal path may contain unknown delays. The
constant error may depend on temperature, may change slowly over time
(“drift” or “creep”), and may change in connection with repairs. For this käynti,

ryömintäreason, regular calibration is recommended.

(a)
Not like this. . .

(b)
. . . but like this

FIGURE 7.13. Incorrect and correct targeting at a signal equipped with a corner-
cube prism.^
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^ TABLEAU 7.1. Calculating the constant and frequency error of a range-finder by
linear regression.

In order to calculate — estimate — the constant error a and the frequency error
V from measurements on a calibration baseline, we use the following standard
pair of equations for linear regression:

ˆ︁V =
(︄

n
n∑︂

i=1

si∆si −
n∑︂

i=1

si

n∑︂
i=1

∆si

)︄/︄(︄
n

n∑︂
i=1

(︁
s2

i
)︁− (︂ n∑︂

i=1

si

)︂2
)︄

,

ˆ︁a = 1
n

(︄
n∑︂

i=1

∆si − ˆ︁V n∑︂
i=1

si

)︄
.

In this, n is the number of calibration distances si used, at least 2. ∆si is
the difference: measured distance minus nominal distance, for each distance
measured.

The reflector also has a zero-point error, and often, the sum of the
zero-point errors of the instrument and reflector together are stated.

◦ The frequency error is often determined in the laboratory using a
precise frequency standard:

V = fmeasured − fnominal
fnominal

. (7.3)

In this, fmeasured is the frequency value obtained in calibration mea-
surements in the laboratory, and fnominal is the frequency value
stated by the manufacturer (and acting as the basis for the correc-
tion formulas in the instrument’s firmware).

◦ The constant and frequency errors are determined by calibrating
the instrument on a precise baseline:

s′i = si −a−Vsi,

in which

s′ “correct” distance given by the baseline

s distance as measured by the instrument to be calibrated

i number of the measurement point on the baseline, for exam-
ple the number of the pillar.

We write
∆si

def= si − s′i = a+Vsi
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and solve for a and V by means of linear regression, tableau 7.1.

Of course obtaining a good calibration result requires the use of
a sufficiently long calibration baseline. On a short baseline one
can only determine a with sufficient accuracy. On the other hand,
for many distance measuring devices, the electronic signal can be
taken out and compared with a frequency standard directly, without
using a baseline.

Thus, the instrumental correction for distance measurement is obtained:

s′ = s−a−Vs,

in which

s′ corrected distance

s measured distance

−a instrumental constant or zero-point correction

−V instrumental frequency correction.

The random total error of distance measurement, that is the mean error
of the measurements, also generally depends on the length of the distance
measured. An often-useful formula is

σ=α+βs,

in which α is the random error for zero distance, β the distance-dependent
random error, and σ the mean error of the observations computed from
these. Here it is assumed that systematic errors — like constant error
and frequency error — and the necessary observation reductions have
already been taken care of as corrections.

^ 7.5 Ray propagation in the atmosphere

Light — and other electromagnetic radiation like infrared or radio waves
— travels slower in air, like in other media, than in a vacuum. The
slowing-down effect of the medium is expressed by the index of refraction taitekerroin

n. The definition of the index of refraction is

n = c
c′ ,

in which c′ is the speed of light in air, and c the speed of light in a vacuum,
a constant of nature. Because air is a gas, a low-density medium, the
values of n are always very close to unity. Therefore a definition is also
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used that gives the deviation of the index of refraction from unity, in units
of ppm, parts per million:

N = 106 (n−1) .

The index of refraction of air for the wavelengths of visible light is, accord-
ing to the following approximate formula accepted by the International
Association of Geodesy IAG at its general assembly of 1999 in Birmingham
UK (Rüeger 1996, page 55 , Anon., 1999):

NL = N0 (λ)
273.15K

T
p

1013.25hPa − 11.27K
/︁

hPa

T e, (7.4)

in which1212

N0 (λ) index of refraction of the light used (wavelength λ) in dry air
under the following standard temperature and pressure conditions:
T = 273.15K= 0◦C, p = 1013.25hPa, e = 0.0hPa

T air temperature, unit kelvin (K), i.e., absolute temperature

p air pressure, unit hectopascal (hPa), or millibar (mbar)

e partial pressure of atmospheric water vapour (“absolute humid-
ity”), also in units of hectopascal.

N0 depends only on the wavelength λ of the light used. An approximate
formula for its calculation is

N0 = 287.6155+ 4.8866µm2

λ2 + 0.0680µm4

λ4 . (7.5)

This is the group index of refraction, which differs from the phase indexryhmä- ja vaihe-
taitekerroin of refraction.13 In connection with electronic and electro-optic distance

13
measurement equipment one must use the group index of refraction,
because information travels in the modulations on the carrier wave,kantoaalto

which propagate at group speed.

Example For a helium-neon laser (wavelength λ= 632.8nm) equation
7.5 yields N0 = 300.243.

12Yes, the small anomalous water-vapour effect is treated as non-dispersive!

13In fact, the phase index of refraction is similarly (Anon., 1999):

N0 = 287.6155+ 1.62887µm2

λ2 + 0.01360µm4

λ4 .
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The index of refraction for microwaves again is

NM = 77.624K
/︁

hPa

T (p− e)+ 64.70K
/︁

hPa

T

(︂
1+ 5748K

T

)︂
e. (7.6)

Unlike the index of refraction for light and infrared, the microwave
index of refraction in the troposphere is not dependent upon wavelength.
However, the propagation of microwaves in the ionosphere is an entirely
different matter relevant to satellite positioning; see subsection 12.7.3.

As an interesting detail, we may still note that, at a temperature of
T = 273.15K, in the index-of-refraction equation for microwaves 7.6 the
ratio of the effect of e to the effect of p − e (dry-air partial pressure)
is over twenty times larger than in the visible-light index-of-refraction
equation 7.4!

Index p− e e Ratio

Optical 0.29630 0.25504 0.86075
Microwave 0.28418 5.22133 18.373

Microwaves are thus very sensitive to water vapour,14 which is one 14

of the drawbacks of this measurement technique. This problem is also
manifest with GPS measurements.

The index of refraction of air affects the measured distance in the
following way:

s− s′ = (n−1) s, (7.7)

in which s is the measured distance, and s′ the true distance, which
would have been measured in a vacuum. The refraction correction is now
applied as follows:

s′ = s+∆sn,

in which
∆sn =−(n−1) s =−10−6Ns

is the correction. In the literature, the symbol K ′ is used for this. Because
the correction is so small, it is permissible to use an approximate value likiarvo

for the distance s.

14This is caused by the non-symmetry and large dipole moment, or chemical polarity, of
water molecules: in the H2O molecule, the angle between the two O–H bonds is 104◦. 5.
This is also one reason why water is a liquid at room temperature, and such a good
solvent, and why a microwave oven is such a useful device for preparing food. Almost
all other molecules in the atmosphere, like N2, O2, CO2, Ar, and CH4, are non-polar,
and gases. Wikipedia, Chemical polarity.
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^ 7.6 “Curvature corrections”

In distance measurement, the “curvature corrections” are second-order
corrections: they are significant only when the distance of measurement
exceeds many kilometres. Therefore they are inconsequential in detail orkartoitus-

mittaus lower-order base-network surveys.
runkomittaus

Because base-network surveys are nowadays done almost exclusively
X

using GNSS, these corrections are mostly of historical interest, and we
present them only briefly. More detailed expositions are found in the
literature, for example Rüeger (1996, 2002).

In the equations for curvature corrections, the refraction coefficientrefraktiokerroin

k, which we already encountered in connection with zenith-angle mea-
surement (subsection 6.8.1), appears again. There are four different
corrections:

The measurement-ray curvature correction The curving of the
measurement ray causes a lengthening of the path. The measured
distance is, for this geometrical reason, longer than the true
distance. The equation for the correction is

∆sρ =− s3

24ρ2 =−k2 s3

24R2 , (7.8)

in which k is the refraction coefficient, R the radius of the Earth,
and s the distance.

The Earth’s surface curvature correction After various reduction
stages, the straight-line distance between the two projection points
on a reference surface is usually obtained. It is, however, the longer
distance over the curved Earth’s surface which is wanted. The
equation for this correction is

∆sR = s3

24R2 .

The “second velocity correction” Usually, the effect of refraction on
the propagation of the measurement ray is evaluated based on
weather observations — measurements of air pressure, temper-
ature, and humidity — made at both ends of the path. For very
long paths, these measurements are no longer representative of
the whole ray path.

The second velocity correction is a systematic effect caused by the
ray curvature differing from the curvature of the Earth’s surface,
together with the strong vertical gradient of the air pressure —
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A P B

nP ̸= 1
2 (nA +nB)

FIGURE 7.14. The second velocity correction: on a curved Earth, the indices
of refraction at the end points of the measurement path are not
representative.^

and thus the index of refraction. When the curvature of the ray
path is smaller than that of the Earth’s surface, at longer distances
the path will “dive” deeper into the Earth’s atmosphere than what
the end points of the path are telling us. See Rüeger (1996) page 81.
The computational formula — the derivation of which is laborious
— is

∆sn′ =−k (1−k) s3

12R2 .

The literature calls this correction K ′′.

All three corrections can be combined into one equation:

∆sρRn′ =∆sρ+∆sR +∆sn′ = (1−k)2 s3

24R2 .

Let us calculate some values, assuming k = 0.2:

s (km) 1 3 10 30 100

∆sρRn′ 0.66µm 18µm 0.66mm 18mm 0.66m

The effect is thus normally very small.

The “terrain correction” The terrain correction of distance mea-
surement (Juhani Kakkuri, personal communication; figure

Terrain

P BA

Isothermal surfaces

nP ̸= 1
2 (nA +nB)

FIGURE 7.15. The terrain correction of distance measurement. Due to the shape
of the terrain, the indices of refraction at the end points of the
measurement path are not representative.^
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∆sR

∆sρ

hBhA

s

A′

A

B

B′
s′

FIGURE 7.16. Reduction of distance measurement to a reference level, equation
7.9.^

7.15; Kakkuri et al., 1981) is caused by the surfaces of equal
temperature within the atmosphere, the isothermal surfaces,
generally following the forms of the terrain. Therefore, in the
same way as in the case of the second velocity correction, the
weather observations at points A and B are non-representative of
the mean value along the measurement path. There is no simple
formula for this phenomenon.

^ 7.7 Geometric reductions

^ 7.7.1 Reduction to a reference surface

Thanks to the above described “curvature corrections”, the original mea-
surement was reduced for the curvature of both the measurement ray
and the Earth’s surface. Thanks to corrections ∆sn and ∆sn′ the delays
by the atmosphere were also taken into account. The measurement path
is however still sloping and above the Earth’s surface.

The correction, or reduction, to a chosen reference level corrects both the
slope of the measured distance in space and its height above the chosen
reference surface. The following may be chosen for reference surfaces:

◦ sea level

◦ the surface of a reference ellipsoid

◦ the height of a locally defined reference surface (“zero level”).

The reduction is carried out as follows:

(s′)2 = s2 −∆h2(︁
1+ hA

/︁
R
)︁(︁

1+ hB
/︁

R
)︁ , (7.9)
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^ TABLE 7.2. Examples of distance reductions.

s = 100m 1km 10km 100km

hA = 0 hB = 10m −0.50m −51mm −13mm −79mm
hA = 0 hB = 100m - −5.0m −0.58m −0.83m
hA = 0 hB = 1000m - - −51m −13m

hA = 100m hB = 100m −1.6mm −16mm −0.16m −1.6m
hA = 1000m hB = 1000m −16mm −0.16m −1.6m −16m

in which s is the measured slant range in space, s′ the reduced distance
(meaning the distance between the points A′,B′ projected onto the refer-
ence surface, see figure 7.16), hA = AA′ and hB = BB′ the heights of the
points from the reference surface, ∆h = hA −hB, and R the (approximate)
radius of curvature of the Earth. The heights of the theodolite and signal
are included in the heights hA and hB.

An approximate equation for when ∆h ≪ s (and of course hA,hB ≪ R)
is

s′ ≈ s− ∆h2

2s − s hA +hB
2R .

An advantage of this equation is, that it gives separate terms for the
influence of path slope and path mean height.

Table 7.2 gives some examples of corrections s′− s. It is seen that this
correction can be already substantial also for short distances.

Modern theodolites and total stations are able to compute, in addition takymetri

to device-specific corrections, at least the slope reduction of the measured
range.

^ 7.7.2 Map-projection reduction

A map-projection scale reduction is needed if we wish to have, instead of
the length of an arc reduced to the reference ellipsoid sell, the length in
the map plane, the projected length sproj. For example, in the case of the
Gauss–Krüger projection, as used in Finland, the approximate reduction
is done as follows:15 15

sGK = sell

(︃
1.0+ y2

A + yA yB + y2
B

6R2

)︃
, (7.10)

in which the distance s is between the points A and B, map co-ordinates
(xA, yA) and (xB, yB). Here, y is the raw distance from the central merid-
ian, without the false easting 500000m.

í  Õ ! ¤.� û



7208 DISTANCE MEASUREMENT

This reduction depends on the map projection chosen, and is thus
different for different map projections. For example, the equation for the
Universal Transverse Mercator (UTM) projection is otherwise the same
as 7.10, but the constant — the scale on the central meridian — is 0.9996
instead of 1.0.

^ Self-test questions

1. In what kinds of situations would tape measurement be an sensible
option?

2. Derive the approximate slope correction ∆ℓ⊥, equation 7.2, ex-
pressed in the slope angle α in degrees. Assume a small angle.

3. What is the relationship between wavelength and frequency for
electromagnetic radiation?

4. What is the relationship between frequency and the energy of a
photon for electromagnetic radiation?

5. What is the polarisation of electromagnetic waves?

6. Describe the correlation process between two identical but random
signals. Why must the signals be random?

7. Describe ambiguity resolution in electronic distance measurement.

8. What are the factors affecting ray propagation in the atmosphere,

15The derivation starts from the scale of the Mercator projection on the sphere being,
close to the equator,

m = 1
cosϕ

≈ 1
1− 1

2ϕ
2
≈ 1+ 1

2ϕ
2 ≈ 1+ 1

2
x2

R2 ,

in which x is the metric distance from the equator. For a transversal Mercator projection,
this becomes

m = 1+ 1
2

y2

R2 ,

with y the distance from the central meridian. As clearly the scale distortion is quadratic
in y, it will be, on a straight line on the map, a quadratic function of place along the
line. Then, calculating the mean scale along the line by Simpson integration, equation
10.4, will be exact. As follows (M is the midpoint between end points A and B):

mAB = 1+ 1
2

1
R2 · 1

6

(︁
y2

A +4y2
M + y2

B
)︁= 1+ 1

12R2

(︁
y2

A + (yA + yB)
2 + y2

B
)︁=

= 1+ 1
12R2

(︁
2y2

A +2yA yB +2y2
B
)︁= 1+ 1

6R2

(︁
y2

A + yA yB + y2
B
)︁

,

from which the result 7.10 follows.
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for visible light and for microwaves?

9. How are range-finders calibrated?

10. How are distance measurements reduced to a reference surface?

11. Prove equation 7.8, by defining ψ def= s
/︁
ρ , the angle at the centre of

the circular-arc beam path, so that

∆sρ = ρ
(︁
2sin 1

2ψ−ψ)︁ .

Use the Taylor expansion for the sine function.
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^ Base-network and detail-survey
measurement

88
[. . . ] Komitea [Karttakomitea] sitten ehdottaa

toimenpiteenä tarkan karttalaitoksen aikaansaamiseksi,
että perustettaisiin Geodeettinen kommissioni, jonka tulisi

toimittaa: 1) karttalaitoksen pohjaksi tarvittavat
perustavat työt, 2) geodeettiset täytetyöt, 3) topografinen

peruskartta mittakaavassa 1 : 20,000, Ensimäinen ryhmä
käsittäisi ensiluokan kolmiomittaukset ja

tarkkavaakituksen ja toinen ryhmä pääasiallisesti
alemman luokan kolmiomittaukset. [. . . ]

Finnish Geodetic Institute director Ilmari Bonsdorff (1920)

^ 8.1 Objective and planning of base-network measurement

The task of base-network measurement is to create, through a network runkomittaus

hierarchy, the geometric foundation for mapping the country. For this
purpose a permanent, sufficiently dense and precise benchmark set is kiintopisteistö

created to which the local measurements of the various user groups will
be tied. The co-ordinates of the benchmarks are known in the national
co-ordinate reference frame, and by using them, the locally measured
points and drafted maps will also be in the same frame.

Benchmarks are used both in detail surveys for mapping, and in setting kartoitus-
mittaus
maastoon
merkintä

out plans onto the terrain — “the inverse problem of mapping”.

The planning of base-network measurements starts from taking an
inventory of the existing situation and an analysis of needs. The goal is
to build a sufficiently precise and dense set of benchmarks, at a minimum
cost. It pays off, however, to plan it for the future, especially in choosing
the benchmark substrate and in monumentation. Possible future building kiintopiste-

alustaactivity is also taken into account in the choice of location, as this may
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destroy a point or render it useless by destroying the visibility conditions
for measurement: in the case of theodolite measurement, intervisibility
between points, in the case of satellite measurement, sufficient visibility
of the sky from the point.

Reconnaissance is part of the detailed planning of a network: an on-the-rekognosointi

spot check that the measurements can be carried out as planned. Before
reconnaissance, a “map reconnaissance” is done, in which the situation
is judged from the office. If new points are created, a clear and useable
point description must be drafted for every point, with the aid of whichpistekortti

also others can find it.

In addition to precision, attention must also be paid to reliability.
Reliability means that possible gross measurement errors are noticedkarkea virhe

with the greatest possible ease, and that the effect on the end result — the
co-ordinate solution — of the greatest possible gross error that remains
undetected is as small as possible. To this end, there must be sufficient
redundancy in the network: the measurement plan should always contain
enough extra measurements above and beyond the required minimum.

Nowadays, instead of the traditional solution — a triangulation net-kolmiomittaus-
verkko work densified by traverses — GNSS networks are commonly measured.

monikulmiojono Those, too, need to be designed right, meaning hierarchically, and the
measurements must be planned so that the accuracy and point-density
objectives are achieved in an economical way.

The following alternative methods are on offer for base-network mea-
surement:

◦ satellite positioning (GNSS)

◦ traditional terrestrial measurement using total stationstakymetri

◦ photogrammetric aerotriangulation.ilmakolmiointi

The choice is dictated by the purpose of use — accuracy requirements
and size of and ease of movement within the area — as well as by the
visibility conditions at the points.

Measurement technology for base networks has, with satellite posi-
tioning, undergone a revolutionary change. Traditionally, base-network
measurements were done for the horizontal using triangulation and
traversing, and using precise levelling and lower-order levelling for mea-
suring heights. Nowadays, satellite positioning is always used if at all
possible. There are however situations where traditional techniques hold
their own, like tunnel and mine surveying where the sky cannot be seen.
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A good introduction to the subject is Salmenperä (1998), on which this

presentation is partly based.

^ 8.2 Guidance and standards

Many different standards and guidance documents exist to ensure the ohjeistus

quality and effectiveness of geodetic measurements. We present here
only those with a clear official status.

Important guidance was provided by the Zoning Survey Guide (“Kaa- Kaavoitus-
mittausohjeetvoitusmittausohjeet”) of the Finnish National Land Survey (Anon., 2003).

The guidance concerns base-network measurement, detail survey, aerial
mapping, and the drafting of a zoning base map, as well as documenting kaavan

pohjakarttathe work.

Base-network measurement, co-ordinate reference systems, map projec-
tions, and zoning surveying has of late been the subject of guidance by
JUHTA, the Advisory Committee on Information Management in Public
Administration, who publish the series JHS, Recommendations for Infor-
mation Management in Public Administration. In 2013 it was decided
that from then on, the guidance concerning zoning surveying would be
published in the JHS series.

Of the guidance documents relating to these subjects, we may mention
the following on-line publications, unfortunately only in Finnish:

◦ JHS 196: EUREF-FIN co-ordinates in Finland (JUHTA, 2016a).

◦ JHS 197: EUREF-FIN co-ordinate systems, related transformations
and map-sheet division for ETRS89 (JUHTA, 2016b).

◦ JHS 163: Finland’s height system N2000 (JUHTA, 2010).

◦ JHS 178: Interface for geographic information services for local
authorities. This document defines an interface called kuntaGML1 1

(a variant of Geographic Mark-up Language) (JUHTA, 2012a).

◦ JHS 184: Point measurement in the EUREF-FIN co-ordinate reference
system (JUHTA, 2012b).

◦ JHS 185: Composing base maps for the city. This replaces in part the
earlier Zoning Survey Guide and the Zoning Base Map Guide (“Kaa-
van pohjakartta”) by the Finnish National Land Survey (JUHTA,
2014).

Terminology work also represents important standardisation work in the sanastotyö

1The name translates as “municipalityGML”.

í  Õ ! ¤.� û



8214 BASE-NETWORK AND DETAIL-SURVEY MEASUREMENT

^ TABLE 8.1. Methods for base-network measurement.

Areal
extent

Order Traditional
methods

Modern
methodsOld New

Global - - - GNSS, VLBI, satellite
laser, DORIS

1000km - E1 (Stellar
triangulation)

GNSS, continuously
operating (FinnRefTM)

100km I E1, E1b, E2 First-order
triangulation

GNSS, EUREF-FIN

densification

10km II, III E3 Lower-order
triangulation

GNSS, static

1km IV, V E4 Traverses, aero-
triangulation

GNSS, aerotriangulation,
RTK with caution

Finnish-language area. Let us mention the Vocabulary of Geoinformatics
(Sanastokeskus TSK, 2018) drafted in collaboration by the National Land
Survey and the Finnish Terminology Centre TSK.

Guidance and standardisation is always a work in progress.

^ 8.3 Network hierarchy and classification

During the past quarter of a century, almost all base-network measure-
ments have already been done using the satellite positioning technique
— with the exception of precise levelling, for technical reasons (the geoid
problem). Table 8.1 catalogues the technologies used back then and now
in connection with base-network measurement.

The table also illustrates well the concept of network hierarchy: more
local networks are always tied to more extensive ones, which serve as
the former’s “formal truth”. The order of operations is always from the
large to the small: first the most extensive networks are measured, which
are then densified with measurements in a smaller area. In this way, a
benchmark set is obtained thatkiintopisteistö

◦ Covers the whole country.

◦ Is dense enough: construction requires starting points sufficiently
nearby, at most a few hundred metres from the project area and
from each other.

◦ Is of homogeneous quality.
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(a)
A hierarchical level is forgotten in between

(b)
Use of two different hierarchy paths in the same measurement

FIGURE 8.1. The significance of network hierarchy, and mistakes often made.
Not like this. . . but like this.^

The hierarchical method is meant to prevent the unpleasant situation
from occurring in which neighbouring points have co-ordinates deter-
mined for them along different paths, so that the relative location preci-
sion between them is weak.

The new measurement technologies mentioned in the table will be
discussed in later chapters.

The planning of fundamental geodetic works in Finland started already
before independence, and the work started immediately after (Bonsdorff,
1920). The network of the first-order triangulation mentioned in the kolmiomittaus

table comprises 364 points and covers the whole territory of Finland. The
network was measured by the Finnish Geodetic Institute during 1919–
1987. Lower-order triangulations and traverses were measured by the jonomittaus

then National Board of Survey, today the National Land Survey. Local
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FIGURE 8.2. The Finnish continuously operating GNSS network FinnRef™, sta-
tus 2018. The stations collect GNSS measurements continuously at
a rate of one measurement event per second. The data centre is at
the Finnish National Land Survey’s Geospatial Research Institute
FGI in Masala, Kirkkonummi, 30km west of Helsinki.^

measurements were carried out by many players, such as municipalities.
In a similar way (JUHTA, 2012b) the points of orders E1 and E1b were
measured by the Finnish Geodetic Institute, whereas the orders E2
and E3 were measured by the National Land Survey and the Finnish
Maritime Administration. E4 and the use-point orders E5 and E6 are
measured by municipalities.
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FIGURE 8.3. The Finnish EUREF-FIN first-stage densification network, detail.
These points, together with the FinnRef™ points, form the E1
order.^

Today, the highest level in the Finnish national GNSS network hierarchy
is formed by the continuously operating GNSS network FinnRef™. Earlier
on it consisted of 13 stations, in 2012–2013 a renovation was carried
out, bringing it up to 20 stations. The observations are collected by the
Finnish National Land Survey’s Geospatial Research Institute FGI, the
former Finnish Geodetic Institute. In 1996–1999 the FGI carried out a
two-stage EUREF-FIN densification using the static GPS measurement
technique, comprising in total some 450 points. The network of the first
stage consists of 100 points, see figure 8.3 and JUHTA (2016a). It was
measured in 1996–1997. Together with the continuously operating GNSS

network FinnRef, it forms the modern order I, or E1. Together they
determine the EUREF-FIN co-ordinate reference frame. The other EUREF-

FIN densification phase, which was measured in 1998–1999, comprises
350 points, and was designed to offer easier-to-reach points for practical
measurements. Its order is E1b.

The National Land Survey has already for many years carried out base-
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network measurements using the static GNSS measurement technique:
there are some 2000 points of order E2, the measurements of which are
tied directly to points of orders E1 and E1b. In recent years, kinematic
GNSS measurement (RTK, real-time kinematic) has become common intosiaikainen

lower-order base-network measurements, although its suitability for this
has been credibly questioned. The technique should not be used without
adequate reliability safeguards (JUHTA, 2012b).

A good description of the co-ordinate solutions used in Finland and the
relationships between them is given in Häkli et al. (2009).

^ 8.4 The terrain, the ellipsoid and the map plane

Geodetic measurement networks, like a triangulation network or a tra-
verse, are in fact three-dimensional networks, figure 8.4. A logical idea
is then to also carry out the computation of the network, the adjust-tasoitus

ment, three-dimensionally: the point co-ordinates are written three-
dimensionally in the form of rectangular co-ordinates, and every ob-
servable is described as a function of those co-ordinates of the points
between which the measurement takes place. This is how one obtains
the observation equations upon which the adjustment of the network is
based.

Three-dimensional network adjustment is a tempting thought, mostlyverkkotasoitus

because of the simplicity of the underlying idea. The formation of obser-
vation equations is nevertheless complicated, as the measurements are
done, at every point, in instrument co-ordinates; co-ordinates in whichkoje-

koordinaatit the z axis points upwards along the local plumb line. The direction of the
plumb line, which can be measured by astronomical means, is differentluotiviiva

at each point, as seen in figure 8.4.

This means that at least in the observation equations for the horizontal
angles (azimuths) and zenith angles, the direction of the plumb line must
be along. This makes these equations seriously complicated. For slantvinoetäisyys

ranges, on the other hand, the observation equation is simple.

Terrestrial geodetic measurements are always made close to the physi-
cal surface of the Earth, generally between points located on the surface.
Thus we may call the network geometry “quasi-two-dimensional”. It
would also seem to make sense to try to carry out the computations in two
dimensions, on a suitably chosen, mathematically simple computation
or reference surface close to the Earth’s surface. The Earth’s physical
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Triangulation networkTriangulation network TraverseTraverse

Local
plumb line

HorizontalHorizontal

VerticalVertical

Horizontal and vertical
angle measurements

FIGURE 8.4. Geodetic networks are three-dimensional. A triangulation network
and a traverse in space.^

surface with its mountains and depths is however too craggy to serve as
a computation surface.

More suitable computation surfaces are the reference ellipsoid, or —
in a small area — the map projection plane, figure 8.5. In preparation
for computation, the observations are reduced to this computation or
reference surface.

^ 8.4.1 Adjustment on the reference ellipsoid

The reference ellipsoid coincides rather well with the Earth’s surface, and
as a simple mathematical surface it may serve as a computation surface.
Table 8.2 shows the magnitude of the differences between the physical
surface of the Earth and the reference ellipsoid.2 And let us remark still, 2

that humankind lives close to the surface of the solid Earth on land, but
close to the sea surface on the seas: the impression given by the table
exaggerates the thickness of the human living space.

For comparison, the difference between the equatorial and polar radii of
the GRS80 reference ellipsoid is already 21.4km or 0.336%. A “reference
sphere” would be a clearly poorer approximation.

The reference ellipsoid was widely used as a computation surface as
early as in the 19th century, before the existence of computing machinery
and satellite positioning. The mathematics needed is complicated, but
the method is more intuitive: terrestrial geodetic networks are on the

2For comparison: the mountain Olympus Mons on the planet Mars is 22km above its
surroundings, 0.65% of the radius of Mars. Gravity on Mars is only one-third of that on
Earth.
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In the map projection plane,
“straight lines” are curved

FIGURE 8.5. Use of a reference ellipsoid and a map projection plane as reference
surfaces when mapping the Earth.^

Earth’s surface, close to the reference ellipsoid, and the local plumb lines
along which the vertical axes of measurement instruments are aligned

^ TABLE 8.2. Goodness of approximation by the reference ellipsoid: separation
between the physical surface of the Earth and the reference ellipsoid,
both in kilometres and in proportion to the Earth’s radius.

Unit km %

Highest (Mount Everest) +8.8 +0.138
Deepest (Mariana Trench) −11 −0.17
Land mean height +0.84 +0.013
Sea mean depth −3.8 −0.06
Sea surface (geoid) ±0.1 ±0.0016
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are close to the normals to the reference ellipsoid surface.

Nowadays base networks are measured using satellite technology, and runkoverkko

the traditional method has passed into history. GNSS networks are always
adjusted truly three-dimensionally.

^ 8.4.2 Adjustment in the map plane

The adjustment of small, local networks, such as traverses, can be done
without significant error in the map projection plane.

A map projection is always applied in such a way that, first, for a
terrain point, geodetic co-ordinates ϕ and λ are calculated on the surface
of the reference ellipsoid. This is how the projection onto the surface of
the ellipsoid is done. Then, the points on the ellipsoid are projected onto
the map plane.

Of course the curved surface of the ellipsoid cannot be mapped onto
the plane without error. The objects projected are distorted: directions,
distances, surface areas, may all be wrong in the map plane. The map
projection is chosen so, that some aspects that are considered important,
are not distorted. Some other aspects then are distorted, sometimes badly.
For example, a conformal projection maps angles and distance ratios kulmatarkka

correctly, but, as the classical Mercator projection demonstrates, it can
depict surface areas spectacularly wrongly.

In conformal projections, small objects are nevertheless mapped with
their correct shapes: their scales and absolute orientations may be wrong,
but their shapes are correct. For larger objects, the “straight” lines pro-
jected from the ellipsoid are curved in the map plane. In the map plane,
directions may be different from those on the surface of the ellipsoid3 — 3

although in conformal projections the angles are identical.

Expressing and solving the network adjustment problem in the map
projection plane is relatively simple, however it presupposes that

◦ the distance measurements are reduced, first to the reference sur-
face, then to the map projection plane (so the scale reduction of the
map projection has been done).

◦ The map projection is conformal, so the measured horizontal angles
are directly useable without reduction. Projections used for general
maps are conformal, like the Gauss–Krüger and UTM projections

3In the classical Mercator projection they are however identical, a valued property in
navigation at sea.
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FIGURE 8.6. Transferring the geometry for adjustment of a small network to
the map projection plane.^

used in Finland. In Finland, map co-ordinates can thus be used
directly in network adjustment.

◦ The zenith angles between two measurement points A and B have
been measured in both directions, and the angles to be used are
averages of sorts of the measurements: ζA = 1

2 (ζA +200g −ζB),
ζB = 1

2 (ζB +200g −ζA). Then one may calculate heights from the
reference level according to rectangular geometry (see subsection
6.8.3).

◦ Known points, like the starting and closing points as well as the
auxiliary points of a traverse, have known co-ordinates in the mapliitospiste

projection plane.

A visual explanation of this approach is presented in figure 8.6.

^ 8.5 Detail survey

Detail survey (Kahmen and Faig, 1988, pages 285–303) is the stage of
the measurement process, based on base-network measurements, that
serves to map details in the terrain. It is the most laborious stage of
the whole mapping project. A detail survey consists of collecting the
data and processing it into the desired end product: a map or a digital
geospatial data set. In the processing stage of detail surveying, the resultspaikkatieto

of the base-network measurement come along, assuring the geometric
correctness of the result.

In the following we describe in more detail four classical terres-
trial methods: right-angle survey, tie-in survey, radial survey, andsidoslinja-

mittaus free-stationing survey.

A popular detail survey method is also real-time kinematic (RTK) satel-
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FIGURE 8.7. Tools of the right-angle survey method.^

lite positioning, which is often competitive. Its use is however difficult,
for example, in a high-rise urban landscapes, “urban canyons”, and im-
possible underground.

A new method for the detail survey of extended areas is the mobile
mapping system. In it, a terrestrial laser scanner integrated with a
GNSS receiver, an inertial measurement unit, and a cluster of cameras,
is mounted on a car and driven around the area to be mapped. The
amount of observational data produced is huge, and the processing work
is demanding. The strength of the method is that manual field work is
largely eliminated: only the signalisation of known points remains. A
weakness is that occluded patches easily remain in the data. The results katvealue

may be presented not only as a traditional map, but also as visual scenery
like in Google Street View™.

^ 8.5.1 Right-angle survey (prism surveying)

A measuring tape, a double pentagon prism, ranging rods4 to mark out linjaseiväs
4mapping lines, and drawing paper are needed for this: see figure 8.7.

The measurement is carried out according to figure 8.8. A and B are
known points, often traverse points from a lowest-order survey. The right jonopiste

angles are created using a double pentagon prism: when one stands on

4German fluchtstab, French, Dutch jalon.
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FIGURE 8.8. Right-angle survey.^

the line AB, both end points (or rather, the ranging rods set up on them)
show on top of each other in a device containing two pentagonal prisms.
One of them looks by a right angle (100g) to the right, the other by the
same angular amount to the left, in the opposite direction.

The distances b may not be longer than one tape length (50m).

On the right-hand side of the figure is shown how a building is mea-
sured using the right-angle method.

One should always take pains to make sure that there is sufficient
redundancy to check for mistakes. In this example, the wall measures of
the house could be measured.

The measurements with their number values are written on a fieldeksteriööri

sketch, preferably neatly and systematically, in a way that will also be
intelligible to others besides the drafter at the moment of drawing.

^ 8.5.2 Tie-in survey

Often, a method is used in which the measurement is carried out only with
distance measurements in several densification steps (“Tie-in survey”,sidoslinja-

mittaus Kahmen and Faig, 1988) and figure 8.9. In this example a cross-measure
(dashed line) of the parcel and the wall measures of the house were
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FIGURE 8.9. Tie-in survey. A cross-measure and the wall measures of the house
serve as checks.^

measured as checks. In this way one finds out in the field if there is an
error in the measurements. A crude check can be done graphically.

More often, a mixed form is used in which the tie-in method comple-
ments the right-angle survey method.

^ 8.5.3 Radial survey

Radial survey is explained in figure 8.10. Determination of the location
in the plane of the points i = 1, 2, . . . , n is done by means of measuring
the angles θi and the (slant) ranges si. In the figure, the example point is
i = 2. From a point with known co-ordinates — typically a traverse point
— A, the horizontal angle θ2 between another known auxiliary point B,
and the point to be determined, point 2, is measured. The orientation
direction αAB is calculated by solving the inverse geodetic problem from geodeettinen

käänteistehtäväthe given location co-ordinates of points A and B.
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FIGURE 8.10. The radial survey method.^

After this

xi = xA + si cos(αAB +θi)= si sinζi cos(αAB +θi) ,

yi = yA + si sin(αAB +θi)= si sinζi cos(αAB +θi) .

Here, the measured slant range has been reduced to the horizontal
distance si

def= si sinζi, in which ζi is the vertical or zenith angle, which is
also measured.

Radial survey thus includes trigonometric height determination: as the
instrument measures both the zenith angle ζi and the slant range si, one
obtains, in addition to the horizontal distance si, the third co-ordinate

zi = zA + si cosζi.

The height of either point A or point B must be known as the starting
value for the height computation. If the height of point B is given, it is not
even necessary to measure the instrument height of the tacheometer over
marker A, because the height of the prism pole will not change during
measurement.

The equipment used is an electronic tacheometer or total station
equipped with suitable software. The instrument is chosen based on
the accuracy objective of the mapping to be undertaken.

Radial surveying is a numerical mapping method in which the map
product is generated computationally based on the measurement values
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θi, ζi, and si using their metadata. As the measurements are collected
electronically, this is inexpensive and readily automated when the num-
ber of points to be measured is large and accuracy requirements high.

The radial surveying method is especially practicable in urban areas,
because the setting out of mapping lines required in the right-angle
method can be cumbersome due to traffic. Objects of which both plane
and height information are required — special technical measurements,
building and utility-line surveys — and busy work sites are also suitable
for radial survey.

^ 8.5.4 Free-stationing survey

In free-stationing survey — German: freie Standpunktwahl — the tache-
ometer is placed on a freely chosen point in the terrain, subject only
to good visibility to the points to be measured as well as at least two,
preferably three to four, points of which the co-ordinates are known,
normally base-network points. The advantage of the method is, that the
instrument does not have to be precisely centred over a known point
marker or monument: the need for centring, and measuring instrument keskistys

height, goes away.

The method has become widespread with the availability of electronic
tacheometers and increased computing power. In principle, however,
the method could be used with a theodolite and measuring tape. See
figure 8.11. Note that there is no point marker (monument) under the
tacheometer!

Let the co-ordinates of the points A (xA, yA) and B (xB, yB) be known.
The instrument is set up on the unmarked point O. Measurements are
made to the points A and B and the unknown points i = 1, 2, 3, . . . , n (the
example point in the figure is i = 2):

◦ horizontal directions θ

◦ distances s.

Ignoring heights for now, the measurement yields, in local or instrument
co-ordinates (u,v) :

uA = sA, vA = 0,

uB = sB cos(θB −θA) , vB = sB sin(θB −θA) ,

ui = si cos(θi −θA) , vi = si sin(θi −θA) .

So we use the forward geodetic problem to compute (u,v) co-ordinates for geodeettinen
päätehtävä
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FIGURE 8.11. The free-stationing survey method.^

all points A, B, 1, 2, . . . , n in a co-ordinate frame of which the u axis is
OA.

As we know, we can solve for the unknown parameters of the Helmert
transformation if at minimum, the co-ordinates of two points, A and B,
are known in both frames.

Using the Helmert transformation (section 3.6) we now transform the
instrumental co-ordinates (ui,vi) into terrain co-ordinates (xi, yi).

^ 8.6 Carrying out a detail survey

Detail surveys can be carried out as topographic surveys, in which casemaastomittaus

they often cover limited areas. The instrument to use then is the elec-
tronic tacheometer. Alternatives are GNSS-RTK — the real-time kinematic
method — or aerial mapping, which however may not always be suitable
on their own due to lack of visibility in the terrain. In local measurements,
traditional prism and tape measurement may be considered, but is used
rarely nowadays due to its low productivity.

^ 8.6.1 Data to be collected, mode of operation

From every measurement station, measure three-dimensionally, for every
point to be measured, the horizontal direction (θ), zenith angle (ζ), and
slant range (s). The instrument calculates the topocentric rectangular
co-ordinates (x, y, z) and performs simple checks itself. When the whole
object has been mapped, a draft printout is made at the site office, and
an overall quality check is carried out.
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The following data is collected:

General information

◦ site, date, time, weather, observer

◦ identifying codes as needed, see subsection 8.6.2.

From each station point

◦ station point (number, type), instrument height

◦ auxiliary points (number, type), horizontal direction, zenith
angle, distance, prism height

◦ survey points (number, type), horizontal direction, zenith
angle, distance, prism height.

Work phases

1. Choose terrain points based on the terrain and purpose of
use of the measurement. For example, if forming a precise
terrain model of an uneven area, points need to be collected
at sufficient density.

2. Carry out the measurement: collection and pre-processing.

3. Process the material.

4. Present and archive the result. The result is a report on
the measurement work, containing, among other things, a
description of methods used, measurement conditions, point
co-ordinates and their estimated accuracy, a draft map, and
possibly calculations of areas or volumes or other relevant
measurement results.

The working mode is fully digital.

Equipment and software
The processing capacity of total stations is sufficient for many uses.
However,

◦ More and more, one sees a standard tablet or similar, loaded
with versatile software, control the total station wirelessly.

◦ The tablet should be ruggedised for terrain use.

◦ Software guides the whole observation workchain in the field.

◦ Software enables collection, testing, processing and reporting
in the field.

In the computations for topographic surveying, the separate phases of
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FIGURE 8.12. Workflow diagram of detail survey. The figure shows some ar-
chaic technologies such as pen plotters and diskettes that time
has left behind although the work stages persist.^

base-network measurement and mapping should also be distinguished.
Both have their own routines.

^ 8.6.2 Encoding field data

A topographic information system is a special case of a geographic informa-maastotieto-
järjestelmä tion system. It serves the efficient collection of topographic information

by geodetic means for further processing, and thus differs from general
geographic information systems.

As an extreme example of a topographic information system we can
mention the proposal by the Finnish Ministry of Agriculture and Forestry
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for a national topographic information system (Karlsson, 2015). It is
defined as consisting of the following components (§ 3.1.2):

◦ The national co-ordinate and height system [probably intended are
the horizontal and vertical co-ordinate reference frames].

◦ The topographic database and information management systems maastotieto-
kantarelated to it.

◦ All information corpora and information products collected or pro-
duced for the maintenance of the topographic database, and services
maintained in order to obtain suggestions for its maintenance.

◦ All those information and service products that the administrator of
the topographic information system produces from the topographic
database in order to bring it on-line and improve its usability.

Of course most topographic information systems will not be on the na-
tional level.

Topographic survey data is collected in numerical form, and also has, maastomittaus-
tietobesides point measurement data, metadata, data describing data.

The concept of metadata may be illustrated by the example of a topo- maastokartta

graphic map: much more has been depicted on the map than just the
points measured. Points form objects, linear (roads, streets, waterways,
. . . ), area-shaped objects (parcel boundaries, buildings, forests and fields,
. . . ) or three-dimensional (hills and valleys, terrain forms). Everything
is depicted in different ways on the map, and the method of depiction
is documented in the map’s legend.5 The legend is thus in a way the 5

metadata of an ordinary paper map.

Documenting the measurements already in the measurement phase
requires that, at the same time, the metadata is also recorded: does this
point belong to a parcel boundary, is it the edge of a road, is it a tree (and
which species), or is it just a height point in the terrain from which height korkeuskäyrä

contours or earthwork volumes will be calculated? To this end, encoding maamassa

methods or catalogues have been developed, making the transfer of data
easier and as automatic as possible. See for example OGC, Catalogue
Service.

Some aspects must be encoded in the terrain while doing the topo-
graphic survey:

◦ The point numbers (labels) of points measured in the terrain. These

5Legenda, Latin: what can be read.
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Topographic survey⏐⏐↓
Project processing:

◦ point encoding

◦ co-ordinate calculation

◦ volume calculation⏐⏐↓⏟ ⏞⏞ ⏟
Storage in
project data base

Choice of points to store:

◦ transformation (Helmert)

◦ recoding ⏐⏐↓
Storage in general data base

FIGURE 8.13. The encoding process for topographic data. The information may
be stored into a general data base, on a case-by-case basis, for
later use.^

can also be generated (semi-)automatically.

◦ Point classification codes.

◦ Classification of other objects consisting of points, like lines and
areas.

◦ Certain identifying attributes.yksilöivä
ominaisuustieto

In connection with computation and data-base entry, the encoding may
be supplemented in some respects, for example with topology data. The
encoding carried out in the terrain is also not final because

◦ Not all terrain points will be entered into general data bases.

◦ A project-specific encoding is not suitable for general use.

Often, project-specific data is not entered into a general data base at
all, but the area is mapped again when the work is done — “as-built”
mapping. The idea is that one maps the finished situation, so no confusion
can arise between what was implemented, and what was only planned
but, after a differing implementation, never re-measured.

See chart 8.13.
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FIGURE 8.14. Attribute data of objects in multiple layers. With a geographic
information system, spatial data can be efficiently combined,
analysed, and refined.^

Old encodings in widespread use are based on the classification of the
Zoning Survey Guide, aimed at producing a map. The main starting point
is shared use of geospatial information by the various players in the field.

Geographic information technology creates possibilities for this and
many other efficient uses, such as

◦ The locations of objects are given in the same common co-ordinate
frame. Earlier this was KKJ and its map projections, see subsections
3.2.1 and 3.3.1. Today, it is always EUREF-FIN and its various map
projection co-ordinate frames, see subsections 3.2.3 and 3.3.3. The
transformations between the co-ordinate frames are known. This
facilitates the combination of different objects, producing added
value.

^ TABLE 8.3. Classification of topographic data.

Data on nature Cultural data Location data Attribute data

Topsoil type
Earth’s
surface forms
Soil, bedrock
Vegetation
Waters

Properties
Buildings, structures
Street and
utility networks
Zoning
Street names,
local names

Co-ordinate data
(where)
Geometry data
(what shape)
Topology data
(relations with
neighbours)

Identifying a.
Locating a.
Timestamp a.
Descriptive a.
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◦ Many methods and tools are on offer for combining, analysing and
refining data from many sources.

– Often, various attribute data are presented on different dataominaisuustieto

layers of a digital map, which can be processed together using
various operators: map algebra, figure 8.14.

– The information carried by objects can be sorted and classified
according to different attributes, for example

∗ all GNSS points on a map sheet

∗ the drilling points in square (xa, ya)− (xb, yb)

∗ the manhole covers of the municipal sewer network.kaivonkansi

◦ Spatial data may be visualised and, in this way, also made available
to people who are not mapping professionals.

Topographic data can be classified by content into two main information
types: nature data and cultural data (Salmenperä, 1998, sivut 83–84).
Another way of classifying topographic data is as either location data, or
attribute data. See table 8.3.

Many cultural attributes are invisible in the terrain, like place names,
ownership, parcel boundaries, zoning, historical details, and so forth.kaavoitus

^ Self-test questions

1. What is the task of base-network measurement?

2. How does network hierarchy work? Why is it important? What
could go wrong if it is not done properly?

3. What is reconnaissance? What are the requirements of a good point
description?

4. What are commonly used computation or reference surfaces for
geodetic network computation?

5. What terrestrial methods are available for detail surveys? Explain
the strengths and weaknesses.

6. Explain why aerial photogrammetry cannot be the only method for
executing detail surveys.

7. Explain why GPS — for example real-time kinematic GPS, RTK —
cannot be the only method for executing detail surveys.

8. What is metadata, and why is it important? Give an example of
metadata.
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Bergensbanen

Video: Norsk Rikskringkasting
Song: Everloving – Moby

^ 9.1 Zoning plans and setting out

The types of zoning plan in use are regulated by law, in Finland the kaava

Maankäyttö- ja rakennuslaki (“Land Use and Building Act”) 1999/132
(Ministry of the Environment, Legislation on land use and building).
They are the local detailed plan and the local master plan.1 Both are asemakaava

yleiskaava
1

approved by the municipality. In addition, there are still regional plans,
which are plans at a higher level.

A local master plan gives the outlines of a land-use plan for a municipal
area. The plans comprise zoning base maps, the scale of which varies kaavan

pohjakarttabetween 1 : 20000−1 : 10000 and 1 : 5000−1 : 4000.

According to the new Zoning Survey Guide (JUHTA, 2014), three mea- Kaavoitus-
mittausohjeetsurement classes are defined. Every measurement class has a corre-

sponding recommended scale for the zoning base map. Digital map
products have no actual scale, but the precision at which map material
is collected needs to be in accordance with the recommended scale. The
co-ordinate and height reference frames are EUREF-FIN and N2000, and
Gauss–Krüger is used as the map projection: ETRS-GKn, where n is the
longitude of the municipality as an integer number.

1. The first measurement class includes local detailed plan areas that

1Internationally the nomenclature is highly variable: general or comprehensive plan is
also used.

– 235 –
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are built-up areas where land is extremely valuable, and where
there is a local detailed plan with a binding parcel division, or a
building prohibition aimed at drafting such a plan. The base-map
scale of the local detailed plan is 1 : 500 or 1 : 1000. In maps that are
intended to be used as part of a municipal geographic information
system and used in technical planning requiring great precision,
the still more precise measurement class 1e may be used.

2. The second measurement class includes local detailed plan areas
that are built-up areas in which the local detailed plan to be drafted
does not require a binding parcel division. The scale of the base
maps is 1 : 1000 or 1 : 2000.

3. The third measurement class includes shore detailed plan areas andranta-asema-
kaava lake-shore and sea-shore areas, as well as other such areas where

land is clearly more valuable than land in agricultural and forestry
use, such as scattered settlement areas. The base maps are drawnhaja-asutusalue

at a scale of 1 : 2000, in special cases 1 : 4000 or 1 : 5000.

The setting out onto the terrain of the boundary markers and locationmaastoon
merkintä of buildings must be done according to need before actual construction

starts. The accuracy of the setting out and the method of carrying out the
works is strictly regulated, in Finland in the Zoning Survey Guide. The
base network of the zoned area may have to be brought up to standard.runkoverkko

In setting out, an automatic total station, real-time kinematic (RTK)takymetri
tosiaikainen GNSS positioning, or any other sufficiently accurate measurement tech-

nology is used. The co-ordinates of both the known points and the points
to be set out in the terrain are entered into the instrument’s memory. The
radial-survey or free stationing methods may be used. The instrument
pre-calculates setting-out measures. Where to place the instrument maymerkitsemis-

mitat be flexibly decided in the terrain: point intervisibility is not always clear
from the map.

^ 9.2 Setting out and infrastructure

In connection with zoning, the infrastructure of the zoned area is planned:kaavoitus

◦ In the zoning plan, a certain intended use is assigned to an area.

◦ The formation of property organises the land ownership situation
and boundaries as well as easements, like rights of way.rasite

◦ Planning and construction implement the intended use as stated in
the zoning plan, and the area is taken into use.
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Mapping⏐⏐↓
Zoning −−−→ Test piling⏐⏐↓

Property formation −−−→ Setting out parcel boundary points⏐⏐↓
Construction planning⏐⏐↓

Construction −−−→

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Setting out building locations

Streets and other infrastructure

Construction oversight inspections

FIGURE 9.1. Setting out onto the terrain, process description.^

The measurements related to the building of municipal technology or
infrastructure — streets, roads, street furniture, utility lines, cables,
among many other things — form their own sub-field of measurement.

Zoning-plan calculation:

◦ The sketch of the plan, a graphical presentation, is presented in
numerical form.

◦ The plan is interpreted as circular arcs and straight line segments jana

starting from known elements, figure 9.2. In the example, first a
polyline A1, . . . , A7 is computed, and to this, the circular arcs K1, murtoviiva

. . . , K7 are fitted.

The zoning-plan boundaries: the boundaries of blocks of houses,
parcels, spaces, general traffic areas, recreational areas as well as
areas to be built on, are to be set out onto the terrain.

◦ Co-ordinates are calculated for the objects to be set out onto the
terrain.

See figure 9.3. Using the inverse geodetic problem, directions and dis- geodeettinen
käänteistehtävätances are computed to the points to be set out, reckoned from the location

of the instrument. When using the radial-survey method, the place of the
instrument is chosen to be a known point.

The radial-survey method (subsection 8.5.3) in setting out works as
follows:
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FIGURE 9.2. Zoning-plan calculation — an example.^

1. The setting-out measures, angle θi and distance si, are calculated
using the co-ordinates of points Pi, A, and B.

2. The instrument is set up on point A and aimed at signal B, bothtähys

θi

A

Existing
points

B New
pointssi

.

Pi

(a)
Radial measurement

R = 12m

10m

8m R = 30m

(b)
Application to a road area

FIGURE 9.3. Setting out onto the terrain using the radial survey method.^
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FIGURE 9.4. Straight setting-out method.^

known. The reading on the horizontal circle is set to zero. vaakakehä

3. The telescope is turned until the reading is θi.

4. The reflective prism is, within the field of view of the telescope,
moved so that its distance reading becomes si.

5. A pile or stake is driven, a precise marker, on the location of which, paalu

for example, a boundary marker is built.

The free-stationing and right-angle survey methods are also being used.

^ 9.3 Straight lines, circular arcs, rounding of corners

^ 9.3.1 Setting out a straight line into the terrain

The setting-out measures (aP ,bP) of unknown point P from the given
straight line AB must be determined. If we know that point P is on
the straight line CD, we may derive the setting-out measures of point P
directly from the setting-out measures of points C and D: (aC,bC) and
(aD ,bD), and the position of point P on the straight line CD, the distance
CP:

aP = aC + CP
CD (aD −aC) , bP = bC + CP

CD (bD −bC) .

This is the straight method of setting out, for example with a measuring
tape and a right-angle or double pentagon prism.

Alternatively, co-ordinates are used. For example, if the co-ordinates of
points A, B, C and D are already known, then the co-ordinates of point P
are readily computed from the distance CP, and from those, the setting-
out measures (aP ,bP) of point P with respect to line AB are calculated.
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FIGURE 9.5. Rounding of corners with a circular arc.^

Note that these setting-out measures are nothing but rectangular co-
ordinates, and calculating them amounts to a co-ordinate transformation
in the plane.

The result is easily generalised to the case in which there are several
points Pi on the straight line CD, for all of which setting-out measures
(ai,bi) are calculated.

^ 9.3.2 Circular arc

Circular arcs are used widely in planning, due to their simplicity. A
circular arc is defined by four parameters, figure 9.5:

◦ angle α between the tangents

◦ half the arc centre angle, θ

◦ arc radius r

◦ tangent length t.

There are two dependencies between these parameters:

θ = 100g − α
2 ⇐⇒ α= 200g −2θ,

t = r tanθ ⇐⇒ r = tcotθ.

Setting out the arc onto the terrain is done as follows:

1. Normally the calculation of the straight lines has already deter-
mined the intersection point A of the two tangents, and the angle α.

2. Choose one further parameter: the radius r, and calculate the
others using the equations given above.
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FIGURE 9.6. Rounding of corners with a compound curve. The reversed curve is
a special case of the compound curve.^

3. Measure the distance t from A along the tangent, yielding the
tangent points T1 and T2.

4. From both of these determine, with double pentagon prism and
measuring tape, the centre point of the arc K (redundancy!)

5. On line K A now mark the arc point B.

6. From centre point K mark as many arc points as needed, using the
distance r. One example point Pi is marked in the figure.

7. The rectangular setting-out measures of point Pi: (ai,bi), are also
readily obtained.

The rounding of corners is commonly done using circular arcs. Combining
straight lines and circular arcs is very common in local detailed zoning
maps, as in building plans in general. The lines are connected according
to the situation using various conditions, which ensures continuity and
the appearance of smooth curvature. Here we present a few examples.

^ 9.3.3 Compound curve

An example case is the connection of two straight lines with two (or more)
circular arcs bending in the same direction, a compound curve, figure korikäyrä

9.6a, Jamal (2017). So, at its simplest we have two straight lines and
two circular arcs, that at their junctions — there are three of them — are
parallel.

The situation of figure 9.6a has the following parameters:

◦ the lengths of the tangents t1 = AT1, t2 = AT2
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◦ the radii of the arcs r1, r2

◦ the intersection angle of the tangents τ

◦ the central angles of the arcs θ1, θ2.

There are multiple dependencies between parameters:

◦ In triangle △ADE one sees immediately that ∠ADE = θ2, because
K2F ⊥ DE and K2T2 ⊥ AC, and similarly ∠DEA = θ1. Therefore

τ+θ1 +θ2 = 200g.

Furthermore T1E = EF = ℓ1 and T2D = DF = ℓ2.

◦ ℓ1 = r1 tan 1
2θ1, ℓ2 = r2 tan 1

2θ2.

◦ By the sine rule
AD

sinθ1
= AE

sinθ2
= DE

sinτ =⇒ t2 −ℓ2
sinθ1

= t1 −ℓ1
sinθ2

= ℓ1 +ℓ2
sinτ

and by substitution

t2 − r2 tan 1
2θ2

sinθ1
= t1 − r1 tan 1

2θ1

sinθ2
= r1 tan 1

2θ1 + r2 tan 1
2θ2

sinτ .

Thus we can calculate all seven parameters catalogued above, if given

◦ two of the three angles τ,θ1,θ2, and

◦ two of the four lengths r1, r2, t1, t2.

In the case depicted in the figure, the setting out onto the terrain is done
as follows:

1. Measure the distances t1−ℓ1 and t2−ℓ2 from A along the tangents,
yielding the points E and D.

2. The tangent intersection angles of the individual circular arcs at
points D and E are T1EF = 200g −θ1 and T2DF = 200g −θ2.

3. After this, the setting out is done separately for circular arcs 1 and
2 in the way already explained above.

^ 9.3.4 Reversed curve

The alternative case where the circular arcs bend in opposite directions
(but otherwise the situation is similar to that of the compound curve) is
the S-curve, also reversed curve, figure 9.6b, Jamal (2017). What makes
the situation a little cumbersome is the possibility that the intersection
point A of the straight lines2 T1A1 and T3A2 may not exist, namely if the2

lines are parallel.

2The notation used in the S-curve figure does not directly match that in the compound
curve figure.
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FIGURE 9.7. Principle of the clothoid.^

^ 9.4 Transition curve

A transition curve, Euler spiral (Wikipedia, Euler spiral) or clothoid is
used in the planning of railways and fast motorways. In fast traffic, not
only the centre line of the road, but also its curvature3 must be continuous, 3

for the following reasons:

◦ For example, the control of the movement of an articulated lorry
through the steering wheel is slow.

◦ The surface of the road or railway is tilted in the sideways direc-
tion against the centrifugal force. This transversal tilt, which is poikittais-

kallistumaproportional to the curvature of the road, may change only slowly
and continuously along the length of the road.

For these reasons, a combination of straight lines and circular arcs is
unsuitable.

The equation of the clothoid is

RL = A2,

3Curvature is the inverse of the radius of curvature!
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in which A is the parameter of the clothoid, L is the distance along the
clothoid, that is, along the road, and R is the local radius of curvature.
As can be seen, the radius of curvature changes as a continuous function
of the distance

R = A2

L .

At constant speed, the centrifugal force4 F is inversely proportional to4

the radius of curvature:
F = v2

R = v2

A2 L, (9.1)

so, assuming that the design speed of the road, v, is a constant, the
centrifugal force, and thus also the transversal tilt of the road surface
needed, is a linear function of distance travelled. This explains the
suitability of the clothoid curve as the shape of motorway and railway
curves.

Of course, care must be taken that the clothoid satisfies the continuity
condition for the radius of curvature at the start and end points, with
another clothoid, with a circular arc, or with a straight line (A = R =∞).
See figure 9.7, in which a straight line links to clothoid I (P1P2), which
links to clothoid II (P2P3), which again continues as a straight line from
point P3 onward. The train arrives at point P1 upright. In the interval
P1P2 it tilts sideways at a fixed rate, and arrives at its maximum tilt
angle at point P2. In the interval P2P3 the tilt diminishes linearly, and
at point P3 the train is again upright, and continues its journey straight
ahead.

If the speed of the train is equal to the design speed v according to
equation 9.1, the resultant of gravity and centrifugal force is always
perpendicular to the floor of the train, and the passengers do not notice
anything.

The clothoid is also used in planning motorways, although there, the
true speeds of vehicles will vary.

^ 9.5 Road and street surveying

Roadbuilding comes with the following measurement and calculation
tasks:

◦ Conducting a topographic survey in order to draft the road-planmaastomittaus

4. . . more precisely, the pseudo-force per unit of mass experienced by the travellers in the
vehicle, which acts however from their viewpoint in precisely the same way as gravity.
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base map, for example using aerial mapping (photogrammetry), as
a basis for road planning.

◦ Calculating the trajectories in co-ordinates and setting-out mea-
sures.

◦ Calculating the co-ordinates, setting-out measures, if necessary
earthwork masses and other volumes, for the road structures and maamassa

special structures (bridges, tunnels, underpasses among others).

◦ Carrying out on-site measurements for building the road, setting
out.

◦ After project completion, usually an “as-built” survey is carried out.

The same work phases also occur in other technical measurements related
to large-scale construction projects.

^ 9.6 Construction surveying

Construction surveying measurements include the installation measure-
ments of buildings, parts of buildings, bridges, tunnels, reservoir dams, vesiallas

industrial machines and similar structures.

◦ The measurement starts from the base network. First, a project
measurement base is created, a sufficient set of horizontal and ver-
tical benchmarks in the project area. Base-network points are used kiintopisteistö

as benchmarks. Densification points or “use points” are created as
needed, in a hierarchical fashion.

◦ The actual measurements are carried out from the use points. The
measurements are done separately as horizontal and height mea-
surements, and the point sets are also partly separate.

◦ Both national and international standards have been created to
guide the measurements.

^ 9.6.1 Setting out a building location onto the terrain

When the building permit has been obtained, the builder can apply to the
authorities for a decision to set out the building location onto the terrain. paalutus,

maastoon
merkintä

The procedure has three objectives:

◦ Setting out the building location onto the terrain, verifying that no
part of the building is too close to the parcel boundary.

◦ Checking the correctness of the wall measures of the building,
important information for the builder.
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◦ Verifying the correctness of the building’s height location.

The land survey authorities only measure with a view to assigning where
to build, unless agreed otherwise. The precision and number of points
is not enough to actually start building. The builder can continue the
survey work in connection with the actual building work.

Either a traverse point or a boundary marker is chosen as a site refer-jonopiste

ence point. If there are not enough of those nearby, or not of the required
precision, the first task is measuring new base points. Map co-ordinates
(x, y) for these are calculated and they are marked on the site plan.

Wall measures, cross-measures, distances from boundaries, and dis-
tances from pre-existing buildings may be used as control measures.

The height location of a building is obtained by traverse levelling, whichlinjavaaitus

runs from one general height benchmark to another. Close to the buildingkorkeuskiinto-
piste site, at least two height base points are created for the later work, unless

nearby there are already enough general points. The correct height of
a building is critical for functioning sewers and, in low-lying locations,
flood safety.

^ 9.6.2 Location review of a building

In location review it is verified that the building is in the correct place andsijainti-
katselmus at the correct height. The review is carried out when the foundation of

the building is completed. After acceptance, construction may continue.

^ 9.7 Other measurements

^ 9.7.1 Technical measurements, deformation measurement

Technical measurements, or engineering geodesy, form their own spe-
cialised discipline. This also includes precise deformation measurements:

◦ Deformation monitoring, during construction and afterwards over
the object’s life cycle. Objects: reservoir dams, tunnels, bridges,
other large structures, skyscrapers, and so on.

◦ Nowadays often monitoring measurement using automated equip-
ment.

◦ Industrial measurements indoors or outdoors, installation measure-
ments of large machines, paper machines, shipyards.

◦ Engineering surveying.
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◦ Tunnel and mine surveying. Tight constraints on the measurement

geometry, as well as the non-functioning of GNSS, are characteristic
of these measurements.

In these measurements, traceability of the quantities measured is central. jäljitettävyys

Careful (system) calibration and good metrological practice are of great
importance.

^ 9.7.2 Machine guidance of working machines

GNSS technology is used widely, in addition to more traditional positioning
technologies, for guiding working machines in real time. The reliability
requirements are obviously tough if an expensive working machine is be-
ing guided to lay, for example, asphalt on a motorway. Machine downtime
is costly, errors even more so.

Terrestrial real-time guidance is usually used in the construction of
reservoir dams, bridges, tunnels, and other infrastructure. This kind
of technology was used in the construction phases of the Dutch Easter myrskyvuoksi-

suojaScheldt storm-surge barrier (figure 9.8) and the Danish Great Belt and
Iso-BeltSound bridge-tunnel solutions, as in many similar projects.
Juutinrauma

Shipping containers and cranes in harbours are also positioned in real
time using GNSS technology in order to improve efficiency (Pitkä, 2009).

Agricultural and forestry machines may be guided by real-time GNSS

(“precision farming”), so seedstock, fertiliser, and pesticides can be ad- täsmäviljely

ministered with precision according to very localised needs.

^ 9.7.3 Underground utility-line mapping

Only part of the underground utility lines, like telephone, data and
electric power cables as well as sewage, water and city heating pipes,
have been mapped satisfactorily, mostly on maps prepared by various
municipal institutions, of which there may be many per municipality.
When utility-line surveys are this decentralised, the geodetic quality of johtokartoitus

the maps will vary.

Cities generally use the presentational and preparation practice of
the 1974 utility-lines mapping standard SFS 3161. The standard was johtokartta-

standardirenewed in 1996.

Utility-line maps are used for many needs: in zoning for planning tech-
nical maintenance and the network, in connection with construction work,
for maintaining the lines by the owner institution, and in connection with
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FIGURE 9.8. The AGA/Minilir infrared tracking device — French military
technology! — in use on the building site of the Dutch Easter
Scheldt storm-surge barrier, 1980. © 2016 Nicolàs de Hilster, (De
Hilster), figure 4, with permission.^

managing crisis situations and damages. The scale is most commonly
1 : 500.

Mapping methods:

◦ The measurement should be based on general benchmarkskiintopiste

available in the area, so that the result is obtained in the same
system. If necessary, a network densification is carried out,
meaning new benchmarks are created following the Zoning
Survey Guide.

◦ The same measurement methods are used as more generally
in detail survey, section 8.5.kartoitus-

mittaus ◦ The mapping of new lines is done during construction, when
the lines are still visible.

◦ The visible parts of old lines (manhole covers, distributionkaivonkansi

cabinets) are mapped. The underground parts can sometimes
be located with a metal detector. Ground-penetrating radarmaatutka

(GPR) and electrical resistivity tomography (ERT) have also
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been used.

Underground utility-lines marking service: The lines are marked johtojen
näyttöpalveluon the terrain for the builder, in order to avoid costly damage

caused by excavation work. The service is usually offered by the
owner of the line, for example a power company.

^ Self-test questions

1. What is zoning and why is it necessary?

2. How many measurement classes are used in Finland? How are they
defined? What scales are the zoning maps on for each class?

3. Describe the various methods of setting out objects onto the terrain.

4. What is a compound curve? A reversed curve?

5. How many independent parameters uniquely determine a com-
pound curve?

6. Explain why clothoids are used for fast roads and railways.

7. Describe the Finnish practice of “location review”. At what stage of
construction does it take place?

8. What types of objects may deform in ways that can be monitored by
precise measurements?

9. How are underground utility lines mapped?
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^ Digital terrain models and volume
calculation

1010

Measuring the volume of a wine barrel with a measuring
rod, inspiration for Johannes Kepler’s “wine-barrel formula”,

or Simpson’s rule (image Deutsche Fotothek, 1523)

CONSTRUCTION IN THE built environment and its planning, as well as
the technical measurements made in those contexts, make extensive use
of digital height and terrain models.

The terms digital height model, DHM, digital elevation model, DEM,
or digital terrain model, DTM, refer to a file consisting of points on the
Earth’s surface, which describes, more or less well, the forms of this
surface. High-resolution terrain models are expensive to produce over
large areas, but are nevertheless available for many countries. Terrain
models for Finland are produced by the National Land Survey.
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Information about the Earth’s surface and its forms can be obtained
using topographic surveying measurements, photogrammetrically frommaastomittaus

aerial imagery, and by scanning from aircraft or satellites. The scanner
may be laser based or can be a microwave radar, a SAR, or synthetic-synteettinen

aukko aperture radar, which interferometrically achieves a very high resolution.

Global terrain models

1. The older model GTOPO30 (US Geological Survey, original
1996, USGS, GTOPO30). The resolution is 30′′, about one
kilometre. The model was updated with data from the SRTM,
see item 4 below. The model contains no sea-depth data.

2. The GLOBE model (Global One-km Base Elevation project
(NOAA and many others, GLOBE Task Team and others, 1999).
The resolution is also 30′′ ≈ 1km. The current model version
contains no sea-depth data.

3. The ETOPO1 model, which supersedes the older ETOPO5
and ETOPO2 models (NOAA et al. 2008). The resolution is
1′, about 1.8km. The model contains depth data in addition
to elevation data.

4. The Shuttle Radar Topography Mission imaged the Earth’s
topography between latitudes 60◦N and 56◦S. The flight took
place in February 2000. The resolution is one second of arc
on the Earth’s surface, about 30m. In 2014, all SRTM data
was declared public. The data does not include sea depths.

The national terrain model New technologies, like airborne laserilmalaser-
keilaus scanning, have already been operational for many years and are

in widespread use. In Finland, the National Land Survey has also
for a long time been scanning various areas in order to build a
new, precise national terrain model. There are two models: model
KM10 is currently complete at a spatial resolution of 10m, Finnish
National Land Survey, Elevation model 10 m, and model KM2 is
partially complete at a resolution of 2m, Finnish National Land
Survey, Elevation model 2 m. The KM2 model is planned to be
completed by 2020. Based on the INSPIRE directive (INSPIRE
Knowledge Base), the data is free of charge.
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FIGURE 10.1. The global terrain model ETOPO2 version 2 on the Finnish terri-
tory.^

^ 10.1 Terrain-model measurement, construction, presentation

^ 10.1.1 Measurement geometry

◦ The points to be measured do not generally form a regular pattern,
and may be freely chosen within the constraints of the measurement
technique used.

◦ The random-point method is a statistical sampling method. The otanta

sampling density may be higher where terrain forms are more
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(a)
Connect the measured points.

“Triangulation”

(b)
Interpolate the heights to the

nodes of a regular grid.
“Gridding”

FIGURE 10.2. Presentation of terrain models: triangulated network or point-
grid.^

variable.

◦ The point density is higher near break lines: linear features in the
terrain at which the terrain slope changes.

^ 10.1.2 Measurement technologies

Geodetic topographic surveying This is a low-productivity tech-maastomittaus

nique that often only complements other methods.

Photogrammetry Points are measured in a stereo model formed from
two aerial photographs, nowadays often automatically by correlat-
ing the digital images. However, ground control points (GCPs) and
occluded areas are surveyed geodetically.katvealue

Airborne laser scanning This technology collects huge numbers ofilmalaser-
keilaus three-dimensional terrain points in the form of a point cloud, from

which the terrain surface can be extracted by suitable processing.

From the point data measured, either a triangulated network or a regular
point-grid is generated.
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^ 10.1.3 Model presentation

With terrain models, different forms of presentation are used:1 1

Point-grid presentation This agrees well with the way computers op-
erate: the handling of large amounts of data is also straightforward
and easy.

A regular grid may be square, rectangular, or more complicated,
like a hexa tile pattern (“beehive”) or a triangular pattern.

Triangulated-network presentation Here, points representative of
the terrain forms are chosen and connected by lines into a cover of
triangles. A well-known mathematical triangulation technique is
Delaunay triangulation, which gives beautiful triangles of which Delaunay’n

kolmiointithe sides are as equal as possible.

A triangulated network type of terrain presentation is more diffi-
cult to manipulate, but it is also able to present difficult terrain
forms, like sharp edges, better than a grid presentation, using a
smaller number of points. Moreover, if the resolution of the ter-
rain model varies by area, the triangulation presentation is better,
because the sizes of the triangles vary with resolution.

In the literature, the method is referred to as TIN: triangulated
irregular network.

CAD (computer-aided design) software, in use in planning offices, knows
how to use digital terrain models and how to display them in many
different ways; for example as a perspective image. Building plans are
also in digital form and can be combined with this.

Let us also mention in this connection the multi-resolution “tiling”
methods which are based on the discrete wavelet transform (DWT, aalloke-

muunnosWikipedia, Discrete wavelet transform) and are meant for the interactive
presentation of materials, for example Fraser et al. (2013). The image
format JPEG 2000, as well as Google Earth™, are also based on this
technique. This form of presentation enables rapid changes in viewing
location and zooming. It is even more suited than Delaunay triangulation
for presenting materials of highly variable resolution interactively.

^ 10.2 Use of terrain models

Terrain models are used for, among other things:

1In image processing one speaks in analogous fashion of pixel and vector graphics.
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◦ The ortho-rectification of aerial photographs: the removal of pro-orto-oikaisu

jection errors of aerial imaging in the production of orthophoto
maps.

◦ The calculation of the height contours to be shown on a map.korkeuskäyrä

◦ The planning of a traffic route (road, street, waterway, electric
power line, . . . ), to minimise (under other constraints, like maxi-
mum slope or minimum radius of curvature):

– earthwork volumes to be moved, section 10.4maamassa

– the difference between soil to be removed and soil to be added

– consumption of fuel, travel time by a typical vehicle using the
route.

◦ The creation and visualisation of three-dimensional landscape mod-
els, in support of planning and public debate over the plans.

◦ The resolution of visibility issues, like in connection with the place-
ment of cell-phone or radio masts.

◦ The planning of ski pistes.

◦ The support of a military application: automatic navigation in low
flight of cruise missiles, but also jet fighters, hiding from radar
“inside” the terrain.

◦ The calculation of the gravity effect of terrain masses (terrain cor-
rection) in gravity-field and geoid determination.

◦ The provision of the lower boundary in numerical weather predic-
tion (NWP) and climatic general circulation models (GCM).

◦ The creation of realistic landscapes for video games and flight
simulators.

◦ Many others.

Strictly speaking, a digital elevation model (DEM) describes the heights,
not only of the terrain, but also of buildings, the forest canopy and thelatvusto

like, whereas a digital terrain model (DTM) describes only the heights of
the terrain itself. Nevertheless the words are often used as synonyms.

^ 10.3 Calculating surface areas

Calculating surface areas is discussed in Kahmen and Faig (1988) in
section 8.6.

A handy way of calculating is to use setting-out measures with respectmerkitsemis-
mitat
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FIGURE 10.3. The use of setting-out measures in calculating surface areas.^

to a baseline. In figure 10.3, the setting-out measures form trapezoids.

Area I is calculated as follows:

AI = 1
2 (a2 −a1)(b1 +b2) ,

and area III as follows:

AIII = 1
2 (a4 −a3)(b3 +b4) ,

in which one should pay attention to the algebraic signs. etumerkki

Area II is also obtained in a similar way, although it is the difference
between two surface areas. It is nevertheless formally a trapezoid:

AII = 1
2 (a3 −a2)(b2 +b3) .

All equations can be made compatible by agreeing, for example, that the
b values are positive on the right side seen when moving in the direction
of a, and negative on the left side. Also, the a indices are followed in
numerical order, in the example case, anti-clockwise. Then we obtain for
the total area, by summation,

A = AI + AII + AIII +·· ·

and all the algebraic signs, also those of the small cancelling triangles,
are automatically correct.

If we have the use of co-ordinates, there are other ways of calculating
surface areas. The total surface area is obtained as a sum of trapezoids
(the i index is circular: n+1 is the same as 1):

A =+1
2

n∑︂
i=1

(xi+1 − xi)(yi+1 + yi) , (10.1)
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FIGURE 10.4. Calculating surface area.^

and by interchanging x and y:

A =−1
2

n∑︂
i=1

(yi+1 − yi)(xi+1 + xi) . (10.2)

From equation 10.1 we obtain

A =−1
2

n∑︂
i=1

xi (yi+1 + yi)+ 1
2

n∑︂
i=1

xi+1 (yi+1 + yi) ,

and by re-numbering the second term — as the i index is circular:

A =−1
2

n∑︂
i=1

xi (yi+1 + yi)+ 1
2

n∑︂
i=1

xi (yi + yi−1)= 1
2

n∑︂
i=1

xi (yi−1 − yi+1) .

Similarly equation 10.2 yields

A = 1
2

n∑︂
i=1

yi (xi+1 − xi−1) .

These equations are known as the shoelace formulas (Wikipedia, Shoelace
formula).

If equations 10.1 and 10.2 are added together and divided by two, we
obtain

A = 1
2

n∑︂
i=1

(xi+1 yi − yi+1xi) .
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FIGURE 10.5. A polar planimeter from 1908 (Wikipedia, Planimeter). The
surface area is measured by drawing along the outer edge of the
figure.^

This equation calculates the surface of a polygon as the sum of triangles
extending from the origin. It can be shown — a graphical proof is given
in figure 10.6 — that the surface area of such a triangle (example in the
figure) is

A i,i+1 = 1
2 (xi+1 yi − yi+1xi)= 1

2 r ir i+1 sinθi,i+1. (10.3)

This planimeter equation 10.3 is the principle of operation of the polar
planimeter.2 Of course the equation can also be used directly numerically, 2

if the figure is given in polar co-ordinates:

A = 1
2

n∑︂
i=1

r ir i+1 sinθi,i+1.

1

2

y

x

(x1 y2)

r2

r1

x2 y1 − x1 y2x2 y1 − x1 y2
1
2 (x2 y1 − x1 y2)
1
2 (x2 y1 − x1 y2)

θ12θ12

FIGURE 10.6. Graphical proof of the planimeter equation.^

2The polar planimeter integrates mechanically the expression

1
2

˛
r2(θ)dθ,

which is the surface area of the closed figure.
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^ 10.4 Volume calculations

The calculation of earthwork masses is explained in Kahmen and Faigmaamassa

(1988) sections 14.2 and 14.3. Often, the case is about calculating amounts
of gravel, sand and similar building materials to be moved in connection
with, for example, road-building.

The means of measurement or determination are

◦ Area levelling or use of a laser level. Only small projects, labour-pintavaaitus

intensive.

◦ Photogrammetry from the air, or terrestrially from an aerial work”pekkaniska™”

platform.

◦ Laser scanning, from the air or terrestrial — high productivity.laserkeilaus

◦ Height contours from a map. Computationally, the method is simi-
lar to surface-area calculation, section 10.3.

◦ A digital terrain model.

^ 10.4.1 Simpson’s rule and quadrature

A handy method for the numerical integration, or quadrature, of earth-neliöinti

work volume from profile data is Simpson’s rule,3 Kahmen and Faig3

(1988) subsection 14.2.1. The equation is

V = 1
6 (ω1 +4ωm +ω2)ℓ, (10.4)

in which ω1, ω2 are the surface areas of the end-point cross-sections, ωm

is the surface area of the midpoint cross-section, and ℓ is the length of
the whole object.

Simpson’s rule can be proven as follows. Let the function to be inte-
grated be f (x), and let us have at our disposal function values at the
points (−∆x,0,∆x):

f−1 = f (−∆x), f0 = f (0), f1 = f (∆x).

Approximate the function f by a fourth degree polynomial:

˜︁f (x)= a+bx+ cx2 +dx3 + ex4.

3Thomas Simpson (1710–1761) was the son of an English weaver and an autodidact
mathematician, fellow of the Royal Society. He actually did not invent Simpson’s rule,
although it appeared in his textbook: the rule was already known to Johannes Kepler.
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FIGURE 10.7. Simpson’s integration rule in volume calculation.^

The integral over the polynomial is

ˆ +∆x

−∆x

˜︁f (x)dx = (︁ax+ 1
2 bx2 + 1

3 cx3 + 1
4 dx4 + 1

5 ex5)︁⃓⃓+∆x
−∆x =

= 2a∆x+ 2
3 c∆x3 + 2

5 e∆x5. (10.5)

Write as well

˜︁f−1 = a−b∆x+ c∆x2 −d∆x3 + e∆x4,˜︁f0 = a,˜︁f1 = a+b∆x+ c∆x2 +d∆x3 + e∆x4,

so that the linear combination

I = p−1 ˜︁f−1 + p0 ˜︁f0 + p1 ˜︁f1 = a(p−1 + p0 + p1)+
+(︁b∆x+d∆x3)︁(−p−1 + p1)+

(︁
c∆x2 + e∆x4)︁(p−1 + p1) . (10.6)

Comparing equations 10.5 and 10.6 shows that, to get I as close as
possible to the integral 10.5, we must choose

p−1 + p0 + p1 = 2∆x, −p−1 + p1 = 0, p−1 + p1 = 2
3∆x,

which yields

p−1 = p1 = 1
3∆x, p0 = 4

3∆x.

Substituting this into equation 10.6 yields

I = 2a∆x+ 2
3 c∆x3 + 2

3 e∆x5, (10.7)

and the difference with the integral is
ˆ +∆x

−∆x

˜︁f (x)dx− I =− 4
15 e∆x5,
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FIGURE 10.8. Alternatives for quadrature. Left, a mathematically well-behaved
function (cos x, black), Simpson (red) works best. Right, a “jagged”
function. The trapezoid rule (blue) works just as well. Realistic
terrain is between these extremes.^

a fifth-degree function of the point spacing ∆x. This means that by
choosing ∆x small enough, we can get the expression 10.7 very quickly
close to the true value of the polynomial. We may write

I = p−1 ˜︁f−1 + p0 ˜︁f0 + p1 ˜︁f1 = 1
3
˜︁f−1∆x+ 4

3
˜︁f0∆x+ 1

3
˜︁f1∆x =

= 1
6

[︂˜︁f−1 +4˜︁f0 + ˜︁f1

]︂
·2∆x.

Into this we substitute the true values f−1
def= ω1, f0

def= ωm, f1
def= ω2 of

the function, as well as ℓ= 2∆x, and obtain Simpson’s rule 10.4. If the
function f to be integrated is not pathological — but terrain forms could
well be pathological! — then Simpson’s rule will also converge quickly to
it.

Note that Simpson’s rule is exact not only for quadratic, but even for
cubic polynomials.

^ 10.4.2 Alternative quadrature rules

Often, a simpler quadrature ruleneliöintisääntö

V = 1
2 (ω1 +ω2)ℓ

(the “trapezoid rule”) works, or even

V =ωmℓ

(the “rectangle rule”). They do not, however, converge as beautifully as
Simpson’s rule: for both, the error is proportional to the point spacing, or
object length, cubed, ∆x3 = ℓ3.
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FIGURE 10.9. Volume calculation from digital terrain models.^

If the accuracy of Simpson’s rule is insufficient, because the object is too
jagged or “pathological”, one may achieve a better accuracy by dividing
the object into slices, applying some simpler quadrature rule to each of
those, and summing the contributions obtained.

Volume calculation for triangulated-network or point-grid type terrain
models is depicted in figure 10.9. In the case of the triangulated-network
model, the volume of a surface element is evaluated using the equation

V =ω h1 +h2 +h3
3 .

In the case of a point-grid model, the equation to be used is

V =ω h1 +h2 +h3 +h4
4 .

Generalisation: the area of a surface element ω multiplied by the average
height calculated from n corner points

h def= 1
n

n∑︂
i=1

hi.

These equations are approximate but often sufficient.

^ Self-test questions

1. Which observation techniques are available for collecting terrain
point information useable for the construction of terrain models?
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2. Which are the two main techniques for the presentation of terrain
models?

3. Discuss applications of terrain models.

4. Explain how the surface area of a parcel may be determined from
setting-out measures of its boundary.

5. Explain how a polar planimeter works.

6. Explain how the quadrature of volumes from profile data using
Simpson’s rule works.

7. What was the mission concept of the Shuttle Radar Topography
Mission (SRTM)?
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1111
Here as he walked by

on the 16th of October 1843
Sir William Rowan Hamilton

in a flash of genius discovered
the fundamental formula for

quaternion multiplication
i2 = j2 = k2 = ijk =−1

& cut it on a stone of this bridge.

Inscription on Broom Bridge, Dublin

^ 11.1 Geocentric co-ordinate reference systems

In modern geodesy, the measurement methods of satellite and space
geodesy are integral parts of the global geodetic observing system (IUGG,
GGOS). Unlike traditional geodetic measurement methods, which carry
out their measurements on, or close to, the Earth’s surface, these mea-
surements are genuinely three-dimensional, and they also require the
use of three dimensions in computations involving them. In addition, the
platforms of, at least, satellite measurements orbit the Earth, meaning
that the centre of mass of the Earth becomes naturally the origin of the
co-ordinate frame used. This is why, in satellite geodesy, we use geocen-
tric, three-dimensional co-ordinate reference systems. See figure 11.1.
Geocentric co-ordinates are often denoted by capital letters, like X , Y, Z.

Geocentric The origin of the system is in the centre of mass of the
Earth, and the Z axis is directed along the rotation axis of the
Earth.

There are two types of geocentric systems:
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Z
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Greenwich sidereal time θ
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GreenwichGreenwich

FIGURE 11.1. The inertial or celestial (X ′,Y ′, Z) and the terrestrial, co-rotating,
or ECEF (X ,Y, Z) co-ordinate reference systems.^

Inertial or celestial There is no rotational motion. The direc-
tions of the axes are fixed with respect to the stars.

The X axis points (usually) to the vernal or spring equinox,kevät-
päiväntasaus the “Greenwich of the sky”.

Terrestrial or co-rotating Also Earth-centred, Earth-fixed, or
ECEF. The directions of the axes are fixed with respect to
the solid, rotating Earth.

The X axis points in the direction of the Greenwich merid-
ian.

Between the inertial and the terrestrial systems there is a rotation anglekiertokulma

called Greenwich sidereal time. It changes rapidly with time, at the sameGreenwichin
tähtiaika angular rate as the rotation of the Earth with respect to the stars.

Right-handed co-ordinate frame A corkscrew which progresses in
the positive x direction, turns from the y-axis direction to the
z-axis direction, figure 11.2.

A geocentric system is right-handed if the X axis points in the direction
of the intersection of the planes of the Greenwich meridian and the
equator, the Z axis to the North Pole, and the Y axis to 90◦ east.

Geocentric co-ordinates may be rectangular (X ,Y, Z), spherical, geode-
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z

O

x

y

FIGURE 11.2. A right-handed co-ordinate frame. A y→ z corkscrew (Wikimedia
Commons, Corkscrew) progresses in the x direction — as does a
z→ x corkscrew in the y direction, and an x→ y corkscrew in the
z direction.^

tic or geographical, or ellipsoidal co-ordinates. The following relations
exist between them (figure 11.3):⎡⎢⎣ X

Y
Z

⎤⎥⎦= r

⎡⎢⎣ cosφcosλ
cosφsinλ

sinφ

⎤⎥⎦ ,

in which (φ,λ, r) , the distance r from the geocentre and the geocentric
latitude and longitude φ and λ, are spherical co-ordinates, and⎡⎢⎣ X

Y
Z

⎤⎥⎦=

⎡⎢⎢⎣
(N(ϕ)+h)cosϕcosλ
(N(ϕ)+h)cosϕsinλ(︂(︁
b2/︁

a2
)︁

N(ϕ)+h
)︂

sinϕ

⎤⎥⎥⎦ ,

in which (ϕ,λ, h), the height h from the reference ellipsoid and the geode-
tic latitude and longitude ϕ and λ, are geodetic, also called geographical,
co-ordinates. The quantities a and b are the semi-major and semi-minor iso- ja

pikkuakselin
puolikkaat

axes of the Earth ellipsoid; in other words, the equatorial and polar radii.
The transversal radius of curvature is

poikittais-
kaarevuussädeN(ϕ)= a2√︁

a2 cos2ϕ+b2 sin2ϕ
.

The third geocentric co-ordinate type, ellipsoidal co-ordinates, are some-
times used in scientific work, but they have no practical significance in
land-surveying; see Heiskanen and Moritz (1967) pages 39–45.
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X / Y

Z

h
r

N(ϕ)

φ ϕ

O

FIGURE 11.3. Geocentric (φ) and geodetic (ϕ) latitude and transversal radius of
curvature N.^

The advantage of rectangular1 co-ordinates is that calculations are easy1

with them. For example, the distance s between two points (X1,Y1, Z1)

and (X2,Y2, Z2) is simply22

s12 =
√︂
(X2 − X1)

2 + (Y2 −Y1)
2 + (Z2 −Z1)

2.

If the points are given in the form (ϕ1,λ1,h1), (ϕ2,λ2,h2), the correspond-
ing equation will not be quite as simple!

^ 11.2 Topocentric co-ordinates

In practical measurement work, often local or topocentric, three-dimen-
sional co-ordinates3 are used, in which the origin is the location of mea-3

surement itself, the instrument (instrument co-oordinates). It is naturalkoje-
koordinaatit to use spherical co-ordinates (α,ζ, s), in which s is the slant range from
vinoetäisyys the instrument, α is the azimuth or horizontal direction angle, and ζ is

the zenith angle. From these, the rectangular co-ordinates of the signaltähys

1Rectangular co-ordinates are often called Cartesian, after René Descartes. Strictly
speaking Cartesian co-ordinates have straight co-ordinate lines, whereas rectangular
co-ordinates could also be curvilinear. In fact, both spherical and geodetic co-ordinates
are rectangular in this more general sense.

2Of course this is the straight distance in space, often passing though the solid body of
the Earth. Usually we are more interested in the distance over the Earth’s surface.

3Greek topos = place, like utopia = non-existent place.
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FIGURE 11.4. The topocentric or instrument co-ordinate frame, as well as the
geocentric co-ordinate frame. The instrument is I, the geocentre
O and the measured location or signal, S. Note that this co-
ordinate frame is left-handed.^

or target are easily calculated:⎡⎢⎣ x
y
z

⎤⎥⎦= s

⎡⎢⎣ sinζcosα
sinζsinα

cosζ

⎤⎥⎦ .

Total stations or electronic tacheometers can give precisely these in-
strument co-ordinates, either in spherical4 (α,ζ, s) or rectangular (x, y, z) 4

form. Conventionally we write topocentric co-ordinates in lower case.

Figure 11.4 depicts both the co-ordinate axes (x, y, z) of the topocentric
system, and the axes (X ,Y, Z) of the geocentric system. In this figure,
the signal S may be a point to be measured on the Earth’s surface, but
also a satellite orbiting the Earth. In any case, the measurements are
always obtained topocentrically first, with respect to the plane of the local
horizon (grey circle) of the observation point I.

4Strictly speaking only gyrotheodolites can provide the absolute azimuth α. For an
ordinary instrument, the unknown azimuth of the zero on the horizontal circle needs
to be determined separately, typically in a network adjustment or by an astronomical
azimuth determination (section 11.6).
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The transformation between these two rectangular three-dimensional
systems is a three-dimensional similarity of Helmert transformation, onyhden-

muotoisuus-
muunnos

which more in the following.

^ 11.3 Three-dimensional transformations

A two-dimensional similarity or Helmert transformation is, if the turn
from the X axis to the Y axis has the same direction as a positive angle
α: [︄

X ′

Y ′

]︄
= K

[︄
cosα sinα
−sinα cosα

]︄[︄
X − X0

Y −Y0

]︄
,

in which α is the rotation angle, K the scale ratio, and
[︂

X0 Y0

]︂T
are

the co-ordinates of the origin of the new system, written in the old one.

The corresponding three-dimensional transformation equation is ob-
tained by adding the Z axis and keeping its direction fixed:⎡⎢⎣ X ′

Y ′

Z′

⎤⎥⎦= K

⎡⎢⎣ cosα3 sinα3 0
−sinα3 cosα3 0

0 0 1

⎤⎥⎦
⎡⎢⎣ X − X0

Y −Y0

Z−Z0

⎤⎥⎦ .

The size 3×3 rotation matrix visible in the equation may be called R3(α3).kiertomatriisi

In the same way as around the Z axis, rotations may also take place
around the Y or X axis. In that case, we obtain analogously the rotation
matrices

R1(α1)=

⎡⎢⎣ 1 0 0
0 cosα1 sinα1

0 −sinα1 cosα1

⎤⎥⎦ , R2(α2)=

⎡⎢⎣ cosα2 0 −sinα2

0 1 0
sinα2 0 cosα2

⎤⎥⎦ .

The general similarity or Helmert transformation containing all three
rotations (and three translations, and a scaling) can now be expressed inkierto, siirto

the following compact form:

R′ = KR
(︁
R−R0

)︁
. (11.1)

Here we write the vectors as column vectors of their components or co-
ordinates of location, as follows:

R′ =

⎡⎢⎣ X ′

Y ′

Z′

⎤⎥⎦ , R=

⎡⎢⎣ X
Y
Z

⎤⎥⎦ , R0 =

⎡⎢⎣ X0

Y0

Z0

⎤⎥⎦ .
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The overbar signals that we are dealing with column vectors of component
values, not the vectors in space themselves. It may be left off when the
context is clear.5 5

Furthermore, the rotation kierto

R = R3(α3)R2(α2)R1(α1)

is the combination, or “chaining”, of three rotations. Equation 11.1 is
called the (three-dimensional) Helmert or similarity transformation. The
elements of the size 3×3 matrix R representing the rotation of the co-
ordinate frame are complicated trigonometric expressions in the angles
α1, α2, and α3, and we do not derive them here.

^ 11.4 Transformation in the case of small rotation angles

Often, the axes of two co-ordinate frames are very close to each other. In
that case, the rotation angles are small and one may make the approxi-
mation that sinα≈α and cosα≈ 1. Then, the equations become simpler.
If, in addition, it may be assumed that the scale ratio K is close to unity,
one may write

K = 1+m,

in which m, the scale distortion, is small.

In addition

R1 ≈

⎡⎢⎣ 1 0 0
0 1 α1

0 −α1 1

⎤⎥⎦ , R2 ≈

⎡⎢⎣ 1 0 −α2

0 1 0
α2 0 1

⎤⎥⎦ , R3 ≈

⎡⎢⎣ 1 α3 0
−α3 1 0

0 0 1

⎤⎥⎦ .

If all αi are small, one may furthermore assume that all αiα j ≈ 0.

5The vectors themselves are

R= k (X i+Y j+Zk)=R0 +k′ (X ′i′+Y ′j′+Z′k′) , R0 = k (X0i+Y0 j+Z0k) ,

in which
{︁

i, j,k
}︁

and
{︁

i′, j′,k′}︁ are orthonormal bases of the space, for the old and the
new co-ordinate frame respectively. Also K = k

/︁
k′ , the ratio of the scale deformations

of the two frames. For a pure rotation this becomes

R= X i+Y j+Zk= X ′i′+Y ′j′+Z′k′.
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We obtain

R = R3(α3)R2(α2)R1(α1)=

⎡⎢⎣ 1 α3 −α2

−α3 1 α1

α2 −α1 1

⎤⎥⎦= I +∆R,

in which I is the 3×3 unit matrix, and

∆R =

⎡⎢⎣ 0 α3 −α2

−α3 0 α1

α2 −α1 0

⎤⎥⎦
is a skew-symmetric (antisymmetric) matrix: ∆RT =−∆R.

Now we obtain from equation 11.1:

R′ = (1+m)(I +∆R)
(︁
R−R0

)︁≈ (I +mI +∆R)
(︁
R−R0

)︁
=⇒ R′−R= (mI +∆R)R− (I +mI +∆R)R0.

If we now also assume the translations R0 to be small, then from thissiirto

follows the co-ordinate correction equation

R′−R≈ (mI +∆R)R−R0 =

⎡⎢⎣ m α3 −α2

−α3 m α1

α2 −α1 m

⎤⎥⎦R−R0, (11.2)

in which m, α1, α2, α3, R0, and R′−R are all small (but R and R′ are
large).

The form 11.2 is the “small” form of the general Helmert transforma-
tion, between two realisations of co-ordinate reference systems that are
close together, like, for example, the different realisations of ITRS, the In-
ternational Terrestrial Reference System. In that case, the rotation angles
αi are of the order of a fraction of a second of arc, and the translation
vector R0 is under 10cm.

^ 11.5 The transformation between two reference ellipsoids

A classical case is the transformation between two geodetic datums which
are defined on two differently non-geocentric reference ellipsoids, for
example in Europe between the Hayford ellipsoid of the ED50 datum
and Eastern Europe’s Krasovsky ellipsoid. A brute-force method is then
to first convert geodetic co-ordinates (ϕ,λ, h) to rectangular (X ,Y, Z),
carry out a three-dimensional Helmert transformation between the two
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datums, and convert the result back into geodetic co-ordinates in the
other datum, (ϕ′,λ′, h′).

If the difference between the two datums is small and consists only of
a shift of the reference ellipsoid’s centre, there is a simple relationship
between the centre shift and the change in geodetic co-ordinates. See
figure 11.5.

Let the location vector of a point from the centre of one ellipsoid be
R1, and from the other, R2, and the difference, in rectangular geocentric
co-ordinates,6 6

∆R=R2 −R1 =

⎡⎢⎣ X2 − X1

Y2 −Y1

Z2 −Z1

⎤⎥⎦=

⎡⎢⎣ ∆X
∆Y
∆Z

⎤⎥⎦ .

Around the point, we define local topocentric co-ordinates (x, y, z) on a
unit-vector, or orthonormal, basis

{︁
N,E,U

}︁
(”north, east, up”). At the ortonormaali

kantalocation of the point, the principal radii of curvature of the reference
ellipsoid are M(ϕ), the meridional radius of curvature, and N(ϕ), the
transversal radius of curvature. Now the topocentric co-ordinate differ-
ences are

∆x = M(ϕ)∆ϕ, ∆y= N(ϕ)cosϕ∆λ, ∆z =∆h,

and

∆R=N∆x+E∆y+U∆z =N M(ϕ)∆ϕ+E N(ϕ)cosϕ∆λ+U∆h.

In matrix notation, this is

∆R=

⎡⎢⎣ ∆X
∆Y
∆Z

⎤⎥⎦=
[︂

N E U
]︂⎡⎢⎣ M(ϕ)∆ϕ

N(ϕ)cosϕ∆λ
∆h

⎤⎥⎦=

=

⎡⎢⎣ NX EX UX

NY EY UY

NZ EZ UZ

⎤⎥⎦
⎡⎢⎣ M(ϕ)∆ϕ

N(ϕ)cosϕ∆λ
∆h

⎤⎥⎦ ,

in which the matrix is orthogonal, in fact a rotation matrix:

R =

⎡⎢⎣ NX EX UX

NY EY UY

NZ EZ UZ

⎤⎥⎦=

⎡⎢⎣ −sinϕcosλ −sinλ cosϕcosλ
−sinϕsinλ cosλ cosϕsinλ

cosϕ 0 sinϕ

⎤⎥⎦ .
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FIGURE 11.5. The differential connection between rectangular (N,E,U) co-
ordinates and geodetic co-ordinates on the reference ellipsoid.^

The columns of the matrix are the geocentric components of the vectors
N, E, and U.

Inverting an orthogonal matrix is easy: R−1 = RT, or⎡⎢⎣ M(ϕ)∆ϕ

N(ϕ)cosϕ∆λ
∆h

⎤⎥⎦=

⎡⎢⎣ −sinϕcosλ −sinϕsinλ cosϕ
−sinλ cosλ 0

cosϕcosλ cosϕsinλ sinϕ

⎤⎥⎦
⎡⎢⎣ ∆X
∆Y
∆Z

⎤⎥⎦ .

Thus we may easily calculate what are the effects of shifting the centre
of the reference ellipsoid on geodetic co-ordinates (ϕ,λ, h), evaluated on
the ellipsoid:⎡⎢⎣ ϕ2

λ2

h2

⎤⎥⎦=

⎡⎢⎣ ϕ1

λ1

h1

⎤⎥⎦+

⎡⎢⎣
(︁
M(ϕ)

)︁−1 0 0
0

(︁
N(ϕ) cosϕ

)︁−1 0
0 0 1

⎤⎥⎦RT

⎡⎢⎣ X2 − X1

Y2 −Y1

Z2 −Z1

⎤⎥⎦ .

6This is also the vector connecting the centres of the two reference ellipsoids!
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FIGURE 11.6. The effect of a datum transformation (shift of the centre of the
reference ellipsoid) on geodetic latitude and longitude ϕ and λ,
deviations of the plumb line ξ and η, geoid heights N, and the
heights h of points from the reference ellipsoid.^

And when the geodetic co-ordinates (ϕ,λ, h) change, then the deviations luotiviivan
poikkeamaof the plumb line and the heights of the geoid also change, their definitions

being

ξ=Φ−ϕ, η= (Λ−λ)cosϕ, N = h−H, (11.3)

in which (Φ,Λ) are astronomically determined latitude and longitude,
(ξ,η) are deviations of the plumb line in the north and east directions, h
is the height above the ellipsoid, and H the height above sea level, that
is, the geoid, while N is the geoid height reckoned from the reference
ellipsoid. From this is obtained directly⎡⎢⎣ −M(ϕ)∆ξ

−N(ϕ)∆η

∆N

⎤⎥⎦=

⎡⎢⎣ −sinϕcosλ −sinϕsinλ cosϕ
−sinλ cosλ 0

cosϕcosλ cosϕsinλ sinϕ

⎤⎥⎦
⎡⎢⎣ ∆X
∆Y
∆Z

⎤⎥⎦ ,

because Φ, Λ, and H can be calculated directly from measurements,
without any use of a reference ellipsoid. See figure 11.6.

^ 11.6 Laplace azimuth measurements

A geodetic network computed on the reference ellipsoid is oriented by
astronomical observations. Two of the three orientation degrees of free-
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Reference ellipsoid

Geoid

Horizon
Ellipsoid
tangent

plane

Plumb line Ellipsoidal normal

FIGURE 11.7. The deviation of the local plumb line from the normal on the ref-
erence ellipsoid surface. The general situation in a point neither
on the reference ellipsoid nor on the geoid.^

dom are fixed by making the direction of the ellipsoidal normal in the
datum point or points equal to the astronomically determined direction
of the plumb line. That leaves a third degree of freedom, the network’sluotiviiva

orientation with respect to the local north.

The directions measured in the network are projected onto the plane of
the local horizon. If one ignores the local deviations of the plumb line —
meaning that one assumes that the local plane of the horizon is parallel
to the local tangent plane to the reference ellipsoid — one may say that
the sighting azimuths are projected onto the reference ellipsoid. This
assumption is, however, not correct. The local horizon is perpendicular to
local gravity, the direction of which differs a little from that of the normal
to the reference ellipsoid. The phenomenon is precisely the plumb-line
deviation, see figure 11.7.

The deviations of the plumb line are ξ in the south-north direction, and
η in the west-east direction. Their equations 11.3 were already given:

ξ=Φ−ϕ, η= (Λ−λ)cosΦ,

with (Φ,Λ) astronomical latitude and longitude. ϕ and λ, geographical
latitude and longitude, are geodetically computed co-ordinates such as can
be found on maps, computed with respect to a certain reference ellipsoid.77

Let the astronomical azimuth (absolute direction) measured with re-
spect to the plane of the local horizon be A, and the same sighting mea-

7So this means that the deviations of the plumb line will depend on the reference
ellipsoid chosen. The choice of the local reference ellipsoid or datum was often made so
that the sum of the squares of plumb-line deviations was minimised over the area of
interest. In other words, so the ellipsoid would fit as well as possible to a level surface
of the very local gravity field, the geoid.
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sured with respect to the reference ellipsoid, that is the geodetic azimuth,
α.

Then we may say that

A−α= ηtanΦ+ (ξsinα−ηcosα)cotζ=
= (Λ−λ)sinΦ+(︁(Φ−φ)sinα− (Λ−λ)cosαcosΦ

)︁
cotζ, (11.4)

in which ζ is the zenith angle. Equation 11.4 is called the Laplace azimuth
equation. If the sighting direction is in the horizontal plane, then cotζ= 0
and the correction above is a constant for the observation site, as the
dependence on azimuth α vanishes.

Figure 11.8 explains where both terms come from:

◦ The first term η tanΦ comes from the projection of the direction
of the celestial pole onto the local horizon being different from
the projection onto the tangent plane to the reference ellipsoid. It
depends on the height of the celestial pole, or astronomical latitude
Φ.

◦ The second term (ξsinα−ηcosα)cotζ comes from the difference in
projections of the signal direction onto the local horizon and onto
the tangent plane of the ellipsoid. It depends on the zenith angle ζ
of the signal, and vanishes if ζ= 100g.

^ 11.7 Traditional “2D+1D” co-ordinates

Co-ordinate frames in which horizontal location and height are given
separately have long been in widespread use. An example of this is
the KKJ system, the Map Grid Co-ordinate System, which was in use
in Finland but is now obsolete, and the height system N60. KKJ gives
horizontal co-ordinates in the Gauss–Krüger projection on the Hayford
ellipsoid, also known as the International Ellipsoid of 1924. The co-
ordinates are based on the ED50 (European Datum 1950) system, which
was created in 1950 by a joint adjustment of the triangulation networks yhteistasoitus

kolmiomittaus-
verkko

of all Western European countries. This is a traditional, non-geocentric
datum.

The N60 system gives orthometric heights, meaning heights from the
geoid, not the reference ellipsoid. The geoid (see section 16.4) is an undu-
lating reference surface similar to mean sea level. With the International
Ellipsoid, one must use the Bomford8 geoid model, which back in the day 8
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FIGURE 11.8. The Laplace phenomenon: the effect of the plumb-line deviation
on the azimuth.^
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was determined in connection with the ED50 project.

Stating the three-dimensional location of a point in the form (x, y, H),
in which (x, y) is a KKJ co-ordinate pair, and H an orthometric N60
height, is problematic: the connection with the systems used by satellite
positioning is complicated. Transforming the co-ordinates (x, y, H) into
geocentric (X ,Y, Z) co-ordinates involves the following steps:

1. The KKJ co-ordinates (x, y) have already undergone a two-dimen-
sional Helmert transformation, aimed at achieving an approximate
compatibility with the still older VVJ or “Helsinki System”. This
transformation is documented in Ollikainen (1993). The inverse of
this transformation needs to be applied: (x, y) =⇒ (x′, y′).

2. The Gauss–Krüger map projection is applied in the inverse direc-
tion, (x′, y′) =⇒ (ϕ,λ), on the International or Hayford ellipsoid.

3. In order to transform the orthometric height H into a height h from
the reference ellipsoid, we need a geoid model that is compatible
with the reference ellipsoid used, thus Bomford’s geoid model. The
geoid height N = h−H is needed in every point.

4. The geodetic co-ordinates (ϕ,λ, h) are to be transformed into rect-
angular (X ′,Y ′, Z′) co-ordinates. These three-dimensional co-ordi-
nates are still in the European Datum 1950 system, which is not
(precisely) geocentric.

5. As the ED50 datum is non-geocentric, we still need a three-dimen-
sional Helmert transformation to arrive at precisely geocentric
co-ordinates (X ,Y, Z), see section 11.8 for details.

KKJ has already been replaced by new map projection systems, which
are based either on the Gauss–Krüger or the UTM (Universal Transverse
Mercator) projection on the GRS80 reference ellipsoid, and by the EUREF-

FIN datum, the ETRS89 (European Terrestrial Reference System 1989)
system’s Finnish national realisation. The new N2000 system is used as
the height system, and its connection to the ellipsoidal heights is given by
the geoid model FIN2005N00, see Bilker-Koivula and Ollikainen (2009).
The above points 2–4 continue to apply, albeit with other names.

8Brigadier Guy Bomford (1899–1996) was a gifted British geodesist and student of geoid
determination.
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^ TABLE 11.1. Transformation parameters from Ollikainen (1993) for EUREF89
→ ED50.

Parameter Value Precision Unit

∆X 93.477 ±3.345 m
∆Y 103.453 ±5.534 m
∆Z 123.431 ±2.736 m
ex −0.246 ±0.168 ′′

e y 0.109 ±0.106 ′′

ez 0.068 ±0.112 ′′

m −2.062 ±0.417 ppm

^ 11.8 Case: the transformation between ED50 and EUREF89

This is a Helmert transformation of type 11.1, to an accurately geocentric
system. Because the Hayford ellipsoid on which ED50 is based is not
(accurately) geocentric, the origin of the co-ordinate frame must be shifted
from the centre of the reference ellipsoid to the centre of mass of the Earth.
The shifts (translations) are of the order of a hundred metres, and the
rotations and the scale change are also substantial, see Ollikainen (1993)
page 15 and table 2 on page 13:⎡⎢⎣ X

Y
Z

⎤⎥⎦
ED50

= (1+m)

⎡⎢⎣ 1 ez −e y

−ez 1 ex

e y −ex 1

⎤⎥⎦ ·

⎡⎢⎣ X
Y
Z

⎤⎥⎦
EUREF89

+

⎡⎢⎣ ∆X
∆Y
∆Z

⎤⎥⎦ ,

for which table 11.1 gives the transformation parameters according to
Matti Ollikainen’s solution for the territory of Finland.

ED50 (European Datum 1950) is the traditional European datum on
which KKJ is based. It was created well before the satellite age. As can
be seen from the table, it is non-geocentric. EUREF89 is a modern, GNSS-
based European co-ordinate reference frame. The precision figures given
in the table are large because co-ordinates determined in the traditional
way over a large area are just not very precise.

More recent information on matters of co-ordinates and transforma-
tions for the Finnish territory can be found in Häkli et al. (2009).

^ 11.9 Case: the transformation between ITRF and ETRF

A three-dimensional, satellite-based, thus geocentric co-ordinate refer-
ence frame called EUREF-FIN is in use in Finland. It is the national
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^ TABLE 11.2. Transformation parameter values ITRF2005 → ETRF2005 from

Boucher and Altamimi (2007) tables 3 and 4.

Parameter Value (cm) Parameter Value (10−3 ′′/a)

T1 5.6 Ṙ1 0.054
T2 4.8 Ṙ2 0.518
T3 −3.7 Ṙ3 −0.781

realisation of ETRS89, the European Terrestrial Reference System, on the
Finnish territory.

All geodetic satellite measurements, however, give a position solution in
the same frame as that in which the orbital elements of the GPS satellites rata-alkiot

are given, like ITRF2005. Then, the following transformation is needed to
the corresponding ETRS89 realisation, ETRF2005:⎡⎢⎣ X

Y
Z

⎤⎥⎦
ETRF2005

(t)=

⎡⎢⎣ X
Y
Z

⎤⎥⎦
ITRF2005

(t)+

⎡⎢⎣ T1

T2

T3

⎤⎥⎦
ETRF2005

ITRF2005

+

+

⎡⎢⎣ 0 −Ṙ3 Ṙ2

Ṙ3 0 −Ṙ1

−Ṙ2 Ṙ1 0

⎤⎥⎦
ETRF2005

ITRF2005

× (t−1989.0)×

⎡⎢⎣ X
Y
Z

⎤⎥⎦
ITRF2005

(t) ,

in which the dot on the R parameters (Newton’s dot notation) indicates
derivation with respect to time. The Ṙ parameters in this equation
include the tectonic motion of the Eurasian plate.

The parameter values for the equation are found in the instructions
written by the EUREF subcommission, and are presented in table 11.2.

As can be seen, the transformation parameters in this case are many
orders of magnitude smaller than in the earlier-described transforma-
tion between EUREF-FIN and ED50. Both co-ordinate reference frames,
ETRF2005 and ITRF2005, are geocentric on the centimetre level.

^ Self-test questions

1. Which are the two main types of geocentric co-ordinate reference
systems?

2. What is sidereal time and what does it describe? tähtiaika

3. How many transformation parameters does a three-dimensional
Helmert transformation have?
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FIGURE 11.9. Greenwich geometry: longitude is a direction, not a place.^

4. Name the parameters of the three-dimensional Helmert transfor-
mation.

5. Describe the Laplace azimuth measurement and what it is used for.

^ Exercise 11–1: Greenwich: explain this

People have been taking their inexpensive hand-held GNSS receivers —
mobile phones, even — to the Greenwich or zero meridian, figure 2.11,
finding that they do not show zero longitude.

How is that possible?

There is a lot of good explanation for this on the Internet, including one
Journal of Geodesy article from 2015 — and a lot of plain old tabloid non-
sense. Do not buy the nonsense. In this exercise, provide an explanation
in your own words, showing that you “get” it.

Imagine that you’re called up by a journalist who has heard about this,
and wants your take on it as a geodesist. Your explanation — an elevator
speech — should be so lucid that she “gets” it, and what’s more, that when
she gets home and tells her husband what she has learned, he “gets” it
too. . .
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^ The Global Positioning System (GPS)

1212
Wouldn’t it be noteworthy that Transit 5B-5 (launched

1964) is the oldest active satellite in space? It never went
into operation because the data up/download link system

failed after deployment into LEO. But since that day it
transmits its doppler carrier and marker signals on 136.650
MHz, of course the batteries failed many years ago and so

the electronics only function when the satellite is in
sunlight. But it still manages to boot up most days, after

more than 50 years of operation, and can be received using
simple handheld scanners. It’s considered an admirable

“space monument” by sat enthusiasts.

176.0.30.145, November 29, 2015. Wikipedia, Transit 5B-5
— oldest active satellite

IN LAND-SURVEYING, THE ROLE of the GPS has during the last two or
three decades grown to be dominant, both in Finland and worldwide. The
professional literature, especially in the English language, is extensive.
Poutanen (2017) is a significant work in Finnish. A good basic work in
English is Hofmann-Wellenhof et al. (2001).

Here we will concentrate on the GPS, which has been fully operational
for a long time. In parallel to this system, which is operated by the US
military authorities, similar systems by other countries have in recent
years appeared on the scene. The Russian GLONASS deserves a special
mention: after a time of decay it has now grown back to operationality.
Satellites from both systems are today routinely used together in land-
surveying.

The Europeans have developed their own Galileo system, and the
Chinese their BeiDou or “Compass” system. Satellites of both systems

– 283 –



12284 THE GLOBAL POSITIONING SYSTEM (GPS)

are functioning in orbit and both systems are close to full operationality.

These systems are, in the aggregate, called “GNSS” or Global Navigation
Satellite Systems. However, the relative simplicity of the way the original
GPS works makes it a suitable model for teaching the basics, and therefore
we shall concentrate on it.

The GPS is originally a navigation system. It was not the first radio
navigation system using satellites: an earlier satellite navigation system
was the Transit system, or NNSS (Navy Navigation Satellite System),
unofficially the “Doppler positioning system”. This system, which was op-
erational 1964–1996, consisted of five satellites orbiting the Earth in low
orbits. Geodetically useful positioning required several satellite passages
overhead, amounting in practice to at least 24 hours of observations.

See figure 12.3 for a visual illustration of the NNSS.

The GPS satellites are in much higher orbits, and anywhere on Earth,
at almost any time, at least six of them are “visible”. More commonly,
the number of visible satellites ranges from eight to over ten.1 Therefore1

GPS positioning can be done almost instantly, within a few seconds or
minutes.

^ 12.1 Radio navigation and hyperbolic systems

Of the older terrestrial radio navigation systems for seafarers may be
mentioned the Decca system, closed down in 2000, which is an example
of a hyperbolic system. Other systems worth mentioning are Loran-C and
Omega, both no longer in use.22

Decca transmitted non-modulated carrier waves in the frequency bandkantoaalto

70–129kHz, corresponding to wavelengths 2.3–4.3km. Its use required
at least three transmitters, one “master” and at least two “slave” or
auxiliary stations. The transmissions of the stations were precisely syn-
chronized, though they were all transmitting on different wavelengths.

The term “hyperbolic system” is based on the circumstance that a vessel
without a clock synchronised with the transmitters can observe only the

1Positioning instruments making use of more than one satellite system, like GPS and
GLONASS, “see” even more satellites, even in poor-visibility locations like the centres of
big cities.

2Some countries, including the US, however, are considering bringing Loran-C back
to life under the name “eLoran” (“Enhanced Loran”), because, using high-power long-
wavelength radio transmitters, it is less susceptible to interference compared to GPS.
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FIGURE 12.1. The Decca system.^

difference in reception times between the waves from two transmitters.
See figure 12.1.

On the map are drawn, in two different colours, hyperbolas, curves
of which the points have a difference in distance from the master and a
certain auxiliary that is constant. For example, for the red hyperbolas we

FIGURE 12.2. A Decca receiver. Wikimedia Commons, Decca Navigator Mk 12.^
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have
sred − smaster = constant

and for the green hyperbolas

sgreen − smaster = constant.

Every curve has its own constant. Unfortunately this constant cannot be
observed, because all carrier waves look the same.33

Therefore, an incremental measurement method is used. Each lanekujalaskuri

counter of the Decca instrument has two hands, one for counting the lanes,
the other for the fraction within a lane. The hands move together, just
like the hands of a clock.

The ship must set the lane counters to the correct starting values at a
known location, such as the port of departure. After that, during cruising,
they follow the development over time of the lane values: every lane hand
on the phase-difference dial tracks how many full turns the phase handvaihe-ero

has made — see figures 12.1, 12.2. It is a precondition that the radio
connection with the base stations stays uninterrupted.4tukiasema

4
At any point in time, one may use the two5 lane numbers and residual

5
phase differences — fractional numbers ∈ [︁0,2π

)︁
— to read one’s own

location on a sea chart, on which the hyperbolas are pre-drawn.

Like the GPS, the Navy Navigation Satellite System NNSS was also
a hyperbolic system: the hyperbolas were formed with two successive
satellite locations in space, for times t0 and t0 +2min, as the focal points.
The difference between the distances to the two locations is obtained by
integrating the Doppler shift of the received frequency over this time
span, yielding the difference in cycles. The equation is

s(t0)− s(t0 +2min)= c
f

ˆ t0+2min

t0

( f ′− f ) dt,

in which f is the nominal frequency of the transmission, f ′ the received
frequency, and c the speed of light. This requires the nominal transmis-
sion frequency to be accurate: the NNSS system was also the first satellite
system that served the dissemination of precise time.

Every hyperboloid of revolution in space intersects the Earth’s surfacepyörähdys-
hyperboloidi

3In connection with the GPS this is called the ambiguity problem.

4This is referred to as a kinematic method. Absolute location is not measured: instead
the user follows continuously how they are moving in relation to a known starting point.

5Actually Decca used three colours: red, green and purple.
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t0 +2mint0

s(t0)s(t0)
s(t0 +2min)s(t0 +2min)

FIGURE 12.3. The NNSS Transit system.^

in a curve. The orbits of the Transit satellites are polar, meaning that
these curves are running in the general west-east direction. A fix could be
obtained already from a single overpass, and using multiple, both north-
and southgoing, overpasses in a least-squares adjustment6 improved the pienimmän

neliösumman
tasoitus
6

precision of the determination of both latitude and longitude.

^ 12.2 The GPS satellite

Characteristic of the GPS, being originally a military positioning system,
is that the satellites are active and the users passive. So, the positioning
instruments used by the users, the GPS receivers, are quiet, whereas the
satellites contain radio transmitters. A GPS satellite is in a way a flying
Decca base station.

A GPS satellite is big, a contraption appearing as in figure 12.4a. It
contains, among others, the following components:

◦ A precise atomic clock, either a caesium, rubidium, or hydrogen-
maser clock. This clock synchronises all signals (carrier waves and
modulations) which the satellite transmits. Because the clocks have

6At the time of deployment of the NNSS, the computing capacity required was still hard
to come by, especially in a form factor suitable for submarine use. A special-purpose
computer was designed for this, weighing a quarter of a ton, but small enough — and
with rounded corners! — to go through the hatch of a nuclear submarine, Wikipedia,
The AN/UYK-1 (TRW-130)!
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(a)
GPS (Block II)

(b)
GLONASS

(c)
Galileo

(d)
BeiDou

FIGURE 12.4. Positioning satellites.^

a limited lifespan, each satellite includes spare clocks.

◦ Radio transmitters. The antennas of the satellite point all the time
to the Earth. Transmission power is significant only within a direc-
tional cone that contains the Earth as a whole; the total power is
about 50W. Two carrier-wave frequencies are used, 1575.42MHz
(L1) and 1227.60MHz (L2), which enables the elimination of the
effect of the ionosphere. The various codes that are used in posi-
tioning, as well as a code containing orbit and other information for
the users, are modulated onto the carrier waves.
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◦ Communication channels. The satellite receives data from the

GPS control centre. Besides control commands, this data contains
information on the orbits, clock corrections, “health”, etc., of all
GPS satellites. The information is stored in the satellite’s memory
and transmitted forward to users as a message modulated onto the
carrier wave.

◦ Solar panels produce the power needed by the equipment. The
amount of power has grown from 400W (Block I) to almost three
kilowatts (Block IIF). At times, the satellite moves through the
Earth’s shadow; for this, there are batteries.

◦ Small rocket engines or thrusters for controlling attitude and orbit,
as well as a stock of propellant (monopropellant hydrazine). Be- ajoaine

cause of orbit perturbations, orbit corrections are needed at regular ratahäiriö

intervals.

◦ The satellites are stabilised on three axes: the antennas are point-
ing to the Earth, the solar panels to the Sun. For stabilisation,
reaction wheels (“flywheels”) are used.

As, during the lifetime of the GPS, the field of electronics has seen huge
developments, there are several satellite generations: “Block I”, “Block
II/IIA”, “Block IIR”, “Block IIR-M” and “Block IIF”, see Misra and Enge
(2010). The first Block-IIIA satellite was launched in 2018.

Satellites in operation today are all Block II or higher. The masses of
the satellites are 845kg (Block I), 1660kg (Block II) and 2269kg (Block
III). The design lifetime of the satellites — limited by the propellant
stock for orbit maintenance, the diminishing power of the solar cells and
batteries, and the development of defects in clocks and electronics in the
Earth’s outer radiation belt — is 4.5 (Block I), 7.5 (Block II) or today
even 12–15 years. The satellites have regularly exceeded their design
lifetimes.

^ 12.3 The GPS segments

The GPS consists of three segments, figure 12.5:

Space segment The satellites themselves. avaruuslohko

Control segment Command centre, telemetry and control, tracking valvontalohko

stations, orbit determination, time synchronisation.

The main command centre, or Master Control Station, of the GPS

is located in Colorado Springs. There are some two dozen orbit
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User segment:
◦ Reception of

satellite signal
◦ On land, on sea,

and in the air

Control segment:
◦ Command centre
◦ Time synchronisation
◦ Orbit tracking

x

Space segment:
◦ Frequencies L1,L2

◦ Precise time
◦ Orbit predictions

FIGURE 12.5. The three segments of the GPS.^

tracking and control stations around the globe. Like the whole
GPS, the control segment also resides under the US Department of
Defense, more precisely the US Air Force.

Every control and tracking station is equipped appropriately with,
among other things, a GPS receiver using a precise caesium clock.

Once every 24 hours, new orbital data — “broadcast ephemeris”
— and correction information for the satellite’s atomic clock is
uploaded to the satellites. The satellites include these orbit and
clock data into the radio signal they transmit, to be used by all
users.

User segment All users, on land, at sea and in the air — and more andkäyttäjälohko

more also in space, in low Earth orbits — with their receivers.
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^ 12.4 The GPS constellation

The design constellation of the GPS consists of 24 satellites and three
“active spares”, which can be moved into place immediately when an
active satellite breaks down. The satellites are in six different orbital
planes, with four satellites in each plane. In reality there are over 30
satellites operating today.

The height of the orbits from the Earth’s surface is 20200km. The or-
bital period around the Earth is 11h58m, so, in the time it takes the Earth
to rotate once around her axis, 23h56m, the satellites are “seen” again
in the same spots in the sky as the previous day. The GPS measurement
geometry repeats every day four minutes earlier, because the length of the
day in the mean solar time used by our clocks is four minutes longer than
the rotation period of the Earth.

The tilt of the orbital plane, or inclination, is7 i = 55◦. Because of this, 7

the geometry of the GPS constellation is not very strong at high northern
latitudes, from where the satellites are seen mostly in the southern sky.

The system has currently such complete coverage that at least four
satellites are “visible” (meaning that they are above an elevation angle of korkeuskulma

10◦) anywhere on Earth at any time. The number of visible satellites is
almost always, and usually substantially, larger than this.

^ 12.5 Codes in the GPS signal

Two pseudo-random codes are modulated onto the carrier waves trans-
mitted by the GPS satellites on two different frequencies: the C/A code and
the P code. In addition, there is still the navigation message — containing
“broadcast ephemeris” and almanac data — which is also modulated onto
the carrier waves.8 See table 12.1. 8

The modulation technique used is phase modulation:9 the phase of the vaihe-
modulaatio
97The Block I satellites had a different inclination, i = 63◦. None of those satellites are

working today.

8In connection with GPS modernisation, frequency L5, 1176.45MHz, has been added to
the signal. It is meant to be used in Safety of Life (SoL) critical operations, like aviation
and rescue services. In addition, new civilian and military codes have also been added
to the L1and L2 frequencies.

9Other modulation types in existence are amplitude modulation — where the strength
of the carrier, the amplitude, is varied in the rhythm of the signal — and frequency
modulation — where the frequency of the carrier is made to vary. Common radio
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FIGURE 12.6. The original GPS constellation. The orbits and locations of satel-
lites are realistic with respect to the Earth.^

carrier is turned “upside down”, meaning it is shifted by an angle of 180
degrees, or π, when the code switches between zero (0) and one (1).

Because of the modulation, the signal transmitted by the GPS satellites

^ TABLE 12.1. Codes included in the GPS signal.

Name Explanation
Modulation
frequency Repeat period

Carrier
wave

C/A

code
Coarse / Acquisition,
Civilian Access

1.023Mb
/︁

s 1ms L1

P code Precise / Protected 10.23Mb
/︁

s 1 week L1,L2

P(Y) Combination of P code
and secret W code

Same Same

- Navigation message 50bits
/︁

s 12.5 minutes L1,L2

stations use amplitude modulation, and FM stations frequency modulation.
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Modulation
= code

. . . modulated

Carrier wave. . .Principle:

Phase inversion
(180◦ phase shift) +1= 0 +1= 0

−1= 1

FIGURE 12.7. The principle of phase modulation.^

is pretty broadband. The effective bandwidth is several times the bit
frequency of the P code, that is several tens of MHz.

When already the transmission bandwidth requirement for a single
satellite is this large, one might think that the bandwidth demand of the
whole constellation would be huge. This is however not so: all satellites
use the same carrier-wave frequencies L1 and L2. The receiver is able to kantoaalto-

taajuusseparate the signals of different satellites from each other with the aid of
their different pseudo-random codes (C/A code and P code). Every satellite
has its own code, or “fingerprint”, in the same way that in navigation
at sea, every lighthouse has its own flashing sequence. The technical
solution goes by the name CDMA, or “code division multiple access”. koodijako-

kanavointiThe navigation message is a bit stream containing, besides precise or-
bital information on the broadcasting satellite, crude orbital information
— an almanac — on all satellites. Locking on to one satellite signal is
sufficient to receive the approximate orbital information for all satellites.

The pseudo-random codes are generated according to a documented
mathematical recipe (Wikipedia, Gold code). The codes thus are not
genuinely random: they can be exactly reconstructed using the same
recipe. They however behave statistically like genuinely random bit
sequences.

^ 12.5.1 The “tree rings” of GPS

The GPS receiver’s antenna on the Earth’s surface receives signals from
all the satellites that are in the sky at the moment of observation. This
whole “soup” travels along the cable to the receiver’s electronics.10 Here, 10

the first two tasks are performed:

10In the pre-amplifier of the antenna, the analogue signal is processed to bring the
carrier-wave frequency down to a much lower value, without affecting the modulation
(“downbanding” or “heterodyning”). This prevents crosstalk of the amplified signal back
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FIGURE 12.8. The correlation method for determining the travel time ∆t of the
GPS signal.^

1. Separate the signals of different satellites from each other using
their individual pseudo-random code or “fingerprint”.1111

2. Determine the travel time of the signal of each satellite from satel-

^ TABLEAU 12.2. How does dendrochronology work?

The method works as follows: the laboratory holds a reference sequence of tree
rings, which has been built from partially overlapping tree-ring sequences. Rainy
years show as thick, dry years as narrow rings.a In the reference sequence, the
true, absolute year number of every ring is known.
Building a reference sequence is challenging. After doing so, however, the age
of any wooden object can be determined by comparing its tree rings with the
reference sequence, until the place is found where they match (correlate). The
method works because the succession of wet and dry years is largely random.
Similar methods are in use in many fields of science: dating and correlation of
ice drilling cores or geological deposits, correlation of magnetisation stripes on
the sea floor, and others.

aHowever, at the tree line in the mountains or the Arctic, tree-ring thickness is con-
trolled mostly by temperature. This circumstance has been used for reconstructing
paleotemperature time series. It can be said that the tree-ring width is a proxy for
temperature.

into the antenna, and makes further processing easier, like the digitisation of the signal
in an A-D (analogue-to-digital) converter.

11The pseudo-random codes of the different satellites have been carefully designed to be
orthogonal to each other, meaning the true signal of one satellite correlates as weakly
as possible with the replica signal of another satellite generated in the receiver, even
with the correct time shift.
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lite to receiver.

Both tasks are carried out by a correlation method which seeks the time
shift ∆t between the signal received from the satellite and a signal of the
same form, a “replica”, generated by the receiver, which would make them
identical. The replica sequence is shifted in time alongside the received
one until a strong correlation is found, a similarity or correspondence of
the pattern. The time difference obtained is in essence the GPS observable.

A suitable metaphor for the correlation method employed is the use
of year rings to date wooden objects, or dendrochronology, which was vuosilusto

already briefly explained in figure 7.7 and on which more in the text
tableau 12.2.

In a way, the comparison of the received GPS code with the replica
code generated by the receiver is also “dating”: the “age” of the signal
travelling from the satellite to Earth is determined. . .

When the correlation processing yields ∆t = trcv − txmit, multiplying it
by the propagation speed c of the signal will give the pseudo-range to pseudoetäisyys

the satellite, the basic observable of GPS measurement. It is called a
pseudo-range, because it contains more than just the geometric distance,
among other things the clock offsets. We will return to this presently. kellopoikkeama

^ 12.5.2 C/A code and P code

Because the one-millisecond C/A code consists only of 1023 bits, one must
look at only 1023 alternative time shifts ∆t. This goes very quickly. Each
satellite has its own “personal” C/A code, therefore, initially N ×1023
comparisons have to be made, where N is the number of satellites.

The C/A code can be used to determine the pseudo-range only modulo
300 kilometres, because the code repeats every millisecond, the time in
which the signal travels 300 kilometres. See figure 12.9. This is good
enough if the approximate location of the receiver is already known with
this accuracy. The state of modulation of the C/A code switches, if it
switches, at intervals of one microsecond (“chip rate”), the time in which
the radio signal travels 293 metres. The accuracy of measurement when
using the C/A code is better than this: if the receiver electronics can
measure the phase of the modulation with an accuracy of 1% of a full modulaation

vaihecycle, then the measurement accuracy is ±3m.

Better accuracy is offered by the P code. It, too, is a pseudo-random
code, but its length is no less than 267 days. Every satellite uses its own,
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satellite-specific, one-week long subinterval of this period. The receiver
must also in this case be able to generate a “replica” of the code. Because,
however, the quantity ∆t has already been obtained, using the C/A code,
to microsecond accuracy, only decimals more precise than this need to be
looked at.

The P code “chip rate” or bit frequency is ten times faster than that
of the C/A code, 10.23Mb

/︁
s , which corresponds to a travelled distance of

29m.12 Again assuming a modulation phase measurement accuracy of 12

1%, this corresponds to an accuracy of the pseudo-range observation of
±30cm.

The P code is kept from civilian users by encryption. The encryption
is done by modulating, on top of the P code, a W code, the generating
algorithm for which has not been published.

Both the P code and the C/A code are thus modulated on the L1 carrier
frequency. Distinguishing between them has been made possible by using
phase quadrature: while the P code is modulated with phase shifts 0 (bit
value 0) and π (bit value 1), the C/A code is similarly modulated with
phase shifts +1

2π and −1
2π, or +90◦ and −90◦. One speaks of “in-phase” suora vaihe

and “quadrature” modulations.

The phase angles of the navigation message are the same as those of
the C/A code. This is not a problem as their frequencies are so different:
twenty repeats of the whole C/A code fit within one bit of the navigation
message, duration 20ms! See figure 12.9.

^ 12.6 GPS receivers

The receivers intended for precise geodetic work are always dual- kaksitaajuus-
kojefrequency instruments that can measure the carrier phase of the GPS
kantoaallon
vaihe

signal. Unlike with inexpensive hand-held devices, the antenna is
usually separate and connected to the receiver by a coax cable. The
weak satellite signal is already amplified inside the antenna by a
pre-amplifier.13 esivahvistin

13

12This is the “effective wavelength” of the P code. It is calculated as follows:

λeff =
c
f

,

in which f is the “chip rate”, a frequency-like quantity, unit s−1 or Hz, and c is the speed
of light. So if c = 300000000 m

/︁
s and f = 10230000s−1, it follows that λeff = 29.3m.
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WEST SOUTH
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< MENU >[-] NO

FIGURE 12.10. Control panel of the Ashtech Z-12.^

The antenna may be mounted, using a standard forced-centring device,pakkokeskistys-
laite onto a geodetic tripod. In real-time mapping surveys however, a measur-

tosiaikainen ing pole or staff is used, with the antenna screwed onto the top. Attached
to the pole is the GPS receiver (if separate) with peripherals. The antenna
has a standard 5

8 inch hole at the bottom with a similar standard screw
thread (11 threads per inch) as in most geodetic instruments.

With every receiver type comes its own antenna type; the antennas
and receivers of different manufacturers are not generally electrically
intercompatible. However, the choke-ring antenna model (figure 12.11) is
available for precise geodetic work from many different manufacturers.
Choke rings lessen the problem of reflection of radio waves from the
Earth’s surface and other surfaces, or multipath.monitie

The electric centre of the antenna, the point where, in the geometric
interpretation, the radio waves are apparently received, is not the same as
the antenna’s official reference point (ARP). It is not even unambiguously
defined, but depends somewhat on the cut-off elevation angle used forraja-

korkeuskulma the observations, see figure 12.12. As a metaphor, one may think of the
apparent place of a fish under water, which also depends on the angle
of view. One speaks of the variation of the antenna’s phase centre, seevaihekeskipiste

Poutanen (2017) section 7.4 or Hofmann-Wellenhof et al. (2001) section

13The DC voltage feed required by the pre-amplifier comes from the receiver, also
through the coax cable. This may complicate or prevent the mixing of receivers and
antennas from different brands.

í  Õ ! ¤.� û



GPS receivers 12.6 299

Preamplifier

Hood (plastic) Crossed dipoles

Tripod attachment (screw thread)
Coax antenna cable

“Choke rings”“Choke rings”

FIGURE 12.11. A choke-ring GPS antenna for precise geodetic work. The an-
tennas provided by manufacturers are simpler and especially
smaller and lighter.^

6.5.

When measurements are carried out over a relatively small area, using
only one type of antenna, this variation of the phase centre vanishes
from the end result, and from the position difference vectors computed
between different points in the network. If, however, antenna types are
mixed, or extensive networks measured — hundreds or thousands of
kilometres across — one ought to calibrate the phase delay patterns of vaiheen

kulkuviivethe antennas, which are fairly complicated functions of both the elevation
angle η and the azimuth direction α. The calibration in which this phase
delay pattern ∆φ(η,α) is determined can be carried out in the laboratory
using an artificial GPS signal source, or as a field calibration in which two
antenna types are always compared to each other. Field calibration is
thus always relative, referring to some agreed reference type of antenna.

In highly precise geodynamic deformation measurements it is nowa-
days the practice to calibrate, not just antenna types, but individual
antennas.

The radio waves transmitted by GPS satellites are clockwise circularly
polarised. Upon reflection, the polarisation direction reverses to anti-
clockwise. The antenna — in the example in figure 12.11, a cross dipole
— is built so that it transfers only the clockwise polarised signal on to the
receiver. In this way, the harm caused by reflections is minimised.

Technological development goes into the direction of greater integration.
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X

Crossed dipoles
centre

A

BCut-off angle B

Cut-off angle A

Antenna
reference point

TrueTrue
placeplace

Apparent AApparent A

Apparent BApparent B

“Electric“Electric
centre”centre”

FIGURE 12.12. The electric centre of an antenna is not a self-evident thing!^

Today’s GPS positioning instruments including those for geodetic use
are so small that they are integrated with the antenna. Because the
instruments are very autonomous, they no longer even have a proper
display screen.

Another development is the onwards march of software-defined re-ohjelmisto-
pohjainen

vastaanotin
ceivers: today’s personal computers are beginning to be powerful enough
to do the digital processing work that in today’s receivers is done on the
hardware level. Then one only needs, in addition to a general-purpose PC,
a “dumb” analogue radio device with antenna (Lázaro, 2012).

^ 12.7 Observables of GPS

A geodetic GPS receiver stores the observations it makes into its memory
as a long table containing many numbers. The numbers in the table
represent distances between the receiver and the different satellites
observed. It is easy to understand why the number count becomes so
large: if, for example, the time between measurements is 30 seconds, and
five satellites are visible in the local sky, and with a single-frequency
receiver we observe both the C/A code and the P code, then the number of

^ TABLEAU 12.3. Start of a RINEX file. The device collects five observation types:
carrier-phase observations and P code observations on both frequencies L1 and
L2, as well as C/A code observations on frequency L1. The observations are
stored at intervals of 30 seconds. There are eleven satellites on the first epoch, 1.
January 2000 0 : 00 : 00, and also on the second epoch, 0 : 00 : 30. They are all
GPS satellites (G). The observation station is DGAR, Diego Garcia in the Indian
Ocean (Vine, 2011). →
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2.00 OBSERVATION DATA G (GPS) RINEX VERSION / TYPE

teqc 1999Oct8 gpsops 20000103 21:13:37UTCPGM / RUN BY / DATE

OSF1 V4.0 564|Alpha|cc 4.4.18.4|=+|=| COMMENT

DGAR MARKER NAME

30802M001 MARKER NUMBER

GNOG JPL OBSERVER / AGENCY

T341U AOA SNR-8000 ACT 3.3.32.3 REC # / TYPE / VERS

250 AOAD/M_T ANT # / TYPE

1916269.8405 6029977.3167 -801720.2273 APPROX POSITION XYZ

0.0814 0.0000 0.0000 ANTENNA: DELTA H/E/N

1 1 WAVELENGTH FACT L1/2

5 L1 L2 P1 P2 C1 # / TYPES OF OBSERV

30.0000 INTERVAL

COMMENT

This data is provided as a public service by NASA/JPL. COMMENT

No warranty is expressed or implied regarding suitability COMMENT

for use. For further information, contact: COMMENT

Dave Stowers, NASA/JPL m/s 238-600 COMMENT

4800 Oak Grove Drive, Pasadena CA 91109 USA COMMENT

COMMENT

2000 1 1 0 0 0.0000000 GPS TIME OF FIRST OBS

END OF HEADER

00 1 1 0 0 0.0000000 0 11G21G23G17G30G 1G31G29G22G15G25G 3

-6078127.503 4 -4736200.435 4 23397694.178 23397698.378 23397695.030

-2556364.753 4 -1991958.142 4 24025055.814 24025059.840 24025056.373

-8073501.747 5 -6291024.522 5 22565280.025 22565283.337 22565280.587

18247234.140 4 14218628.480 4 24610505.696 24610508.842 24610505.143

-1299479.831 4 -1012581.476 4 24824108.761 24824113.289 24824108.748

-5233446.124 4 -4077998.775 4 24175634.461 24175638.438 24175635.537

16878293.604 4 13151917.927 4 24427189.279 24427193.024 24427188.034

-13489828.171 5 -10511530.918 5 22792735.726 22792739.295 22792736.451

-4494062.929 4 -3501865.147 4 23961699.555 23961704.148 23961699.834

-21099958.763 9 -16441519.960 9 20331187.861 20331190.408 20331187.808

-15215098.740 5 -11855903.290 5 22202394.742 22202398.143 22202394.948

00 1 1 0 0 30.0000000 0 11G21G23G17G30G 1G31G29G22G15G25G 3

-6132427.986 4 -4778512.477 4 23387361.455 23387365.218 23387361.703

-2586441.342 4 -2015394.448 4 24019332.425 24019336.115 24019332.872

-7990741.587 5 -6226536.097 5 22581028.707 22581032.399 22581029.091

18274808.415 4 14240114.880 4 24615752.673 24615756.082 24615752.310

-1317133.094 4 -1026337.267 4 24820749.907 24820754.243 24820749.907

-5259685.471 4 -4098444.960 4 24170641.011 24170645.465 24170641.809

16938081.982 4 13198506.304 4 24438566.644 24438570.267 24438567.293

-13548930.874 5 -10557584.968 5 22781488.710 22781492.153 22781489.545

-4600217.585 4 -3584583.008 4 23941499.061 23941503.148 23941500.039

-21083529.873 9 -16428718.216 9 20334314.137 20334316.731 20334314.115

-15210926.086 5 -11852651.873 5 22203188.835 22203192.175 22203189.231
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observations collected within one minute already amounts to
(︁

60
/︁

30
)︁ ·5 ·

2= 20. In an hour, this means 1200 observations; if these are stored into
the memory as ordinary double precision real numbers14 (eight bytes per14

number), we need 9.4 kilobytes of storage space. In 24 hours, the storage
requirement would then be 225kB.

An often-used format in international GNSS data exchange is RINEX,
Receiver-Independent EXchange format, Gurtner and Estey (2007). This
is a text format, human-readable, in which observational data from most
geodetic receiver types can be transferred, read, and processed, in a
way that is independent from the manufacturer of the receiver. See the
example in tableau 12.3 from the Diego Garcia station (Vine, 2011) in the
Indian Ocean.

^ 12.7.1 Pseudo-ranges as observables

Why does one speak of pseudo-ranges? The prefix “pseudo” is becauseetuliite

the observable’s value is affected by, in addition to the geometric distance
between satellite and receiver, the clock errors or offsets ∆t and ∆T, as
well as the propagation delays caused by the ionospheric and tropospherickulkuviive

media.15 Thus the observation equation for pseudo-range is obtained:15

p = ρ+ c (∆T −∆t)+dion +dtrop, (12.1)

in which

p pseudo-range

ρ natural (geometric) distance. According to Pythagoras

ρ =
√︂

(x− X)2 + (y−Y )2 + (z−Z)2,

in which[︂
x y z

]︂T
location of the satellite in space[︂

X Y Z
]︂T

location of the receiver in space

c speed of light in a vacuum

∆T offset of receiver clock from GPS time (clock correction = −∆T)

14The “real” numbers of computers are in fact rational numbers. . .

15More precisely: the effects of free electrons and neutral molecules, respectively, on
the propagation of radio waves. Therefore, the stratosphere also causes “tropospheric
delay”.
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X , Y , Z, ∆T
Unknowns

ρ

X

dtrop

dion

x, y, z, ∆t
Broadcast
ephemeris

FIGURE 12.13. Pseudo-range observation.^

∆t offset of satellite clock from GPS time

dion “ionospheric” — meaning caused by the ionised atmosphere —
propagation delay

dtrop “tropospheric” — meaning caused by the neutral atmosphere —
delay.

The clock offset ∆t of the satellite is included in the broadcast ephemeris
transmitted by the satellites. The receiver clock offset ∆T on the other
hand remains unknown, and it will have to be estimated as one unknown
together with the co-ordinates. Thus there are four unknowns for every
GPS receiver: three co-ordinates X , Y , and Z, and the clock offset ∆T —
if we forget for a moment about the atmospheric unknowns dion and dtrop.
Four pseudo-range observations, to four different satellites, are enough to
determine four unknowns. See figure 12.13.

^ 12.7.2 The carrier wave’s phase angle as observable

The “chip rate” of the C/A code, the number of bits transmitted per sec-
ond, is 1.023MHz, corresponding to a “wavelength” of 293m, when the
corresponding number for the P code, 10.23MHz, means a wavelength
of 29.3m. If, instead of a modulation, we use the carrier wave itself, the
relevant wavelength becomes 19cm (L1) or 24.4cm (L2), a distance that
is two orders of magnitude shorter. Geodetic GPS positioning, where dual-
frequency receivers observe the phase of the carrier waves transmitted vaihe

by the GPS satellites, is based on this. Electronic phase measurement is
relatively easy and precise, but, as the market is small and specialised,
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^ TABLE 12.4. Properties of GPS carrier waves. “Factor” denotes the multiple of
the base frequency (10.23MHz).

Carrier wave Frequency (MHz) Wavelength (cm) Factor

L1 1575.42 19.0 154×
L2 1227.60 24.4 120×

the prices of the devices are nevertheless as high as for other geodetic
instruments, upwards of thousands of euros.

As is also the case with electronic range-finders (distance measurement
devices), phase measurement is always afflicted by an ambiguity prob-
lem. Measured phase values φ may be expressed as values within the
single-cycle interval

[︁
0,2π

)︁
, and the corresponding pseudo-range between

satellite and receiver can be determined only “modulo an integer number
of wavelengths”. If a certain pseudo-range value P is compatible with a
measurement done on wavelength λ, then the pseudo-range values P +λ,
P −λ, P +2λ, P −2λ, . . . are also compatible.

The observation equation for the carrier phase is, as a phase difference
angle,16 in radian units16

φ
def= φ+2πN = 2π

ρ+ c (∆T −∆t)+Dion +Dtrop
λ

or as a distance, unit metres

P def= λ
φ

2π =λ
(︂
φ

2π +N
)︂
= ρ+ c (∆T −∆t)+Dion +Dtrop. (12.2)

The left-hand side of the observation equation is either the phase angle
φ=φ+2πN or the equivalent pseudo-range P def= P +λN, see figure 12.14.
Both contain the correct integer number N of wavelengths making up
the range between satellite and receiver. The symbol φ without overbar,
on the other hand, designates the “raw” phase difference measurement.
It is often assumed that φ ∈ [︁0,2π

)︁
at least at the moment of signal

acquisition.

Other symbols used in the equation:

Dion the propagation delay of the carrier wave caused by the ionosphere
(which is actually negative, Dion =−dion)

16The measured quantity is actually the phase of the received radio wave subtracted
from that of the receiver’s reference oscillator, representing the delay in transit from
satellite to receiver. In the difference, the phase angle of the received wave enters with
a negative algebraic sign.
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φ

P =λ φ
2π =λ(︁ φ

2π +N
)︁

FIGURE 12.14. Measurement of the phase of the GPS signal’s carrier wave. The
measured phase difference angle is φ, initially φ ∈ [︁0,2π

)︁
, the

metric pseudo-range, including whole wavelengths, is P, and
the ambiguity is N, in this example N = 2.^

Dtrop the delay caused by the troposphere, Dtrop = dtrop

λ the wavelength of the received carrier wave according to table 12.4,
including Doppler shift

N the integer unknown or ambiguity. kokonaisluku-
tuntematon

The variables ρ
(︃
=
√︂
(x− X)2 + (y−Y )2 + (z−Z)2

)︃
, ∆t and ∆T are the

same as those for code pseudo-range, see equation 12.1. There are again
four geodetic, real-valued unknowns: X , Y , Z, and ∆T. But now the
integer values N, one for each observation, also need to be determined in
addition to the geodetic unknowns. This may seem impossible, but there
are ways of doing it; see section 13.3.

In equations 12.1 and 12.2 we have used different symbols for the
ionospheric and tropospheric delays of the carrier wave, than for the
corresponding delays of code measurement, because they are different.
One says that the ionosphere is dispersive for radio waves: the speed of
propagation depends on the frequency, or equivalently, on the wavelength.

The travel speed of the code modulations is the group velocity, which
is always less than the speed of light in a vacuum. The travel speed of
the carrier phase is the phase velocity. In a dispersive medium these two
speeds differ from each other.

^ 12.7.3 Effects of the ionosphere and troposphere

The ionosphere is a dispersive medium to radio waves: different frequen-
cies propagate at different velocities. As a consequence of dispersion,
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(Propagation speed in vacuum)

FIGURE 12.15. The propagation of a wave packet in a dispersive medium, phase
and group velocity. The carrier wave travels with phase velocity,
the modulations — also the pseudo-random codes of the GPS

signal — travel at group velocity.^

the phase and group velocities of propagation are different. For phase
propagation, the index of refraction isvaihetaite-

kerroin

np =
√︄

1− f 2
p

f 2 ≈ 1+ c2
f 2 + c4

f 4 + c6
f 6 +·· · (12.3)

In this equation the constants ci and the plasma frequency fp depend on
the electron density, ne, of the ionosphere. A good approximate formula,
which explains 99.9% of the whole ionospheric propagation effect, is
(Seeber, 1989):

np = 1− C
f 2 , C = 40.3ne m3/︁

s2 ,

in which the electron density ne is expressed in electrons per m3. Typical
numbers are 108–1012 m−3. Electron density varies between day and
night — greater in the daytime — with the season — greater in summer
— with solar activity, and of course with the latitude and height of the
location.

The group propagation velocity, more precisely the group index ofryhmä-
taitekerroin refraction, is obtained as the derivative with respect to the frequency17 of

17

17When the propagation velocity is c′ = c
/︁

n , in which c is the speed of light in a vacuum,
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np f ,

ng =
d
(︁
np f

)︁
df = 1+ C

f 2 , C like above.

Because the index of refraction of the ionosphere is dependent upon the
frequency f , it is possible to eliminate the effect of the ionosphere by
combining measurements made on two different frequencies. This is the
fundamental reason why the GPS uses two different frequencies L1 and
L2.

If we form the linear combination of code observations

p3
def= f 2

1 p1 − f 2
2 p2

f 2
1 − f 2

2

and correspondingly

ng,3
def= f 2

1 ng,1 − f 2
2 ng,2

f 2
1 − f 2

2
,

we obtain

ng,3 =
f 2
1
(︁
1+ C

/︁
f 2
1

)︁− f 2
2
(︁
1+ C

/︁
f 2
2

)︁
f 2
1 − f 2

2
= f 2

1 − f 2
2

f 2
1 − f 2

2
= 1,

from which it is seen that the effect of the ionosphere has vanished.18 18

The troposphere — more precisely, the neutral atmosphere, which also
includes the stratosphere, and neutral fractions of higher layers — on the
other hand is not dispersive to radio waves. Its speciality is, however, a
strong dependence on water vapour content of the index of refraction. The
equation, the same equation 7.6 that also applies for electronic distance
measurement, is (Rüeger, 1996, 2002):

NM = 106·(nM −1)= 77.624K
/︁

hPa

T (p− e)+64.70K
/︁

hPa

T

(︂
1+ 5748K

T

)︂
e,

in which nM is the index of refraction for microwaves. Here, the unit of p taitekerroin

and e is hPa (hectopascal), or millibar. T is the absolute temperature in
kelvin.

it follows that the phase propagation velocity is greater than the speed of light. The
carrier phase cannot however carry information, so the directionality of time according
to thermodynamics is preserved. . . if it were possible to move information faster than
light, it would, according to special relativity, also be possible to carry information back
in time!

18The result and its proof are the same if we take, instead of the group index of refraction,
the phase one, np.
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FIGURE 12.16. Geometry of GPS positioning.^

The coefficient of the partial pressure of water vapour e in this equation
is at ambient temperature as much as 17 times the coefficient for dry-air
partial pressure p− e!

Because both the ionosphere and the troposphere affect the propagation
of GPS radio waves, GPS measurements can be used for both ionospheric
and tropospheric research. Meteorologists and climate researchers are
very interested in this; see section 18.7.

^ 12.8 GPS measurement geometry

See figure 12.16. Let the position vector of satellite S in a geocentric
frame be r= rS, the position vector of observation station A in the same
frame be R=RA, and let the distance between the two be ρ = ρS

A.

Then the following vector equation applies:

rS =RA +eS
Aρ

S
A,

in which eS
A is the direction (unit vector) to satellite S seen from observa-

tion station A. The task of GPS positioning is to compute RA when ρS
A is

given to sufficiently many satellites S.

The Pythagoras theorem gives

ρS
A =
⃦⃦

rS −RA
⃦⃦
=
√︂

(xS − XA)
2 + (yS −YA)

2 + (zS −ZA)
2 , (12.4)
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in which

rS = xSi+ ySj+ zSk, RA = XAi+YA j+ZAk

are the geocentric position vectors of satellite S and observation station
A. The unit vectors i, j, and k are aligned with the co-ordinate axes:{︁
i, j,k

}︁
forms an orthonormal basis in Euclidean space. ortonormaali

kantaOften one writes the vectors as column vectors of their components, the
co-ordinates of location:

rS def=

⎡⎢⎣ xS

yS

zS

⎤⎥⎦ , RA
def=

⎡⎢⎣ XA

YA

ZA

⎤⎥⎦ .

From the observations, however, no true distances ρ are obtained, but
pseudo-ranges p, equation 12.1, or P, equation 12.2.

The atmospheric propagation delays dion, dtrop, Dion, and Dtrop must
also be taken into account in some way. The alternatives are

◦ Elimination from the observation equations — as described in sub-
section 12.7.3 for the ionospheric effects dion and Dion.

◦ Computation using a good, externally provided atmospheric model.

◦ Modelling of the atmospheric effect using unknown parameters, to
be estimated from the same observation equations — as we will
describe for the tropospheric effects dtrop and Dtrop in subsection
18.7.1.

^ 12.9 Measurement geometry and sensitivity of observations

Above it was shown that the observables of GPS are pseudo-ranges, the
observation equation of which looks like this:

p = ρ+ c (∆T −∆t)+dion +dtrop.

Let us leave out the effect of the atmosphere, and assume also that the
satellite’s orbit — and thus, the momentaneous position vector of the
satellite in space as computed from the orbit and clock time — and the
satellite’s clock offset ∆t are known, in other words already taken into
account:

p = ρ+ c∆T,

in which ρ is the geometric distance between satellite and receiver, and
∆T is the clock offset of the receiver.
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We can write equation 12.4 more simply:

ρS
A = ρ =

√︂
(x− X)2 + (y−Y )2 + (z−Z)2,

in which
[︂

x y z
]︂T

is the known position vector of the satellite in
space, computed from the orbit information, also called the ephemeris.[︂

X Y Z
]︂T

is the receiver position vector. Now

p =
√︂

(x− X)2 + (y−Y )2 + (z−Z)2 + c∆T,

in which there are four unknowns, X , Y , Z, and ∆T.

In what follows, we shall use instead the expression c∆T as the un-
known, as it has the same dimension, length, as the co-ordinate un-
knowns.

To solve four unknowns, it is sufficient to have observations to four
satellites. If the number of useable satellites is larger, we have redun-
dancy and an adjustment problem.tasoitustehtävä

Question In what way do small “perturbances” in the location of thehäiriö

receiver impact a certain measurement p?

Answer Look at the place of the satellite in the sky. See figure 12.17.
Let the satellite’s direction vector as seen from the observation
site be e. This is a unit vector: its length is

∥e∥=
√︂

e2
1 + e2

2 + e2
3 = 1.

If the satellite’s place in the sky is azimuth α, elevation η, then

e def= e1 ·N+ e2 ·E+ e3 ·U

and the column vector of components is

e def=

⎡⎢⎣ e1

e2

e3

⎤⎥⎦=

⎡⎢⎣ cosαsinζ
sinαsinζ

cosζ

⎤⎥⎦=

⎡⎢⎣ cosαcosη
sinαcosη

sinη

⎤⎥⎦= 1
ρ

⎡⎢⎣ x− X
y−Y
z−Z

⎤⎥⎦ .

Here,
{︁

N,E,U
}︁

is the orthonormal basis of unit vectors in the
local-horizon system (“north, east, up”). η= 90◦−ζ is the satellite’s
elevation angle above the horizon.

We carry out a sensitivity analysis. In what way do small co-
ordinate shifts ∆X , ∆Y , or ∆Z in the location of the observation
site influence the observable p?
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e1 ·N

e2 ·E

e3 ·U
GPS satellite

Observation site

Zenith

“Celestial
sphere”

SS

WW η

EE

α

ζζ NN

e

FIGURE 12.17. The geometry between a GPS satellite and an observation site.{︁
N,E,U

}︁
is the local-horizon orthonormal basis (“north, east,

up”).^

◦ If the co-ordinate shift influences highly, then the observa-
tion p will help in determining the unknown co-ordinate in
question.

◦ If the co-ordinate shift does not influence at all, then the
unknown in question cannot be determined using observation
p.

◦ The greater the sensitivity of the observations, the better the
precision of the solution of the unknowns.

Intuitively observation p is most affected, in a ratio of one-on-one, by
a shift in observation site location along the satellite’s direction
vector e. Shifts in observation site location perpendicular to this
direction vector have no effect at all.

Equation:

“Effect”=−⟨︁∆R ·e⟩︁=−(∆X e1 +∆Y e2 +∆Ze3) . (12.5)

This intuitive result may also be derived more formally by lineari-
sation. See tableau 12.5 and section 14.6.
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^ TABLEAU 12.5. A more rigorous derivation of the influence formula 12.5 by
means of linearisation.

Choose for the observation station
[︁

X Y Z
]︁T

an approximate location[︁
X0 Y0 Z0

]︁T
, and an approximate clock offset ∆T = 0. Then we can con-

struct an approximate pseudo-range observation

p0 =
√︂

(x− X0)
2 + (y−Y0)

2 + (z−Z0)
2.

Carry out a Taylor series expansion in the neighbourhood of the approximate
location, around the value p0. The first, linear terms yield

p ≈ p0 + ∂p
∂X

(X − X0)+ ∂p
∂Y

(Y −Y0)+ ∂p
∂Z

(Z−Z0)+ c∆T

=⇒ ∆p = p− p0 ≈ ∂p
∂X

∆X + ∂p
∂Y
∆Y + ∂p

∂Z
∆Z+ c∆T. (12.6)

Here, the coefficients, partial derivatives, are obtained as follows:

∂p
∂X

=− x− X
ρ

,
∂p
∂Y

=− y−Y
ρ

,
∂p
∂Z

=− z−Z
ρ

. (12.7)

The values for the coefficients are evaluated at the approximate location[︁
X0 Y0 Z0

]︁T
instead of at the true but unknown location. This suffices,

because in equation 12.6 the values (∆p,∆X ,∆Y ,∆Z) are small differences
between the true (p, X ,Y, Z) and approximate values (p0, X0,Y0, Z0).
The partial derivatives 12.7 are direction cosines, the direction, apart from the
algebraic sign, to the satellite as seen from the observation station, projected
onto the co-ordinate axes X , Y , and Z.

^ 12.9.1 DOP quantities and observation equations

The measure of the quality of the measurement geometry of the GPS

satellites in the local sky is DOP, dilution of precision. Using the above
geometric sensitivity analysis, we may calculate various variants of DOP.
A larger DOP number means a poorer measurement geometry!

DOP characterises the quality of the satellite geometry: how much worse
or better one may get the co-ordinates resolved from “standard quality”
measurements due to the poorer or better geometry of the satellites on
offer in the sky. This is valuable information in the planning phase of
measurement work.

One rule of thumb is that the measurement geometry is acceptable if
GDOP < 7 . . .10, depending on the intended use.
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If we now describe the “variation” of the co-ordinates of the observation

site by a (small) difference quantity ∆R =
[︂
∆X ∆Y ∆Z

]︂T
, and the

“variation” of the receiver clock by an (also small) difference quantity
c∆T, we may express the dependence of the observable p(i) on these
altogether four unknowns like this:

∆p(i) =
[︂

e(i)
1 e(i)

2 e(i)
3 1

]︂⎡⎢⎢⎢⎣
−∆X
−∆Y
−∆Z
c∆T

⎤⎥⎥⎥⎦=

=
[︂

cosαi cosηi sinαi cosηi sinηi 1
]︂⎡⎢⎢⎢⎣

−∆X
−∆Y
−∆Z
c∆T

⎤⎥⎥⎥⎦,

in which αi and ηi are the azimuth and elevation of satellite i in the local
sky. This way of writing is called linearisation.

This equation may be understood as an observation equation. If the
equation is written symbolically, as is the practice in geodesy, in the
form19 19

ℓ+v= Aˆ︁x, (12.8)

then the elements of the vector of unknowns ˆ︁x, the estimators of the
unknowns, are −∆ ˆ︁X , −∆ˆ︁Y , −∆ˆ︁Z, and c ˆ︂∆T, the vector of observations ℓ
is made up of values ∆p(i), and the design matrix is rakennematriisi

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosα1 cosη1 sinα1 cosη1 sinη1 1
cosα2 cosη2 sinα2 cosη2 sinη2 1

...
...

...
...

cosαi cosηi sinαi cosηi sinηi 1
...

...
...

...
cosαn cosηn sinαn cosηn sinηn 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12.9)

This is in fact the linearised version of the original observation equation
12.1.

This design matrix contains everything we know about the GPS mea-
surement geometry.20 From this, all DOP quantities may be calculated, 20

19The residuals v are needed to reconcile the observations ℓ, which contain measurement
uncertainty, with each other when there are more observations than unknowns. See
section 14.4.

20As does also a sky plot, for example Borre (2009).
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^ TABLE 12.6. Variants of the DOP quantity.

Acronym Name Quantity characterised

GDOP Geometric DOP Place and time
PDOP Position DOP Place
HDOP Horizontal DOP Horizontal location
VDOP Vertical DOP Height
TDOP Time DOP Time

without using a single real observation — it suffices that the places of the
satellites in the sky can be computed. The size of the matrix is n×4: n
rows and four columns, where n is the number of satellites available for
use.

The situation is the same as in the case of reconnaissance of a terres-rekognosointi

trial geodetic network: the quality of the network can already be judged
based on point locations and planned measurement geometry, before
even a single measurement has been carried out. This is a great tool for
planning.

We will discuss more about observation equations and least-squares
adjustment in section 14.4. Here we do not even try to compute a least-
squares solution. We only look into the precision of the four unknowns
−∆X , −∆Y , −∆Z, and c∆T to be computed!

We assume, for this computation, that all observations are equally pre-
cise — their precision may be assumed 1 — and that they are statistically
independent of each other. Then, the following simple calculation is valid.
It gives a picture of the role of the GPS measurement geometry in the final
precision of the measurement results. Other factors, like the technical
capability of the receiver and antenna used, duration of measurement
and the atmosphere, can be looked at separately.

^ 12.9.2 Error ellipsoids for presentation of measurement precision

From the design matrix A we may construct the normal matrix, or weight
matrix of the unknowns, as follows:

N = Pxx
def= AT A. (12.10)

Expressed in satellite positions in the sky, given as azimuths αi and
elevation angles ηi, the result is according to equation 12.11. The summa-
tion

∑︁
is understood to be over the azimuths and elevations all satellites,

αi, ηi, i = 1, . . . , n.
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Pxx =

⎡⎢⎢⎢⎣
∑︁

cos2αcos2η
∑︁

sinαcosαcos2η
∑︁

cosαsinηcosη
∑︁

cosαcosη∑︁
sinαcosαcos2η

∑︁
sin2αcos2η

∑︁
sinαsinηcosη

∑︁
sinαcosη∑︁

cosαsinηcosη
∑︁

sinαsinηcosη
∑︁

sin2η
∑︁

sinη∑︁
cosαcosη

∑︁
sinαcosη

∑︁
sinη n

⎤⎥⎥⎥⎦ .

(12.11)

The inverse of this weight matrix Pxx, Qxx
def= P−1

xx , is the weight-
coefficient matrix:

Qxx =

⎡⎢⎢⎢⎣
qxx qxy qxz qxt

qyx qyy qyz qyt

qzx qzy qzz qzt

qtx qty qtz qtt

⎤⎥⎥⎥⎦ .

This matrix, like the weight matrix Pxx or the design matrix A, still
describes exclusively the geometry of the measurement site and satellites,
and nothing else.

Now, the variance matrix of the vector of unknowns, or solution,

ˆ︁x= [︂ −∆ ˆ︁X −∆ˆ︁Y −∆ˆ︁Z cˆ︂∆T
]︂T

is

Σxx =σ2Qxx =σ2

⎡⎢⎢⎢⎢⎣
qxx qxy qxz qxt

qyx qyy qyz qyt

qzx qzy qzz qzt

qtx qty qtz qtt

⎤⎥⎥⎥⎥⎦ .

The constant σ2 is called the (a priori) variance of unit weight. Its square
root, the mean error of unit weight σ, is the mean error, assumed constant, painoyksikön

keskivirheof a single observable, meaning one pseudo-range.

The variance matrix of the co-ordinate solution is a 3×3 element sized
submatrix Σrr of the variance matrix of the unknowns:

Σrr =σ2

⎡⎢⎣ qxx qxy qxz

qyx qyy qyz

qzx qzy qzz

⎤⎥⎦ . (12.12)

The DOP quantities are calculated directly from the weight-coefficient
matrix Qxx:

PDOP =√︁qxx + qyy + qzz, HDOP =√︁qxx + qyy, VDOP =⎷
qzz.
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The time t comes along in the quantities TDOP and GDOP. Remember,
however, that the unknown to be estimated is c ˆ︂∆T rather than ˆ︂∆T, and
qtt corresponds to this quantity:

TDOP =⎷
qtt, GDOP =√︁qxx + qyy + qzz + qtt =

√︁
PDOP2 +TDOP2.

The mean errors of the co-ordinates are obtained as the square roots of
the diagonal elements of the variance matrix 12.12:

σX =σ⎷qxx, σY =σ⎷qyy, σZ =σ⎷qzz.

Also
σc∆T =σ⎷qtt.

The familiar point mean error in the plane is now related directly to the
HDOP quantity:

precision⏞ ⏟⏟ ⏞
σP

def=
√︂
σ2

X +σ2
Y =

instrumentaltechnology,etc.⏞ ⏟⏟ ⏞
σ ·

geometry⏞ ⏟⏟ ⏞
HDOP .

The co-ordinate variance matrix can be graphically represented by a
three-dimensional error ellipsoid. The error ellipsoid around a measure-
ment point visualises the uncertainty of the location based on the above
definitions. A similar DOP ellipsoid is obtained by leaving off the constant
σ2: it has the same shape as the error ellipsoid, but it has no metric size,
as the elements of the matrix Qxx, like those of the design matrix A, are
dimensionless.

In the general case it is not so simple to calculate the parameters of the
ellipsoid from the matrix elements. Let us look at a simpler special case,
which nevertheless is practically relevant. If the measurement geometry
is symmetric, meaning that the satellites and their elevation angles are
evenly distributed by azimuth, around the horizon, it follows that the DOP

ellipsoid will be oriented along the co-ordinate axes: qxy = qxy = qyz = 0
(and qxx = qyy!), and the matrix is

Σrr =σ2

⎡⎢⎣ qxx

qyy

qzz

⎤⎥⎦ .

In this special case, the axes of the DOP ellipsoid are pointing along
the local co-ordinate axes, and the longest axis points in the vertical
direction. In a practical measurement situation, the variance matrix

í  Õ ! ¤.� û



Measurement geometry and sensitivity of observations 12.9 317

Error ellipsoid 2

DOP ellipsoid

Error ellipsoid 1

Z

Y

X

σ σ

FIGURE 12.18. The connection between the DOP ellipsoid and error ellipsoid,
and the mean error of unit weight σ. The DOP ellipsoid only
characterises the effect of the geometry, whereas the error el-
lipsoid also depends on the precision of measurement, meaning
the device type.^

of the co-ordinates is often close to this. The longest axis of the error
ellipsoid is almost always close to the vertical, which tells us that the
height is more weakly determined than the horizontal location.21 In this 21

Z

Y

X

⎷qzz

⎷qyy

⎷qxx

FIGURE 12.19. The DOP ellipsoid of GPS positioning, assuming its principal axes
are in the same directions as the co-ordinate axes.^

21Reasons for this are:
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case the co-ordinate mean errors are

σX =σY =σ · 1
2

⎷
2 ·HDOP, σZ =σ ·VDOP,

based on the above definitions. The lengths of the semi-axes of the DOPakselin puolikas

ellipsoid are ⎷qxx, ⎷qyy and ⎷qzz. In the symmetric case, we thus have

qxx = qyy = 1
2HDOP2

in the horizontal plane, and always

qzz = VDOP2

in the vertical direction.

^ 12.9.3 DOP and measurement planning

In general it can be said that the measurement geometry is better if HDOP

and VDOP, thus also PDOP, are smaller. This again requires that

◦ A sufficient number of satellites is above the horizon and observable
from the measurement site.

◦ They are positioned evenly around the sky.

This of course works only if one has a sufficiently free view from the
measurement site up to the sky. In practice, there will always be obstacles,
which should be mapped on a horizon plot for planning the measurement.
Many planning programmes let the user draw a horizon plot and take it
into account when calculating DOP.

The situation improves if the receivers to be used can make use of both
the GPS and GLONASS systems, meaning more satellites are seen, and
good measurement geometry is more easily achieved.

Of course, the GPS positioning geometry is only one factor among others.
Other factors affecting measurement precision include

◦ Only satellites above the horizon contribute to the determination of height, so
this is extrapolation. In the horizontal plane again, there are satellites in the
east and in the west, in the north and in the south, which contribute to the
positioning: interpolation.

◦ Moreover, because of the same non-symmetry, the vertical location unknown Z
and the clock unknown ∆T “compete” for the same information when they are
estimated together from the same observation data.

◦ The uncertainty in the signal delays caused by the atmosphere also affects mostly
in the vertical direction, whereas — also due to the horizontal stratification of
the atmosphere — the situation in the horizontal plane is more symmetric.
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◦ The capabilities of receiver and antenna.

◦ Local disturbances, like multipath: reflections off the ground and
objects nearby.

◦ The activity of the Sun, ionospheric conditions.

◦ The measurement mode: static or kinematic, absolute (for example
“precise point positioning”, PPP) or relative.

◦ In relative GPS measurement, the distance between measurement
points or from the base station. Geodetic measurements are nearly
always relative and are carried out as network measurements.

◦ In static GPS measurement, the duration of measurement, the num-
ber of measurement epochs. Geodetic base-network measurements runkomittaus

are always static, despite the method being time-consuming, be-
cause of its robustness. Only in local measurements, like detail kartoitus-

mittaussurveys, is the faster kinematic technique (RTK, real-time kine-
matic) used.

^ 12.9.4 Example 1: an azimuthally symmetric geometry

Assume that the satellites are evenly distributed around the sky, according
to azimuth α, for every elevation angle η. Then, in the above weight
matrix 12.11:

◦ Almost all non-diagonal elements vanish, because they contain
either sinα or cosα or even sinαcosα. Only

∑︁
sinη does not vanish.

◦
n∑︂

i=1

cos2αi cos2ηi = 1
2

n∑︂
i=1

cos2ηi,
n∑︂

i=1

sin2αi cos2ηi = 1
2

n∑︂
i=1

cos2ηi.

Therefore, the weight or normal matrix Pxx = AT A becomes an almost
diagonal matrix that would be relatively easy to invert — although we
will not even try:

Pxx =AT A =

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

n∑︁
i=1

cos2ηi 0 0 0

0 1
2

n∑︁
i=1

cos2ηi 0 0

0 0
n∑︁

i=1
sin2ηi

n∑︁
i=1

sinηi

0 0
n∑︁

i=1
sinηi n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Transform now observation equation 12.8 and design matrix 12.9 in the
following way:

ℓ+v= AΛΛ−1ˆ︁x= ˜︁A˜︁x,
in which

˜︁x=
⎡⎢⎢⎢⎣

−∆ ˆ︁X
−∆ˆ︁Y
−∆ˆ︁Z
c ˜︂∆T

⎤⎥⎥⎥⎦=Λ−1ˆ︁x=
⎡⎢⎢⎢⎣

−∆ ˆ︁X
−∆ˆ︁Y
−∆ˆ︁Z(︁ 1

n
∑︁

sinη
)︁(︁−∆ˆ︁Z)︁+ c ˆ︂∆T

⎤⎥⎥⎥⎦ (12.13)

and

˜︁A = AΛ=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cosα1 cosη1 sinα1 cosη1 sinη1 − 1
n
∑︁

sinη 1
cosα2 cosη2 sinα2 cosη2 sinη2 − 1

n
∑︁

sinη 1
...

...
...

...
cosαi cosηi sinαi cosηi sinηi − 1

n
∑︁

sinη 1
...

...
...

...
cosαn cosηn sinαn cosηn sinηn − 1

n
∑︁

sinη 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

because2222

Λ=

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 − 1

n
∑︁

sinη 1

⎤⎥⎥⎥⎦ , Λ−1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 + 1

n
∑︁

sinη 1

⎤⎥⎥⎥⎦ .

Now we get a clean diagonal matrix:

˜︁Pxx = ˜︁AT ˜︁A =

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

n∑︁
i=1

cos2ηi 0 0 0

0 1
2

n∑︁
i=1

cos2ηi 0 0

0 0
n∑︁

i=1

(︃
sinηi − 1

n
n∑︁

j=1
sinη j

)︃2

0

0 0 0 n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let us write the equation for the error or visual ellipsoid of ˜︁Pxx:

˜︁xT ˜︁Pxx˜︁x= 1,

22Verify that ΛΛ−1 =Λ−1Λ= I !
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in which ˜︁x is as in equation 12.13. The result is

p11∆ ˆ︁X2 + p22∆ˆ︁Y 2 + ˜︁p33∆ˆ︁Z2 + p44 ˜︂∆T
2 =

= ∆ ˆ︁X2

qxx
+ ∆ˆ︁Y 2

qyy
+ ∆ˆ︁Z2˜︁qzz

+ ˜︂∆T
2˜︁qtt
= 1,

in which are immediately seen the elements of the variance matrix of the
unknowns

Qxx = P−1
xx = (︁AT A

)︁−1

according to the definition:

qxx = qyy = 2∑︁
i cos2ηi ,

from which
HDOP =√︁qxx + qyy = 2√︁∑︁

i cos2ηi
.

Similarly, after a little reorganising,23 23

˜︁qzz = 1˜︁p33
= 1∑︁

i
(︁
sinηi − 1

n
∑︁

j sinη j
)︁2 = n

n
∑︁

i sin2ηi − (
∑︁

i sinηi)2 ,

and VDOP is its square root.24 24

^ 12.9.5 Example 2: a singular case

Look again at design matrix A, expression 12.9, and write it into the form

A =

⎡⎢⎢⎢⎢⎣
e(1)1 e(1)2 e(1)3 1

e(2)1 e(2)2 e(2)3 1
...

...

e(n)1 e(n)2 e(n)3 1

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
(︁
e(1)
)︁T

1(︁
e(2)
)︁T

1
...

...(︁
e(n)

)︁T
1

⎤⎥⎥⎥⎥⎦ ,

23Because

∑︂
i

(︄
sinηi − 1

n

∑︂
j

sinη j

)︄2

=

=
∑︂

i

sin2ηi −
∑︂

i

2
n

sinηi

constant⏟ ⏞⏞ ⏟(︄∑︂
j

sinη j

)︄
+

n∑︂
i=1

1
n2

constant⏟ ⏞⏞ ⏟(︄∑︂
j

sinη j

)︄2

=

=
∑︂

i

sin2ηi − 2
n

(︄∑︂
i

sinηi

)︄(︄∑︂
i

sinηi

)︄
+ 1

n

(︄∑︂
i

sinηi

)︄2

=

=
∑︂

i

sin2ηi − 1
n

(︄∑︂
i

sinηi

)︄2

.

24If η is constant — so, all ηi, i = 1, . . . , n are the same — then the denominator vanishes!
So, the determination of height by GPS requires that there are satellites on different
elevations in the sky.
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ae0

Observer

∆R

⎷
1−a2 e1

⎷
1−a2 e1

⎷
1−a2 e2

⎷
1−a2 e2

Difference
observation

FIGURE 12.20. The circle singularity or “dangerous circle” for GPS.^

assuming there are n satellites. If the satellites are all on the same circle,
then the unit direction vector in the direction of satellite i is

e(i) = e(i)
1 i+ e(i)

2 j+ e(i)
3 k= ae0 +b(i)e1 + c(i)e2

in which the values b(i) and c(i) satisfy the condition
(︁
bi
)︁2+(︁ci

)︁2 = 1−a2,
for all satellites i = 1, . . . , n. Here, ae0 is the vector from the observer to
the centre of the circle. Thus there are only three independent vectors
e(i) when four are needed.

See figure 12.20. The situation is also geometrically clear: if the obser-
vation site is shifted along the direction of the vector e0, any difference
between the pseudo-ranges from two different satellites will remain un-
changed. What is happening here is that the receiver’s clock unknown ∆T
and the component of the observation site’s location in the e0 direction
(in other words the projection onto the e0 direction) cannot be separated
from each other in this geometry.

This is the circle singularity or “dangerous circle” in the case of GPS

positioning: compare section 6.2. GPS positioning is in fact a three-taaksepäin
leikkaus dimensional resection!

^ 12.9.6 Calculation example for DOP quantities

See figure 12.21.

Let one satellite be in the zenith (η = 90◦) and three satellites at an
elevation angle η = 30◦ at azimuths α = 0◦, 120◦, 240◦. Compute first
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120◦

EE

2

WW

NN

SS

120◦ 30◦

120◦

1

4
3

FIGURE 12.21. Calculation example of DOP quantities.^

design matrix A according to equation 12.9. It is given that

α1 = 0◦, η1 = 90◦,

α2 = 0◦, η2 = 30◦,

α3 = 120◦, η3 = 30◦,

α4 =−120◦, η4 = 30◦.

Numerical values are obtained by remembering that

sin(90◦)= 1, cos(90◦)= 0,

sin(30◦)= 1
2 , cos(30◦)= 1

2

⎷
3,

sin(120◦)=−sin(−120◦)= 1
2

⎷
3, cos(120◦)= cos(−120◦)=−1

2 .

The result is

A =

⎡⎢⎢⎢⎢⎣
0 0 1 1

1
2

⎷
3 0 1

2 1

−1
2 · 1

2

⎷
3

(︁1
2

⎷
3
)︁2 1

2 1

−1
2 · 1

2

⎷
3 −(︁1

2

⎷
3
)︁2 1

2 1

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
0 0 0 1

1
2

⎷
3 0 1

2 1
−1

4

⎷
3 3

4
1
2 1

−1
4

⎷
3 −3

4
1
2 1

⎤⎥⎥⎥⎦ .

Next we compute the weight matrix of the unknowns, or normal matrix,
equation 12.10:

Pxx = AT A =

⎡⎢⎢⎢⎣
9
8 0 0 0
0 9

8 0 0
0 0 3

4
3
2

0 0 3
2 4

⎤⎥⎥⎥⎦ .

í  Õ ! ¤.� û



12324 THE GLOBAL POSITIONING SYSTEM (GPS)

Inverting this matrix would yield Qxx, the weight-coefficient matrix of
the unknowns. Here, we invert the matrix only partially:

Qxx = P−1
xx =

⎡⎢⎢⎢⎢⎣
8
9 0 0 0
0 8

9 0 0

0
0

0
0

[︄
3
4

3
2

3
2 4

]︄−1

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
qxx

qyy

qzz qzt

qtz qtt

⎤⎥⎥⎥⎦ .

(12.14)

From this we read directly that the weight coefficients of the co-ordinates
X and Y are

qxx = qyy = 8
9 = 0.888 . . . ,

and thus
HDOP =√︁qxx + qyy =

√︂
16
9 = 4

3 = 1.333 . . . .

From equation 12.14 we see that the ˆ︁Z co-ordinate and the clock unknown
c ˆ︂∆T are “entangled” with each other (qzt ̸= 0) and calculating their weight
coefficients is not attempted here.2525

^ 12.10 Orbits of the GPS satellites

The orbit of a GPS satellite in the Earth’s gravitational field is approxi-
mately an ellipse satisfying Kepler’s laws. In practice, it is almost a circle,
the radius26 of which is 26560km and the orbital period 11h58m. The tilt26

angle of the orbital planes with respect to the equator, the inclination, is
i = 55◦, meaning that at the latitude of Finland, the GPS satellites will

25In fact, the sub-matrix to be inverted is[︄
3
4

3
2

3
2 4

]︄−1

=
[︄

16
3 −2
−2 1

]︄
,

and thus

Qxx =

⎡⎢⎢⎢⎣
8
9

8
9

16
3 −2
−2 1

⎤⎥⎥⎥⎦ .

This is now the weight-coefficient matrix (and, up to the variance of unit weight, the
variance matrix) of the vector of unknowns

[︁
− ˆ︁X −ˆ︁Y −ˆ︁Z c ˆ︂∆T

]︁T.

In this result is also seen, how ˆ︁Z and ˆ︂∆T “compete” for the same information: VDOP =
⎷qzz =

√︂
16
3 ≈ 2.309, when, without the clock unknown, it would be VDOP =

√︂
4
3 ≈ 1.155.

26So: the distance from the Earth’s surface is about 26560km−6378km = 20182km,
using 6378km for the Earth’s radius.
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SS
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Zenith

FIGURE 12.22. The six orbital planes of GPS satellites in the Helsinki sky. GPS

satellites will never be found inside the oval around the zenith,
although they are also visible in the northern sky, though very
close to the horizon.^

never pass through the zenith. However, due to their great height, the
satellites are also visible “over the North Pole” in the northern half of the
sky, albeit very low. See figure 12.22.

We need six orbital elements to describe a satellite orbit. As orbital rata-alkiot

elements we may choose, for example, the three co-ordinates of position

r(t0)= x(t0) · i+ y(t0) · j+ z(t0) ·k

and the three components of velocity

dr
dt

⃓⃓⃓
t=t0

= ṙ(t0)= ẋ(t0) · i+ ẏ(t0) · j+ ż(t0) ·k

at a certain time t0, using Newton’s dot notation for the time derivative.27 27

The vectors
{︁

i, j,k
}︁

form an orthonormal basis. Position and velocity,

r(t)= x(t) · i+ y(t) · j+ z(t) ·k, ṙ(t)= ẋ(t) · i+ ẏ(t) · j+ ż(t) ·k,

can be calculated from these equations for some later moment t, by
just calculating, step by small step, forward in time, correcting both the

27This dot notation for the derivative of time, fluxion, was introduced by Newton in
1665.
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New position r(t)

New velocity ṙ(t) ṙ(t0) Velocity

r(t0) Position

Motion in Earth’s gravitational field

FIGURE 12.23. Satellite orbital motion described by position and velocity vec-
tors.^

velocity using the gravitation equation and the position using the velocity,
figure 12.23. We know the attraction field of the Earth as an equation:
the acceleration caused by the attraction is computable when we know
the position in space of the satellite.

The geometry of a satellite orbit is normally described using the six
Kepler orbital elements,28 Ω, i, ω, a, e, and ν, see figure 17.14. More28

details are given in Poutanen (2017) section 5.1, Hofmann-Wellenhof
et al. (2001) subsection 4.2.1, and in section 17.7. There is a one-on-
one correspondence between the Kepler elements and the position and
velocity vector representation described above:

Kepler:
{︁
Ω, i,ω,a, e,ν

}︁
←→

{︁
r, ṙ
}︁

.

This means that, from the given Kepler elements, we may calculate
the position of the satellite in space, as well as its velocity. All GPS

computation software packages know how to do this.

28So every satellite has six Kepler orbital elements that describe the shape, size and
orientation of the orbit of that satellite, as well as the location of the satellite in its orbit,
in space.
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^ 12.10.1 Navigation message transmitted by the satellites

As already noted, all GPS satellites transmit a navigation message mod-
ulated upon the carrier wave of their radio signal. The modulation
frequency of the navigation message is 50Hz, so every second contains 50
bits. The whole navigation message consists of 25 “packets” (frames), each
of which contains 1500 bits and transmission of which lasts 30 seconds.
Thus, the total length is 37500 bits, and the duration of the transmission
is 12.5 minutes.

When a GPS receiver is switched on for the first time, the search for
satellites starts. Immediately when the first satellite is “caught” (lock-on),
the reading of the navigation message starts. Lock-on may easily last for
several minutes, especially if the approximate location fed to the receiver
is seriously wrong, or the instrument has been transported between
continents. After that, however, finding the other satellites generally
proceeds apace.

The navigation message is regularly uploaded to the satellites by the
control segment. After that, the information is, as part of the signal of the
GPS satellites, available to all users of the GPS. The navigation message
consists of three parts.

◦ Information related to time keeping, like the clock corrections of the
satellites, the “health” information on the satellites, the quality of
the positioning signal and orbital data transmitted by the satellite,
and the freshness of the navigation message.

◦ The satellite’s orbital information (broadcast ephemeris), dissem-
inated by the satellite by radio. These ephemeris are computed
by the US military authorities and are based on observation data
continuously produced by a global network of tracking stations. The
orbital elements of all satellites computed from the observations are
uploaded to the satellites by the control segment, typically once per
24 hours. They are then transmitted from the satellite’s memory,
modulated onto the radio signal, as a bit stream to all users.

The orbital elements are the Kepler elements augmented by coef-
ficients used to calculate the perturbations caused by the Earth’s
flattening, both secular (growing linearly with time, in the mean keskiliike

motion, orbital inclination29 and right ascension of the ascending 29

rektaskensionode) and short-period (half the satellite orbital period), in the or-

29Not actually secular: rather, long-period.
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bital inclination, the radius and the angle between ascending nodenouseva solmu

and satellite (the argument of latitude). There are nine coefficients,
which for GPS satellites need to be taken into account. The origin of
the theory used is the classical article by Yoshihide Kozai (Kozai,
1959).

Broadcast ephemeris are used in navigation applications and in real-
time positioning. It is also practical to use them in GPS surveying
and relative positioning in relatively small areas.

From the ephemeris, every satellite’s position in space at the mo-
ment of observation is computed, so that they may be used as
“beacons” for the determination of the location of the ground sta-
tion. From the ephemeris, also the velocity of the satellite is com-
puted.30 More is said about the computing methods used in chapter30

5 of Poutanen (2017) and in chapter 4 of Hofmann-Wellenhof et al.
(2001).

◦ The almanac for all satellites.31 The purpose of the almanac is to31

provide approximate orbital elements for all satellites, sufficient
for planning measurement campaigns and helping the receiver find
satellites. The almanac is valid for many weeks. The almanac also
contains a crude global ionosphere model.

^ 12.10.2 Precise ephemeris

Precise ephemeris, precise orbital elements, may be obtained by the user
some time afterwards directly from the Internet. They are computed and
distributed by a service called the International GNSS Service (IGS), see
section 12.11. A standard format, SP3 (“Standard Product 3”) is used
for data distribution, originally designed by the US National Geodetic
Survey. See tableau 12.7.

The SP3 ephemeris file contains the orbital data in the form of three-
dimensional component vectors of position and velocity,⎡⎢⎣ x(ti)

y(ti)

z(ti)

⎤⎥⎦ ,

⎡⎢⎣ ẋ(ti)

ẏ(ti)

ż(ti)

⎤⎥⎦ ,

30Knowing the velocity of the satellite would not be necessary for this, but is needed to
calculate the Doppler shift of the signal frequency. The receiver must know the Doppler
shift of every satellite in order to lock on, and remain locked on, to the satellite signal.

31Almanac is apparently not a word of Arabic origin, although it looks like it is.
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^ TABLEAU 12.7. Precise ephemeris in the original SP3 format. Satellite numbers,

position vectors, velocity vectors, clock correction and clock drift, date and time,
etc. Start of example file © US National Geodetic Survey.

#aV1994 12 17 0 0 0.00000000 96 d ITR92 FIT NGS

## 779 518400.00000000 900.00000000 49703 0.0000000000000

+ 25 1 2 4 5 6 7 9 12 14 15 16 17 18 19 20 21 22

+ 23 24 25 26 27 28 29 31 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 7 6 5 5 5 5 5 5 5 6 5 5 5 5 6 5 5

++ 5 5 6 5 5 5 5 5 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

++ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc

%c cc cc ccc ccc cccc cccc cccc cccc ccccc ccccc ccccc ccccc

%f 0.0000000 0.000000000 0.00000000000 0.000000000000000

%f 0.0000000 0.000000000 0.00000000000 0.000000000000000

%i 0 0 0 0 0 0 0 0 0

%i 0 0 0 0 0 0 0 0 0

/* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

/* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

/* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

/* CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

* 1994 12 17 0 0 0.00000000

P 1 16258.524750 -3529.015750 -20611.427050 -62.540600

V 1 -6560.373522 25605.954994 -9460.427179 -0.024236

P 2 -21998.652100 -8922.093550 -12229.824050 -131.326200

V 2 -9852.750736 -12435.176313 25738.634180 -0.029422

P 4 -26019.547600 4809.810900 -2508.578200 3.544600

V 4 2559.038002 -3340.527442 -31621.490838 0.016744

*

*

*
P 29 -1638.431050 -24391.479200 10455.312650 3.690300

V 29 5754.005457 -12065.761570 -27707.056273 0.003537

P 31 6265.255800 -25687.986950 -753.359000 70.830800

V 31 3053.344058 -63.091750 31910.454757 0.033749

* 1994 12 17 0 15 0.00000000

P 1 15716.820135 -1169.850490 -21281.578766 -62.542746

V 1 -5439.955846 26738.341429 -5409.793390 -0.023226

P 2 -22813.261065 -9927.616864 -9816.490189 -131.328686

V 2 -8178.974330 -9924.329320 27813.754308 -0.025238

*

*
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FIGURE 12.24. The tracking stations of the IGS, situation in 2018 (data © IGS).^

for epochs ti. The velocity vector is optional. The data is tabulated at
time intervals of 15 minutes: ti+1− ti = 15m. From these, the position r(t)
and velocity ṙ(t) are interpolated to the moment of measurement t by
Lagrange32 interpolation. In addition, the ephemeris contain information32

characterising the behaviour of the satellite clock and the accuracy of the
orbital information, among other things.

The current version of the format is SP3-c, which also allows the distri-
bution of orbital information on GLONASS satellites. It is a textual format
and human-readable.

The best-known source from as early as 1992 has been the International
GNSS Service. The precise orbits produced by them are published on the
Internet a couple of weeks after the time of observation.

In addition to precise ephemeris, “rapid orbits” are also being produced.
These are almost as precise as precise ephemeris, but are turned out
faster.

The newest “ultra-rapid” solutions are satellite orbital predictions
twenty-four hours into the future, which can thus be used in real-time
applications.

32Joseph-Louis Lagrange (1736–1813) was a French mathematician, astronomer, devel-
oper of classical mechanics, one of the 72 names on the Eiffel Tower, Eiffel Tower, 72
names.
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Precise ephemeris are, unlike broadcast ephemeris, disseminated over

the Internet and not via GPS satellites. The organisations producing them
are independent from the United States military authorities.

Unlike broadcast ephemeris, precise ephemeris are very close to the
true orbits of the satellites, where they actually were at that moment.
Broadcast ephemeris are predictions and therefore less accurate.

^ 12.11 The International GNSS Service IGS

The IAG (International Association of Geodesy) established the Interna-
tional GNSS Service (IGS) in 1990, and it became an official service of
the IAG in 1994. The main purpose of the service is to produce precise
orbital ephemeris in support of geodynamics research, like the study of
the motions of the solid Earth. However, its products are used much more
broadly, in many fields of geophysics.

The activities of the IGS are led by a Central Bureau, currently at the
JPL (Jet Propulsion Laboratory) in the United States. In 2015 the IGS

used observations made globally by some 500 GNSS stations to compute
its orbital ephemeris. The number has grown only slowly over recent
years.

The computation as such is carried out by seven different computing
centres, and the orbital data is available for use a couple of weeks after the
time of measurement. The computed data also include the clock correction
parameters for the satellites. The Earth’s orientation parameters (EOP)
polar motion and variations in the length of the day (LoD) are published vuorokauden

pituusseparately. See IGS Central Bureau.

^ Self-test questions

1. Explain how a hyperbolic positioning system like Decca functions.

2. Why does GPS broadcast on two different carrier frequencies?

3. How does the densest part of the Earth’s atmosphere, the tropo-
sphere, affect the propagation of GPS radio waves? Why are meteo-
rologists interested in this?

4. How is it possible that all GPS satellites broadcast on the same
frequencies? How does the receiver separate out the signals from
the different satellites?
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^ TABLEAU 12.8. DOP calculation script.

% Dilution of precision (DOP):

% Part 1. Run the program. What does the error message tell you?

% What can you say about the value of VDOP?

% Places of satellites, azimuth A and elevation h in the sky (below).

% Part 2. Change the elevation of the first satellite 30 -> 60 degrees.

% Run again. Note down the HDOP and VDOP values.

% Why is the run now successful?

A1 = 0; h1 = 30;

A2 = 90; h2 = 30;

A3 = 180; h3 = 30;

A4 = 270; h4 = 30;

conv = pi/180;

% Design matrix A (below)

% Part 3. Modify the program to include a fifth satellite, place

% in the sky A5 = 0, h5 = 45.

A = [cos(A1*conv)*cos(h1*conv), sin(A1*conv)*cos(h1*conv), sin(h1*conv), 1;

cos(A2*conv)*cos(h2*conv), sin(A2*conv)*cos(h2*conv), sin(h2*conv), 1;

cos(A3*conv)*cos(h3*conv), sin(A3*conv)*cos(h3*conv), sin(h3*conv), 1;

cos(A4*conv)*cos(h4*conv), sin(A4*conv)*cos(h4*conv), sin(h4*conv), 1];

N = A’*A;

Ninv = inv(N)

HDOP = sqrt(Ninv(1,1) + Ninv(2,2));

VDOP = sqrt(Ninv(3,3));

% Part 4. Add to the program the evaluation and output of PDOP.

% PDOP = Position dilution of precision. See lecture notes

% for definition.

fprintf(1, ’HDOP = %20.10f\n’, HDOP);

fprintf(1, ’VDOP = %20.10f\n\n’, VDOP);

% Part 5. Play around with the five satellite places in the sky,

% in order to minimise PDOP.

5. Describe how the pseudo-random codes modulated on the GPS car-
rier wave make it possible to measure pseudo-ranges. Where does
correlation come in?

6. What is multipath, and what methods are available to minimise its
influence?

7. Explain the concept of DOP, dilution of precision.

8. Why are geodesists interested in measuring the phase of the car-
rier wave of the GPS signal, even though it is harder than code
measurement?

9. What are broadcast ephemeris, who generates them, and how does
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the user acquire them?

10. What are precise ephemeris, who generates them, and how does
the user acquire them?

11. What are in tableau 12.3 the units of the observables L1, L2, P1,
P2, and C1? Do not look up the RINEX format definition!

^ Exercise 12–1: Calculation of DOP quantities

In this exercise you are going to write code to calculate the various
DOP quantities of a GPS measurement geometry, when the places of the
satellites in the sky, their azimuths α and elevation angles η, are given.

You may use your preferred rapid prototyping language: MATLAB™,
GNU Octave, Scilab (Scilab Enterprises), R (The R Project for Statistical
Computing), even Excel™. And do not bother with inputting from files,
just put the satellite positions into the source.

1. For an arbitrary number of satellites, write, or adapt, code to build
the design matrix A and the normal or weight matrix Pxx = AT A.

One could also build, from the vector of observations ℓ, the right-
hand side of the system of normal equations, ATℓ, but we do not
need it here. The beauty of DOP is that we can use it in measurement
planning, before any real observations are available.

2. Make your software output to the screen the various DOP quantities.

3. Now assume you have five satellites, one more than the minimum to
make positioning possible. Play with the satellite positions (αi,ηi),
i = 1, . . . , 5, in order to minimise one of the DOPs, for example the
PDOP. What is the best geometry of five satellites you find?

4. You cheated, didn’t you? You cannot observe GPS satellites that are
below the horizon. So, introduce the constraint η> 5◦.

5. After PDOP, try to minimise HDOP, and VDOP.

What did you learn?
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^ Processing GPS observations

1313
[. . . ] everything is related to everything else, but near

things are more related than distant things. [. . . ]

First law of geography, by Waldo R. Tobler (1970)

^ 13.1 Forming difference observations

In geodetic GPS measurement and GPS surveying applications, commonly
one wishes to measure the difference in location between two points, like
a point pair in a local geodetic network. The distance between the points
may be in the order of 100–1000km. This is a much shorter distance
than that to the GPS satellites, which orbit at a height of some 20000km.
See figure 13.1.

α

Helsinki

Sodankylä

FIGURE 13.1. The “common-mode” error assumption.^
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Seen from the satellite, the angle α separating the observation sites
is very small, in the example case (Helsinki and Sodankylä) only 2◦!
For this reason, many errors will be partly common to the two sites,
similar and approximately equal in magnitude. The effect of the satellite
clock error or clock offset is even identical at both observation sites.kellopoikkeama

The effect of orbit error is, due to the geometry, roughly the same; the
errors caused by ionosphere and troposphere are also similar, due both
to the similarity in geometry and the long-range spatial correlation1 of1

atmospheric conditions.

On the other hand, however, one should remember that the difference
in directions of the plumb line between Helsinki and Sodankylä is alreadyluotiviiva

7◦, so the difference in elevation angle of a satellite above the local horizonkorkeuskulma

may amount to this much because of that alone.

Based on the “common-mode” error assumption, we form differences
between observations from two sites to one satellite. In these differences,
many errors vanish entirely or are materially reduced. Forming the
difference is straightforward: subtract two simultaneously made raw
observations from each other, each lifted from an observation file looking
like tableau 12.3.

The differences can be single — either between two receivers or between
two satellites, in which cases one can use the visually appropriate symbols
∆ or ∇ — double, or triple, between successive measurement epochs,
symbol δ. See figure 13.2.

The influence of forming the various difference types on the magnitude
of errors — the interesting thing here! — has been catalogued in table
13.1.

^ 13.1.1 Single differences

We explain with equations how a single difference is calculated from
original observations. We shall see how some systematic errors are
eliminated altogether while others are substantially reduced.

One receiver (observer) A, two satellites S,T

pST
A

def= pT
A − pS

A, PST
A

def= PT
A −PS

A.

1By this is meant that conditions change only slowly with place. Helsinki and Sodankylä
lie practically in the same climate zone, and if there is a high or low pressure zone over
Northern Europe, it will undoubtedly affect both places. The synoptic scale (Wikipedia,
Synoptic scale in meteorology) of weather phenomena is of the order of 1000km.
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∆

Receiver BReceiver BReceiver AReceiver A

(a)
Single difference
between receivers

Satellite S Satellite T

∇

(b)
Single difference between

satellites

∆∇

(c)
Double difference

Epoch 1
Epoch 2

δ∆∇δ∆∇

(d)
Triple difference

FIGURE 13.2. Forming difference observations of various types and symbols
used for them.^

Write the observation equation 12.1 for pseudo-range in this ex-
tended notation:

pS
A = ρS

A + c
(︁
∆TA −∆tS)︁+dS

ion, A +dS
trop, A,

pT
A = ρT

A + c
(︁
∆TA −∆tT)︁+dT

ion, A +dT
trop, A.

It has been taken into account that, of the clock offsets, ∆t is
satellite-specific, ∆T again is observer-, that is, receiver-, specific.
Subtraction yields the difference quantity

pST
A = ρST

A − c∆tST +dST
ion, A +dST

trop, A,
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^ TABLE 13.1. Effect of forming difference observations from GPS observations on
the magnitude of various errors.

Type of difference

Error source ∇ST ∆AB ∆AB∇ST δ12∆AB∇ST

Satellite orbit {r, ṙ} - ↓ ↓ ↓↓
Satellite clock ∆t - 0 0 0
Receiver clock ∆T 0 - 0 0
Ionosphere dion, Dion - ↓ ↓ ↓↓
Troposphere dtrop, Dtrop - ↓ ↓ ↓↓
Ambiguities N - - - 0∗

↓ The error is reduced substantially, especially for short distances between
measurement points.

↓↓ The error is diminished even more strongly.
0 The error is completely eliminated.
0∗ The error is eliminated, unless there is a cycle slip.

in which the definitions apply

ρST
A

def= ρT
A −ρS

A, dST
ion, A

def= dT
ion, A −dS

ion, A,

∆tST def= ∆tT −∆tS, dST
trop, A

def= dT
trop, A −dS

trop, A.

Here, the clock offset of receiver A, ∆TA, has vanished, because,
being a receiver property, it is the same for different satellites
and cancels out in calculating the difference observation between
satellites.

This is important in practice, because receiver clocks are usually
based on inexpensive quartz oscillators, the drift of which is sokäynti

large that it needs to be taken into account.

A similar observation equation derived from equation 12.2 also
applies for the raw carrier-phase observable:kantoaallon

vaihe

PST
A =λ φ

2π = PST
A −λNST

A =
= ρST

A − c∆tST +DST
ion, A +DST

trop, A −λNST
A ,

in which we may assume φ ∈ [︁0,2π
)︁
, and

NST
A

def= NT
A −NS

A

is the difference of the ambiguities between satellites S and T.kokonaisluku-
tuntematon Without a cycle slip occurring, it will be constant in time.
vaihekatko
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Two receivers A,B, one satellite S

pS
AB

def= pS
B − pS

A, PS
AB

def= PS
B −PS

A. (13.1)

Here, in the same way, the satellite clock offset ∆t drops out: it is
a property of the satellite, not the receiver, and vanishes when one
calculates the difference quantity between two different receivers
with the same satellite.

Moreover, the influence of orbit errors, ionosphere and troposphere
is reduced substantially: for short distances AB between receivers
it holds that ⃓⃓

ρS
AB
⃓⃓ def=
⃓⃓
ρS

B −ρS
A
⃓⃓
≪
⃓⃓
ρS

A
⃓⃓
≈
⃓⃓
ρS

B
⃓⃓

and for AB→ 0:

dS
ion, AB

def= dS
ion,B −dS

ion, A→ 0,

dS
trop, AB

def= dS
trop,B −dS

trop, A→ 0,

DS
ion, AB

def= DS
ion,B −DS

ion, A→ 0,

DS
trop, AB

def= DS
trop,B −DS

trop, A→ 0,

because

◦ The measurement geometry is almost the same at point A as
at point B, see figure 13.1.

◦ Atmospheric conditions do not change much between points
A and B: the measurement rays traverse nearly the same air
mass.

◦ The elevation angle in the sky of satellite S seen from point
A is nearly the same as that seen from point B.

^ 13.1.2 Other difference quantities

In the same way, by combining the operations described above, we may
also calculate double and triple differences. The formulas look compli-
cated but the process is straightforward, see the summary in tableau
13.2. The equations in the tableau are directly derived from the original
observation equations 12.1 and 12.2 by addition and subtraction.

Double differences are much-used in geodetic software packages for
processing static GPS network measurements. The double differences
are constructed in the office from measurements simultaneously collected
in several locations from common satellites.
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^ TABLEAU 13.2. Summary of GPS observables and difference quantities. The
notations d = dion +dtrop, D = Dion +Dtrop are used in the equations. Note the
consistent use of super- and subscripts.

Pseudo-range p
Carrier phase φ,
equivalent pseudo-range P

pS
A = ρS

A + c(∆TA −∆tS)+dS
A PS

A = ρS
A + c(∆TA −∆tS)+DS

A −λNS
A

Single difference, between satellites:
pST

A = ρST
A − c∆tST +dST

A PST
A = ρST

A − c∆tST +DST
A −λNST

A

Single difference, between receivers:
pS

AB = ρS
AB + c∆TAB +dS

AB PS
AB = ρS

AB + c∆TAB +DS
AB −λNS

AB

Double difference:
pST

AB = ρST
AB +dST

AB PST
AB = ρST

AB +DST
AB −λNST

AB

Triple difference:
δ12 pST

AB = δ12ρ
ST
AB +δ12dST

AB δ12PST
AB = δ12ρ

ST
AB +δ12DST

AB −λ · (cycle slips)

Triple differences, again, calculated by subtracting double differences
for successive time epochs from each other, are almost exclusively used
for cleaning up carrier-phase observations, as they are uniquely able to
detect “cycle slips”: sudden changes in integer ambiguities caused by
interruption of the radio connection between satellite and receiver.

^ 13.2 Relative (static) GPS

The difference in location, or vector, RAB =RB−RA between two observa-
tion sites A and B close to each other may be solved more precisely than
the absolute location of either site RA or RB with respect to the centre
of mass of the Earth. The reason for this is the cancellation or partial
cancellation from simultaneous observations of various error sources,
the impacts of which are similar in both points. Difference observations
pAB = pB−pA, PAB = PB−PA between the two observation sites, in which
this cancellation already occurs, are used for computation. As shown
earlier in figure 13.1, the places of the satellites in the sky are nearly the
same seen from observation sites A and B, and the atmospheres above A
and B are also likely rather similar.

How much, for example, does the orbit error of satellites S and T
affect the determination of the vector AB? See figure 13.3. An order-of-
magnitude rule of thumb says that the positioning error δ caused by orbit
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A

T

d B

∆

δ

s

S

FIGURE 13.3. Double difference, short distance between GPS receivers.^

error in point B relative to point A is

δ≈ d
s∆,

in which ∆ is the assumed orbit error. This is only a crude estimate. We
know that s? 20000km.

The values given in table 13.3 for the orbit error, 1m and 2cm, corre-
spond to the accuracies of today’s broadcast2 and precise ephemeris. The 2

conclusion is that

^ TABLE 13.3. Approximate relation between orbit error, length of vector, and
positioning error.

Vector length d (km) Orbit error ∆ (m) Positioning error δ (mm)

1 1 0.05
10 1 0.5

100 1 5
1000 1 50

1 0.02 0.001
10 0.02 0.01

100 0.02 0.1
1000 0.02 1

2This is a crude estimate. The quality of broadcast ephemeris has improved since the
early days of GPS, slowly but surely. Other GNSS systems, like GLONASS, Galileo and
BeiDou, perform at about the same level, or perhaps a little less well (Montenbruck
et al., 2015).
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s

Common solutionPossible λ1 solution

λ2

λ1

2s

Possible λ2 solution

Received
Sent

FIGURE 13.4. One-dimensional ambiguity resolution in the case of a distance
measurement instrument. See also figure 7.10. Depicted is the
situation where the transmitted phases cross zero in the positive
direction. It is assumed that at that moment the received phases
are all measured to be zero too, see figure 7.9.^

In GPS surveying work in a small area (> 100km) the satellite
orbits may be assumed known.

In geodetic work, first one computes double differences PST
AB from ob-

servations at points A and B. As we are dealing with carrier-phase
observations, the ambiguities or integer unknowns NST

AB must first be
resolved. After that, a vector

RAB =

⎡⎢⎣ XAB

YAB

ZAB

⎤⎥⎦=

⎡⎢⎣ XB − XA

YB −YA

ZB −ZA

⎤⎥⎦
between the points is computed from the observations. This is where the
term relative GPS (or GNSS) measurement comes from.

A generalisation of this vector solution is the measurement and pro-
cessing of observations from a number of points, a geodetic network.

^ 13.3 Fixing ambiguities

Resolving the integer unknowns or ambiguities is a precondition for using
GPS carrier-wave observations. There are several methods for this.kantoaalto

◦ Distance measurement equipment resolves the integers by measur-
ing at several different wavelengths. Figure 13.4, as earlier on
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1
1−2 2−3

2

Common
solution

X

Search area
(e.g., code
positioning)

3−4

3

4

(a)
Three-dimensional

2b
1a

Common
solution

1b

Search area

2a
2a−→2b

Motion
Moti

on

1a−
→1b 1a−2a1a−2a

(b)
Three-dimensional plus time

FIGURE 13.5. Various ambiguity-resolution methods used in GPS computation.
The coloured line bundles — actually cut-outs of bundles of hy-
perbolas, or in three dimensions, hyperboloids of revolution —
indicate the sets of relative receiver position solutions that are
compatible with double-difference observations obtained using
either a pair of satellites, or a single satellite at two different
times.^

figure 7.10, shows how this puzzle can be solved.

A GPS satellite transmits on two frequencies L1 and L2. When there
are two frequencies, they can be combined in a way which makes
it easier to resolve the ambiguities over short distances. Calculate
the phase difference φw =φ1−φ2 between the phase measurements
at L1 and L2. It is like using a carrier wave with a frequency
fw = f1 − f2 = 347.82MHz, and a corresponding “wavelength” λw =
c
/︁

f = 86cm. This method is called wide-laning. leveäkuja-
ratkaisuThe wide-lane solution only works over short distances, because

otherwise the unknown difference in ionospheric influence between
the two measurement sites grows too large.

The code observation already yields a pseudo-range at the metre
precision level, after which the wide-laning method yields the am-
biguities, and the phase difference φw yields an “ambiguity-free” vaihe-ero

pseudo-range at a precision level of centimetres. pseudoetäisyys

◦ Use many satellites. At the moment, over 30 GPS satellites orbit
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the Earth. At almost any moment, 6–10 of these are in the local
sky above the horizon. This is a more complicated method, because,
unlike in distance measurement, the geometry is three-dimensional.
Efficient algorithms for this exist.

◦ Use the same satellites for a longer time. Because the GPS measure-
ment geometry has time to change, we obtain more conditions.

See figure 13.5.

In recent years, other global positioning systems have appeared besides
GPS. The Russian GLONASS — in which every satellite has its own carrier
transmission frequency, frequency division multiple access (FDMA), whichtaajuusjako-

kanavointi complicates ambiguity resolution3 — is operating, after a long period
kokonaisluku-

tuntemattomien
ratkaisu

3

of decay, again with a full constellation of 24 satellites, the European
Galileo system is approaching completion, and the Chinese are coming
with their Beidou-3 system. Joint use of the systems in the same receiver
is technically complicated but promises a very fast and reliable resolution
of ambiguities. Relief may come from “software-defined GNSS receivers”,ohjelmisto-

pohjainen
GNSS-

vastaanotin

in which all processing work after the antenna and analogue electronics
is implemented digitally in software on an off-the-shelf computer.

^ 13.4 Real-time positioning

The static method described above is based on post-processing. For geode-jälkilaskenta

tic use, this is usually unproblematic. The use of precise satellite orbits —
essential if one wants geodetic precision for long vectors — also imposes a
certain waiting time: a couple of weeks in the case of precise ephemeris.

Sometimes, however, we need the co-ordinates of new points immedi-
ately, and there are also situations in which this would be useful or handy.
Then, we speak of real-time4 positioning. Navigation is a broad field oftosiaikainen

4 application.

In precise GPS positioning, real-timeness can be implemented by trans-
ferring the observations made at known point A on the fly, for example
by radio, to unknown point B for joint processing.

3In the new GLONASS-K satellites, CDMA, code division multiple access, like in GPS, is
also being offered.

4The formal definition of real-timeness is a guaranteed latency. It may be long, as
long as it is guaranteed. The latency or response time is the time that elapses from a
measurement event to the availability for use of the measurement values.
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^ 13.4.1 Differential GPS (DGPS)

Differential GPS is a real-time positioning method based on code observa-
tions, which makes use of a reference or base station. It is thus a relative tukiasema

measurement between base station A and moving receiver, or rover, B.
As always with measurements from two receivers close to each other,
the error sources are the same or nearly the same in both receivers: the
orbit errors and clock offsets of the satellite, as well as the effect of the
atmosphere, cancel out in the difference measurement between A and B,
either completely or nearly so.

In the DGPS method, it is not the raw observations at point A that
are transferred to point B — that would be an unnecessary amount of
information to transfer. Instead, the difference between the measured and
the computed pseudo-range is first calculated from the observations. For
every observation pA, the geometric distance ρ(0)A between observation
site A and satellite S can be computed. This “reference distance” is based
on the known location of point A and the orbital data transmitted by the
satellite. Then, one obtains the pseudo-range offset for each satellite in pseudoetäisyys-

poikkeamathe sky:
dpA

def= pA −ρ(0)A .

The orbital data from the same satellite are also available to the moving liikkuva
vastaanotinreceiver B, which may itself compute from these the same ρ(0)A — after all,

the location of point A is known. So, the information content of the offsets
dpA is the same as that of the full measurements pA, and the offsets may
replace them in the dissemination.

Using pseudo-range offsets has the following advantages:

◦ The numerical values are much smaller. The offsets were of the
order of ±100m back when selective availability (SA, an artificial
reduction in accuracy of the disseminated orbital and clock informa-
tion) was still on. When SA was switched off in 2000, the magnitude
of the offsets dropped to the level of ±5m. Both orders of magni-
tude are fractions of the size of the observables themselves, tens of
thousands of kilometres.

◦ The values change more slowly. They crawl over the course of hours
in a way which looks random. Extrapolation over several seconds or
minutes into the future works better than with raw observations.

For both reasons, the communications bandwidth needed is much less,
and the following channels are sufficient:
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True
place A

With corr.

dpA

dpB

B

Computed placeComputed place
Without corr.Without corr.

Corrections

FIGURE 13.6. Principle of operation of the DGPS method, somewhat simplified.^

◦ Mobile telephony. Modern network data connections (3G, 4G) are
fast indeed. The “mobile Internet”.

◦ A radio modem (short distances).

◦ For navigation at sea, long-wave radio.

The values of the offsets also vary slowly as functions of place. Therefore
we may, if the distance AB is suitably short, 100–1000km, write with
sufficient accuracy

dpB ≈ dpA + c (∆TB −∆TA) ,

in which ∆TA and ∆TB are the receiver clock offsets.

Instead of the original, single observations, we construct difference
observations pST

B between two satellites S and T:

dpS
B ≈ dpS

A + c (∆TB −∆TA)

dpT
B ≈ dpT

A + c (∆TB −∆TA)

}︄
=⇒ dpST

B = dpT
B −dpS

B ≈ dpT
A −dpS

A,

a difference between disseminated quantities, from which the clock off-
sets of both receivers are eliminated. Now, we may calculate the single
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difference in point B of the ranges to the two satellites:

ρ
T(0)
B −ρS(0)

B = ρST(0)
B = pST

B −dpST
B ,

a purely geometric quantity between the location of point B and the
locations in space of the satellites S and T computed from the orbital
data, all known to the user. From these, the unknown location of point B
may be solved for, without any influence from the satellites’ orbit errors or
clock offsets. Three difference observations, four satellites, are sufficient.

By differential GPS positioning and navigation (“DGPS”) is commonly
meant precisely this real-time method using the modulations of the GPS

signal, the C/A code and P code.

^ 13.4.2 Kinematic real-time positioning, “RTK”

If we use carrier-phase measurements in real time, we speak of RTK,
real-time kinematic, measurement. With this technique, precision is
much better, even if only over short distances. Unlike DGPS, this is an
incremental method: the measurement must start from a point with
known co-ordinates, and preferably also close on a known point — just in
case. The co-ordinates of the points measured in between are obtained in
relation to these known points.

See figure 13.7. When using double differences, between two satellites
and the base station and rover, the only unknowns are the rover’s three
co-ordinates X , Y , and Z, its location in three-dimensional space R3.
All possible locations of the rover that are compatible with the double-
difference observation now form a bundle of hyperboloids of revolution. pyörähdys-

hyperboloidiThe distance separating the hyperboloids corresponds to one wavelength
of the observable. In the figure, the hyperboloids are drawn in cross-
section as curves of different colours, corresponding to two different
satellite pairs. As always with GPS measurement, the minimum number
of satellites is four.

On known point A is installed a permanent (or semi-permanent) GPS

reference or base station. Let the momentaneous location of the rover be
B. The double differences are

PST
AB = PT

B −PT
A −PS

B +PS
A.

Substituting equation 12.2 into this yields

PST
AB = ρST

AB +DST
ion, AB +DST

trop, AB −λ ·NST
AB.
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equi-surfacesDouble-difference

Base station ABase station A

Known
end point

Known
starting point

Data link
Data link

Rover BRover B

FIGURE 13.7. Principle of operation of the RTK method, simplified to two di-
mensions. The hyperbolas are the rover locations which are com-
patible with phase double differences corresponding to a round
number of whole wavelengths. The dashed hyperbola segments
again are locations compatible with the observed double differ-
ences. Compare this with the Decca figure 12.1!^

Let us forget the atmospheric terms for a moment:

PST
AB = ρST

AB −λ ·NST
AB.

If the rover’s antenna is set up on a point with known co-ordinates5 B, all5

co-ordinates are known:

◦ The co-ordinates of satellites S and T can be computed from the
orbital ephemeris — even from broadcast ephemeris, if the distance
AB is not very long.

◦ The co-ordinates of stations A and B are assumed known.

Therefore, the geometric double difference for that moment, ρST
AB(t0), is

computable. After that, the ambiguities6 may also be resolved from the6

5Or the co-ordinates of the rover’s starting point are determined from observations
before starting to move, the on-the-fly method. See the next subsection.
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observations:

NST
AB =− PST

AB(t0)−ρST
AB(t0)

λ
.

After this, we take the rover away from the known point and go and
measure. We move in the terrain and measure a suitable number of
unknown points — but in such a way that the connection to the satellites
is not interrupted. Then namely the values of the ambiguities NST

AB do
not change either, and we may straightforwardly calculate the geometric
double difference

ρST
AB(tP)= PST

AB(tP)+λ ·NST
AB

from the measurements PST
AB(tP) at terrain point P. This is the essence

of kinematic GPS positioning. The correct place is obtained immediately,
even with millimetre-precision: of course, only in relation to the reference
station, not absolutely. Therefore, the precise geodetic determination of
the location of the reference or base station is essential.

RTK works best over short distances, from hundreds of metres to tens of
kilometres. The real-time nature requires use of a data communications tosiaikaisuus

link between base station and rover. The possible data communications
solutions are in principle the same as in the case of DGPS.

^ 13.4.3 RTK, technical considerations

Above it was assumed that the moving receiver, the rover, starts from a
point with co-ordinates known to geodetic precision. Such a point may
however also be created “on the fly”, by staying on the starting point for so lennossa

long that the satellite geometry changes and the resolution, the fixing to
integer values, of the ambiguities becomes successful. The link with the
base station has to be open, and the signal connection with those satellites
that are also visible from the base station must be uninterrupted.

Four satellites are generally sufficient for solving the location with GPS.
The RTK technique’s “on-the-fly” initialisation, however, requires at least
a fifth satellite, in order to resolve the ambiguities. Real-time quality
control of the measurements also requires this. Without redundancy,

6These values must thus be integers or close to integers, in which case they may be
rounded, resulting in the “fix” solution. If they are not near integer values, they may
not be rounded. Then one obtains the, weaker, “float” solution. This may happen if, for
example, there is an error in the given co-ordinates of A or B. Or if the effect of the
atmosphere is too strong after all, or the distance AB too long.
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the ambiguities NST
AB would be freely chooseable, and one could compute,

from the three values ρST
AB thus obtained, a fantasy vector solution RAB,

without any contradictions being generated!

The more satellites are available, the quicker the ambiguity resolution
will proceed. This is why instruments have appeared on the market that
are able to use simultaneously the signals from both the GPS and, for
example, the GLONASS satellites.

Over short distances — less than a kilometre — the number of satel-
lites effectively doubles, because the difference between the L1 and L2

frequencies, the “wide lane”, can be used, the effective wavelength ofleveäkuja

which is 86cm.

Today’s RTK instruments are able to intelligently use many known
points around a measurement area. Before and after the survey, these
points are visited, and the instrument forms, using the known and mea-
sured point locations, a local transformation formula. Using the formula,
all measured points are transformed to the same system in which the
known points have been given. This is a handy but also dangerous prop-
erty: the accuracy of the transformed co-ordinates cannot be better than
the interior accuracy of this local system. If it is, for example, the old KKJ

system based on traditional measurement techniques (subsection 3.2.1),
one loses the major advantage of GPS surveying, its superior geometric
accuracy!

^ 13.4.4 Network-mode real-time services

In recent years, many base-station networks have been built, in order to
offer both differential GPS (DGPS) and real-time kinematic (RTK) support
services. The main problem with using a single base station is that the
corrections disseminated by it are good close to the base station, but
deteriorate quickly as the distance of the rover from the base station
grows.

It is intuitively clear that the corrections change only slowly, and
almost linearly, with place. The correction for the satellite clock offset
is even constant. The satellites are so high that even over an area the
size of Europe the geometry is almost the same in different parts of the
continent. Moreover, the atmosphere is usually rather similar everywhere
within a small area. This opens up the possibility of interpolation, and
the base-station networks do precisely this.tukiasema-

verkko Realistic alternatives for disseminating correction signals:
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◦ Geostationary communications satellites. Their advantage is the

homogeneous coverage of large areas, their disadvantage, the satel-
lites’ low elevation angle at Finnish latitudes.

◦ Using the mobile Internet through the mobile telephony network.
The Internet is not real-time, but in practice fast enough for it to
often not matter. Advantages are

– an easy way to charge for the service

– the possibility to supply, to the location of the receiver, tailored
corrections — the “virtual base station” idea virtuaali-

tukiasema– a large data transfer capacity at little cost.

Using the services in network mode also requires software support. The
geometric aspect of interpolating the corrections is easy; the problem is
formed by the modelling of the propagation delay by the atmosphere. In kulkuviive

order to achieve good accuracy, the base-station network used for the
model computation must be sufficiently dense. This complex problem
field is the subject of active research, for example Koivula et al. (2018).

^ 13.5 SBAS, satellite based augmentation systems

The term wide-area differential GPS (WADGPS) is also used for this type
of system. These systems use geostationary satellites to disseminate dif-
ferential corrections for GPS positioning. Globally, three intercompatible
systems exist:

◦ WAAS (Wide Area Augmentation System, USA)

◦ EGNOS (European Geostationary Navigation Overlay System)

◦ MSAS (Multi-functional Satellite Augmentation System, Japan).

These are already in widespread use, although their development contin-
ues. The services are continent-wide and are based on the simultaneous
use of many GPS base stations in network mode. In this way, accurate
differential corrections are obtained for the area covered by the base
stations. The signal structure and frequencies used are the same as for
the GPS satellites, which makes it relatively easy to modify an existing
GPS receiver design for SBAS use.

A core application is GPS integrity monitoring, which sounds an alarm eheyden
valvontaif the quality of positioning cannot be guaranteed. This is important

in safety critical applications — SoL, “Safety of Life” — like positioning
aircraft during approach and landing.
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MSAS

EGNOSWAAS

36000 km

FIGURE 13.8. Satellite-based augmentation systems (SBAS).^

^ 13.6 Real-time satellite positioning support services in

Finland

^ 13.6.1 The DGNSS service of the Finnish Transport Agency

This service, Väylä, Radionavigaatiopalvelut, operated by the Finnish
Transport Infrastructure Agency (earlier the Finnish Transport Agency,
still earlier the Finnish Maritime Administration) sends correction mes-
sages by radio on long wavelengths, frequencies 287.5–314.5kHz. The
service covers the sea areas of the Baltic Sea, and in Finland also the lake
area of Saimaa. The user community consists of seafarers. The service is
free of charge.

^ 13.6.2 Trimnet VRS

Geotrim, Trimnet is the real-time kinematic (RTK) network service main-
tained by Geotrim Oy, originally planned for use by the Finnish National
Land Survey. The technology used is called network RTK, more precisely,
virtual reference station RTK (VRS-RTK), and is based on generating, for
every user, a computational “virtual” base station close to them. Correc-
tion data for this base station are generated in the RTCM-SC104 format, a
standard format (“RTCM format”) useable by devices of any brand.

The network covers all of Finland with over a hundred base stations
(as of 2019) and also supports the use of GLONASS. The corrections are
disseminated commercially over the mobile Internet: a cluster of servers
is located at Geotrim headquarters in Vantaa, to which the user can log
in over the Internet. The corrections obtained are tailored for each user
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separately. The precision obtainable is of the order of a centimetre in the
horizontal plane, a little poorer vertically.

^ 13.6.3 HxGN SmartNet

HxGN SmartNet (Hexagon Geosystems, HxGN SmartNet), operated and
maintained by Hexagon Oy, is a real-time kinematic (RTK) base-station
network offering corrections as a commercial service over the mobile
Internet. In Finland there are currently (2017) over a hundred base
stations.

^ 13.6.4 The experimental service of the National Land Survey

This service of the Finnish National Land Survey’s Geospatial Research
Institute, Finnish National Land Survey, About positioning services,
which is at the moment experimental and free of charge but which re-
quires registration, offers both differential GNSS and network RTK. The
base stations are the twenty new FinnRef stations.

^ 13.6.5 Archive data service

These network RTK service providers, in Finland and abroad, usually
also supply under agreement archived data in the RINEX7 format for 7

post-processing. Typically, the data is thinned out, from a data rate of
one Hz — one measurement event per second from all visible satellites —
to, say, 1

30 Hz, one measurement event every 30 seconds.

^ 13.7 The GDGPS system

JPL, The Global Differential GPS System. This is a global real-time DGPS

service using the Internet as its distribution channel. The system was
developed and is being operated by NASA’s Jet Propulsion Laboratory
(JPL). As part of the service, it offers an online precise point positioning
(PPP) service using RINEX files uploaded by the user.

7RINEX, Receiver-INdependent EXchange format, is a practical, device independent
text format that also a human being can read. Gurtner and Estey (2007). There is a
conversion program for every receiver brand. See tableau 12.3.
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^ Self-test questions

1. What is the “common-mode” error assumption?

2. What kinds of difference observations are there, and what error
sources do they eliminate or reduce?

3. What is differential GPS (DGPS)?

4. What is real-time kinematic (RTK) positioning?

5. For what purpose have SBAS (satellite-based augmentation systems)
been built?

6. What is RINEX?

^ Exercise 13–1: Geodetic GPS positioning

The task is to determine a precise vector between two stations by pro-
cessing “in the cloud”. GNSS data from many hundreds of continuously
operating stations are available online, as are services for using these
data for geodetic position computation. We are going to exploit this for a
test computation.

1. Get the RINEX data files from the Sodankylä (SODA) and Met-
sähovi (METS) stations; see figure 13.1. As sources you may use
the web-site of the FGI (Finnish National Land Survey, RINEX ser-
vice), which however requires registration, or the SOPAC web-site
(SOPAC, GPS Explorer) of the Scripps Institution of Oceanography
in San Diego, California, or the EUREF data centre (ROB, EUREF
Permanent GNSS Network) at the Royal Observatory in Brussels,
Belgium. Download data for a single day8 — the same for both8

stations — of which the size should not exceed 5MB.

2. The data downloaded may be Hatanaka compressed (SOPAC,
Hatanaka file compression). This is a compression technique
specifically for RINEX data, exploiting the similarity of the data
for successive epochs. You need to get the conversion program
CRX2RNX as a binary for your operating system, and convert the
data into uncompressed RINEX. The latter is human-readable and
even clear. The Hatanaka compressed file is also human-readable,
and the compression technique used is clearly visible.

Remember that the data may also be compressed by a standard

8Suggestion: your last year’s birthday!
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method, like zip or gzip or Unix compress (*.Z) . . . which you first
have to expand. On Windows, the utility 7-zip may be useful.

Also, on Windows, you may run into the line-ending problem: Unix
text files end their lines with a line-feed (LF) only, Windows uses a
carriage-return (CR) followed by a line-feed (LF). The text editor
Notepad++ may be useful.

3. Now, you can upload your RINEX files to the cloud. There are two
alternatives — choose one for this exercise:

◦ AUSPOS – Online GPS Processing Service, an Australian
government service. It tends to be a little slow: often the
result comes overnight, in the form of an extensive report.
Publicly available data from nearby IGS stations is used in the
positioning computation, as shown in a map.

◦ GDGPS APPS, a US government service run by the Jet Propul-
sion Laboratory JPL — the headquarters of the International
GNSS Service IGS (subsection 12.11) — and yes, they too use
data from the IGS network (figure 12.24) for fixing the refer-
ence frame in the computations.

You need to upload METS and SODA separately, one file at a
time.

4. The AUSPOS results come by email.

(a) Read the results carefully. What other stations were included
in the computation, and in what reference frame is the result
expressed?

(b) The geocentric Cartesian (rectangular) co-ordinate solution X ,
Y , Z.

(c) The geodetic co-ordinates, and their precisions (“Positional
Uncertainty”).

(d) Other interesting stuff. How is the tropospheric propagation
delay modelled? Yes, they estimate dry and wet tropospheric
zenith propagation delays as well as horizontal gradients!

(e) Note the use of a geoid model, for obtaining heights over mean
sea level. How good do you think it is?

(f) Ambiguity resolution.

5. The APPS results appear online.

For APPS, go to the summary file (*.sum) and look up the following
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things:

(a) The geocentric Cartesian co-ordinate solution X , Y , Z, and the
co-ordinate uncertainties (“sigmas”). How does this precision
concept differ from that of AUSPOS?

(b) The geodetic co-ordinates Lat, East_Lon and Height, and their
sigmas. Compare the height sigma with the others.

(c) The other interesting headers. How is the troposphere mod-
elled here? Compare with AUSPOS.
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1414
[. . . ] Mais comment vous décrire mon admiration et mon

étonnement, en voïant se metamorphoser mon
correspondant estimé M. Leblanc en cette illustre

personnage, qui donne un exemple aussi brillant de ce que
j’aurois peine de croire. Le goût pour les sciences abstraites
en général et surtoût pour les mysteres des nombres est fort

rare : on ne s’en étonne pas ; les charmes enchanteurs de
cette sublime science ne se decelent dans toute leur beauté

qu’à ceux qui ont le courage de l’approfondir. Mais
lorsqu’une personne de ce sexe, qui, par nos mœurs et par

nos préjugés, doit rencontrer infiniment plus d’obstacles et
de difficultés, que les hommes, à se familiariser avec ses

recherches epineuses, sait neansmoins franchir ces entraves
et penétrer ce qu’elles ont de plus caché, il faut sans doute,

qu’elle ait le plus noble courage, des talens tout à fait
extraordinaires, le génie supérieur. [. . . ]

Letter from Gauss to Sophie Germain, 1807 (Friedelmeyer,
2014). See also Wikipedia, Sophie Germain.

^ 14.1 Why adjustment?

In geodesy, as in science in general, we know that all measurements
are wrong. Therefore, we collect always more measurements than the
strict minimum, so as to be able to judge at least somewhat realistically
the uncertainties in the measurement results. This practice is called
redundancy.

A good example is measurements in a geodetic network. In a triangu- kolmiomittaus

lation network, figure 14.1, directions from the triangle points to other
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1

3

2 α3
α2

α1

FIGURE 14.1. Triangulation network, triangle.^

triangle points are measured.

From the direction measurements to neighbouring points made at
points 1, 2, and 3, angles α1, α2, and α3 are calculated. For the angles,
the triangle condition1 applies:1

α1 +α2 +α3 = 180◦.

The triangle condition makes the following checks possible:

1. The measurements from which the angles α1, α2, and α3 were cal-
culated do not contain gross errors. For example, if we obtain forkarkea virhe

the sum of angles α1 +α2 +α3 = 173◦. 6742, we may immediately
conclude that there must be at least one gross error in the mea-
surement set, because the accuracies of the instruments used are
fractions of a degree.

2. The amount by which the sum obtained differs from the theoretical
value of 180◦ allows us to infer the precision of the measurement.
For example, if we obtain as the sum α1 +α2 +α3 = 179◦. 9958, then
the closing error ∆ def= α1+α2+α3−180◦ =−0◦. 0042, and the inference
is that the precision of the measurement method used is several
thousandths of a degree.

If we do more than the minimum number of measurements in this way,
we need a method for removing the, small, contradictions between these
measurements, reconciling them with each other. A brute-force trick

1On the curved surface of the Earth, the sum is not exactly 180◦ but a little larger, the
spherical excess. This is an example of non-Euclidean geometry.
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would be to just throw measured value α3 away, and compute a replace-
ment value, guaranteed to be compatible, of α3 = 180◦−α1−α2. However,
one may justifiably ask, why α3 rather than α1 or α2? Such arbitrari-
ness is unacceptable, and we should not just throw away the valuable
information contained in the observation. The right solution is network verkkotasoitus

adjustment.

In the simple triangle case we divide the closing error equally among
the angles: the adjusted angle values will be democratically

ˆ︁α1 =α1 − 1
3∆, ˆ︁α2 =α2 − 1

3∆, ˆ︁α3 =α3 − 1
3∆,

after which ˆ︁α1 + ˆ︁α2 + ˆ︁α3 = 180◦ exactly.

If we however know that, say, the angle α3 was measured twice (and
the value α3 is the average of these measurements) but the angles α1 and
α2 only once using the same instrument, we may take this into account
by adjusting in the following way:

ˆ︁α1 =α1 − 2
5∆, ˆ︁α2 =α2 − 2

5∆, ˆ︁α3 =α3 − 1
5∆,

in which still ∆=α1+α2+α3−180◦. In this case one speaks of weighting
the measurements. The measurement α3 is given a double weight — and
thus a halved correction — compared to the measurements α1 and α2.

A large weight means a small correction, and vice versa, figure 14.2.
The weight ratios are 1 : 1 : 2, the correction ratios are the reverse 2 : 2 : 1,
and the sum of the correction ratios is 5. This is how the above correction
coefficients (“weight coefficients”) 2

5 , 2
5 , and 1

5 are obtained.

The adjustment of a realistic, complex triangulation network (or any kolmiomittaus-
verkkogeodetic network) is mathematically much more complicated, but this is

the basic idea.

It is commonly assumed that the random measurement errors of the
observations are distributed according to the bell curve named after C. F.
Gauss (figure 2.5), in other words, that they are normally distributed. At
least in that case, the theoretically best solution is given by least-squares
adjustment. The simplest example of this is computing the average. pienimmän

neliösumman
tasoitus

^ 14.2 The average

Assume that the same quantity has been observed n times — so, we have
a stochastic quantity ℓ — the observation values being ℓi, i = 1, . . . , n. The
observations have a statistical expectancy µ, and they all have the same odotusarvo
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Small weight

Large weight

Large correction
Small correction

FIGURE 14.2. Metaphor: a large weight means a small correction and vice
versa.^

standard deviation or mean error2 σ. The average of the observations is323

ℓ= 1
n (ℓ1 +ℓ2 +·· ·+ℓn)= 1

n

n∑︂
i=1

ℓi.

One can show that, as an estimator of the expectancy µ, this is the “best
possible” linear combination of observations. One can also show that this
linear combination minimises the sum of squares of the residuals4jäännösvirhe

4

vi
def= ℓ−ℓi, i = 1, . . . ,n,

n∑︂
i=1

v2
i = v2

1 +v2
2 +·· ·+v2

n =min.

This property is the origin of the term “least-squares method”.pienimmän
neliösumman

menetelmä
We may also estimate the standard deviation or mean error of a single

observation, σ, by the equation for the sample mean errorotoskeskivirhe

ˆ︁σ=
⌜⃓⃓⎷ 1

n−1

n∑︂
i=1

v2
i .

2Expressed more theoretically, if the expectancy operator is E
{︁·}︁, we may write µ =

E{ℓ} and σ2 = E
{︁
(ℓ−µ)2}︁.

3Here, the values ℓi are written as stochastic, because the formation of the average may
be repeated, to form different realisations of the stochastic quantity ℓ.

4The residual ℓ−ℓi of an observation is not the same as (the opposite of) the error ℓi −µ
of that observation! The residual is computable from the observations, the error is not.
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Linear regression by least squares:

x

y

is minimised!Σ

FIGURE 14.3. The idea of linear regression.^

From this again, the quality, or uncertainty, measure for the average ℓ, its
mean error (standard deviation) estimate follows, ˆ︁σn = ˆ︁σ/︁⎷n . This value,
which describes the uncertainty of the average, thus becomes smaller the
longer the series of measurement values is, in other words, the larger n.

If we know the mean error σ of a single observation a priori, we may
also directly use the equation σn = σ

/︁⎷
n , the result of which is not an

estimate but a computed value.

^ 14.3 Linear regression

In linear regression, two parameters a and b are estimated when obser-
vations y that depend linearly on the argument x are given:

yi +vi = ˆ︁a+ˆ︁bxi.

Here, vi is again the residual of observation i. Parameters a and b
describe a straight line that runs as well as possible — meaning, with as
small residuals as possible — through the measured “point cloud”

(︁
xi, yi

)︁
.

See figures 14.3 and 14.4.

Linear regression is a least-squares method, figure 14.3. The sum of
the squared residuals is minimised.

The least-squares solution is

ˆ︁b = n
∑︁(︁

xy
)︁−∑︁x

∑︁
y

n
∑︁

(x2)− (
∑︁

x)2 , ˆ︁a =
∑︁

y−ˆ︁b∑︁x
n ,

in which the compact notation is used

∑︂
(·) def=

n∑︂
i=1

(·) ,
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Residual vi

Observation i

x

y

a

arctanb

xi

yi

FIGURE 14.4. Linear regression, definitions of quantities.^

a summation over all n points, or co-ordinate pairs,
(︁
xi, yi

)︁
. We can write

the solution even more neatly in terms of averages:

ˆ︁b =
⟨︁
xy
⟩︁− ⟨x⟩⟨︁y

⟩︁
⟨x2⟩− ⟨x⟩2 , ˆ︁a = ⟨︁y

⟩︁−ˆ︁b ⟨x⟩ ,
if the average is written as

⟨·⟩ def= 1
n

n∑︂
i=1

(·)

The “hat notation” (ˆ︁a,ˆ︁b) is an often-used way to designate estimators.

^ 14.4 Theory of least-squares adjustment

^ 14.4.1 Calculating the solution from the observations

Presumably the first to use the method of least-squares was Carlpienimmän
neliösumman

menetelmä
Friedrich Gauss, although Adrien-Marie Legendre5 has also been claimed

5 to be the inventor of the method. Gauss also carried out extensive
geodetic network computations6 in Hannover using his method.6

In astronomy, the first application of the method was to compute the
orbits of asteroids and comets from observations. This, and the adjust-
ment of geodetic networks, were special cases of situations that occur all
the time in the life of an observer:

5Adrien-Marie Legendre (1752–1833) was a French mathematician, one of the 72 names
on the Eiffel Tower (Eiffel Tower, 72 names).

6The numerical work of the network adjustment was carried out by an army of manual,
human computers under Gauss’ command. Back then, a “computer” was a human being!
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◦ We have available a body of observations, and we wish to compute

from it certain interesting unknowns, in a way which

– Treats all observations as equally valuable.

– Makes the deviations of the computed values for the unknowns
of interest from their “true values” as small as possible.

◦ In addition, it would still be desirable that

– Any gross errors still hiding out in the observations are found
and removed.

The parametric form of the least-squares adjustment method, which is
based on the formation of observation equations, is used for this.

^ 14.4.2 The observation equations

Forming the observation equations is done as follows. We write all
observations as linear7 functions of all unknowns: 7

ℓ1 +v1 = a11ˆ︁x1 +a12ˆ︁x2 +·· ·+a1mˆ︁xm,

ℓ2 +v2 = a21ˆ︁x1 +a22ˆ︁x2 +·· ·+a2mˆ︁xm,
...

ℓn +vn = an1ˆ︁x1 +an2ˆ︁x2 +·· ·+anmˆ︁xm,

(14.1)

if there are n observations ℓi, n residuals vi, and m unknowns ˆ︁x j.

The system of equations can be conveniently written in the form of a
matric equation

ℓ+v= Aˆ︁x, (14.2)

in which

ℓ=

⎡⎢⎢⎢⎢⎣
ℓ1

ℓ2
...
ℓn

⎤⎥⎥⎥⎥⎦ , v=

⎡⎢⎢⎢⎢⎣
v1

v2
...

vn

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

... . . . ...
an1 an2 · · · anm

⎤⎥⎥⎥⎥⎦ , ˆ︁x=
⎡⎢⎢⎢⎢⎣
ˆ︁x1ˆ︁x2
...ˆ︁xm

⎤⎥⎥⎥⎥⎦ .

The matrix A is rectangular: n > m, it is taller than it is wide. There
are more observations, that is equations, than there are unknowns: re-
dundancy. The observations ℓ, the unknowns ˆ︁x and the residuals v are jäännös-

virheiden
vektori

abstract vectors, elements of an abstract vector space:

ℓ,v ∈Rn, ˆ︁x ∈Rm.

7Often, the observation equations of real life are not linear. Then, linearisation is
usually possible. See section 14.6.
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Often, one may assume that all observations ℓi, i = 1, . . . , n have the
same mean error σ (and a similarly shaped statistical distribution), and
that the observations are statistically independent of each other, which
also means that they do not intercorrelate. This assumption is referred
to as i.i.d. — “independent, identically distributed”.

^ 14.4.3 The normal equations

From the matric equation 14.2 we compute the least-squares solution bypienimmän
neliösumman

ratkaisu
first multiplying from the left with the matrix AT, the transpose of A:

AT Aˆ︁x= ATℓ+ ATv.

Set88

ATv= 0,

yielding for the least-squares solution ˆ︁x:(︁
AT A

)︁ˆ︁x= ATℓ. (14.3)

This is a system of m equations and m unknowns in vector ˆ︁x: the coeffi-
cient matrix AT A is square.

^ 14.4.4 Solving the normal equations

The solution, or estimator, is obtained in for example the following way:

ˆ︁x= (︁AT A
)︁−1 ATℓ, (14.4)

assuming that the matrix AT A can actually be inverted, that it is not
singular.

The equations 14.3 are known as the normal equations.

In the case that all observations have the same mean error σ (and thus
the same variance σ2), and that they do not intercorrelate, the solution
14.4 is optimal in the least-squares sense.

Of course, solving the system of equations by traditional means, without
matrices, to find the elements of the solution vectorˆ︁x, being the unknowns,

8If one writes η def= Aξ, the following holds:⟨︁
η ·v⟩︁= ⟨︁(Aξ) ·v⟩︁= ξT ATv= 0

for an arbitrary vector ξ; we say that the sub-space of vectors Aξ of the space of observ-
ables (the “solution space”, spanned by the columns of the matrix A) is perpendicular
upon the sub-space of residuals. This is where the term “normal equations” comes from.
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is also a readily useable method: write the normal equations 14.3 in the
following way, which is well-suited to computer coding:

m∑︂
i=1

(︄
n∑︂

j=1

a jka ji

)︄ˆ︁xi =
(︄

n∑︂
j=1

a jkℓ j

)︄
, k = 1, . . . ,m.

This is a system of m linear equations in m unknowns ˆ︁xi, for the solution
of which numerical standard methods and software libraries are on offer.
The greatest challenge is usually finding suitable observation equations
14.1 in a concrete measurement situation.

The solutions for the average and linear regression presented above,
sections 14.2 and 14.3, are special cases of the general adjustment solu- tasoitus

tion, as we shall show.

^ 14.4.5 Assessing the precision

When one computes the least-squares solution with the equation

ˆ︁x= (︁AT A
)︁−1 ATℓ,

one can also, with the propagation law of variances, obtain the precision varianssien
kasautumislakiof estimator ˆ︁x.

We reiterate the assumption that the variance matrix of the observa-
tions ℓ is Var

{︁
ℓ
}︁= σ2I, so the observations do not correlate with each

other and are all equally precise.

If we define the linear operator

L def= (︁AT A
)︁−1 AT,

we obtain, based on the linear dependence,

Var{ˆ︁x}=Σxx = L Var{ℓ}LT =
= (︁AT A

)︁−1 AT ·σ2I · A
(︁

AT A
)︁−1 =σ2 (︁AT A

)︁−1 . (14.5)

This interesting result tells us, that the matric quantity (AT A)
−1 repre-

sents the propagation of the mean error σ of the observations into the
variances of the end result of the adjustment ˆ︁x.

The matrix N = Pxx
def= AT A is called the weight matrix of the unknowns

or normal matrix, and its inverse, the matrix Qxx
def= (AT A)

−1 , is called
the weight-coefficient matrix of the unknowns (Baarda, 1981).
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^ 14.5 Examples of the least-squares method

Both average and linear regression are great examples of least-squares
adjustment methods: practical and still relatively simple. In the following,
we go through them step by step, showing how they are special cases of
the general least-squares method.

^ 14.5.1 The average as least-squares adjustment

Observe the same quantity x directly n times:

x1 +v1 = ˆ︁x
x2 +v2 = ˆ︁x

...

xn +vn = ˆ︁x
(14.6)

Here, x1, x2, . . . , xn are individual observation values, ˆ︁x is the estimator
of the unknown quantity x, and v1, v2, . . . , vn are the residuals of the
observations.

The secret to formulating a suitable adjustment procedure is: find the
standard form of the system of observation equations,

ℓ+v= Aˆ︁x.
In the present case, success means choosing

ℓ=

⎡⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎦ , v=

⎡⎢⎢⎢⎢⎣
v1

v2
...

vn

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
1
1
...
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

n times

, ˆ︁x= [︂ ˆ︁x ]︂ .

Verify that this really agrees with equations 14.6.

The normal equations are now

N⏟⏞⏞⏟
AT Aˆ︁x= b⏟⏞⏞⏟

ATℓ,

in which the normal matrix N is

N = AT A =
n times⏟ ⏞⏞ ⏟[︂

1 1 · · · 1
]︂
⎡⎢⎢⎢⎢⎣

1
1
...
1

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

n times

=
[︂

n
]︂
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and the right-hand side vector

b= ATℓ=
n times⏟ ⏞⏞ ⏟[︂

1 1 · · · 1
]︂
⎡⎢⎢⎢⎢⎣

x1

x2
...

xn

⎤⎥⎥⎥⎥⎦=
[︄

n∑︂
i=1

xi

]︄
.

So, the solution is obtained as follows:

N⏟ ⏞⏞ ⏟[︂
n
]︂ˆ︁x=

b⏟ ⏞⏞ ⏟[︄
n∑︂

i=1

xi

]︄
=⇒ ˆ︁x=

N−1⏟⏞⏞⏟
1
n

b⏟ ⏞⏞ ⏟
n∑︂

i=1

xi,

the classical equation for the average!

Deriving the precision, or mean error, of the solution is not hard either.
The assumption that the mean errors of the observations xi, i = 1, . . . ,
n, are all the same σ and that the observations are uncorrelated — a
precondition for using the equation for the average — means that the
variance matrix of the observation vector ℓ is

Var
{︁
ℓ
}︁=σ2I =σ2

⎡⎢⎢⎣
1

1 . . .
1

⎤⎥⎥⎦ ,

a matrix of size n× n. Then, according to equation 14.5, the variance
matrix of the vector of unknowns9 is 9

Var{ˆ︁x}=σ2 (︁AT A
)︁−1 = 1

nσ
2,

and the mean error of the unknown is the square root of this:

σx = σ⎷
n

.

^ 14.5.2 Linear regression as least-squares adjustment

Write the observation equations of linear regression into the form

yi +vi = ˆ︁a+ˆ︁bxi,

in which every pair
(︁
xi, yi

)︁
, i = 1, . . . , n is one observation, and the

coefficients ˆ︁a and ˆ︁b of the straight line to be fitted are to be determined.

If we write the vector of observations, the vector of residuals, the vector
of unknowns, and again (essential!) the design matrix as rakennematriisi

9The “vector” ˆ︁x has here only one element, as the “matrix” Var{ˆ︁x} has, too.
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ℓ=

⎡⎢⎢⎢⎢⎣
y1
y2
...

yn

⎤⎥⎥⎥⎥⎦ , v=

⎡⎢⎢⎢⎢⎣
v1

v2
...

vn

⎤⎥⎥⎥⎥⎦ , ˆ︁x=[︄ ˆ︁aˆ︁b
]︄

, A =

⎡⎢⎢⎢⎢⎣
1 x1

1 x2
...

...
1 xn

⎤⎥⎥⎥⎥⎦ ,

one may write this system into the standard form of observation equa-
tions1010

ℓ+v= Aˆ︁x.
In the normal equations

N⏟⏞⏞⏟
AT Aˆ︁x= b⏟⏞⏞⏟

ATℓ

the normal matrix is

N = AT A =
[︄

1 1 · · · 1
x1 x2 · · · xn

]︄⎡⎢⎢⎢⎢⎣
1 x1

1 x2
...

...
1 xn

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎣ n
n∑︁

i=1
xi

n∑︁
i=1

xi
n∑︁

i=1
x2

i

⎤⎥⎥⎦
and the right-hand side vector

b= ATℓ=
[︄

1 1 · · · 1
x1 x2 · · · xn

]︄⎡⎢⎢⎢⎢⎣
y1
y2
...

yn

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎣
n∑︁

i=1
yi

n∑︁
i=1

xi yi

⎤⎥⎥⎦ .

From this, the solution is obtained by inversion of the above 2×2 ma-
trix. However, this may also be done simply by elimination and back-
substitution. The system of equations is

n · ˆ︁a+
(︄

n∑︂
i=1

xi

)︄
·ˆ︁b =

n∑︂
i=1

yi,(︄
n∑︂

i=1

xi

)︄
· ˆ︁a+

(︄
n∑︂

i=1

x2
i

)︄
·ˆ︁b =

n∑︂
i=1

xi yi.

Subtract the first equation from the second after multiplication by the
factor 1

n
∑︁n

i=1 xi, yielding(︄
n∑︂

i=1

x2
i − 1

n

(︃ n∑︂
i=1

xi

)︃2
)︄
·ˆ︁b =

n∑︂
i=1

xi yi −
1
n

n∑︂
i=1

xi

n∑︂
i=1

yi,

10The use of the letter x may be confusing here, and has nothing to do with the xi!
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^ TABLE 14.1. Measurement results for linear regression.

i→ 1 2 3 4 5
∑︁5

i=1

xi 1.51 2.44 3.34 4.41 5.05 16.75
yi 2.32 3.12 3.57 3.93 4.15 17.09
x2

i 2.28 5.95 11.16 19.45 25.50 64.34
xi yi 3.50 7.61 11.92 17.33 20.96 61.32

from which

ˆ︁b =
(︄

n
n∑︂

i=1

xi yi −
n∑︂

i=1

xi

n∑︂
i=1

yi

)︄/︄(︄
n

n∑︂
i=1

x2
i −
(︃ n∑︂

i=1

xi

)︃2
)︄

.

Now ˆ︁a is obtained by back-substitution:

ˆ︁a = 1
n

(︄
n∑︂

i=1

yi −
(︃ n∑︂

i=1

xi

)︃
·ˆ︁b)︄ .

The expressions found are equivalent to those given in section 14.3.

^ 14.5.3 Calculation example of linear regression

The measurement results are given in table 14.1. A graphical presenta-
tion of the measurements is given in figure 14.5.

The needed sums are precomputed in the table:

n∑︂
i=1

xi,
n∑︂

i=1

yi,
n∑︂

i=1

x2
i ,

n∑︂
i=1

xi yi.

1 2 3 4 5

y= 1.76+0.495 x

Mean error of observations

x

1

3

4

2

y

FIGURE 14.5. Calculation example of linear regression.^
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From this

ˆ︁b = 5 ·61.32−16.75 ·17.09
5 ·64.34−16.752 = 20.3425

41.1375 = 0.495,

ˆ︁a = 1
5

(︂
17.09−16.75 ·ˆ︁b)︂= 1.76.

This solution has been plotted into figure 14.5.

The normal matrix, or weight matrix of the unknowns, is obtained as
follows:

N = Pxx = AT A =

⎡⎢⎢⎣ n
n∑︁

i=1
xi

n∑︁
i=1

xi
n∑︁

i=1
x2

i

⎤⎥⎥⎦=
[︄

5.00 16.75
16.75 64.34

]︄

and its inverse is

Qxx =
(︁

AT A
)︁−1 =

[︄
1.5640 −0.4072

−0.4072 0.1215

]︄
,

the weight-coefficient matrix. The variance matrix

Σxx =
[︄

σ2
a σab

σab σ2
b

]︄
=σ2Qxx =σ2

[︄
1.5640 −0.4072

−0.4072 0.1215

]︄

is obtained from this, from which are obtained the mean errors σa and σb

as the square roots of the diagonal elements:

ˆ︁a = 1.76 ±1.25σ,ˆ︁b = 0.495±0.349σ.

Here, σ is the a priori (given in advance) mean error of a single y value,
the mean error of unit weight.painoyksikön

keskivirhe

^ 14.6 Linearisation of geodetic models

In geodesy, as more generally in science, relationships are found between
two quantities that behave non-linearly. Examples of this are the rela-
tionship between observables and unknowns, or between co-ordinates in
two different co-ordinate frames.

Many theories, however, like the least-squares adjustment method,
are based on linear equations, the mathematics of which is essentially
simpler. The law of propagation of errors (variances) also applies only tovirheiden

kasautumislaki linear relationships between quantities.
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In practice, a formally non-linear relationship, for example between

point co-ordinates and the measured direction to a point, is often al-
most linear within the uncertainty area of the point location. Geodetic
measurements are exceptionally precise: the location uncertainty of a
point may be mere centimetres when the distance between points can
be hundreds of metres or kilometres. In that case, instead of looking at
the original quantities, one can look at the relationship between small
variations or differences in these quantities — which will be almost linear.
This will be demonstrated using a Taylor series expansion.

^ 14.6.1 The scalar case

Normally if we have two quantities between which exists a functional
relationship

y= f (x),

we may linearise it by choosing an approximate value x0 and expanding likiarvo

the function into a Taylor series in the neighbourhood of the approximate
value. We obtain

y= f (x0)+ d f
dx

⃓⃓⃓
x=x0

(x− x0)+·· ·
or

y− y0 ≈ a(x− x0) , (14.7)

in which

y0
def= f (x0), a def= d f

dx

⃓⃓⃓
x=x0

.

This may be written as
∆y= a∆x,

which is often abbreviated to

y= ax,

as long as it is remembered that now x and y are “linearised quantities”,
difference quantities ∆x def= x − x0 and ∆y def= y− y0 reckoned from the
approximate values x0 and y0.

^ 14.6.2 The vector case

If there are two vectorial quantities,

x=

⎡⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎦ ∈Rn, y=

⎡⎢⎢⎢⎢⎣
y1

y2
...

ym

⎤⎥⎥⎥⎥⎦ ∈Rm,
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y= f (x)

y= y0 +a(x− x0)

x0

y0

L
in

ea
ri

za
ti

on
in

te
rv

al

y

x

FIGURE 14.6. One-dimensional mapping and linearisation.^

between which exists a functional relationship

y= F(x)= F(x1, x2, . . . , xn)

or ⎡⎢⎢⎢⎢⎣
y1

y2
...

ym

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
F1(x)

F2(x)
...

Fm(x)

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
F1(x1, x2, . . . , xn)

F2(x1, x2, . . . , xn)
...

Fm(x1, x2, . . . , xn)

⎤⎥⎥⎥⎥⎦ ,

it becomes complicated. We can choose a vector of approximate valueslikiarvojen
vektori

x0
def=

⎡⎢⎢⎢⎢⎣
x(0)1

x(0)2
...

x(0)n

⎤⎥⎥⎥⎥⎦ ,

and a corresponding vector of approximate values y0
def= F (x0), after which

again

y= y0 + ∂F(x1, x2, . . . , xn)
∂x1

⃓⃓⃓⃓
x=x0

(︂
x1 − x(0)1

)︂
+

+ ∂F(x1, x2, . . . , xn)
∂x2

⃓⃓⃓⃓
x=x0

(︂
x2 − x(0)2

)︂
+

...

+ ∂F(x1, x2, . . . , xn)
∂xn

⃓⃓⃓⃓
x=x0

(︂
xn − x(0)n

)︂
+·· ·
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or

yi = y(0)i + ∂Fi(x1, x2, . . . , xn)
∂x1

⃓⃓⃓⃓
x=x0

(︂
x1 − x(0)1

)︂
+

+ ∂Fi(x1, x2, . . . , xn)
∂x2

⃓⃓⃓⃓
x=x0

(︂
x2 − x(0)2

)︂
+

...

+ ∂Fi(x1, x2, . . . , xn)
∂xn

⃓⃓⃓⃓
x=x0

(︂
xn − x(0)n

)︂
+·· · , i = 1, . . . ,m.

In this equation there are m different rows, and in every row there are
n different (linear) terms. As a summary of this system of equations, we
write the following matric equation:

y= y0 + A (x−x0)+·· · ,

in which the matrix A is

A =

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

F1
∂
∂x2

F1 · · · ∂
∂xn

F1

∂
∂x1

F2
∂
∂x2

F2 · · · ∂
∂xn

F2

...
...

...
∂
∂x1

Fm
∂
∂x2

Fm · · · ∂
∂xn

Fm

⎤⎥⎥⎥⎥⎥⎥⎦

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
x=x0

.

This matrix is the matrix of Jacobi11 of the vector mapping F : Rn→ 11

vektorikuvausRm between the two abstract vector spaces Rn and Rm. The matrix
describes locally, in a neighbourhood of point x = x0, the way in which
small “perturbances” in vector x propagate into vector y: häiriö

∆y= y−y0 ≈ A (x−x0)= A∆x,

with definitions ∆x def= x− x0 and ∆y def= y− y0. So, the map between the kuvaus

difference quantities ∆x and ∆y is locally linear. This is referred to as
linearisation.

In the general case, m ̸= n. In the special case m = n we may think that
the mapping F has an inverse mapping G = F−1, for which käänteiskuvaus

∆x=G(∆y).

Locally, in the neighbourhood of the approximate point x0, we may say likipiste

11Carl Gustav Jacob Jacobi, 1804–1851, was a Jewish German mathematician, professor
at the University of Königsberg 1827–1842.
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x2

x1 y1

F :R2 ↦→R2

y2

FIGURE 14.7. A two-dimensional mapping.^

of this: if the matrix A is singular, meaning its determinant det A = 0,
in a neighbourhood of point x0, this means that the mapping F does not
in that neighbourhood have an inverse mapping. This again means that
there may be many (in fact, infinitely many) different values ∆x having
the same image ∆y= F(∆x). On the other hand, if det A ̸= 0 in the point
x0, such an inverse mapping does (in a sufficiently small neighbourhood
of approximate point y0) exist.

Interpretation The determinant det A describes the way in which vol-
umes are mapped under the vector mapping F.

If, for example, n = m = 2, it describes how the surface area of a
small square in the Rn space is mapped to the surface area of a
parallelogram in the Rm space. The determinant is the ratio ofsuunnikas

these two surface areas.

If n = m = 3, the determinant similarly equals the ratio of the
volumes of a small cube in Rn space and of its corresponding
parallelepiped in Rm space.suuntaissärmiö

If the ratio is zero, then apparently the square is “squeezed” to
a line segment, and the cube to a parallelogram, and the map is
thus singular.

^ 14.6.3 Linearisation of observation equations

Let us consider as an example the functional relationship between un-
knowns x and observables ℓ, which in a realistic observation geometry
is rarely linear. We have to linearise: let the non-linear observation
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equations be

ℓ+v= F(ˆ︁x), (14.8)

in which F(·) is a multidimensional non-linear “observation function”.

The equations are linearised by expanding them into a Taylor series
around roughly estimated solution co-ordinates (“approximate values”),
and using only the first-degree terms of the series. If the approximate
co-ordinates used are not good enough, we end up iterating.

Choose the vector of approximate values x0 and compatibly the vector
ℓ0 so that the following applies for them:

ℓ0 = F(x0). (14.9)

So, if the number of unknowns is m and the number of observations n:

ℓ
(0)
i = Fi(x

(0)
1 , x(0)2 , . . . , x(0)m ), i = 1, . . . ,n.

This is subtracted from equation 14.8, and we do a Taylor series expan-
sion, retaining only the linear terms:(︂

ℓi −ℓ(0)i

)︂
+vi = Fi(ˆ︁x1,ˆ︁x2, . . . ,ˆ︁xm)−Fi(x

(0)
1 , x(0)2 , . . . , x(0)m )≈

≈
m∑︂

j=1

∂Fi
∂x j

⃓⃓⃓⃓
x=x0

(︂ˆ︁x j − x(0)j

)︂
.

Call

A i j
def= ∂Fi

∂x j

⃓⃓⃓⃓
x=x0

, i = 1, . . . ,n, j = 1, . . . ,m, (14.10)

the elements of the second-order design matrix. The matrix itself is then rakennematriisi

A =

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂x1

F1
∂
∂x2

F1 · · · ∂
∂xm

F1

∂
∂x1

F2
∂
∂x2

F2 · · · ∂
∂xm

F2

...
...

...
∂
∂x1

Fn
∂
∂x2

Fn · · · ∂
∂xm

Fn

⎤⎥⎥⎥⎥⎥⎥⎦

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓⃓
x1=x(0)1 , x2=x(0)2 , ..., xm=x(0)m

.

If we call

∆ℓ
def= (ℓ−ℓ0)=

(︁
ℓ−F(x0)

)︁
, ∆ˆ︁x def= (ˆ︁x−x0)

(“replacement” or “linearised” observables and unknowns), we obtain for
the linearised observation equations

∆ℓ+v= A∆ˆ︁x. (14.11)
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The least-squares solution to be computed here minimises the sum of
squares of residuals vTQ−1

ℓℓ v, wherefrom the name comes. The matrix Qℓℓ

is the weight-coefficient matrix12 characterising the relative precision and12

possible statistical interdependence (correlation) of the observations.

From equation 14.11, often the ∆ are left off for the sake of writing
convenience. The∆ quantities are typically much smaller than the “whole”
quantities. Therefore the numerics work well even if the elements of the
matrix A are not exact.

Equation 14.9 however must always be calculated precisely, and with a
sufficient number of decimals.

^ 14.7 Propagation of variances

If the stochastic quantity y is a linear function of the stochastic quantity
x:

y=λx,

we may also write
σy =λσx,

in which σx and σy are the mean errors of quantities x and y. We may
also write

E
{︁

y
}︁= E{λx}=λE{x}

(“propagation of expectancies”), in which E{·} is the expectancy operator.odotusarvojen
kasautumislaki The expectancy is a linear operator.

If we define the variance as follows:

Var{x}=σ2
x

def= E
{︂(︁

x−E{x}
)︁2
}︂

,

it follows that
σ2

y =λ2σ2
x .

This is the law of propagation of variances for simple stochastic quanti-
ties.

If the stochastic quantities

x=

⎡⎢⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎥⎦ , y=

⎡⎢⎢⎢⎢⎣
y1
y2
...

ym

⎤⎥⎥⎥⎥⎦
12One writes Var

{︁
ℓ
}︁=Σℓℓ =σ2 Qℓℓ, in which Σℓℓ is the variance matrix of the observa-

tions, and σ the mean error of unit weight.
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have several components — in other words, they are abstract vectorial
quantities — it holds, if y=Λx, that

E
{︁
y
}︁=ΛE{x} (14.12)

and
Var
{︁
y
}︁=ΛVar{x}ΛT, (14.13)

in which now Λ and the variances are matrices.

Λ=

⎡⎢⎢⎢⎢⎣
λ11 λ12 · · · λ1n

λ21 λ22 · · · λ2n
...

...
...

λm1 λm2 · · · λmn

⎤⎥⎥⎥⎥⎦
is an m×n size matrix.

Var{x}=Σxx =

⎡⎢⎢⎢⎢⎣
σ2

x1
σx1x2 · · · σx1xn

σx2x1 σ2
x2

...
... . . . ...

σxnx1 · · · · · · σ2
xn

⎤⎥⎥⎥⎥⎦
is a square matrix of size n×n, and

Var
{︁
y
}︁=Σyy =

⎡⎢⎢⎢⎢⎣
σ2

y1
σy1 y2 · · · σy1 ym

σy2 y1 σ2
y2

...
... . . . ...

σym y1 · · · · · · σ2
ym

⎤⎥⎥⎥⎥⎦
is a square matrix of size m×m. Here, the variances are

σ2
xi
=Var

{︁
xi
}︁= E

{︂(︁
xi −E{xi}

)︁2
}︂

and the covariances

σxi x j =Cov
{︁

xi, x j
}︁= E

{︂(︁
xi −E{xi}

)︁(︁
x j −E{x j}

)︁}︂
,

and similarly for the components of y.

Equation 14.13 is called the general law of propagation of variances. It varianssien
kasautumislakiis a generalisation of equation 2.4, already derived in subsection 2.4.4,

for an arbitrary number of variables. The linearity property assumed
here may be obtained by linearisation if needed, as discussed earlier.
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FIGURE 14.8. Quantities related to the error ellipse.^

^ 14.8 Example: the forward geodetic problem

As an application of the law of propagation of variances, we present the
forward geodetic problem in the plane, in which the known uncertaintiesgeodeettinen

päätehtävä of direction and distance measurement are propagated into co-ordinate
uncertainties of an unknown point.

Given measured quantities s and α as well as the co-ordinates (xP , yP)

of the starting point P, the problem is determining the co-ordinates of
the unknown point Q, figure 14.8:

xQ = xP + s ·cosα, yQ = yP + s ·sinα.

The problem is solved in the following way. Choose approximate values
s(0),α(0):

s = s(0)+∆s, α=α(0)+∆α,

and write a Taylor series expansion:

xQ ≈ xP + s(0) cosα(0)+∆scosα(0)+ s(0) ∂cosα
∂α

⃓⃓⃓
α=α(0)

∆α=

=
x(0)⏟ ⏞⏞ ⏟

xP + s(0) cosα(0)+

∆x⏟ ⏞⏞ ⏟[︂
cosα(0) −s(0) sinα(0)

]︂[︄ ∆s
∆α

]︄
,

and in the same way

yQ ≈
y(0)⏟ ⏞⏞ ⏟

yP + s(0) sinα(0)+

∆y⏟ ⏞⏞ ⏟[︂
sinα(0) s(0) cosα(0)

]︂[︄ ∆s
∆α

]︄
.
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Now, dropping, but remembering, the approximation labels (0), and
turning the vectors x and y into random or stochastic quantities:

y
def=
[︄
∆x
∆y

]︄
, x

def=
[︄
∆s
∆α

]︄
,

and

Λ=
[︄

cosα −ssinα
sinα scosα

]︄
, Var{x}=

[︄
σ2

s 0
0 σ2

α

]︄
,

the above equations may be written compactly as

y=Λx.

The variance matrix is

Var{y}=
[︄

σ2
x σxy

σxy σ2
y

]︄
=ΛVar{x}ΛT =

=
[︄

cosα −ssinα
sinα scosα

]︄[︄
σ2

s 0
0 σ2

α

]︄[︄
cosα sinα

−ssinα scosα

]︄

and the elements are

σ2
x =σ2

s cos2α+σ2
α s2 sin2α,

σ2
y =σ2

s sin2α+σ2
α s2 cos2α,

σxy = cosαsinα
(︁
σ2

s − s2σ2
α

)︁
,

computed using the law 14.13 of propagation of variances.13 13

By substitution of

cosα= xQ − xP
s , sinα= yQ − yP

s ,

13If we express the variance of direction α in gon, we may substitute into all equations

σ2
α =
(︃
σα [g]
ρ

)︃2

,

in which ρ is the size of a radian in the degree unit in question, in this case ρ =
63.661977236758. Similarly if one uses seconds of arc: then

σ2
α =
(︃
σα [

′′]
ρ

)︃2

,

in which now ρ = 57.295779513×60×60= 206264.806247.
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an alternative form is still obtained:

σ2
x =Var{∆x}=

(︂ xQ − xP
s

)︂2
σ2

s + (yQ − yP)
2
σ2
α,

σ2
y =Var

{︁
∆y
}︁=(︂ yQ − yP

s

)︂2
σ2

s + (xQ − xP)
2
σ2
α,

σxy =Cov
{︁
∆x,∆y

}︁=(︃(︂σs
s

)︂2
−σ2

α

)︃
(xQ − xP)(yQ − yP) . (14.14)

This is how mean errors of the observations σs, σα are converted into
co-ordinate mean errors σx, σy. The precision is affected both by the
observational precisions σs, σα and by the geometry s,α.

^ 14.8.1 The error ellipse and its eigenvalue problem

The error ellipse or uncertainty ellipse is the statistical area of uncertainty
of the location solution (x, y) of a point. This can be used in statistical
testing.

As a measure of point precision, there exists a suitable quantity that is
independent of the directions of the co-ordinate axes. The error ellipse
is really a visual representation of the point variance matrix. The vari-
ance matrix of the co-ordinates (xQ , yQ) of point Q in figure 14.8 — or
equivalently, of the linearised co-ordinates (∆x,∆y) — may be written as

Σ=Var

{︄[︄
∆x
∆y

]︄}︄
=
[︄

Var{∆x} Cov
{︁
∆x,∆y

}︁
Cov

{︁
∆x,∆y

}︁
Var{∆y}

]︄
=
[︄

σ2
x σxy

σxy σ2
y

]︄
.

The invariants of this matrix are its eigenvalues and -vectors: the so-
lutions of the eigenvalue problem (Σ−λI)x = 0, (λi,xi), i = 1, 2. If weominaisarvo-

tehtävä rotate the co-ordinate axes so, that they are oriented along the main axes
of the ellipse, we obtain

Σ=
[︄

s2σ2
α

σ2
s

]︄

and obviously λ1 = s2σ2
α and λ2 =σ2

s .

More generally, one solves the determinant equation

det(Σ− Iλ)= det

[︄
Σ11 −λ Σ12

Σ21 Σ22 −λ

]︄
= det

[︄
σ2

x −λ σxy

σxy σ2
y −λ

]︄
= 0.

This is called the characteristic polynomial:

det(Σ− Iλ)= (︁σ2
x −λ

)︁(︁
σ2

y −λ
)︁−σ2

xy = 0,
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so

λ2 −(︁σ2
x +σ2

y
)︁
λ+(︁σ2

xσ
2
y −σ2

xy
)︁= 0, (14.15)

a standard-issue quadratic equation. The solutions or eigenvalues are ominaisarvo

λ1,2 = 1
2

(︃(︁
σ2

x +σ2
y
)︁±√︂(︁σ2

x +σ2
y
)︁2 −4

(︁
σ2

xσ
2
y −σ2

xy
)︁)︃=

= 1
2

(︃(︁
σ2

x +σ2
y
)︁±√︂(︁σ2

x −σ2
y
)︁2 +4σ2

xy

)︃
=

= 1
2

(︁
σ2

x +σ2
y
)︁±√︂1

4

(︁
σ2

x −σ2
y
)︁2 +σ2

xy, (14.16)

and the semi-major and semi-minor axes of the error ellipse are
⎷
λ1 and iso- ja

pikkuakselin
puolikkaat

⎷
λ2.

The directions of the axes may also be determined: look at the linear
combination of co-ordinates

z(θ)= xsinθ+ ycosθ,

which is a function of the direction angle θ.

The propagation law of variances yields

Var{z}=σ2
x sin2θ+σ2

y cos2θ+2σxy sinθ cosθ.

The axis directions of the visual ellipse are stationary values of this
function of direction angle θ,

d
dθ Var{z}= 0.

By differentiation

2sinθ cosθ
(︁
σ2

x −σ2
y
)︁+2

(︁
cos2θ−sin2θ

)︁
σxy = 0

=⇒ sin2θ
(︁
σ2

x −σ2
y
)︁+2cos2θ ·σxy = 0,

and

θ = 1
2 arctan

(︃
− 2σxy

σ2
x −σ2

y

)︃
+k ·100g =

= arctan
−σxy

1
2

(︁
σ2

x −σ2
y
)︁+√︂1

4

(︁
σ2

x −σ2
y
)︁2 +σ2

xy

+k ·100g,

using the half-angle formula for the arc tangent.14 14

One obtains still from equation 14.16:

λ1 +λ2 =Var{x}+Var
{︁

y
}︁=σ2

x +σ2
y (14.17)
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and1515

λ1λ2 = detΣ=σ2
xσ

2
y −σ2

xy. (14.18)

The quantities 14.17 and 14.18 are invariants — so, always the same,
no matter how the co-ordinate axes are oriented — and quantity 14.17,
called the point variance of point P, σ2

P , is a particularly suitable measure
of point precision:

σ2
P =σ2

x +σ2
y .

The point mean error σP is the square root of this point variance.

^ 14.9 Observables and observation equations in practice

Here we present the observables of classical geodesy: measurements
of horizontal directions, zenith angles and slant ranges, in the form ofvinoetäisyys

linearised observation equations. The GPS observables presented already
above, equations 12.1 and 12.2, are special cases of slant-range measure-
ment.

All the observables presented are of observations between two points,
from one point to the other. The observation equations describe the
dependence of the observables on the unknowns, in this case the three-
dimensional co-ordinates of the points.

We only present the observation equations of single observations: in
a real-life situation one must combine the observation equations for
all observations, and all unknowns, into a system of equations before
proceeding to solution.

^ 14.9.1 Slant-range measurement

Let the co-ordinates of instrument and signal be (x1, y1, z1) and (x2, y2, z2).tähys

Then, the functional model, equation 14.8, is

s =
√︂

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2. (14.19)

14This is how one avoids division by zero in the edge case σ2
x =σ2

y .

15Because the equation 14.15 can be written into the form

(λ−λ1)(λ−λ2)=λ2 − (λ1 +λ2)λ+λ1λ2 = 0,

from which λ1 +λ2 = σ2
x +σ2

y , the trace of the matrix Σ, and λ1λ2 = σ2
xσ

2
y −σ2

xy, its
determinant.
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Assume first that point 1, co-ordinates

[︂
x1 y1 z1

]︂T
, is known. Then,

unknowns are only the co-ordinates of point 2,
[︂

x2 y2 z2

]︂T
.

Choose approximate values x(0)2 , y(0)2 , z(0)2 for these, and consistently

s(0) def=
√︃(︂

x(0)2 − x1

)︂2
+
(︂

y(0)2 − y1

)︂2
+
(︂

z(0)2 − z1

)︂2
.

Subtraction yields

∆s = s− s(0) =
√︂
(x2 − x1)

2 + (y2 − y1)
2 + (z2 − z1)

2 −

−
√︃(︂

x(0)2 − x1

)︂2
+
(︂

y(0)2 − y1

)︂2
+
(︂

z(0)2 − z1

)︂2
≈

≈ ∂s
∂x2

∆x2⏟ ⏞⏞ ⏟(︂
x2 − x(0)2

)︂
+ ∂s
∂y2

∆y2⏟ ⏞⏞ ⏟(︂
y2 − y(0)2

)︂
+ ∂s
∂z2

∆z2⏟ ⏞⏞ ⏟(︂
z2 − z(0)2

)︂
,

a truncated Taylor expansion.

Here, the abstract “vector” ℓ of the observations has only one element,
ℓ=
[︂
∆s
]︂
=
[︂

s− s(0)
]︂

, and design matrix A (equation 14.10) consists of
the partial derivatives of this one observable with respect to all unknowns
x2, y2, z2:

A =
[︂

∂s
∂x2

∂s
∂y2

∂s
∂z2

]︂
.

The elements are derived by differentiating equation 14.19:

∂s
∂x2

= x2 − x1
s , ∂s

∂y2
= y2 − y1

s , ∂s
∂z2

= z2 − z1
s .

The numerical result is obtained by substituting the approximate values:

A ≈
[︃

x(0)2 − x1

s(0)
y(0)2 − y1

s(0)
z(0)2 − z1

s(0)

]︃
.

Using the approximate values of the co-ordinates is allowed if they are
“good enough”, so close to reality that the linearisation is valid.

The elements of this matrix A are the components of a unit vector! By
using the approximate values for the horizontal direction angle (azimuth)
α and the zenith angle ζ, we may write

A ≈
[︂

cosα(0) sinζ(0) sinα(0) sinζ(0) cosζ(0)
]︂

,

or symbolically
A = eT

12,
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in which e12 is the direction vector between points 1 and 2 (as an abstract
vector of components), for which holds

∥e12∥= 1.

The more general case in which both points are unknown is discussed
next. The vector of unknowns is formed

x
def=
[︂

x1 − x(0)1 y1 − y(0)1 z1 − z(0)1 x2 − x(0)2 y2 − y(0)2 z2 − z(0)2

]︂T
,

and the “vector” of observations is again ℓ=
[︂
∆s
]︂
=
[︂

s− s(0)
]︂
. Design

matrix A, equation 14.10, is

A =
[︂

∂s
∂x1

∂s
∂y1

∂s
∂z1

∂s
∂x2

∂s
∂y2

∂s
∂z2

]︂
.

Based on the previous, the end result is

A ≈
[︃

− x(0)12

s(0)
− y(0)12

s(0)
− z(0)12

s(0)
x(0)12

s(0)
y(0)12

s(0)
z(0)12

s(0)

]︃
=
[︂
−eT

12 eT
12

]︂
,

in which we used the abbreviations

x(0)12
def= x(0)2 − x(0)1 , y(0)12

def= y(0)2 − y(0)1 , z(0)12
def= z(0)2 − z(0)1 .

The linearised observation equation is now[︂
s− s(0)

]︂
=
[︂
−eT

12 eT
12

]︂[︄ ∆r1

∆r2

]︄

in which the linearised co-ordinates

∆ri
def=

⎡⎢⎣ ∆xi

∆yi

∆zi

⎤⎥⎦=

⎡⎢⎣ xi − x(0)i

yi − y(0)i

zi − z(0)i

⎤⎥⎦ , i = 1,2

are the unknowns, six in total.

Write this in stochastic form, with residual v:

ℓ⏟ ⏞⏞ ⏟[︂
∆s
]︂
+

v⏟ ⏞⏞ ⏟[︂
v
]︂
=

A⏟ ⏞⏞ ⏟[︂
−eT

12 eT
12

]︂ ˆ︁x⏟ ⏞⏞ ⏟[︄
∆ˆ︁r1

∆ˆ︁r2

]︄
,

in which

eT
12 =

[︃
x(0)2 − x(0)1

s(0)
y(0)2 − y(0)1

s(0)
z(0)2 − z(0)1

s(0)

]︃
=
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∂α

∂x
∆x

α

2

y
1

∆y

∆x

∂α

∂y
∆y

x

FIGURE 14.9. The geometry of azimuth measurement (seen from above) and
elements of the design matrix.^

=
[︂

x2 − x1
s

y2 − y1
s

z2 − z1
s

]︂(0)
=
[︂

x12
s

y12
s

z12
s

]︂(0)
,

∆ˆ︁ri
def=

⎡⎢⎣ ∆ˆ︁xi

∆ˆ︁yi

∆ˆ︁zi

⎤⎥⎦=

⎡⎢⎣ ˆ︁xi − x(0)iˆ︁yi − y(0)iˆ︁zi − z(0)i

⎤⎥⎦ , i = 1,2,

∆s def= s− s(0).

Here, the superscript (0) always identifies an approximate value. For
approximate values, the functional model applies exactly:

s(0) = f
(︁
x(0)
)︁=√︃(︂x(0)2 − x(0)1

)︂2
+
(︂

y(0)2 − y(0)1

)︂2
+
(︂

z(0)2 − z(0)1

)︂2
.

^ 14.9.2 Azimuth measurement

If the azimuth or horizontal direction α is measured between unknown
points 1 and 2:

α= arctan
(︂ y2 − y1

x2 − x1

)︂
+k ·200g,

then the vector of unknowns can be formed as

x=
[︂

x1 − x(0)1 y1 − y(0)1 x2 − x(0)2 y2 − y(0)2

]︂T
.

The design matrix is obtained again using the chain rule, as follows,
abbreviating x12 = x2 − x1, y12 = y2 − y1. See figure 14.9 for the geometric
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logic:

∂arctan
(︁

y12
/︁

x12
)︁

∂x1
= ∂arctan

(︁
y12
/︁

x12
)︁

∂
(︁

y12
/︁

x12
)︁ · ∂

(︁
y12
/︁

x12
)︁

∂x12
· ∂x12
∂x1

=

= 1
1+(︁ y12

/︁
x12
)︁2 ·
(︃
− y12

x2
12

)︃
· (−1)= y12

x2
12 + y2

12
= y12
ρ2 = sinα

ρ .

The whole matrix is now

A ≈
[︂
+sinα

ρ −cosα
ρ −sinα

ρ +cosα
ρ

]︂(0)
=

=
[︂
+ y2 − y1

ρ2 − x2 − x1
ρ2 − y2 − y1

ρ2 + x2 − x1
ρ2

]︂(0)
,

in which ρ =
√︂

(x2 − x1)
2 + (y2 − y1)

2, the distance between instrument
and signal, projected onto the horizontal plane.

From this, the linearised observation equation is obtained:

ℓ⏟⏞⏞⏟
∆α +

v⏟⏞⏞⏟
v =

A⏟ ⏞⏞ ⏟[︂
+ y2 − y1

ρ2 − x2 − x1
ρ2 − y2 − y1

ρ2 + x2 − x1
ρ2

]︂(0)
ˆ︁x⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
∆ˆ︁x1

∆ˆ︁y1

∆ˆ︁x2

∆ˆ︁y2

⎤⎥⎥⎥⎥⎦,

in which the deltas are formed in the usual way by subtracting approxi-
mate values from observed or estimated values:

∆α=α−α(0),
∆ˆ︁x1 = ˆ︁x1 − x(0)1 , ∆ˆ︁y1 = ˆ︁y1 − y(0)1 ,

∆ˆ︁x2 = ˆ︁x2 − x(0)2 , ∆ˆ︁y2 = ˆ︁y2 − y(0)2 .

^ 14.9.3 Horizontal-angle measurement

In practice, azimuth measurement is only possible using a gyrotheodolite,
an expensive specialty instrument popular in underground measure-
ments. Ordinary theodolites are not able to measure absolute horizontal
directions but only direction differences, also known as horizontal angles.

One way of deriving an observation equation for this observation type is
by adding an orientation unknown to the vector of unknowns, as already
done in subsection 6.4.1: in that case, instrument station 1 still has, in
addition to the three co-ordinates x1, y1, and z1, a fourth unknown Ω1,
and the observation equation is

θ = arctan y2 − y1
x2 − x1

−Ω1 +k ·200g.
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∆z

x

Zenith
z

y

ρα

FIGURE 14.10. The geometry of zenith-angle measurement.^

Linearisation is done as in the preceding subsection, with the result

∆ℓ⏟⏞⏞⏟
∆θ +

v⏟⏞⏞⏟
v =

=

A⏟ ⏞⏞ ⏟[︂
+ y2 − y1

ρ2 − x2 − x1
ρ2 −1 − y2 − y1

ρ2 + x2 − x1
ρ2

]︂(0)
ˆ︁x⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎢⎢⎣
∆ˆ︁x1

∆ˆ︁y1

∆ˆ︁Ω1

∆ˆ︁x2

∆ˆ︁y2

⎤⎥⎥⎥⎥⎥⎥⎦,

in which ∆ˆ︁Ω1 = ˆ︁Ω1 −Ω(0)
1 . This unknown represents the unknown az-

imuth of the zero mark on the horizontal circle of the instrument while it vaakakehä

stands on point 1.

^ 14.9.4 Zenith-angle measurement

The zenith angle between points 1 and 2 is measured,

ζ= arccos z2 − z1
s = 100g −arctan z2 − z1

ρ ,

in which again ρ =
√︂
(x2 − x1)

2 + (y2 − y1)
2.

Write
A =

[︂
−A12 A12

]︂
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in which (chain rule)

A12 =
[︂
∂ζ
∂ρ

· ∂ρ
∂x2

∂ζ
∂ρ

· ∂ρ
∂y2

∂ζ
∂z2

]︂(0)
=

=
[︂

1
s cosζ ·cosα 1

s cosζ ·sinα −1
s sinζ

]︂(0)
=

=
[︂ z2 − z1

s2 · x2 − x1
ρ

z2 − z1
s2 · y2 − y1

ρ − ρ

s2

]︂(0)
. (14.20)

Here, the partial derivatives of ζ have been computed in cylindrical co-
ordinates (ρ,α, z), with the definition z def= z2 − z1. In these co-ordinates,
ζ = ζ(ρ, z), so ζ does not depend on the azimuth, and we obtain (figure
14.10):

∂ζ
∂ρ

= 1
s cosζ= 1

s
z2 − z1

s , ∂ζ
∂z2

=−1
s sinζ=−1

s
ρ
s .

Now, the linearised observation equation is

ℓ⏟⏞⏞⏟
∆ζ +

v⏟⏞⏞⏟
v =

A⏟ ⏞⏞ ⏟[︂
−A12 A12

]︂ ˆ︁x⏟ ⏞⏞ ⏟[︄
∆ˆ︁r1

∆ˆ︁r2

]︄
,

in which A12 as above, equation 14.20, and

∆ˆ︁ri =

⎡⎢⎣ ∆ˆ︁xi

∆ˆ︁yi

∆ˆ︁zi

⎤⎥⎦=

⎡⎢⎣ ˆ︁xi − x(0)iˆ︁yi − y(0)iˆ︁zi − z(0)i

⎤⎥⎦ , i = 1,2.

^ 14.10 Tacheometer measurement

We can bring the results of the previous four subsections together in
describing tacheometer measurement, the simultaneous measurement of
a horizontal direction, a vertical angle and a distance:

⎡⎢⎣ s
θ

ζ

⎤⎥⎦+

⎡⎢⎣ vs

vθ
vζ

⎤⎥⎦=

⎡⎢⎣ [3×3]⏟ ⏞⏞ ⏟
−A12

0
−1
0

[3×3]⏟⏞⏞⏟
A12

⎤⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆ˆ︁x1

∆ˆ︁y1

∆ˆ︁z1

∆ˆ︁Ω1

∆ˆ︁x2

∆ˆ︁y2

∆ˆ︁z2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with

A12 =

⎡⎢⎢⎢⎣
x2 − x1

s
y2 − y1

s
z2 − z1

s
− y2 − y1

ρ2 + x2 − x1
ρ2 0

z2 − z1
s2

x2 − x1
ρ

z2 − z1
s2

y2 − y1
ρ − ρ

s2

⎤⎥⎥⎥⎦
(0)
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Helmert transformation in the plane 14.11 389
with all the above definitions and results.

^ 14.11 Helmert transformation in the plane

^ 14.11.1 Theory

In the plane, if more than two points are given in both co-ordinate frames,
it is possible to derive the unknown parameters of a Helmert transfor-
mation between the two frames. We start from equation 3.4 for a single
point (note the notation change):[︄

x′

y′

]︄
=
[︄

x0

y0

]︄
+K

[︄
cosθ sinθ
−sinθ cosθ

]︄[︄
x
y

]︄
.

Writing K def= 1+m, with m the scale distortion, assumed to be small, this
becomes, for also small rotation angles θ: kiertokulma[︄

x′

y′

]︄
≈
[︄

x0

y0

]︄
+ (1+m)

[︄
1 θ

−θ 1

]︄[︄
x
y

]︄
≈

≈
[︄

x0

y0

]︄
+
[︄

x
y

]︄
+
[︄

m 0
0 m

]︄[︄
x
y

]︄
+
[︄

0 θ

−θ 0

]︄[︄
x
y

]︄
,

from which [︄
x′

y′

]︄
−
[︄

x
y

]︄
≈
[︄

x0 +mx+θy
y0 +my−θx

]︄
,

which can be rearranged into

ℓ⏟ ⏞⏞ ⏟[︄
x′− x
y′− y

]︄
=

A⏟ ⏞⏞ ⏟[︄
1 0 x(0) y(0)

0 1 y(0) −x(0)

]︄
x⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎣
x0

y0

m
θ

⎤⎥⎥⎥⎦.

This is recognised as a set of two observation equations, with the ob-
servation vector, the vector of unknowns, and the design matrix being,
respectively, ℓ, x, and A, and in which

(︁
x(0), y(0)

)︁
are approximate val-

ues16 of the co-ordinates (x, y) of the point. 16

For multiple points given in the two frames:

[︄
x′i − xi

y′i − yi

]︄
=
[︄

1 0 x(0)i y(0)i

0 1 y(0)i −x(0)i

]︄⎡⎢⎢⎢⎣
x0

y0

m
θ

⎤⎥⎥⎥⎦ ,

16Use of approximate values is allowed here, as both m and θ are assumed to be small.
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14390 ADJUSTMENT CALCULUS IN GEODESY

with i the point number. We see that, if the number of available points n
exceeds 2, there will be redundancy: more observation equations — 2n —
than there are unknowns — 4. Written stochastically, we now have, with
residuals,

ℓ⏟ ⏞⏞ ⏟[︄
x′i − xi

y′i − yi

]︄
+

v⏟ ⏞⏞ ⏟[︄
v2i−1

v2i

]︄
=

A⏟ ⏞⏞ ⏟[︄
1 0 x(0)i y(0)i

0 1 y(0)i −x(0)i

]︄
ˆ︁x⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎣
ˆ︁x0ˆ︁y0ˆ︁mˆ︁θ

⎤⎥⎥⎥⎦, i = 1, . . . ,n.

(14.21)

^ 14.11.2 Propagation of uncertainty

With more than two points common between the (x′, y′) and (x, y) frames,
it will be possible not only to derive the Helmert transformation param-
eters, but also how the point uncertainties propagate into those of the
transformation parameters. See for example Kahmen and Faig (1988),
pages 253–255.

We start from the Helmert transformation equation rewritten as ob-
servation equations, 14.21. It is assumed that the co-ordinate values(︂

x(0)i , y(0)i

)︂
available for the points are good enough, and that the scale

distortion m and the rotation angle θ of the axes are both small. This is
typically the case as many, also local, co-ordinate reference frames are
approximately of the correct scale and oriented correctly to the north.

The above observation equations have 2n rows, where n is the number
of points: i = 1, . . . , n. The design matrix A looks like

A =
[︄

1 0 x(0)i y(0)i

0 1 y(0)i −x(0)i

]︄
.

If we assume that the co-ordinates of the given points are all equally pre-
cise, we may derive the normal matrix, or weight matrix of the unknowns,
Pxx as follows (the symbol

∑︁
means summation over all given points, all

sub- and superscripts dropped):

Pxx = AT A =

⎡⎢⎢⎢⎣
n 0

∑︁
x

∑︁
y

0 n
∑︁

y −∑︁x∑︁
x

∑︁
y

∑︁
(x2 + y2) 0∑︁

y −∑︁x 0
∑︁

(x2 + y2)

⎤⎥⎥⎥⎦ .

The significance of this is that the variance matrix of the unknowns
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ˆ︁x= [︂ ˆ︁x0 ˆ︁y0 ˆ︁m ˆ︁θ ]︂T

is precisely

Var
{︁ˆ︁x}︁ def=

⎡⎢⎢⎢⎣
σ2

x0
σx0 y0 σx0m σx0θ

σy0x0 σ2
y0

σy0m σy0θ

σmx0 σmy0 σ2
m σmθ

σθx0 σθy0 σθm σ2
θ

⎤⎥⎥⎥⎦=σ2 Qxx =σ2 P−1
xx ,

in which Qxx = P−1
xx is the weight-coefficient matrix of the unknowns and

σ is the mean error of unit weight, in this case, the assumed precision of
one point co-ordinate. Here, the diagonal elements σ2

x0
=Var

{︁ˆ︁x0
}︁

and so
on are variances, σx0 y0 =Cov

{︁ˆ︁x0,ˆ︁y0
}︁

and so on, covariances.

If now
∑︁

x =∑︁ y = 0, in other words, (x, y) are centre-of-mass co-
ordinates, we obtain

Pxx =

⎡⎢⎢⎢⎣
n 0 0 0
0 n 0 0
0 0

∑︁
(x2 + y2) 0

0 0 0
∑︁

(x2 + y2)

⎤⎥⎥⎥⎦
and, with Qxx = P−1

xx ,

Var
{︁ˆ︁x}︁=Var

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣
ˆ︁x0ˆ︁y0ˆ︁mˆ︁θ

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭=σ2 Qxx =

=σ2

⎡⎢⎢⎢⎣
1
/︁

n 0 0 0
0 1

/︁
n 0 0

0 0 1
/︁∑︁

(x2 + y2) 0
0 0 0 1

/︁∑︁
(x2 + y2)

⎤⎥⎥⎥⎦ .

Now, the variances of the transformation parameters are

Var
{︁ˆ︁x0
}︁=σ2

x0
=σ2 (Qxx)11 = σ2

n ,

Var
{︁ˆ︁y0
}︁=σ2

y0
=σ2 (Qxx)22 = σ2

n ,

Var
{︁ ˆ︁m}︁=σ2

m =σ2 (Qxx)33 = σ2
/︂∑︁(︁

x2 + y2)︁ ,

Var
{︁ˆ︁θ}︁=σ2

θ =σ2 (Qxx)44 = σ2
/︂∑︁(︁

x2 + y2)︁ .

Moreover, the parameters do not statistically correlate with each other:
the covariances between them vanish.

Now, the actual observation equations to be solved are 14.21, in which
the quantities v2i−1, v2i are the important residuals, containing valuable
quality-control information.
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14392 ADJUSTMENT CALCULUS IN GEODESY

^ TABLE 14.2. Point set given in two different co-ordinate frames. The points
are in the municipality of Porvoo, the co-ordinate frames are ETRS-

GK27 and KKJ zone 3.

Point x′ y′ x y

10 6697976.388 27427023.033 6698108.117 3427192.039
36 6700867.976 27428566.410 6700999.695 3428735.464
714 6701212.704 27424871.393 6701344.461 3425040.439
717 6696502.735 27428579.172 6696634.432 3428748.182
17_vara 6697821.437 27424568.639 6697953.182 3424737.628
35_vara 6709919.416 27434433.390 6710051.148 3434602.545
2061 6694497.478 27432539.402 6694629.164 3432708.409
2062 6704170.468 27432163.151 6704302.189 3432332.245
2063 6703595.075 27426736.815 6703726.833 3426905.879

^ Self-test questions

1. What is redundancy?

2. Why are observations weighted in an adjustment?

3. Why are the residuals of an adjustment of interest?

4. What is the mean error of unit weight?

5. What is the difference between variance matrix and weight-
coefficient matrix?

6. What is a better-known name for the matrix of Jacobi resulting
from the linearisation of observation equations?

7. What is the propagation law of variances for a stochastic vector
quantity?

8. How many independent invariants has the variance matrix of a
point location in the plane? What are they (for example)?

9. What are the parameters of a two-dimensional or plane Helmert
transformation? What does the variance matrix of the least-squares
solution of the plane Helmert transformation parameters look like
in centre-of-mass co-ordinates?

^ Exercise 14–1: Helmert transformation parameter estimation

A set of points is given in two different co-ordinate frames, see table 14.2
(Porvoo). With this data, do the following operations:

1. Calculate (solve) the four Helmert transformation parameters17 x0,17
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Exercise 14–1: Helmert transformation parameter estimation 393
y0, m, and θ. An octave script is provided for the purpose, tableau
14.3.

2. Calculate the parameters x′0, y′0, m′, and θ′ of the inverse transfor-
mation — so, swap columns x′ and y′ with columns x and y.

3. Verify that the scales K = m+1 and K ′ = m′+1 are each other’s
inverses: K ′ = 1

/︁
K and thus m′ ≈−m, and that the rotation param- kiertoparametri

eters θ are each other’s opposites: θ′ =−θ.

4. Look at the residuals. How precise were the input co-ordinates of
the points?

5. How many observations are there (hint: the number of observations
equals the number of residuals)? How many unknowns? What is the
number of degrees of freedom b (the difference between the number
of observations and the number of unknowns, the redundancy)?

6. Estimate ˆ︁σ def=
√︂

1
b
∑︁2n

i=1 v2
i , in which b is the number of degrees of

freedom, vi the residuals, and 2n the number of observations. The
estimated quantity σ is called the mean error of unit weight, the
typical precision of a point co-ordinate.18 18

7. Repeat the calculation after changing one x value by adding one
metre. Note the effect on the residuals. Would you be able to
identify this co-ordinate as the one containing the gross error? Also
recompute ˆ︁σ. What do you see?

17We leave off the stochastic underlines here, as these parameter values are just single
realisations of the corresponding stochastic variables.

18More correctly, this only holds true if one of the two co-ordinate sets given, (x′, y′)
and (x, y), is assumed to be exact. Otherwise it is the typical precision of a co-ordinate
difference.
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14394 ADJUSTMENT CALCULUS IN GEODESY

^ TABLEAU 14.3. Calculation script for Helmert transformation. Note that in this
code, no reduction to center-of-mass co-ordinates takes place. The co-ordinate
convention is the geodetic one: x points north, y east. Unlike in the text, however,
the rotation angle θ is assumed positive in the anti-clockwise direction.

format long

% Data input:

npts = 9;

pts = [10, 36, 714, 717, 17, 35, 2061, 2062, 2063];

x2 = [6697976.388, 6700867.976, 6701212.704, 6696502.735, 6697821.437,...

6709919.416, 6694497.478, 6704170.468, 6703595.075];

y2 = [27427023.030, 27428566.410, 27424871.393, 27428579.172, 27424568.639,...

27434433.390, 27432539.402, 27432163.151, 27426736.815];

x1 = [6698108.117, 6700999.695, 6701344.461, 6696634.432, 6697953.182,...

6710051.148, 6694629.164, 6704302.189, 6703726.833];

y1 = [3427192.039, 3428735.464, 3425040.439, 3428748.182, 3424737.628,...

3434602.545, 3432708.409, 3432332.245, 3426905.879];

% Observable vector:

yoffset = (27-3)*1E6;

ell = [x2’-x1’;y2’-y1’-yoffset];

% Construct design matrix:

A = zeros(2*npts,4);

for i = 1:npts

A(i,:) = [1, 0, x1(i), -y1(i)];

A(i+npts,:) = [0, 1, y1(i), x1(i)];

end

% Solve for unknowns:

x = inv(A’*A)*A’*ell;

x0 = x(1);

y0 = x(2) + yoffset;

scale = 1.0 + x(3);

rot = 57.296*x(4);

printf(’\nUnknowns:\n\n’);

printf(’x0: %20.10f\ny0: %20.10f\nscale :%20.10f\nrot: %20.10f\n\n’,...

x0, y0, scale, rot);

% Residuals:

v = A*x - ell;

printf(’Residuals:\n\n’);

for i = 1:npts

printf(’%5i %10.3f %10.3f\n’, pts(i), v(i), v(i+npts));

end
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^ Statistical methods in geodesy

1515
[. . . ] There has not been a single date in the history of the

theory of gravitation when a modern significance test would
not have rejected all laws and left us with no law.

Nevertheless the law did lead to improvement for centuries,
[. . . ]

Harold Jeffreys, 1939 (Jeffreys, 1998, page 391)

IN THIS CHAPTER we present two interrelated subjects:

◦ Statistical testing, in the context of the validation of and outlier poikkeava
havaintoarvodetection in geodetic network measurements.

◦ The reliability of geodetic networks.

The framework of hypothesis testing with null and alternative hypotheses
is adopted. We also show how this framework may be used, for example
for geodetic deformation analysis.

We would be amiss in not pointing out that hypothesis testing is not
the appropriate framework for settling all scientific disputes. There are
other, often more appropriate, techniques, like the Akaike information
criterion (Burnham and Anderson, 2013) and Bayesian approaches. The
above quote from Harold Jeffreys1 is apposite. 1

^ 15.1 The method of least-squares

Explaining the method of least-squares is simplest if one assumes that pienimmän
neliösumman
menetelmä

all observables are stochastic quantities that are normally distributed
(figure 2.5), both individually and together: they form a multivariate

1Sir Harold Jeffreys FRS (1891–1989) was a British mathematician, statistician, geo-
physicist, and astronomer, an influential advocate of Bayesian statistics.
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15396 STATISTICAL METHODS IN GEODESY

normal distribution. If normally distributed observables are statistically
independent of each other — for example, if they were produced by
independent measurement processes — this is automatically the case.

The method of least-squares as a way to minimise the random errors in
estimated quantities such as point co-ordinates has been presented above.
In chapter 14, the parametric adjustment method was presented, in whichparametrinen

tasoitus observations are expressed as functions of the unknowns. The alterna-
tive, adjustment by conditions, is suitable, for example, for computingehtotasoitus

traverses.monikulmiojono

Here, the parametric method will be discussed in more detail.

Let the observations, as a vector ℓ, be linear functions of the unknowns
x:

ℓ⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
ℓ1

ℓ2
...
ℓn

⎤⎥⎥⎥⎥⎦
[n]

=

A⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm

⎤⎥⎥⎥⎥⎦
[n×m]

x⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
x1

x2
...

xm

⎤⎥⎥⎥⎥⎦
[m]

+

n⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
n1

n2
...

nn

⎤⎥⎥⎥⎥⎦
[n]

.

Here, n is the number of observations, m the number of unknowns. The
observations, elements of the vector ℓ, are stochastic quantities. Assume
that they are normally distributed around the “true” value of the observed
quantity. Then, the elements of the vector of observation errors n are also
normally distributed.22

In this, rather general, case we may compute the least-squares solutionpienimmän
neliösumman

ratkaisu
in the following way:

ˆ︁x
[m]

= (︁ATQ−1
ℓℓ A

)︁−1

[m×m]−1

(︁
ATQ−1

ℓℓ

)︁
[m×n]

ℓ
[n]

, (15.1)

in which Qℓℓ is the weight-coefficient matrix of the observations, size
[n×n]:

Qℓℓ =

⎡⎢⎢⎢⎢⎣
q11 q12 · · · q1n

q21 q22 · · · q2n
...

... . . . ...
qn1 qn2 · · · qnn

⎤⎥⎥⎥⎥⎦ .

2Often, they are also assumed to be statistically independent from each other, meaning
that their random variations happen independently of each other. However, neither the
elements of solution vector ˆ︁x nor those of the vector of residuals v will be statistically
independent of each other.
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The residuals from the adjustment 15.2 397
This matrix is related to the variance matrix of the observations as
follows:

Var
{︁
ℓ
}︁ def= Σℓℓ =

⎡⎢⎢⎢⎢⎣
σ2

1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
... . . . ...

σn1 σn2 · · · σ2
n

⎤⎥⎥⎥⎥⎦=σ2 Qℓℓ,

in which

σ2
i =Var

{︁
ℓi
}︁= E

{︃(︂
ℓi −E

{︁
ℓi
}︁)︂2

}︃
=σ2qii,

σi j =Cov
{︁
ℓi,ℓ j

}︁= E
{︃(︂

ℓi −E
{︁
ℓi
}︁)︂(︂

ℓ j −E
{︁
ℓ j
}︁)︂}︃=σ2qi j.

Here, σ is the mean error of unit weight. painoyksikön
keskivirheThe variance matrix of the solution is obtained though propagation of
varianssien
kasautumislakivariances. Let ˆ︁x= Lℓ,

in which
L def= (︁ATQ−1

ℓℓ A
)︁−1 ATQ−1

ℓℓ .

Then, based on equation 15.1:

Qxx = LQℓℓLT = (︁ATQ−1
ℓℓ A

)︁−1 ATQ−1
ℓℓ ·Qℓℓ ·Q−1

ℓℓ A
(︁

ATQ−1
ℓℓ A

)︁−1 =
= (︁ATQ−1

ℓℓ A
)︁−1

by suitable elimination. So, the variance matrix of the solution vector ˆ︁x,
Σxx =σ2 Qxx, is obtained in any case as a side product of computing the
solution, equation 15.1!

^ 15.2 The residuals from the adjustment

The least-squares estimators of the observations ˆ︁ℓ and unknowns ˆ︁x are
connected to each other through the functional model

ˆ︁ℓ= Aˆ︁x,
and from the original observations

ℓ= Ax+n

one computes the residuals:3 jäännösvirhe
3

v
def= ˆ︁ℓ−ℓ= Aˆ︁x−ℓ= A (ˆ︁x−x)−n.
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Residuals are central in the quality control of geodetic network
solutions.

◦ The size of the residuals tells something about the contradictions
present in the network solution, possible gross errors, or even modelkarkea virhe

errors.

◦ The size of the residual of a certain observation can indicate
whether there may be a gross error hiding in this observation.

◦ The network must be reliable: there has to be redundancy, an
over-determination by the observational material. For example, all
kinds of closing errors offer possibilities for checking.

With little or no redundancy, the residuals may well be small or
even zero, but this means nothing!

An often-used form of the observation equations is

ℓ+v= Aˆ︁x.
The residuals v of a least-squares adjustment have four nice properties,pienimmän

neliösumman
tasoitus

here given without proof:

1. The quadratic form

E def= vTPℓℓ v= vTQ−1
ℓℓ v=σ2 (︁vTΣ−1

ℓℓ v
)︁

,

the weighted sum of the squares of the residuals, is minimised —
this is what the methods of least-squares got its name from. In fact,
the square root of this quantity is the norm of the vector of residuals
v, or its length, in the Qℓℓ metric, which is thus minimised:4 E =4

∥v∥2
Q .

3The vector v of residuals is not the same as the vector of observation errors, or “noise”,
n! The residual is the difference between the original observation and the adjusted
observation: in other words, a correction. However, not even an adjusted observation —
or unknown — is the “truth”. The truth is not precisely knowable; it is only approximable
at best, and the values of the elements of the vector n, unlike the values of the elements
of the vector v, cannot be computed.

4One could eliminate the weight matrix altogether by applying a co-ordinate transfor-
mation in the vector space of observations: do a Cholesky decomposition Pℓℓ = ΓΓT,
resulting in E = vTPℓℓ v = vTΓΓTv = ˜︁vT˜︁v, with ˜︁v def= ΓTv. This is automatically achieved
by redefining the observables as ˜︁ℓ def= ΓTℓ. This is the straightforward way of reducing
the general least-squares problem 15.1 to the simpler unweighted one 14.3. The new
observables ˜︁ℓ do not correlate with each other and have identical mean errors.
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FIGURE 15.1. Least-squares adjustment as an orthogonal projection. For vi-
sualisation, it is assumed that the observation space has three
dimensions, the parameter space two, and thus the number of
degrees of freedom, the dimensionality of the null space, is one.^

2. The variance Σλλ of an arbitrary linear combination ˆ︁λ=Λˆ︁x of the
unknowns ˆ︁x (and its mean error

⎷
Σλλ) is minimised.

3. The adjusted observables ˆ︁ℓ and the residuals v are mutually or- tasoitettu
havaintosuurethogonal in the Qℓℓ metric: if the scalar product is defined as⟨︁

a ·b⟩︁Q
def= aTQ−1

ℓℓ b:⟨︁ˆ︁ℓ ·v⟩︁Q = ⟨︁Aˆ︁x ·v⟩︁Q = (Aˆ︁x)T Q−1
ℓℓ v=ˆ︁xT ATQ−1

ℓℓ v= 0,

because

aT
i Q−1

ℓℓ v= 0, i = 1, . . . ,m,

in other words, the vector of residuals is orthogonal to all columns
ai of the design matrix A. rakennematriisi

Figure 15.1 gives a geometrical interpretation: the unknowns are
those coefficients in the linear combination of the columns of the A
matrix that minimise the norm of the vector of residuals.

4. The covariance matrix between the vector of unknowns ˆ︁x and the
vector of residuals v vanishes: Σxv = σ2 Qxv = 0. So, they do not jäännös-

virheiden
vektori

correlate with each other.

Because
ℓ= Aˆ︁x−v,
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it follows, based on the law of propagation of variances and the above-
mentioned property 4, that

Qℓℓ = AQxxAT +Qvv =⇒ Qvv =Qℓℓ− AQxxAT, (15.2)

a useful equation for computing the weight-coefficient matrix Qvv — and
the variance matrix Σvv =σ2 Qvv — of the residuals.

^ 15.3 Testing, hypotheses for testing

The observational material may contain gross errors. In a real-life ad-
justment calculus we must be able to say, based on our knowledge of the
statistical distribution of the observations,

◦ Something about the possible occurrence of gross errors.

◦ How large gross errors would have to be in order to be noticed and
removed.

◦ The propagation of gross errors of this magnitude into the un-
knowns of interest.

Finding gross errors belongs to the field of statistical testing.

Gross errors that are found can be handled in two ways:

◦ They are removed from the observation set, and the measurements
in question are repeated. After the fact, this is laborious and costly,
wherefore at least part of statistical testing is done already in the
field.

◦ They are simply left out. This assumes that the measurement was
planned redundantly from the start: so many measurements have
been made that one can afford to leave a (small) fraction of them
out.

Statistical testing always requires the formulation of hypotheses. One of
the hypotheses is always the

Null hypothesis All the measurements in the network are correct,
there are no gross errors in them. This hypothesis is designated
by the symbol H0.

In addition, there must always be at least one

Alternative hypothesis The network contains some gross error, or
some combination of gross errors, or a specific gross error. This
hypothesis is designated by the symbol Ha.
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^ TABLEAU 15.1. The planning and measurement process.

Network planning⏐⏐↓Precision
How much uncertainty

will there be in the
co-ordinates?

−→←−

Reliability
If a gross error occurs, how
well can we detect it in
testing?

⏐⏐↓

Network geometry
and quality metrics

⏐⏐↓
Network measurement⏐⏐↓Overall validation

Are the results sensible?
Are the models used valid?

Are there gross errors?

−→←−
Testing the observations
For each observation: is this
one observation OK?

⏐⏐↓
End result
◦ Adjusted network
◦ Precision
◦ Reliability
◦ Confidence that methods

used are pretty OK

Generally we wish to know, or make a judgement on, two matters:

◦ Are there generally any gross errors left in this observation set?

◦ Is this specific observation in error?

Tableau 15.1 shows the role of testing in the whole planning and
measurement process.

These questions will be discussed separately in the following sections.
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^ 15.4 Overall validation

^ 15.4.1 The χ2 distribution

Firstly we choose the following alternative hypothesis:

Ha: somewhere in the measurement material (we do not yet
know where) there is a gross error.

This kind of hypothesis can be tested using the χ2 test. The method, and
the tables belonging to it, can be found in statistics textbooks and on the
Internet. The quantity to be tested is the length of the vector of residuals
in the Σℓℓ or Qℓℓ metric, its norm, squared:

1
σ2E = ∥v∥2

Σ
def= vTΣ−1

ℓℓ v= 1
σ2

(︁
vTQ−1

ℓℓ v
)︁ def= 1

σ2 ∥v∥
2
Q . (15.3)

This quantity — note the scaling with the variance of unit weight — ispainoyksikön
varianssi distributed according to the χ2

n−m distribution: the χ2 distribution with
n−m degrees of freedom, figure 15.2. The number of degrees of freedom
is the difference between the number of observations and the number of
unknowns, also known as the redundancy b = n−m.

Conceptually, a stochastic quantity with the χ2
b distribution, for b

degrees of freedom, is obtained as the sum of the squares of b independent,
standard-normally distributed — that is, having an expectancy zeroodotusarvo

and a mean error one — stochastic quantities ni, i = 1, . . . , b. As the
expectancy of one such square equals the variance of the standard normal
distribution, being one, it follows that the expectancy

E
{︁
χ2

b
}︁= b∑︂

i=1

E
{︁

n2
i
}︁= b∑︂

i=1

Var
{︁

ni
}︁= b∑︂

i=1

1= b.

Yet another perspective is that the quantity

ˆ︂σ2 def= E
n−m =σ2 v

TΣ−1
ℓℓ v

n−m

has the expectancy E
{︁ˆ︂σ2

}︁=σ2 and is thus an unbiased estimator of σ2. Itharhaton
estimaattori is called the a posteriori variance of unit weight. See also subsection 6.4.3.

The ratio ˆ︂σ2
/︂
σ2 is expected to be close to unity if the null hypothesis is

valid.

^ 15.4.2 The overall test

By testing the above quantity 15.3, one may infer whether the measure-
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αχ2

βχ2

Testing bound

χ2 distribution for
4 degrees of freedom

non-central χ2,
non-centrality parameter λ= 3

0.0

0.1

0.2

8 10 12 14 16 180 2 4 6 20

FIGURE 15.2. The χ2 distribution with four degrees of freedom.^

ment material contains some gross error or not,5 without yet stating in 5

which observation it might be found.

MATLAB contains ready routines for applying the χ2 method.

The quantity6 E/︁σ2 is distributed according to χ2
n−m only in the case 6

that the material contains no gross errors, that is, the null hypothesis H0

applies. Then, the expectancy of the testing variate is

E
{︂

1
σ2E

⃓⃓⃓
H0

}︂
= E
{︁
χ2

n−m
}︁= n−m.

Assume now instead however, that the observations contain one or more
gross errors, taken together ∇ℓ: the alternative hypothesis Ha applies.
The effect of this error vector on the residuals is ∇v. In this case, the
distribution of the quantity E

/︁
σ2 is the non-central χ2, in figure 15.2 the

red curve.

5The χ2 test cannot distinguish between actual gross errors and the possible unsuit-
ability of the functional model ℓ= Ax applied to the material. If it happens that the χ2

test rejects the null hypothesis, but all observations appear to be okay, it might be that
there is a problem with the functional model: some systematic effect may have been
overlooked.

6In Baarda’s terminology: “shifting variate”. Willem Baarda (1917–2005) was a pioneer
of modern adjustment theory and statistical geodesy.
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^ 15.4.3 Reliability

The interesting question is now how large the effect of ∇ℓ on ∇v is going
to be. We may hope that it will be large, because then, the network is
reliable.7 Generally the whole of ∇ℓ does not propagate into ∇v; the7

adjustment conveys part into the vector of unknowns, as a gross-errortasoitus

effect,8 of magnitude ∇x. See also section 15.9.8

In this situation, the vector of residuals is v+∇v. Written out into
terms, the testing variate becomes

1
σ2E = ∥v+∇v∥2

Σ = vTΣ−1
ℓℓ v+vTΣ−1

ℓℓ∇v+∇vTΣ−1
ℓℓ v+∇vTΣ−1

ℓℓ∇v.

The expectancy of the testing variate becomes

E
{︂

1
σ2E

⃓⃓⃓
Ha

}︂
=

= E
{︁
vTΣ−1

ℓℓ v
}︁+E

{︁
vT
}︁
Σ−1
ℓℓ∇v+∇vTΣ−1

ℓℓE
{︁
v
}︁+∇vTΣ−1

ℓℓ∇v=
= E
{︁
χ2

n−m
}︁+0+0+∇vTΣ−1

ℓℓ∇v= (n−m)+λ,

in which λ
def=∇vTΣ−1

ℓℓ∇v is called the non-centrality parameter of the χ2

distribution. It describes how far the effect of the assumed gross error on
the residuals, ∇v, extends outside the uncertainty area of the observations
as described by the matrix Σℓℓ.

A quadratic quantity is always positive. Therefore, the χ2 test is
one-sided, unlike the later presented test for the normal distribution.
So, because E is a quadratic quantity, every gross error — and even
systematic errors, that is, errors in the functional model used — will
tend to increase it. Each and every error tends to make χ2 larger, and
makes noticing the error more likely. This makes the χ2 test such a useful
overall test.

In fact, the χ2 test validates a lot more than just the observations. It
assures that

◦ The observation set does not contain any (large) gross errors.

◦ The functional model used (the observation equations) is valid with
sufficient accuracy.

◦ The assumed mean errors of the observations (and the possible
assumption of non-correlatedness) are realistic.

7This is called interior reliability.

8This is called exterior reliability. A small effect means a good exterior reliability.
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^ 15.5 Locating gross errors

If we have inferred that the material presumably contains one or more
gross errors, we next want to find out which observations are under sus-
picion. Let us assume for simplicity that a gross error occurs only in one
observation, although there might well be errors in several observations
simultaneously.

The simplest way to search for gross errors, or rather, to undertake
outlier detection, is to look at the residuals. poikkeava

havaintoarvoLet the vector of residuals be

v=
[︂

v1 v2 · · · vi · · · vn−1 vn

]︂T
.

The element vi is the residual of observation number i, that is the obser-
vation ℓi. The element’s variance is

σ2
vi
=σ2[︁Qvv

]︁
ii,

and its mean error σvi is the square root of this.

Assume that the residuals vi are normally distributed. Then, we may
test every observation i = 1, . . . , n:⃓⃓

vi
⃓⃓
> 1.96σvi =⇒ ℓi is probably in error⃓⃓

vi
⃓⃓
≤ 1.96σvi =⇒ ℓi is presumably correct.

This two-sided test based on the normal distribution uses a significance merkitsevyys-
tasolevel of 95%: Even if there is no gross error, there nevertheless is a

probability of 100%−95% = 5% that, based on the test, observation ℓi

will be rejected.

Table 15.2 gives the rejection bounds for different significance levels in
the two-sided test based on the standard normal distribution.

The method described here works correctly only if the observations do
not correlate with each other, so that the matrix Qℓℓ is a diagonal matrix.
If it is not, the literature offers an adapted9 testing method called data 9

snooping (Baarda, 1968).

9The trick is simply that, instead of the residuals v, weighted residuals w def= Q−1
ℓℓ v and

their variances are used.
The logic is, that if we search for a gross error in observation number i, we look for
the linear combination of residuals in which the error shows clearest. We calculate the
orthogonal projection of v (in the Qℓℓ metric) on the direction of the assumed gross error
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^ TABLE 15.2. Rejection bounds h for significance levels α2 in a two-sided test
based on the standard normal distribution, having mean error
σ= 1 and expectancy µ= 0. See figure 15.4.

1−α2, % α2, % h

5 95 1.96
2.5 97.5 2.24
1 99 2.57
0.1 99.9 3.29

^ 15.6 Calculation example: linear regression

Let us return to the linear regression example already used in subsection
14.5.3, see table 15.3.

Recall that the least-squares solution found was

ˆ︁a = 1.76 ±1.25σ,ˆ︁b = 0.495±0.349σ.

We compute the function values ˆ︁a+ˆ︁bxi of the fitted line, as well as its
residuals vi =

(︂ˆ︁a+ˆ︁bxi

)︂
− yi. The condition

∑︁n
i=1 vi = 0 is a good sanity

check.

^ TABLE 15.3. Example of linear regression.

i→ 1 2 3 4 5
∑︁5

i=1

xi 1.51 2.44 3.34 4.41 5.05 16.75
yi 2.32 3.12 3.57 3.93 4.15 17.09ˆ︁a+ˆ︁bxi 2.51 2.97 3.41 3.94 4.26
vi +0.19 −0.15 −0.16 +0.01 +0.11 0.00
v2

i 0.0361 0.0225 0.0256 0.0001 0.0121 0.0964

ei
def=
[︂

0 0 · · · 1 · · · 0 0
]︂T

(where the element “1” is in place i):

wi
def= ⟨ei ·v⟩Q = eT

i Q−1
ℓℓ v.

Together, the components wi form the vector w and they are optimally suited for
discerning gross errors, or “outliers”.
In the test, also the mean error σwi of every individual wi is needed, to be computed
from the diagonal elements of the matrix (equation 15.2)

Qww
def= Q−1

ℓℓQvvQ−1
ℓℓ =Q−1

ℓℓ

(︁
Qℓℓ− AQxxAT)︁Q−1

ℓℓ ,

just as when testing using v.
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^ TABLE 15.4. Values of the cumulative χ2

3 distribution. αχ2 is the significance
level of the χ2 test.

´ x
0 χ

2
3(x

′)dx′
´∞

x χ2
3(x

′)dx′

x
(︁
αχ2
)︁ (︁

1−αχ2
)︁

4.642 0.80 0.20
6.251 0.90 0.10
7.815 0.95 0.05
9.837 0.98 0.02

11.345 0.99 0.01
12.838 0.995 0.005
14.796 0.998 0.002
16.266 0.999 0.001

If the observations yi have a variance matrix Σℓℓ = σ2I, then the
“shifting variate” to be tested is siirtosuure

1
σ2E = vTΣ−1

ℓℓ v,

in which v is the vector formed by the residuals vi. We obtain

1
σ2E =

1
σ2

n∑︂
i=1

v2
i =⇒ E =

n∑︂
i=1

v2
i .

If it is given a priori that σ=±0.15, it follows that

1
σ2E =

0.0964
0.0225 = 4.28.

The quantity E
/︁
σ2 is distributed according to χ2

3: there are n = 5
observations and m = 2 unknowns (a and b), so the number of degrees of
freedom (redundancy) is n−m = 3. According to table 15.4, the probability
that under the null hypothesis χ2

3 > 4.642 is 20%, so the value 4.28 is
fully acceptable, at least on a significance level of 80%.

Next, the individual residuals are tested. Compute first the weight-
coefficient matrix of the vector of residuals using equation 15.2:

Qvv =Qℓℓ− AQxxAT,

in which Qℓℓ = I,

Qxx =
[︄

1.5640 −0.4072
−0.4072 0.1215

]︄
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^ TABLE 15.5. Example of linear regression. Computing the residuals, their
variance-covariance matrix, and normalised residuals.

i→ 1 2 3 4 5

vi +0.19 −0.15 −0.16 +0.01 +0.11

+0.3887 −0.4032 −0.2019 +0.0375 +0.1807
−0.4032 +0.6998 −0.2006 −0.0821 −0.0112

Qvv −0.2019 −0.2006 +0.8007 −0.1978 −0.1969
+0.0375 −0.0821 −0.1978 +0.6646 −0.4178
+0.1807 −0.0112 −0.1969 −0.4178 +0.4502

σvi 0.0935 0.1255 0.1342 0.1223 0.1006⃓⃓
vi
⃓⃓/︂
σvi

2.03 1.20 1.19 0.08 1.09

was already computed in subsection 14.5.3, and

A =

⎡⎢⎢⎢⎢⎣
1 x1

1 x2
...

...
1 xn

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎢⎢⎣
1 1.51
1 2.44
1 3.34
1 4.41
1 5.05

⎤⎥⎥⎥⎥⎥⎥⎦ .

After careful calculation (MATLAB!), we obtain the matrix Qvv, shown in
table 15.5. Of this matrix, it is mostly the diagonal elements that are
interesting:

σv1 =σ
√︂

[Qvv]11 = 0.15 ·⎷0.3887= 0.15 ·0.623= 0.0935,

σv2 =σ
√︂
[Qvv]22 = 0.1255,

and so on. (Remember that σ= 0.15.) See table 15.5.1010

As can be seen, all observations are acceptable, with the exception of y1,
which, on the 95% significance level, is barely rejected (rejection bound
1.96). However, already on a significance level of 97.5%, it too is accepted.

^ 15.7 Adding a gross error

Next, we add to the observed value y3 a simulated gross error +1.0.karkea virhe

10Note how the mean errors of the residuals are systematically smaller than the mean
errors of the observations σ=±0.15, especially close to the edges! With a large number
of points, this phenomenon vanishes and we may write Qvv ≈Qℓℓ.
This is often done in any case. Then, gross errors in the edge points will not be noticed
sufficiently well.
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^ TABLE 15.6. Example of linear regression. A simulated gross error in point 3:

original data, linear regression, residuals, testing.

i→ 1 2 3 4 5
∑︁5

i=1

xi 1.51 2.44 3.34 4.41 5.05 16.75
yi 2.32 3.12 4.57 3.93 4.15 18.09

x2
i 2.28 5.95 11.16 19.45 25.50 64.34

xi yi 3.50 7.61 15.26 17.33 20.96 64.66ˆ︁a+ˆ︁bxi 2.71 3.17 3.62 4.14 4.46

vi +0.39 +0.05 −0.95 +0.21 +0.31 0.01
v2

i 0.1521 0.0025 0.9025 0.0441 0.0961 1.1973
σvi 0.0935 0.1255 0.1342 0.1223 0.1006⃓⃓

vi
⃓⃓/︂
σvi

4.17 0.40 7.08 1.72 3.08

Rejection? * ** *

Now, as the least-squares solution we obtain the result of table 15.6:

ˆ︁b = 5 ·64.66−16.75 ·18.09
5 ·64.34−16.752 = 20.2925

41.1375 = 0.493,

ˆ︁a = 1
5

(︂
18.09−16.75 ·ˆ︁b)︂= 1.97.

In table 15.6 the σvi values have not changed.

Compute the “shifting variate”

1
σ2E =

1
σ2

n∑︂
i=1

v2
i = 1.1973

0.0225 = 53.21!

There is something very wrong here. . .

Now look at table 15.6. The largest testing value by far, 7.08, is seen for
the erroneous observation 3. But observations 1 and 5 are also rejected
at even a 99% significance level! For this reason, one should proceed
carefully. Based on the test, one should reject only one observation at a
time, after which the whole least-squares computation should be repeated. pienimmän

neliösumman
laskenta

^ 15.8 Significance level of the test

^ 15.8.1 Choice of rejection bound

When we test a certain alternative hypothesis against the null hypothesis
using an assumedly normally distributed testing quantity or variate, one
must choose a suitable rejection bound. If the variate to be tested exceeds
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1

2

3

4

1 2 3 4 5 6

Mean error of observations

y= 1.97+0.493x

x

y

FIGURE 15.3. Example of linear regression, observation 3 contains a simulated
gross error.^

this bound, H0 is rejected and Ha accepted. Choosing the rejection bound
is an important strategic decision.

See figure 15.4. In the figure, the rejection bound chosen is h = 2.5σ:
if the testing variate exceeds 2.5 times its own mean error σ, the null
hypothesis H0 is rejected and the alternative hypothesis Ha is accepted.

Now, the strategy may lead to two types of error:

◦ The null is rejected although it is valid. This is called an error of theensimmäisen
lajin virhe first kind.11 The probability of this error happening is the size of the

11
vertically hatched (blue) area. In the case of normal distribution,
it amounts to 1−α = 1.24% (two-sided), if the rejection bound is

Gross error k

1−αRejection bound h = 2.5σ

σσ
β

FIGURE 15.4. Statistical testing based on normal distribution.^

11Also rejection error.
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^ TABLE 15.7. Rejection bound h and probability of rejection in a test in the case

of normal distribution. α1 is the significance level of the one-sided,
α2 of the two-sided test.

h
/︁
σ 1−α1, % 1−α2, %

2.0 2.28 4.56
2.5 0.62 1.24
3.0 0.13 0.27
3.5 0.02 0.05

h = 2.5σ, see table 15.7. The quantity α is called the significance
level of the test.

◦ The null is accepted although there is a gross error: H0 is false,
the alternative hypothesis Ha is true. This is an error of the second toisen lajin

virhekind.12 The probability of it happening depends on the size k of the
12

gross error, more precisely, on the size of the normalised difference
(k−h)

/︁
σ .

Its complement, the probability of rejection, is called the power β13 erotuskyky
13of the test. In figure 15.4 it is the size of the pink area.

Choosing the testing strategy, choosing h, is thus always a compromise.
It depends on the relative costs of errors of the first and second kind —
including non-monetary, such as reputational, “costs”. h = 3σ is often
used — the “three-sigma rule”.

^ TABLE 15.8. Assumed size k of gross error and corresponding power β of the
test. Normal distribution and rejection bound h = 2.5σ assumed.

k
/︁
σ (k−h)

/︁
σ β, %

3.0 0.5 69.1
3.5 1.0 84.1
4.0 1.5 93.3
4.5 2.0 97.7
5.0 2.5 99.4
5.5 3.0 99.9
6.0 3.5 99.98

12Also acceptance error.

13So, the probability of an error of the second kind, if there is indeed a gross error in the
observation, is 1−β, or 100%−β.
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^ 15.8.2 Harmonisation of overall and per-observation tests

In testing the body of observations, there is a link between the overall
validation test and the per-observation tests! The link is through the
significance levels. See figure 15.5: if the significance level of the χ2 test
is αχ2 and that of the test for a single observation is α, the connection is

αχ2 =αn−m,

with n−m the number of degrees of freedom.14 In other words, the joint14

probability that all observations individually pass their tests must be the
same as the probability of passing the overall validation. Only on that
condition may it be expected that, if the common χ2 test finds something
“rotten”, the tests for the individual observations will also point to the
“guilty” observation.

Example If αχ2 = 95% with ten degrees of freedom, it follows that

α= n−m
√︁
αχ2 = 10⎷0.95≈ 0.99489= 99.489%,

some ten times closer to 100%.

After removing or correcting the “guilty” observation, the testing proce-
dure is repeated, until the χ2 test is passed.1515

^ 15.9 Reliability

^ 15.9.1 Principle

The reliability of a measurement network is the property that gross errors
are found easily, and are found even if they are relatively small.

Reliability corresponds to the network being “strong”. It is however not
the same kind of strength as when the network is precise.

See figure 15.6. From points A, B, and C are measured the directions
to a fourth point. Error ellipses for three different cases are drawn:

I when the point is far from the points A and B

II when the point is in a location where the directions to points A
and B are perpendicular to each other, and

14This procedure is similar to the well-known Bonferroni correction, Wikipedia, Bonfer-
roni correction.

15If the test still fails, perhaps the other models used should be checked, such as the
assumed precisions of the observations and so on.
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Obs. 2
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Overall acceptance area

Common
acceptance
area of
observations

FIGURE 15.5. Harmonisation of the significance levels of the overall validation
and per-observation tests.^

III when the point is between points A and B.

As can be seen, the most precise result is obtained in case III. The error
ellipse is the smallest.

However, reliability is poor (non-existent) in case III. If the measure-
ment made from point C contains a gross error (dashed line), we still

III II I
C

B

A

FIGURE 15.6. An example of reliability.^
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x

yA

σρ
ρ

σρ
/︁⎷

2

OO C

B

P

FIGURE 15.7. Another example of reliability.^

obtain in case III a seemingly good — precise — but erroneous result. See
the dashed error ellipse.

In cases I and II, a gross error in the observation from C will produce
a contradictory result. It is not possible to find a location for the target
point that is compatible with the direction measurements from all three
points. This is a good thing, because it enables the detection of the gross
error. The network is then called reliable.

In network planning, attention must be paid to reliability, of course in
addition to precision. The network must be designed with appropriate
redundancy: it must contain measurements that check each other. Com-
mon sense helps a great deal here. There are mathematical and software
tools for evaluating the reliability of a network. One must always ask,
“what if this or that observation were in error. . . would I notice?”

^ 15.9.2 Another example

In this example, figure 15.7, the observation points A, B, and C are
located on the edge of a circle, and point P, the direction to which is being
measured, is located near the origin (centre point of the circle) O.

The observation equations are obtained by looking at the geometry:

ℓ⏟ ⏞⏞ ⏟⎡⎢⎣ θAP −θAO

θBP −θBO

θCP −θCO

⎤⎥⎦+

v⏟ ⏞⏞ ⏟⎡⎢⎣ v1

v2

v3

⎤⎥⎦=

A⏟ ⏞⏞ ⏟
1
ρ

⎡⎢⎣ −1 0
0 −1
1 0

⎤⎥⎦
ˆ︁x⏟ ⏞⏞ ⏟[︄ ˆ︁xPˆ︁yP

]︄
.
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Symbolically

ℓ+v= Aˆ︁x,
in which

ℓ=

⎡⎢⎣ ℓ1

ℓ2

ℓ3

⎤⎥⎦=

⎡⎢⎣ θAP −θAO

θBP −θBO

θCP −θCO

⎤⎥⎦ , A = 1
ρ

⎡⎢⎣ −1 0
0 −1
1 0

⎤⎥⎦ .

The least-squares solution is

ˆ︁x= (︁AT A
)︁−1 ATℓ= ρ ·

[︄
2 0
0 1

]︄−1[︄
ℓ3 −ℓ1

−ℓ2

]︄
= ρ ·

[︄
1
2 (ℓ3 −ℓ1)

−ℓ2

]︄
.

From this are obtained the residuals

v= Aˆ︁x−ℓ=
⎡⎢⎣ −1

2 (ℓ3 −ℓ1)

ℓ2
1
2 (ℓ3 −ℓ1)

⎤⎥⎦−

⎡⎢⎣ ℓ1

ℓ2

ℓ3

⎤⎥⎦=

⎡⎢⎣ −1
2ℓ1 − 1

2ℓ3

0
−1

2ℓ1 − 1
2ℓ3

⎤⎥⎦ . (15.4)

Note 1 As can be seen, the observation ℓ2 has vanished from the residu-
als! If ℓ2 = θBP −θBO contains a gross error, we are never going to
notice it as an overly large residual.

Note 2 From the residuals it cannot be seen whether a gross error comes
from observation ℓ1 or observation ℓ3. In the residuals, their
coefficients are identical.

We may also write equation 15.4 as

v= Aˆ︁x−ℓ= A
(︁

AT A
)︁−1 ATℓ−ℓ=−Rℓ,

with the redundancy matrix

R def= I − A
(︁

AT A
)︁−1 AT =

⎡⎢⎣
1
2 0 1

2
0 0 0
1
2 0 1

2

⎤⎥⎦ .

Each diagonal element of the redundancy matrix is a rough-and-ready
measure for how well the geometry controls for a gross error in the
corresponding observation. R11 = R33 = 1

2 tells us that observations
ℓ1 and ℓ3 are somewhat controlled, but R22 = 0 tells us that ℓ2 is not
controlled at all. A sensible requirement is that all Rii ? 0.5.

Next, compute the shifting variate

1
σ2E = vTΣ−1

ℓℓ v.
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Here, Σℓℓ is the variance matrix of the observations. Assume that the
observations do not correlate with each other and that their mean error
is σ. Then

Σℓℓ =σ2

⎡⎣ 1
1

1

⎤⎦ .

We obtain (H0 is the null hypothesis):

1
σ2E

⃓⃓⃓
H0 = 1

σ2

3∑︂
i=1

v2
i = 1

2σ2 (ℓ1 +ℓ3)
2 .

Because the mean errors of both ℓ1 and ℓ3 are σ and they do not correlate,
the mean error of the sum ℓ1+ℓ3 is σ

⎷
2 and its variance 2σ2. The number

of degrees of freedom is 1 and the variate E
/︁
σ2 is distributed according

to χ2
1, as should be the case according to theory.

By comparing the value E
/︁
σ2 computed from the observations with

the values from the χ2
1 table, one can test whether the observations

might contain a gross error. If all observations are free of gross
errors, the expectancy of E

/︁
σ2 is 1.

Nevertheless, as already pointed out above, we cannot observe any gross
errors in ℓ2 at all. We say16 that the measurement geometry is reliable for16

observations ℓ1 and ℓ3, but unreliable for observation ℓ2. If observation
ℓ2 contained a gross error of size ∇, it would slip in its entirety into the
co-ordinate ˆ︁yP as an error −ρ ·∇! We also say17 that the measurement17

geometry is unreliable for unknown ˆ︁yP , but reliable for unknown ˆ︁xP .

A sufficiently large gross error ∇ in observations ℓ1 or ℓ3 would again
be detected as an overly large value for the shifting variate (alternative
hypothesis Ha):

1
σ2E

⃓⃓⃓
Ha = 1

2σ2 (ℓ1 +ℓ3 +∇)2 ,

the expectancy of which is 1+ 1
2

(︁∇/︁σ)︁2, for a non-centrality parameter
λ = 1

2

(︁∇/︁σ)︁2, see figure 15.2. If ∇ ≫ σ, this would be detected with
considerable confidence.

Note Reliability has nothing to do with precision! The precision of the

16This is called interior reliability.

17Exterior reliability.
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unknowns ˆ︁x= [︂ ˆ︁xP ˆ︁yP

]︂T
is described by their variance matrix

Var
{︁ˆ︁x}︁=σ2 (︁ATQ−1

ℓℓ A
)︁−1 =σ2ρ2

[︄
1
2 0
0 1

]︄
,

so, the mean error of ˆ︁xP is 1
2σρ

⎷
2, and that of ˆ︁yP is σρ, and they

are uncorrelated with each other. See the error ellipse in figure
15.7.

However, a good mean error gives no solace if the co-ordinate
solution ˆ︁yP contains a gross error. . .

^ 15.9.3 The meaning of redundancy

Even though the reliability of a measurement network is good, we may
still ask whether it is easy to identify the observation in which the gross
error has occurred. It this is not easy, we end up measuring all suspect
observations again, or throwing them out. This is not good.

From the viewpoints of both good reliability and identifiability of gross
errors, the degree of redundancy of a geodetic measurement network
should not be too low. If the number of observations is n and the number
of unknowns m, then the number of conditions, or degrees of freedom, is
n−m. The degree of redundancy is then (n−m)

/︁
n . This is often stated

as a percentage. For example, linear regression of a straight line through
five points: n = 5, m = 2, so a degree of redundancy of 3

5 = 60%. On
the other hand, a levelling line of ten points between two known points:
n = 11, m = 10, the degree of redundancy being 1

11 = 9% — weak, but
unfortunately common. By measuring in both directions we obtain n = 22,
m = 10, so a degree of redundancy of 12

22 ≈ 55%, which is already good. A
good rule of thumb is that a degree of redundancy of 50% is desirable.

^ 15.10 Deformation analysis

Deformation analysis is one practical application of statistical testing.
The null hypothesis H0 in these tests is, that no observable deformation
has happened. There may be many different alternative hypotheses Ha,
from the hypothesis that some unspecified deformation took place, to
many concrete hypotheses about the precise nature of the deformation
sought.

Deformation analysis is also an application that involves the time di-
mension: measurements collected in two or more measurement epochs
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are compared. The deformations studied may be natural, like deforma-
tions in the Earth’s crust brought about by tectonic movements or by
varying glacial loading; or they may be brought about by human activity,
like the subsidence caused by mineral extraction (petroleum, natural gas,maan

vajoaminen irrigation water, . . . ). The object of study may be the Earth’s crust in
an area, or a building or other built structure like a reservoir dam. Thevesiallas

possibilities are very broad.

Deformation analysis is discussed in the textbooks by Cooper (1987)
pages 331–352 and Vaníček and Krakiwsky (1986) pages 611–659.

^ 15.10.1 Height deformation analysis

In one dimension, height deformation analysis studies vertical movement,
for example using levelling. In the simplest case, the same levelling line
or network of n points has been measured twice:

H i(t1), H i(t2), i = 1, . . . ,n,

and the variance matrices of the heights, Σ(t1) and Σ(t2), are also avail-
able.

Clearly, comparison is possible only if both measurements are first
reduced to the same reference or datum point. We choose the first network
point, point 1, as the datum point:

H(1)
1 (t1)= H(1)

1 (t2) (= some agreed value) .

After this, the variance matrices for both measurement times or epochs
are only of size (n−1)× (n−1), because now point 1 is known and no
longer has (co-)variances.

Σ(1)(t1)=

⎡⎢⎢⎢⎢⎣
σ
(1)
22 (t1) σ

(1)
23 (t1) · · · σ

(1)
2n (t1)

σ
(1)
32 (t1) σ

(1)
33 (t1) · · · σ

(1)
3n (t1)

...
... . . . ...

σ
(1)
n2 (t1) σ

(1)
n3 (t1) · · · σ

(1)
nn (t1)

⎤⎥⎥⎥⎥⎦ ,

and the same for Σ(1)(t2). Here

σ
(1)
ii (tℓ)=Var

{︁
H(1)

i (tℓ)
}︁

,

σ
(1)
i j (tℓ)=Cov

{︁
H(1)

i (tℓ),H
(1)
j (tℓ)

}︁
,

⎫⎬⎭ ℓ= 1,2; i, j = 2, . . . ,n.
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4

1

2

3

σ
(1)
44 (t1)

∆H(1)
4

σ
(1)
44 (t2)

t1

t2

FIGURE 15.8. Height deformation monitoring network for the epochs t1 (red)
and t2 (blue). Realistic error bars.^

Now, calculate the height displacements between the two measurement
epochs and their joint variance matrix, assuming that the measurements
made at times t1 and t2 are statistically independent of each other:

∆H(1)
i

def= H(1)
i (t2)−H(1)

i (t1), i = 2, . . . ,n,

Σ
(1)
∆H∆H =Σ(1)(t1)+Σ(1)(t2).

After this it is intuitively clear — provided that both sets of height mea-
surements are multi-normally distributed — that the following quantity,
the shifting variate, has the χ2

n−1 distribution:

1
σ2E =

(︂
∆H(1)

)︂T(︂
Σ
(1)
∆H∆H

)︂−1
∆H(1),

in which

∆H(1) def=

⎡⎢⎢⎢⎢⎣
H(1)

2 (t2)−H(1)
2 (t1)

H(1)
3 (t2)−H(1)

3 (t1)
...

H(1)
n (t2)−H(1)

n (t1)

⎤⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
∆H(1)

2

∆H(1)
3

...

∆H(1)
n

⎤⎥⎥⎥⎥⎦
is the (abstract) vector of height differences.

Statistical testing for deformation is based on this variate E .

^ 15.10.2 Horizontal deformation analysis

In two dimensions we proceed in the same way as in the one-dimensional
case, except that

1. It is tempting to write the plane co-ordinates as complex numbers.

2. There are now two datum points, the co-ordinates of which are
considered identical between the two epochs.
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So, if there are n points, the size of the variance matrix is now (n−2)×
(n−2). The variance matrix is now also complex valued, and Hermitian:
its transpose is its complex conjugate.liittoluku

The testing variate is again the shifting variate1818

1
σ2E =

(︂
d(AB)

)︂†(︂
Σ
(AB)
dd

)︂−1
d(AB),

in which d is the complex vector of all co-ordinate differences, or displace-
ment vector:

d(AB) def=

=

⎡⎢⎢⎢⎢⎢⎣
x(AB)

3 (t2)− x(AB)
3 (t1)+ i

(︂
y(AB)

3 (t2)− y(AB)
3 (t1)

)︂
x(AB)

4 (t2)− x(AB)
4 (t1)+ i

(︂
y(AB)

4 (t2)− y(AB)
4 (t1)

)︂
...

x(AB)
n (t2)− x(AB)

n (t1)+ i
(︁

y(AB)
n (t2)− y(AB)

n (t1)
)︁

⎤⎥⎥⎥⎥⎥⎦=

⎡⎢⎢⎢⎢⎣
∆z(AB)

3

∆z(AB)
4
...

∆z(AB)
n

⎤⎥⎥⎥⎥⎦ ,

with

∆z(AB)
i = z(AB)

i (t2)−z(AB)
i (t1)=

=
(︂

x(AB)
i (t2)− x(AB)

i (t1)
)︂
+ i
(︂

y(AB)
i (t2)− y(AB)

i (t1)
)︂

, i = 3, . . . ,n.

AB is the chosen datum or starting point for both epochs t1 and t2.
The other points are numbered 3, 4, . . . , n. The symbol † signifies both
transposition and complex conjugate, the Hermitian19 conjugate:19

A† def= AT = AT.

^ 15.10.3 Example

Let the adjusted co-ordinates xi(t1), i = 3, . . . , 6 of the deformation
network from the first measurement epoch be given20 in table 15.9a,20

18Warning: in Cooper’s book (Cooper, 1987, page 335) there is a mistake under equation
(9.52): the correct equation is (inverse, not transpose):

Ω= ˆ︁dtQ−1
d
ˆ︁d.

19Charles Hermite (1822–1901) FRS FRSE was a French mathematician and number
theorist.
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A

B
4

6

5

3
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I

t1

t2

∆z4

FIGURE 15.9. Horizontal deformation monitoring network for the epochs t1 (red)
and t2 (blue). Realistic error ellipses. The alternative hypothesis
that domain II moves with respect to domain I is also indicated.^

and the co-ordinates of the second measurement epoch xi(t2), i = 3, . . . , 6
be given in table 15.9b.

Compute the inter-epoch differences vector d, table 15.9c.

Using real numbers, with the definition

d
def= x(t2)−x(t1)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x3(t2)− x3(t1)

y3(t2)− y3(t1)

x4(t2)− x4(t1)

y4(t2)− y4(t1)

x5(t2)− x5(t1)

y5(t2)− y5(t1)

x6(t2)− x6(t1)

y6(t2)− y6(t1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∆x3

∆y3

∆x4

∆y4

∆x5

∆y5

∆x6

∆y6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

20These are only the co-ordinates of the points to be tested. They are assumed to be
connected, for both epochs, to the same two unnamed datum points — say, points 1 and
2, or A and B — outside the area, which are assumed to be motionless.
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^ TABLE 15.9. Horizontal deformation analysis, co-ordinates. Unit metre.

(a)
Epoch 1

i xi(t1) yi(t1)

3 1234.123 2134.453
4 1681.045 2507.487
5 755.495 2623.456
6 1248.865 3051.775

(b)
Epoch 2

i xi(t2) yi(t2)

3 1234.159 2134.448
4 1681.123 2507.516
5 755.507 2623.487
6 1248.951 3051.807

(c)
Displacements

i ∆xi ∆yi

3 +0.036 −0.005
4 +0.078 +0.029
5 +0.012 +0.031
6 +0.086 +0.032

we find by computation

dTd=
6∑︂

i=3

(︂(︁
xi(t2)− xi(t1)

)︁2 +(︁yi(t2)− yi(t1)
)︁2
)︂
= 0.017771m2.

Similarly with complex numbers, with the definition

d def=

⎡⎢⎢⎢⎣
z3(t2)−z3(t1)

z4(t2)−z4(t1)

z5(t2)−z5(t1)

z6(t2)−z6(t1)

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
∆z3

∆z4

∆z5

∆z6

⎤⎥⎥⎥⎦
we obtain in the same way by computation

d†d=
6∑︂

i=3

(︁
zi(t2)−zi(t1)

)︁(︁
zi(t2)−zi(t1)

)︁= 0.017771m2.

Here, zi
def= xi + i yi, and zi

def= xi − i yi is its complex conjugate.

Let the precisions (mean co-ordinate errors) of the co-ordinates xi(t1)

and yi(t1) measured at the first epoch be σ1 =±5cm, and the precisions
of the co-ordinates xi(t2) and yi(t2) of the second epoch σ2 = ±1cm —
for every point, and furthermore the co-ordinates are assumed to be
uncorrelated.21 The variance matrices of the co-ordinate vectors are thus21

Σ1 =σ2
1 I, Σ2 =σ2

2 I.

We compute the mean error σ∆ of a single co-ordinate displacement
∆xi = xi(t2)− xi(t1), or, equivalently, ∆yi = yi(t2)− yi(t1). Propagation of

21This is obviously unrealistic: in real networks, the point error grows with the distance
from the datum points, and the co-ordinate errors within each epoch are strongly
correlated.
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variances yields

σ2
∆ =σ2

1 +σ2
2 = (25+1) cm2 = 26cm2.

Now, the variance matrix of the co-ordinate displacements is

Σdd =Σ1 +Σ2 =σ2
∆ I,

with σ∆ =⎷
26cm= 5.1cm= 0.051m.

Now, we choose for the mean error of unit weight just this value:
σ

def= σ∆. Then we may also write

Σdd =σ2
∆Qdd =σ2 Qdd =σ2 I,

so the weight-coefficient matrix is the unit matrix.

Compute the deformation’s testing variate, the shifting variate:

1
σ2E = dTΣ−1

ddd=
dTQ−1

ddd

σ2 = dTd
σ2 .

Here, d= x(t2)−x(t1) is the displacement vector, the abstract vector of
co-ordinate differences between the epochs. Because we assume that both
co-ordinate sets are given in the same, common datum, the definition
points of which nevertheless do not belong to the set 3–6, we may assume
that all co-ordinates are free. In that case, the number of degrees of
freedom is b = 2n = 8, where n is the number of points. The variance
matrix of the components of the displacement vector, or vector of co-
ordinate differences, d, is σ2I. We obtain

1
σ2E =

1
0.0026m2

(︁
dTd
)︁= 0.017771m2

0.0026m2 = 6.835.

Question The quantity E
/︁
σ2 is distributed according to the χ2

8 distribu-
tion. If the limit value of this distribution for a significance level
of 95% is 15.51 (see Cooper (1987) page 355), has a deformation
probably taken place in this case?

Answer No, it has not. 6.835< 15.51.

Question If, however, the assumed precisions were σ1 = σ2 = ±1cm,
would then a deformation have probably taken place, at a signifi-
cance level of 95%?

Answer Yes, it would. σ2 = (1+1) cm2 = 0.0002m2 and

1
σ2E =

1
0.0002m2

(︁
dTd
)︁= 0.017771m2

0.0002m2 = 88.9> 15.51.
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^ Self-test questions

1. What is the relationship, and difference, between the variance ma-
trix Σℓℓ and the weight-coefficient matrix Qℓℓ of the observations?

2. What is the relationship between the a priori variance of unit
weight σ2 and the a posteriori one ˆ︂σ2?

3. What are errors of the first kind and errors of the second kind?

4. What is the power of a statistical test?

5. What is the relationship between the significance level αχ2 of the
overall validation test and the significance level α of the outlier test
on the individual observations? Why?

6. What is redundancy, and why is it important?

7. What is interior and what is exterior reliability?

8. What are the steps in planning and measuring a geodetic network?

9. What is the Hermitian conjugate of a matrix?

10. Heathrow airport, UK, receives about 35 million incoming inter-
national passengers per year. A fancy new system is proposed to
be installed that, by analysing the behaviour of people from closed-
circuit video, can “flag” them as potential terrorists. The rate of
“false positives”, or errors of the first kind, is 1−α= 1%. The rate of
errors of the second kind, false negatives or justified but not-called
alarms, 1−β, is believed to be small, less than 50%.

The background to this is that since 1970 there have been some
4000 deaths due to terrorism in the UK.

How would you handle the passengers flagged by the system, and
why?

(a) Have them all killed.

(b) Arrest and investigate them.

(c) Send them back to where they came from.

(d) Have a chat with them and informally look into their back-
grounds before doing anything.

(e) That system is worthless.
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^ Gravity in geodesy

1616
Inmiddels was op 6 september 1943 ook het contact met de
‘goede’ Utrechtse hoogleraren tot stand gekomen en werden
in nauwe samenwerking met hen hervormingsplannen voor

het onderwijs (b.v. betreffende het studium generale)
uitgewerkt. Naast prof. dr. J. Jongbloed was vooral prof. dr.
ir. F. A. Vening Meinesz, te wiens huize in Amersfoort vele

vergaderingen werden gehouden, hierbij een stuwende
kracht. In verband met diens studiereizen per onderzeeër
werd het contact aangeduid als K18. Vermeldenswaard is,

dat tot en met 19 september 1944 33 vergaderingen met de
hoogleraren werden belegd.

Reference work De ondergrondse pers (“The Underground
Press”) 1940 – 1945 (Winkel and de Vries, 1989, in Dutch)

^ 16.1 Measuring gravity

Gravitation is a fundamental force of the universe. It is an attraction
acting between all celestial bodies. According to Newton’s law of gravita-
tion, the force is proportional to the masses of both bodies, and inversely
proportional to the square of the distance between the bodies.

Galileo Galilei (1564–1642) was the first to show experimentally, that
all bodies fall equally fast: their acceleration in free fall is the same,
independently of their mass m.

This may be understood in this way: that as mass m grows, gravita-
tional force F grows, but also the inertia of the body m, appearing in the
equation F = ma, grows, and the acceleration a remains unchanged. One
says that the “heavy mass” of the body is the same as its “inertial mass”. hidas massa

However, a broader way to look at this, which makes more theoretical
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sense and is more general, is, that there is no difference in principle
between gravity and all kinds of pseudo-forces — like centrifugal force —
caused by non-uniform motion. The Hungarian baron and geophysicist
Loránd Eötvös1 carried already out many very precise tests to investigate1

if any difference could be found between “heavy” and “inertial” mass,
for example in connection with material composition. The answer was
consistently “no”.22

From this, Albert Einstein (1879–1955) concluded logically that gravity
is a geometric property of space-time connected with its curvature, and
developed his famous field equations of general relativity, which link
together the curvature tensor of space-time and the stress-energy tensor
of the matter contained in it. Locally, for example inside a small, closed
elevator, it is not possible to know if the gravity sensed inside the elevator
is the result of the Earth’s attraction, or of the acceleration produced by
a rocket engine in the floor of the elevator!

The measurement and study of the acceleration of gravity is a special-
ism called gravimetry.

Gravity is the acceleration of free fall, and is expressed in the SI unit
m
/︁

s2 . On the Earth’s surface, gravity is about 9.8m
/︁

s2 . In gravimetry, how-
ever, smaller units are needed, like the milligal (mGal) and the microgal
(µGal). In very precise work, even the nanogal (nGal) is encountered.

Unit In SI units (m
/︁

s2 )
As a fraction of

gravity (roughly!)

mGal 10−5 10−6

µGal 10−8 10−9

nGal 10−11 10−12

Instruments called gravimeters have been built for measuring gravity.
An ordinary field gravimeter is in principle just an extremely sensi-
tive spring balance (figure 16.2). Its measurement precision may be
0.01–0.1mGal. Furthermore, there exist ballistic gravimeters, which
measure interferometrically the acceleration of a falling body; figure 16.1.

Ballistic gravimeters are absolute. Field or spring gravimeters are not
absolute, and they have a drift. This means that the measurement valueskäynti

1Loránd baron Eötvös de Vásárosnamény (1848–1919) was a Hungarian geophysicist
and student of gravity.

2Eötvös’ tests have been repeated with even much greater accuracy. The answer did not
change.
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“Superspring”

Vacuum pump system

Laser

Cage transporter

Falling prism

Prism protective cage

Reference prism

Semi-transparent mirror

Mirror

g

Interferometer

FIGURE 16.1. An absolute or ballistic gravimeter.^

produced by the same acceleration of gravity change slowly over time.
Therefore, field measurements are planned to always start from a known
point and end on a known point. The measurement values are adjusted tasoitus

between the end points in proportion to time according to the drift thus
determined.

δ(ε)

ε

F
(ε
)

F(ε)cos(α+δ+ε)

g

α

FIGURE 16.2. Principle of operation of a relative or spring gravimeter: increas-
ing sensitivity through a diagonal solution, astatisation.^
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FIGURE 16.3. The terrain height h(x, y) depicted by height contours, and height
gradients (arrows). “+”, “−”, local maximum, minimum, “s” saddle
point. On the right, the terrain in perspective.^

^ 16.2 Gravity and geopotential

^ 16.2.1 The gradient of a scalar field

Figure 16.3 shows how the forms of the terrain are depicted on a map by
height contours. In the figure we could have used any scalar function ofkorkeuskäyrä

two variables as an example, instead of the terrain height h(x, y).

The figure shows the gradient of the height field, the vector field33

v(x, y)= ∂h(x, y)
∂x i+ ∂h(x, y)

∂y j= ∂xh(x, y)i+∂yh(x, y)j def= gradh =∇h

as arrows. Here, i and j are unit vectors in the x and y co-ordinate
directions. This is a vector valued field, the value of which at every point
(x, y) consists of two components, the partial derivatives of the height
field with respect to the co-ordinates, in this point, in Euler notation ∂xh
and ∂yh.

The gradient vector describes the slope of the Earth’s surface: the
steeper the slope of the Earth’s surface is, the longer the gradient vector.
And the direction of the vector is of course the direction in which the
terrain is sloping.44

The gradient is always perpendicular to the height contour, which is a
set of points having the same height value, an equi-value curve. Along it,
height is constant.

3The name of the symbol ∇ is nabla. This may be an old Greek word for a Phoenician
harp, the shape of which it resembles.

4Actually the arrows are drawn in the “wrong” direction, the direction into which the
Earth’s surface is going down. Thus they describe the vector field −v.
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W(x, y, z)

FIGURE 16.4. A geopotential table. Tables like this can be found in science
museums. The surface of the table describes the gravity potential
of the Earth, albeit only in two dimensions. The arrows again
depict the gradient of the geopotential, the slope of the table
surface.
On the geopotential table, a glass marble can be made to orbit
around the “Earth” in an elliptical Kepler orbit, if the figure of
the surface agrees sufficiently realistically with Newton’s law of
gravitation.^

Like the height field h(x, y), we may also visualise the geopotential
W(x, y, z) in three-dimensional space, with “height contours” or equipo-
tential surfaces, and a three-dimensional gradient. On the equipotential
surfaces, the value of the geopotential is constant.

Figure 16.4 is a similar visualisation of the geopotential by the curved
surface of a table. The distance of the surface from the floor corresponds to
the geopotential, representing the energy level of an object on the surface.
The circles drawn on the table visualise the equipotential surfaces (in
reality three-dimensional) of the Earth’s gravity field, and the curves
radiating outwards from the Earth visualise the “lines of force” along voimaviiva

which the gradient vector of the potential — in other words, the gravity
vector — everywhere points.

^ 16.2.2 Normal gravity and disturbing potential

Gravity consists of two parts:

◦ the attraction by the Earth’s masses

◦ the centrifugal force, a pseudoforce caused by the Earth’s rotation.

The contribution of centrifugal force to all of gravity is about −0.3% on
the equator, the same order of magnitude as the difference in the gravity
between equator and poles.
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The gravity field of the Earth contains all kinds of irregular variations
from place to place. Most of the gravity field can however be described
as the field of an ellipsoid of revolution. This mathematically defined,pyörähdys-

ellipsoidi regular model field, in which the flattening and rotational motion of the
Earth have been taken into account, is called the normal field.

The lines of force and equipotential surfaces of the normal gravity field
are depicted in figure 16.5. The reference ellipsoid is one equipotential
surface of the normal gravity field, in the same way as the geoid (section
16.4) is an equipotential surface of the true gravity field.

The potential of the normal gravity field, the normal potential, is
written with the symbol U(x, y, z). Normal gravity itself is the gradient
of this potential.

The gravity vector is the gradient of the geopotential W(x, y, z):

g=∇W = gradW = ∂W
∂x i+ ∂W

∂y j+ ∂W
∂z k= ∂xW i+∂yW j+∂zW k,

in which i, j, and k are the unit vectors in the x, y, and z directions.

In the same way, the normal gravity vector

γ=∇U = gradU = ∂U
∂x i+ ∂U

∂y j+ ∂U
∂z k= ∂xU i+∂yU j+∂zU k

is also the gradient of the normal gravity potential U .

By subtracting the normal potential from the true gravity potential,
the disturbing potential is obtained:häiriö-

potentiaali
T def= W −U .

The strength of normal gravity is designated by the symbol γ def= ∥γ∥, in
the same way as the strength of true gravity g def= ∥g∥. Because the two
vectors have nearly identical directions, straight down, we may also write

g ≈−∂W
∂h =−∂hW , γ≈−∂U

∂h =−∂hU .

Normal gravity can be calculated exactly if we know, for a point P, the
geodetic latitude ϕP and the height from the reference ellipsoid hP :

γP = γ(ϕP ,hP).

Normal gravity, like true gravity, diminishes quickly when moving
upwards. The rate of diminishing is about 0.3mGal for every metre. The
dependence on latitude is much weaker.
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^ TABLEAU 16.1. Normal potential and normal gravity according to GRS80

(Heikkinen 1981, simplified). In the equations, 9.78. . . is normal gravity it-
self, and 0.0000030877. . . the vertical gradient of normal gravity on the equator
on the surface of the reference ellipsoid. Units m, m

/︁
s2 and m2/︁

s2 .

U = 62636860.8500+
+(︁−9.78032677−0.05163075sin2ϕ−0.00022761sin4ϕ−0.00000123sin6ϕ

)︁
h+

+(︁+0.01543899−0.00002195sin2ϕ−0.00000010sin4ϕ
)︁ ·10−4 ·h2 +

+(︁−0.00002422+0.00000007sin2ϕ
)︁ ·10−8 ·h3 +0.00000004 ·10−12 ·h4 +·· · ,

∂U
∂h

=−9.78032677−0.05163075sin2ϕ−0.00022761sin4ϕ−0.00000123sin6ϕ+

+(︁+0.03087798−0.00004390sin2ϕ−0.00000020sin4ϕ
)︁ ·10−4 ·h+

+(︁−0.00007265+0.00000021sin2ϕ
)︁ ·10−8 ·h2 +0.00000015 ·10−12 ·h3 +·· · .

Normal
gravity

Reference ellipsoid,
flattening exaggerated

Equipotential surfaces of
the normal gravity field

Ellipsoidal plumb lines
or normals

X

X

γ
γ

γ

FIGURE 16.5. The normal gravity field of the Earth.^
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Reference ellipsoid Geoid

Normal potential

Geopotential field

Line of force (plumb line)

Equipotential surface

FIGURE 16.6. Equipotential surfaces and lines of force of the geopotential and
the normal potential.^

^ 16.2.3 Distance between equipotential surfaces

Because the normal gravity field is meant to be an idealised represen-
tation of the true gravity field, the equipotential surfaces of both for
the same potential value W = constant and U = constant, for the same
constant value, run close to each other. See figure 16.7. The points P and
Q lie on the same plumb line: P lies on the surface W =WP of the W field,luotiviiva

whereas Q lies on the corresponding surface U =UQ =WP of the U field.
So

WP =UQ

and linearisation with respect to height h yields

UP ≈UQ +ζ ∂U
∂h

⃓⃓⃓
P
=UQ −ζγP ,

in which ζ is the distance separating points P and Q.

Subtraction yields the disturbing potential

TP
def= WP −UP =UQ −UP = ζγP =⇒ ζ= TP

γP
. (16.1)

Equation 16.1 is the famous Bruns5 equation. The quantity ζ is called the5

height anomaly (of point P). It is the distance between an equipotentialkorkeus-
anomalia

5Ernst Heinrich Bruns (1848–1919) was a gifted mathematician and astronomer, whose
greatest achievements were related to the theory of the Earth’s gravity field.

í  Õ ! ¤.� û



Gravity anomalies 16.3 433

Geoid

P

Plumb line
(ΦP ,ΛP)

H

Reference ellipsoid

QQ
ζ

Ellipsoidal normal
(ϕP ,λP)

hh
H∗

WP (=UQ)

W0 (=U0)

U0

UQ

UP

N

FIGURE 16.7. Equipotential surfaces of true and normal gravity field.^

surface of the Earth’s gravity field and the corresponding surface of the
normal field, the surface having the same potential. The Bruns equation
links this distance directly to the disturbing potential.

When point P is located on the geoid, we have WP = W0, and Q is
located on the reference ellipsoid, so UQ =U0 =W0. In this case we use,
instead of the notation ζ, the designation N, the geoid undulation, the
geoid height, the distance of the geoid from the reference ellipsoid. The
Bruns equation is in this case

N = T0
γ0

,

in which the values of both T0 and γ0 are evaluated on the geoid. In
practice, N ≈ ζ, except in the mountains. At sea level, N = ζ exactly.

^ 16.3 Gravity anomalies

In practice, the height h of a point from the reference ellipsoid can be
obtained empirically only using satellite positioning.6 This is why one 6

writes, using hP = HP +N ≈ H∗
P +ζ, see figures 16.7 and 16.8:

− ∂T
∂h

⃓⃓⃓
P
= gP −γ(ϕP ,hP),

6Nowadays, thanks to GNSS, it is easier to obtain the quantity

δgP
def= gP −γ(ϕP ,hP),

which is called the gravity disturbance.
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γQ

P

Plumb line (ΦP ,ΛP)

Q

gP γP

FIGURE 16.8. True and normal gravity vectors.^

in which (Taylor series expansion)

γ(ϕP ,hP)≈ γ(ϕP ,H∗
P)+

∂γ

∂h

⃓⃓⃓
P
·ζ,

so, with the Bruns equation 16.1, we obtain

− ∂T
∂h

⃓⃓⃓
P
≈ gP −γ(ϕP ,H∗

P)−
∂γ

∂h

⃓⃓⃓
P
·ζ= gP −γ(ϕP ,H∗

P)−
∂γ

∂h

⃓⃓⃓
P
· TP
γP

.

From this
gP −γ(ϕP ,H∗

P)=− ∂T
∂h

⃓⃓⃓
P
+ ∂γ

∂h

⃓⃓⃓
P

1
γP

TP . (16.2)

This expression is called the gravity anomaly, with the definition

∆gP
def= gP −γ(ϕP ,H∗

P). (16.3)

The gravity anomaly ∆gP can be computed if two quantities have been
measured:77

◦ the gravity value gP at point P gravimetrically

◦ the height HP ≈ H∗
P of the point from the geoid, or “above sea level”.

Most often — and before the satellite era, always — the height of a
gravity measurement point is determined by reading from a map, from a
photogrammetric stereo model, by using a barometer, or from traverseilmapuntari

linjavaaitus levelling. In all cases, one obtains just the height HP above sea level. The
precision of measurement of the heights varies from several centimetres
to around a metre. This uncertainty propagates straight into the anomaly
values ∆g, by the vertical gradient of normal gravity ∂hγ≈−0.3mGal

/︁
m .

The gravity anomaly ∆g is an empirical quantity that can be
calculated from measurements made on the Earth’s surface.

The most commonly used gravity anomaly is the free-air anomaly ∆g,ilma-anomalia

7For the latitude ϕP , an approximate value is good enough.
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the definition of which was given as 16.3. Gravity anomaly values vary
in the interval ±100mGal, more rarely, for example in the mountains,
±200mGal. Within Finland, the range of variation is ±60mGal. Gravity
anomalies and their variations from place to place describe the irregular-
ities of the interior mass distribution of the Earth, and are therefore of
geophysical and geological interest.

It may be mentioned as a curiosity, that the Dutch researcher Felix A.
Vening Meinesz8 found, south of the island of Java, at the Java (today 8

Sunda) deep-sea trench, a large deficiency in gravity. We know today that syvänmeren
hautadeep-sea trenches are those places on the Earth’s surface where, as a

part of plate tectonics, the Earth’s oceanic crust “dives” into the Earth’s
mantle where it will be geologically recycled: subduction, see figure 18.7. alityöntö

^ 16.4 The gravimetric geoid

From equation 16.2 above together with definition 16.3 is obtained

∆g =−∂T
∂h + ∂γ

∂h
1
γT =−∂hT + ∂hγ

γ T, (16.4)

which is called the fundamental equation of physical geodesy, Heiskanen fysikaalisen
geodesian
perusyhtälö

and Moritz (1967) equation 2-148. So:

The gravity anomaly ∆g is a linear combination of disturbing
potential T and its vertical derivative of location ∂hT.

The quantity ∂hγ≈−0.3mGal
/︁

m is the, already mentioned, vertical gradi-
ent of normal gravity.

The geoid, the equipotential surface of the Earth’s gravity field that
describes the figure of the whole field (the “mathematical figure of the
Earth”, Gauss), may be determined by gravimetric means, starting from
the fundamental equation of physical geodesy 16.4. Let us assume the
Earth to be a sphere. Then

γ= GM
R2

and by differentiation
∂γ

∂h = ∂γ

∂R =−2GM
R3 ,

8Felix Andries Vening Meinesz (1887–1966) was a Dutch geophysicist, geodesist and
gravimetrist. He wrote together with V. A. Heiskanen the textbook The Earth and its
Gravity Field (1958).
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Mass excess

−N

Mass
deficit

gg
N

FIGURE 16.9. Relationship between variations in the Earth’s gravity and those
in geoid height.^

from which follows
∆g =−∂T

∂h − 2
R T,

an equation valid on the surface of a spherical Earth.

It is intuitively clear that there is some kind of link between variations
of gravity and variations of the geopotential on the Earth’s surface. Both
are caused by the uneven distribution of masses inside the Earth. As
figure 16.9 shows, the excess masses inside the Earth will cause both
an excess in gravity (the level surfaces of the geopotential will be closer
together) and a rising of the geoid above the surface of the reference
ellipsoid, whereas, on the other hand, mass deficiencies inside the Earth
will lead to both a shortfall in gravity and a depression of the geoid below
the reference ellipsoid.

The relationship between gravity anomalies ∆g and geoid heights N is
however not simple. The quantities are connected by an integral equa-
tion, the Stokes equation. George Gabriel Stokes9 derived the following9
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Earth’s
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FIGURE 16.10. The geometry of the Stokes integral equation.^

classical integral equation10 in 1849: 10

N = R
4πγ

¨
S(ψ)∆g dσ. (16.5)

With the equation, we may compute geoid heights from the global field
of gravity anomalies. In the equation, R is the radius of the spherical
Earth, γ mean gravity on the Earth’s surface, and S(ψ) is the Stokes
function, also called the Stokes kernel. It depends only on the geocentric
angular distance ψ between the evaluation point for the geoid height N
and the measurement point for the anomaly ∆g seen from the centre of
the Earth:

S(ψ) = 1
sinψ

/︁
2

− 6sin
ψ

2 + 1 − 5cosψ − 3cosψ ln
(︂

sin
ψ

2 + sin2 ψ

2

)︂
.

Look more closely at equation 16.5. The quantity dσ is the solid- avaruuskulma

angle element, a surface element on a sphere of unit radius, in spherical
co-ordinates dσ= cosφ dφ dλ.

Open up the equation in the following way:

N(φ,λ)= R
4πγ

ˆ 2π

0

ˆ +π/︁2

−π/︁2
S
(︁
ψ(φ,λ,φ′,λ′)

)︁
∆g(φ′,λ′) cosφ′ dφ′ dλ′.

9George Gabriel Stokes (1819–1903) was a gifted English mathematician, physicist and
geophysicist.

10Deriving the equation is difficult and uses the fundamental equation of physical
geodesy 16.4 as a boundary condition for solving the Laplace field equation in the space
exterior to the Earth. See Heiskanen and Moritz (1967) chapter 2.
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In this, (φ,λ) are the co-ordinates — strictly speaking, the geocentric
latitude and longitude — of the point at which the geoid height N is being
computed. The co-ordinates (φ′,λ′) are again the latitude and longitude of
the point at which the gravity anomaly ∆g is given. This point traverses
the whole Earth’s surface with the computation of the double integral.
The angle ψ is the angular distance between these two points as seen
from the centre of the Earth.1111

We see here that computing even a single value N requires ∆g values
from everywhere on the Earth’s surface, in order to evaluate the above
integral completely. Divide the Earth’s surface into cells, or blocks, of size
1◦×1◦ — in total 360×180= 64800 of them — and calculate the value of
the integral numerically as a sum

N(φ,λ)= R
4πγ

(︂
π

180

)︂2 360∑︂
i=1

+90∑︂
j=−89

S
(︁
ψ(φ,λ,φ′,λ′)

)︁
∆g(φ′,λ′) cosφ′, (16.6)

in which λ′ = i◦−0◦. 5 and φ′ = j◦−0◦. 5. Over the whole of the Earth’s
surface, there are 360×180= 64800 different values of N to be calculated,
if the desired resolution of the geoid model is also 1◦×1◦.

Now one also understands why close international collaboration is so
essential to studying the Earth’s gravity field!

In practice, the greatest influence on the computed geoid height is by
local gravity anomalies, the values of anomalies in the immediate vicinity
of the point of evaluation. The function S(ψ) is for small values of ψ
approximately

S(ψ)≈ 2
ψ .

More remote areas also have an effect, but to take them into account, it
suffices to use a lower-resolution global geopotential model produced by
satellite geodesy.

Globally, the geoid deviates from the reference ellipsoid by about
±100m. The global mean sea surface in its turn follows the geoid, be-
cause it is an equipotential or equilibrium surface. The mean sea surface

11The equation for calculating the angular distance is

cosψ= sinφsinφ′+cosφcosφ′ cos(λ′−λ),

or more precisely for small angles ψ, the half-angle formula 3.9:

sin2 ψ

2
= sin2 φ

′−φ
2

+cosφcosφ′ sin2 λ
′−λ
2

.
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FIGURE 16.11. The global geoid model EGM2008. Geoid heights reckoned from
the GRS80 reference ellipsoid range from −107m (blue) to +86m
(red). © 2013 US National Geospatial-Intelligence Agency.^

deviates from the geoid by at most ±2m. The permanent part of the
deviation is called the sea-surface topography, see section 1.6. In addition, meritopografia

there are deviations varying in time, like the phenomenon of the tides
and the deviations caused by winds and air-pressure variations.

^ 16.5 The gravity field and heights

^ 16.5.1 Geopotential and gradient

In figure 16.3 we see how one can depict the forms of the terrain on a
map by means of height contours.

The most natural of all measures of height, the geopotential, is not a
metric height. It is a measure of energy: it describes the level of potential
energy of a test body, a unit mass, in the gravity field of the Earth. This
makes it a geophysically sensible quantity.

The geopotential is connected to gravity in this way, that the gravity
vector, g, is the derivative of place, or gradient, of the geopotential W , see
figure 16.12:

g=∇W = gradW = ∂W
∂x i+ ∂W

∂y j+ ∂W
∂z k, (16.7)
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O
x

Point P

z

Equipotential surfaces W =constant

−∂W
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FIGURE 16.12. The gravity vector is the gradient of the geopotential, the deriva-
tive with respect to the three co-ordinates of location.^

in which
{︁

i, j,k
}︁

are unit vectors in the directions of the axes of the
(x, y, z) co-ordinate frame, forming an orthonormal basis.ortonormaali

kanta Because of this, the local gravity vector has the following properties:

◦ It is always perpendicular to equipotential surfaces — also to sea
level!

◦ The closer to each other the equipotential surfaces are, the longer
it is.

The gravity field is a conservative field. This means that, when one
transports a test mass around a closed path, no net work is done. In a
conservative force field, the force vector can always be expressed as the
gradient of a potential, in the way depicted in figure 16.12.

The difference in potential between points A and B is now the same as
the work done by a unit mass moving from point A to point B, and the
following integral applies (s is the path length along AB):

WB −WA =
ˆ B

A
dW =

ˆ B

A

dW
ds ds =

ˆ B

A

(︂
∂W
∂x dx+ ∂W

∂y dy+ ∂W
∂z dz

)︂
=

=
ˆ B

A

⟨︁
gradW ·dx

⟩︁= ˆ B

A

⟨︁
g ·dx

⟩︁
. (16.8)

From this it can be seen that the work is the scalar product of the gravity
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FIGURE 16.13. The path integral of work.^

vector g and the path vector element along the direction of the path
dx def= idx+ jdy+kdz.

In practice, often instead of the geopotential itself W, its difference
C def= −(W −W0) with the geopotential of mean sea level (or some other
suitable reference surface) W0 is used. This potential difference, which
grows in the upward direction, is called the geopotential number,12 and 12

the above integral equation becomes

CB −CA =−
ˆ B

A

⟨︁
g ·dx

⟩︁
.

In the case of a closed path, we have
˛ ⟨︁

g ·dx
⟩︁= 0.

Geopotential numbers are calculated from the measurement results of a
levelling extending over the country. All metric heights of terrain points,
like orthometric height, are calculated from the geopotential numbers of
the points.

^ 16.5.2 Geopotential unit, GPU

As we saw in section 16.1, gravity is expressed in the SI unit m
/︁

s2 . We
again use the geopotential unit, or GPU, as the measurement unit for the
geopotential. The SI unit of geopotential is m2/︁

s2 : distance × force
/︁

mass

12German geopotentielle Koten, French cotes géopotentielles.
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∆H3

GeoidGeoid
O

∆H2

∆H1

FIGURE 16.14. Heights and equipotential surfaces. The stronger the gravity
g = ∥g∥ is — always perpendicular to the equipotential surfaces
— the closer together are the equipotential surfaces.^

= distance × acceleration, unit m× m
/︁

s2 . In the gravity field of the Earth
close to the surface, where the acceleration of gravity is g ≈ 9.8m

/︁
s2 , a

height difference of one metre corresponds to a potential difference of
about 9.8m2/︁

s2 .

Define
1GPU

def= 10m2/︁
s2 ,

then a height difference of one metre corresponds to a potential difference
of about 0.98GPU, and similarly a potential difference of 1GPU corre-
sponds to a height difference of about 1.02m.

Thus one can, thanks to the fortuitous circumstance that g is close to
10m

/︁
s2 , express geopotential differences in a unit that is slightly more

intuitive than the corresponding SI unit!

^ 16.5.3 Orthometric heights

Orthometric heights H were introduced already. Let us take a closer look.

In figure 16.14 the orthometric height of point P is H. In this simple
example, it is the sum of three height differences:

H =∆H′
1 +∆H′

2 +∆H′
3, (16.9)

in which the ∆H′
i, i = 1, 2, 3 are the separations between the equipotential

surfaces on the plumb line of the point.

Levelling, however, yields the height differences ∆H1, ∆H2, and ∆H3

on the terrain, on the Earth’s surface between point and coast. In this
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case a levelling has been carried out from coastal point O, the height of
which is assumed to be zero. Now,

H ̸=∆H1 +∆H2 +∆H3!

Height differences obtained from levelling may not just be added
together to get the height of a point.

This tells us that height, though a metric quantity, is not a very nicely
behaved quantity.

For this reason, in scientific work we always use, instead of metric
heights, the already-presented geopotential numbers C =−(W −W0) .

We may simply write (note that the units also match):

∆C
[m2/︁

s2 ]
= g
[m

/︁
s2 ]

· ∆H
[m]

in which ∆C is the geopotential difference (between two arbitrary points),
the work that needs to be done in order to transport one unit mass over
the height difference ∆H between the points.

If in point O it holds that W =W0, it follows that CO = 0. Then, in the
example case of figure 16.14, the geopotential number of point P is

C =∆C1 +∆C2 +∆C3 = g1∆H1 + g2∆H2 + g3∆H3, (16.10)

which is computable if, along the levelling line, local gravity g has also
been measured.

However, the following also holds:13 13

C = g′
1∆H′

1 + g′
2∆H′

2 + g′
3∆H′

3,

in which the g′
i, i = 1, 2, 3 are gravity values inside the rock, on the plumb

line of point P.

Define the mean gravity along the plumb line by the following equa-
tion:14 14

13In the general case the equation is

C =
ˆ H

0
g(z)dz,

in which z is the arc length measured along the plumb line.
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g def= g′
1∆H′

1 + g′
2∆H′

2 + g′
3∆H′

3
∆H′

1 +∆H′
2 +∆H′

3
= C

H .

It follows that
C = gH ⇐⇒ H = C

g ,

the classical definition of orthometric heights. The equation tells that the
amount of work needed to move a unit mass from the geoid to point P, is
force × distance:

work
C =

force
g ·

distance
H .

We are left with the problem of determining g, the mean of gravity along
the plumb line. Measuring values g′

i inside the Earth’s crust is usually
impossible. . . . Therefore, in practice the determination is based on the
value gP measured on the Earth’s surface, by assuming that gravity
grows going downwards, inside the Earth’s crust, according to a certain
formula.15 In this way, an approximate value for the orthometric height15

likiarvo is obtained, the accuracy of which, at least for the Finnish territory, is
totally adequate.

Orthometric height is but one way of building a metric height system.
There are other ways, like normal height and dynamic height. All are
heights “above sea level”, but the methods of definition and calculation
are slightly different. And all three have their own pluses and minuses.

Orthometric heights are not without their problems. The tunnel net-
work of figure 4.2 does not exist, and measuring gravity inside the rock
— along the local plumb line — is normally not possible. In practice,
orthometric heights are determined with the aid of levelling, starting
from the coast, along the Earth’s surface. If we want to calculate precise
orthometric heights from levelling, we unfortunately need detailed data
on

◦ the density of the rock below the height point

◦ the forms of the terrain around the height point: a terrain model.

So, even if orthometric heights are physically elegant, their precise de-
termination may in practice be troublesome. Scientifically one says that
orthometric heights are not hypothesis-free. The hypotheses required are

14The general equation is

g = C
H

= 1
H

ˆ H

0
g(z)dz.

15For example, Poincaré-Prey reduction, see Heiskanen and Moritz (1967) section 4-2.
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precisely the density of the Earth’s crust and the terrain’s local forms.
In practical computation, the effect of the terrain is often omitted, and
density values are taken from geological maps. The error thus made is
usually small.

^ 16.5.4 Normal heights

Normal heights H∗ are, simply stated, orthometric heights computed
from geopotential numbers C as if the true gravity field of the Earth were
a regular mathematical model field based on an ellipsoid of revolution: a
normal gravity field. Therefore, no information is needed related to the
true, complicated gravity field. Normal heights are computed easily and
precisely without any knowledge of local rock density or terrain model.

The equation for normal height is

H∗ = C
γ

,

in which γ is the mean of normal gravity, calculated again along the
plumb line of the point.16 16

However, unlike orthometric heights, normal heights have no direct
physical interpretation.

On most of the Finnish territory, the differences between orthometric
and normal heights are of the order of millimetres. In the mountains
globally, they can easily be several decimetres.

In many countries — among others Russia, Sweden, and nowadays also
Finland — normal heights are used instead of orthometric heights. Their
precise calculation is easier. Whereas orthometric heights are interpreted
as heights from the geoid, normal heights are reckoned from a similar
surface called the quasi-geoid. On the sea, this surface coincides with
the geoid and thus also with mean sea level, but under the land, and
especially under the mountains, it differs from the geoid. The earlier
proposed “tunnel-network metaphor”, letting in sea water under the
continents, is not appropriate for the quasi-geoid.

^ 16.5.5 Dynamic heights

Dynamic heights are rarely used. They are calculated simply by dividing
the geopotential number C by the normal gravity at latitude 45◦ at zero
height, γ45, which is a constant:

Hdyn = C
γ45

.

16Now, the averaging is done over the range of normal heights (0,H∗).
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^ TABLE 16.2. Properties of various height types.

Correctness Hypothesis
freenessHeight type Metric Energetic Equation

Geopotential number −− + + C
Orthometric + − − H = C

/︁
g

Normal − − + H∗ = C
/︁
γ

Dynamic −− + + Hdyn = C
/︁
γ45

^ 16.5.6 Properties of different height types

It is common among all height types, that a metric height is obtained by
dividing the geopotential number by some suitable gravity value: the SI

unit of geopotential numbers is m2/︁
s2 , the unit of acceleration of gravity

is m
/︁

s2 , and the unit of metric height is indeed (m2/︁
s2 )
/︁
(m

/︁
s2 ) =m, as it

should be.

Independently of height type, all metric heights are computed from
the energy level of the point, the aforementioned geopotential number
C. The only “heights” that can be measured and computed precisely
are geopotential numbers C =−(W −W0). All other heights are derived
quantities. Besides precision, some useful properties are always lost in
their computation, like when projecting a curved surface onto a flat one.

The user of height values desires from practical heights a number of
good properties, familiar from geometric heights within a small area:

Metric correctness Metric correctness means that, if there are twooikeellisuus

points P and Q straight above each other, and the distance between
them is 1m, then HP −HQ is also precisely 1m. Only orthometric
heights have this property. The metric correctness of dynamic
heights is especially weak.

The closer to the true mean gravity along the plumb line the
expression in the denominator of the formula is, the better the
metric correctness of the resulting height type will be.

Energetic correctness This means that water always flows “down”
in the sense of the height type in question. Of the three types
mentioned, only dynamic heights are energetically correct — by
virtue of their direct proportionality to geopotential numbers C.

Exact calculability, dependence on uncertain hypotheses
Normal heights and dynamic heights may be precisely cal-
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culated based on theory. However, the normal field, or reference
ellipsoid, chosen for the computations needs to be stated.

Orthometric heights require knowledge of both the true gravity
field and the form and density of the topography. Especially the
assumed density is an uncertain hypothesis. In practice, however,
the uncertainty caused by these factors is fairly small.

^ 16.6 Bouguer anomalies

Earlier we noted that free-air anomalies — equation 16.3 — tell us
something about the interior mass distribution of the Earth. However,
the whole topography underneath and around a point also affects the
free-air anomaly ∆g of the point. The forms of the topography above sea
level are visible and usually well-known. Therefore it would seem logical
to remove computationally the effect of the terrain forms from the free-air
anomalies, in order to obtain a quantity that tells us only about the mass
distribution of the Earth below sea level.

This is how the Bouguer anomaly is obtained:

∆gB =∆gFA − gtop,

in which ∆gFA
def= ∆g is the free-air anomaly, ∆gB the Bouguer anomaly

and gtop the vertical component of the attraction of the topography acting
at the point.

Bouguer anomalies may be calculated precisely or approximately. In
the first case we use a numerical model of the topography, a digital terrain
model (DTM). We also use a density model for the Earth’s crust if one
exists. In the approximate calculation, we only take into account the
effect of the Bouguer plate, as a simple closed formula:

gtop = 2πGρd,

in which

gtop attraction of the plate, only in the vertical direction

G Newton’s universal gravitational constant, see section 1.2

ρ density of the matter of the plate

d thickness of the plate, assumed to be equal to the local height H of
the terrain.
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FIGURE 16.15. Free-air and Bouguer anomalies for Southern Finland com-
puted from the EGM2008 geopotential model. Data © Bureau
Gravimétrique International (BGI) / International Association
of Geodesy.^

The plate is assumed to be flat and to extend to infinity in all directions.

If the density is ρ = 2.67g
/︁

cm3= 2670kg
/︁

m3 , we obtain

gtop = 0.1119d,

in which d is in metres and gtop in milligals. The milligal unit was
explained at the beginning of the chapter.

^ 16.7 Astronomical position determination

The local plumb line or direction of the local gravity vector stands per-
pendicular upon equipotential surfaces. Determining the direction of
the plumb line in an absolute sense has been possible by traditional
astronomical means.

One speaks of astronomical position determination because the first
practical application of the method was determining an unknown position,
especially at sea. Later, the method was used to study geophysically
interesting variations (deviations) of the direction of the plumb line on
land. The already mentioned Pierre Bouguer noticed in South America,
like George Everest in India, that in the vicinities of mountain ranges
the plumb line is deflected towards the mountain range, and interpreted
this correctly as being caused by the mountains’ own gravitation.
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deviationsPlumb-line

Geoid

Earth’s crustEarth’s crust

“Root”“Root”

Earth’s mantleEarth’s mantle

MountainMountain

FIGURE 16.16. The root of a mountain range and its effect on the plumb line.^

The attempt to estimate the effect of the mass of the mountains, how-
ever, produced a result that was much larger than the actually observed
plumb-line deviations. The reason for this is today known to be isostatic luotiviivan

poikkeamacompensation: under the mountains there is a root consisting of lighter
rock that keeps the mountain “afloat” on the plastically deforming Earth’s
mantle.

Various instruments are used for astronomical position determination,
such as the meridian circle, the astrolabe, and the zenith tube.

The optical axis of an astrolabe points always upwards by a fixed angle.
The optical axis of a zenith tube again always points upwards vertically, to
the zenith, under an elevation angle η= 90◦. Therefore, by observing the korkeuskulma

passage through the zenith of stars of which the declination δ is known,
the astronomical latitude Φ of the location is obtained by Φ = δ. The
time of transit through the meridian is measured at the same time, from meridiaanin

läpikulkuwhich is obtained the astronomical longitude Λ — because the zenith
direction lies in the plane of the meridian. A zenith tube is in a way both
a meridian circle and an astrolabe.

In preparation for observations, a star programme is drafted, a list
of stars that will transit the meridian, a certain elevation circle,17 or korkeuskulma-

piiri
17

the zenith. In case of the astrolabe, one should take care that the stars
are distributed evenly around the whole horizon. In this way, a precise

17In Arabic almucantar.
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η

1
2η

FIGURE 16.17. A levelling instrument converted to astrolabe.^

determination of both Φ and Λ is achieved, and the impact of atmospheric
refraction minimised.

An astrolabe may be built easily from a levelling instrument, by adding
a sixty-degree angle prism in front of the objective; see figure 16.17. The
most precise (Danjon) astrolabes again use a mercury mirror together
with a sixty-degree prism.

^ 16.8 Measuring the gravity gradient

We have several times mentioned the potential of gravity, which is a
measure of the potential energy (energy content of location) of a test mass
inside the gravity field. The acceleration vector of gravity, or free fall,
is defined as the gradient of this geopotential W, its rate of change with
place:

g= gradW =∇W =
= gx i+ g y j+ gz k= ∂W

∂x i+ ∂W
∂y j+ ∂W

∂z k= ∂xW i+∂yW j+∂zW k,

where the grad operator is

grad · = ∇· = ∂ ·
∂x i+ ∂ ·

∂y j+ ∂ ·
∂zk= ∂x(·)i+∂y(·) j+∂z(·)k.

Here
{︁

i, j,k
}︁

is an orthogonal triad of unit vectors, or orthonormal basis,
oriented along the three axes of the (x, y, z) co-ordinate frame.

The acceleration vector of gravity is thus the gradient of the geopoten-
tial. This vectorial quantity is location-dependent. We know that gravity
grows going downwards, at least in free air. Going up, gravity diminishes
by some 0.3mGal for every metre in height.
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FIGURE 16.18. The gravitational-gradient or tidal force field: gravitation varies
with place. The lower diagram gives the visual ellipsoid of the
gravitational gradient tensor: it depicts the force field inside a
freely falling object, for example a satellite.^

Gravity as a vector varies in a more complicated way in the vicinity of
masses, if one has the use of sufficiently accurate measurement devices.
We speak of the gravity-gradient tensor, or Eötvös tensor. Written in both
the traditional and the more compact Euler notation:

M def=

⎡⎢⎢⎢⎢⎣
∂2

∂x2
∂2

∂x∂y
∂2

∂x∂z
∂2

∂y∂x
∂2

∂y2
∂2

∂y∂z
∂2

∂z∂x
∂2

∂z∂y
∂2

∂z2

⎤⎥⎥⎥⎥⎦W =

⎡⎢⎣ ∂xx ∂xy ∂xz

∂yx ∂yy ∂yz

∂zx ∂zy ∂zz

⎤⎥⎦W .

In a topocentric co-ordinate frame, where x points north, y east and z up,
this matrix has the approximate form

M≈

⎡⎢⎣ −0.15
−0.15

0.3

⎤⎥⎦ mGal
/︁

m , (16.11)

in which
∂zzW = ∂2

∂z2 W = ∂
∂z gz = 0.3mGal

/︁
m

is truly the “free-air” standard gravity gradient, the vertical gradient of
normal gravity: if we write according to Newton (note that the vector g
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is pointing down whereas the z co-ordinate grows going up, that is the
reason for the minus sign):

gz =− GM
(R+ z)2 ,

we obtain by taking the derivative

∂
∂z gz = 2 GM

(R+ z)3
∂(R+ z)

∂z =− 2gz
(R+ z)

≈ 3 ·10−6 m
/︁

s2/︁m= 0.3mGal
/︁

m .

The quantities ∂xxW and ∂yyW again describe the curvatures of the
equipotential surfaces in the x and y directions, in the following, geomet-
rically intuitive way:

∂xxW = ∂2

∂x2 W =− g
rx

, ∂yyW = ∂2

∂y2 W =− g
ry

,

in which rx and ry are the radii of curvature in the x and y directions.
Substituting rx = ry = R ≈ 6378km (try!) gives

∂xxW = ∂yyW =−1.5 ·10−6 m
/︁

s2/︁m =−0.15mGal
/︁

m .

The already mentioned Hungarian researcher Baron Loránd Eötvös did
many ingenious experiments (Eötvös, 1998) in order to measure the
components of the gravity-gradient or Eötvös tensor with the torsiontorsiovaaka

balance he built. The method continues to be in use in geophysical
research, because the gravity gradient as an observable is very sensitive
to local variations in the density of the Earth’s crust.

In the general case, we can evaluate the Eötvös tensor by performing
the partial differentiations above. We do so for a central force field:

W = GM
r ,

where r =
⎷

X2 +Y 2 +Z2 is the distance from the geocentre. The co-
ordinates (X ,Y , Z) are now geocentric. We obtain

M=
[︂
∂X ∂Y ∂Z

]︂⎡⎢⎣ ∂X

∂Y

∂Z

⎤⎥⎦GM
r =

=
[︂
∂X ∂Y ∂Z

]︂⎛⎜⎝−GM
r3

⎡⎢⎣ X
Y
Z

⎤⎥⎦
⎞⎟⎠=

= GM
r5

⎡⎢⎣ 3X2 − r2 3XY 3X Z
3YX 3Y 2 − r2 3YZ
3ZX 3ZY 3Z2 − r2

⎤⎥⎦ .
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The Eötvös tensor is the matrix of partial derivatives of the gravity

acceleration vector

g=−GM
r3

⎡⎢⎣ X
Y
Z

⎤⎥⎦
with respect to place, as can be seen in the above equation:

M=
[︂
∂X ∂Y ∂Z

]︂⎛⎜⎝−GM
r3

⎡⎢⎣ X
Y
Z

⎤⎥⎦
⎞⎟⎠=

[︂
∂X ∂Y ∂Z

]︂
g.

In honour of Eötvös we use as the unit of gravity gradient the eötvös,
symbol E:

1E= 10−9 m
/︁

s2/︁m = 10−4 mGal
/︁

m .

The tensor 16.11 given above close to the Earth’s surface is now, again in
local topocentric (x, y, z) co-ordinates:

M≈

⎡⎢⎣ −1500
−1500

3000

⎤⎥⎦E.

In every case

∂2W
∂x2 + ∂2W

∂y2 + ∂2W
∂z2 = ∂xxW +∂yyW +∂zzW = 0.

This condition, the Laplace field equation,18 applies more generally for a 18

gravity potential in vacuum.19 19

The gravitational-gradient fields of the Sun and Moon are known on
the Earth’s surface as the tidal force field, which causes the phenomenon vuoroveden

voimakenttäof the ocean tides, with a dominant period, due to the Earth’s rotation, of
twice a day.

18Pierre-Simon Laplace (1749–1827) was a French mathematician, physicist and as-
tronomer, one of the 72 names on the Eiffel Tower, and surely the most gifted of them
all (Eiffel Tower, 72 names).

19Here we have not considered, besides the atmosphere, the centrifugal force of the
Earth’s rotation, which causes the Laplace field equation to not be valid in a co-rotating
co-ordinate frame, even in a vacuum. The correction term can, however, be precisely
calculated. And for the disturbing potential T = W −U the Laplace field equation is
again exactly true.
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^ Self-test questions

1. What are the differences between an absolute and a relative
gravimeter?

2. By how many milligals is gravity less at aircraft height (10km) than
on the ground below? How much is the difference in percentage
points of total gravity?

3. The same questions for the International Space Station, mean
height 400km.

4. In videos from the International Space Station, the people there
appear to be weightless, so there is no gravity. Yet the station orbits
at a height of some 400km, where the Earth’s gravitation is still
strong. How is this possible?

5. What is the geopotential, and what is its relationship with gravity?

6. How is a normal gravity field defined?

7. In what situation would you use Bouguer anomalies rather than
free-air anomalies?

8. What are deviations of the plumb line, and how are they deter-
mined?

9. What causes the deviations of the plumb line close to mountain
ranges, and why are they smaller than theoretically expected?

10. What quantity does the unit eötvös (E) describe?

^ Exercise 16–1: Gravimetric geoid computation

Consider the computational arrangement of section 16.4, specifically
calculation equation 16.6:

N(φ,λ)= R
4πγ

(︂
π

180

)︂2 360∑︂
i=1

+90∑︂
j=−89

S
(︁
ψ(φ,λ,φ′,λ′)

)︁
∆g(φ′,λ′) cosφ′, (16.6)

in which λ′ = i◦−0◦. 5 and φ′ = j◦−0◦. 5.

1. How many elementary operations — a multiplication, possibly fol-
lowed by an addition or subtraction — would you have to perform
in total to calculate a global geoid model at resolution 5◦×5◦ using
gravity anomaly data given at 1◦×1◦ resolution?

You may assume the Stokes function S(ψ), the cosines of latitude
φ′ and the anomaly values to have been precomputed. A rough
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estimate, say within ten percent, suffices for estimating the length
in elementary operations of a computer run doing this computation.

2. Interchange the order of the two loops, and move cosφ′ to outside
the inner loop. How does your answer change?
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1717
1462 Zamenhof, provisional designation 1938 CA, is a

carbonaceous Themistian asteroid from the outer regions of
the asteroid belt, approximately 27 kilometers in diameter.

It was discovered on 6 February 1938, by Finnish
astronomer Yrjö Väisälä at the Iso-Heikkilä Observatory in
Finland. The asteroid was named after L. L. Zamenhof, the

creator of Esperanto. It is a recognized
Zamenhof–Esperanto object.

Wikipedia, 1462 Zamenhof

^ 17.1 Earth rotation, orbital motion, sidereal time

The Earth orbits the Sun in 365.25 days. She also rotates around her own
axis in a day. Figure 17.1 shows both the physical situation, the orbit of
planet Earth around the Sun, and the apparent situation as seen from
Earth, the annual path of the Sun along the zodiac or ecliptic. eläinrata

During a civil day, 24 hours, the Earth turns once around her axis with siviili-
vuorokausirespect to the mean Sun. With respect to the stars, however, the rotation

period is a little shorter: when the Earth has, in a year, turned 365.25
times around her axis with respect to the Sun, she has, with respect to
the stars, completed 366.25 rotations. Thus, the duration of one rotation
is

365.25
366.2524h = 23h56m4s.

The name of this period is a sidereal day. tähtivuorokausi

The rotation of the Earth with respect to the stars — or, equivalently,
the apparent rotation of the stars with respect to the Earth — is measured
by an angle called sidereal time. It is calculated from clock time and tähtiaika
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FIGURE 17.1. The orbit of the Earth around the Sun, and the apparent path
of the Sun across the celestial sphere. Season names are boreal,
referring to the Northern Hemisphere.^

calendar date using tables drafted for this purpose. In astronomical
observatories, sidereal clocks are also used that show sidereal time, andtähtikello

run about 1
/︁

365.25 part, or 0.27%, faster than ordinary clocks.

Due to the annual motion of the Earth, the constellations that are
visible in the evening hours shift slowly forwards along with the season.
Every season has its own distinctive constellations visible in the evening
twilight: in winter, Orion, the stars Sirius and Procyon, in summer, the
constellations of the Lyre, the Swan and the Eagle.

Seen from Earth, the Sun travels along a yearly path, the zodiac (“ring
of beasts”, Wikipedia, Zodiac, Name) or ecliptic.1 At the beginning of1

1The name “ecliptic” originates from the fact that this is where solar and lunar eclipses
happen. Of course, because both types of eclipse require the Sun, Moon and Earth to be
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FIGURE 17.2. The vernal equinox and its movement, the precession of the
equinoxes.^

spring, the Sun moves from the Southern Hemisphere to the Northern
one, at a point called the vernal or spring equinox. In the time of the kevät-

päiväntasausancient Greeks, this point was in the constellation of the Ram, hence the
traditional name “First Point of Aries” — though, due to precession, it is
nowadays located in the constellation of Pisces, the Fishes. In the same
way, back then, the Sun was at the time of the summer solstice in the
constellation of Cancer, the Crab, and at the time of the winter solstice in
the constellation of Capricorn (a mythological goat-like creature), and the
constellations gave their names to the tropics. Due to precession, today’s kääntöpiiri

solstices happen in the constellations of Taurus (the Bull) and Sagittarius
(the Archer) . . .

The absolute orientation of the whole globe with respect to the stars
is described by Greenwich sidereal time (GAST, Greenwich Apparent Greenwichin

näennäinen
tähtiaika

Sidereal Time). Local sidereal time (LAST, Local Apparent Sidereal Time)
is obtained using astronomical longitude:

LAST = GAST+Λ,

in which Λ is the longitude of the site reckoned east, and of course
converted into time units (15◦→ 1h, 1◦→ 4m, etc.).

on the same straight line.
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FIGURE 17.3. Hour angle h and declination δ on the celestial sphere.^

^ 17.2 Heavenly and Earthly co-ordinates

Celestial co-ordinates are right ascension α and declination δ. The rightrektaskensio

ascension is a longitude, measured however eastward from the vernal
equinox, the right ascension of which is thus 0.

In the local sky, however, we use the co-ordinates hour angle h and
declination δ. See figure 17.3. The pair (h,δ) can be directly computed
from the azimuth and elevation, if the local astronomical latitude Φ iskorkeuskulma

known.

During a sidereal day, a star moves apparently from east to west,
and passes through the meridian plane two times: the upper and lower
culmination. The lower culmination remains unseen if the declination
of the star is too small compared to the local latitude. Of the southern
constellations, even the upper culminations remain unseen by us!

The following relationship exists between sidereal time θ (= LAST), the
hour angle h, and the right ascension α of a star:

h = θ−α.
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If we write for Greenwich sidereal time (GAST), θ0 and for the eastern Greenwichin

tähtiaikaastronomical longitude of the observation site, Λ, we obtain

h = θ0 +Λ−α.

If, of the four quantities, three are given, the fourth can be calculated.
We speak of

1. time determination, if the unknown is θ0. Back in time this was a
service of astronomy to society, the maintenance of civil time. Today,
with clocks so much more precise, it is about monitoring the Earth’s
rotation.

2. longitude determination of the site, if the unknown is Λ. This was
critical for navigation at sea (Sobel, 1998).

3. determination of the right ascension of a star, if the unknown is α.
This is how star catalogues are constructed.

In these cases, the measurement is generally done at the moment when
h = 0: the meridian transit. Cases 2 and 3 require the use of a precise meridiaanin

läpikulkuclock; case 1 requires knowledge of one’s own longitude and the right
ascension of the star used.

The meridian circle is often used to precisely time the transit of a star
through the meridian. A meridian circle is a telescope having only a
horizontal axis, which has been built fixed into the east–west direction,
in such a way that the sight axis of the telescope will always be in the tähtäysakseli

local meridian plane. In the eyepiece, one observes how the star moves okulaari

underneath the crosshair. The precise moment is recorded electrically hiusviiva

together with time signals.

A graduated circle is attached to the axis, which allows the reading jakokehä

of the elevation or height angle η at the moment of transit. From this,
the declination δ of the star can be calculated: between it, the latitude of
the site Φ, and the elevation angle η exists a relationship (for the case of
upper culmination on the Northern Hemisphere)

η+∆ηrefr = (90◦−Φ)+δ,

in which ∆ηrefr is the correction for atmospheric refraction. The refraction
correction must be made carefully based on local measurements of air
pressure, temperature and humidity aimed at determining the index of taitekerroin

refraction of the local air.

By combining methods 1–3 above one can build catalogues of both the
places of stars (α,δ) and of observation stations (Φ,Λ), and at the same
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FIGURE 17.4. Yrjö Väisälä’s stellar triangulation. Equipment used and princi-
ple of photography and direction determination. (a) Equipment
used in the measurement.^

time follow the progress of sidereal time — in other words, the rotation of
the Earth — θ0. All this must be done in a consistent way.

Sobel (1998) is a fine book on the role of time in position determination
at sea.

^ 17.3 Väisälä’s stellar triangulation

This method was invented by Yrjö Väisälä during the Second World War,
while watching anti-aircraft shells exploding over Turku. In his 1946ilmatorjunta-

kranaatti article “Maan toinen kuu” (“A second moon of the Earth”, Väisälä, 1946)
he described how targets high up in the sky could be photographed from
different places on the Earth’s surface, and thus a geodetic network built
even connecting points between which there is no direct line of sight.

The method uses meteorological sounding balloons carrying powerful
flashtubes. The flash train is photographed against the stellar back-
ground, the images are developed and the places of the flashes among the
stars are measured and calculated. Thus the momentaneous direction
vector between photography site and balloon is obtained, in astronomical
co-ordinates (Kakkuri, 1973). This balloon method has been tried in a
production setting in Finland and Hungary (Czobor and Németh, 1981).
The side lengths of the network were several hundreds of kilometres.
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FIGURE 17.5. Yrjö Väisälä’s stellar triangulation. Equipment used and prin-
ciple of photography and direction determination. (b) Measure-
ment geometry.^

In short, from two observation sites A and B on the Earth’s surface two
high signals S and T visible in the sky are photographed against korkea tähys

the stellar background. Powerful catadioptric Schmidt2-Väisälä 2

telescopes are used as cameras (Wikipedia, Schmidt camera). A
glass image plate covered by light-sensitive emulsion is placed into
the image plane of every camera.

After development, the image plates3 are measured to extract, in an 3

2Bernhard Schmidt (1879–1935) was a telescope construction and design genius born in
Estonia.

3Back then, glass plates were used instead of films for their geometric stability. The
locations of the flashes are measured in plate co-ordinates, as are the locations of the
fixed stars captured on the plate. Using the known places of the fixed stars, the places
of the flashes are solved in celestial co-ordinates (α,δ).
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accurate measurement device, the locations, in “plate co-ordinates”, of
both the signals — the flashes — and chosen background stars. Because
the places of fixed stars in terms of celestial co-ordinates, right ascension
(α) and declination (δ), are already known, we may derive transformation
equations for all plates, which will also yield the places of the signals ortähys

flashes in the sky (α,δ), seen from both observation sites.

These “places” on the celestial sphere are in reality directions in three-
dimensional space. From the directions are formed planes P = SAB and
Q = T AB. The intersection line of the planes is AB. Thus the direction
vector from A to B has been obtained in three-dimensional space.

In fact, the plane P is, on the celestial sphere, the same as the greatisoympyrä

circle through the image points of flash S taken in points A and B, and Q
is the great circle through the images of flash T. The intersection point
of the great circles is the direction in space of connecting line AB: stellartähtikolmio-

mittaus triangulation is direction measurement using heavenly auxiliary points.

When a sufficient number of directions between ground stations has
been collected, a network adjustment can be carried out. Transforming theverkkotasoitus

original directions from the celestial co-ordinate frame to one co-rotating
with the Earth, using a model of the Earth’s rotation (“Greenwich sidereal
time”) requires that the flashes are accurately time-tagged.

Väisälä’s idea was, as may already be inferred from the name of his ar-
ticle, to use, instead of stratospheric balloons, artificial satellites orbiting
the Earth. This method has also been tried: the active geodetic satellite
ANNA 1B (“Army, Navy, NASA, Air Force”) from 1962 was equipped with
powerful flashtubes. On the other hand, the passive satellite PAGEOS

(Passive Geodetic Earth Orbiting Satellite) from 1966 was a balloon, over
30 metres in diameter, made of very thin, aluminised Mylar® film, in a
4000km high orbit. The satellite was clearly visible to the naked eye,
until it disintegrated in the 1970s, undoubtedly due to the corrosive effect
of the Sun’s ultraviolet rays.44

Using a global network of fifteen massive Baker–Nunn5 cameras, it5

4DuPont write in the document Mylar® polyester film — Safe Handling: “Mylar® is not
recommended for applications requiring prolonged exposure to direct sunlight due to
degradation when exposed to ultraviolet rays [. . . ]” (DuPont Teijin Films).

5The Baker–Nunn camera was a variant of the Schmidt camera, which was optimised
for observing satellites. It used 55mm broad Cinemascope motion-picture film, and it
had a three-axis mount capable of fast tracking. The aperture was 50cm, the weight
of the whole instrument, 3.5 tonnes. The inventors were Harvard astronomer-optician
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(a)
PAGEOS satellite, test inflation (NASA)

(b)
Baker–Nunn camera (NASA)

FIGURE 17.6. Satellite geodesy from the photographic archives of NASA.^

became thus possible to build the first intercontinental geodetic triangu- kolmiomittaus-
verkkolation networks, which however, with the advent of so much more precise

methods (GNSS, VLBI, satellite laser-ranging), have honourably faded into laser-
etäisyysmittausscientific history.

^ 17.4 Variations in the Earth’s rotation

The rotation of the Earth varies in both speed and direction.

The momentaneous rotation axis of the Earth, or equivalently, the pole,
moves with respect to the solid Earth’s crust, a movement called polar
motion. It includes two circular motions:

◦ An annual motion, period 365 days. This is a forced motion, mainly

James Baker (1914–2005) and mechanical engineer Joseph Nunn (1905–1968). The
satellite tracking network consisted of fifteen stations. Boller and Chivens, Baker Nunn,
image archive, built twelve cameras for the Smithsonian Astrophysical Observatory
and three for the US Air Force.

At least three Baker–Nunn cameras are or were spending their golden years as astro-
nomical sky-survey cameras (Carter et al., 1992; Fors et al., 2013; Mondal et al., 2009;
see also BakerNunn.org).
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FIGURE 17.7. Polar motion for the period 1970–2000, unit second of arc. Source:
IAG International Earth Rotation and Reference Systems Service
IERS.^

caused by the atmosphere.

◦ The “Chandler6 wobble”, period about 435 days.6

Chandlerin
huojunta

◦ In addition to these, there has been observed a slow drift of the pole,
which is related to changes in mass distribution of the solid Earth,
like the post-glacial land uplift.

The amplitude or radius of both circular motions is about 0′′.1–0′′.2, on
the Earth’s surface about 3–6m.

The Chandler wobble is theoretically understood: it is free nutation,
already predicted for a flattened, rigid Earth by Leonhard Euler. The
motion is damped, due to the Earth not being rigid but (elastically and
plastically) deformable. The fact that the wobble continues requires an
explanation. The explanation is that variations in the pressure exerted
by oceans and atmosphere are its driving force (Gross, 2000).

The rate of the Earth’s rotation (length of day, LoD) also varies. Thisvuorokauden
pituus phenomenon is monitored in a similar way to polar motion. It is closely

associated with variations in the angular momentum of the Earth’s at-ilmakehän
pyörähdys-
momentti

mosphere, a quantity that numerical weather models (NWP, numerical
weather prediction) can calculate very well.

Monitoring of polar motion and length of day, historically and today:

◦ Measuring the variations in latitude by astronomical means. Use
of this method started in 1899 (the International Latitude Service,

6Seth Carlo Chandler, Jr. (1846–1913) was an American astronomer.
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FIGURE 17.8. Polar motion causes variations in the latitudes of observation sta-
tions, with the help of which the phenomenon may be monitored.^

from 1987 the International Polar Motion Service), using six “In-
ternational Latitude Observatories” (Misuzawa, Japan; Charjui,
Turkestan, later Kitab, Uzbekistan; Carloforte, Italy; Gaithersburg,
Ukiah, Cincinnati, USA) which are located on different continents
at the same latitude, 39◦08′ around the globe. As the instrument
used at the observatories was a zenith tube, this allowed them to all
use the same selection of stars, enabling a uniform data analysis.

Monitoring of the rate of rotation of the Earth has also been tra-
ditionally done by astronomical means. Civil time was originally
defined by means of the Earth’s rotation: the Earth herself was
used as a clock. The instrument used was the meridian circle (for
example in Greenwich, but also at the Helsinki observatory), with
which the transit of a star through the meridian was observed. Back
then, timekeeping was of vital importance to navigation at sea.

◦ Using positioning satellites, first the Transit system, nowadays
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GNSS. The GNSS method is today more accurate than the astronomi-
cal method.

◦ With VLBI, very long baseline interferometry, which provides thepitkäkanta-
interferometria vectors between observation stations in an inertial or celestial sys-

tem as a function of time. From this, one may compute the momen-
taneous direction of the Earth’s rotation axis in the same system,
and even the momentaneous orientation of the whole Earth. Ac-
curacy is even better than for the GNSS method, a fraction of a
millisecond of arc.

The origin of calculation of the polar motion, CIO, Conventional Inter-
national Origin, was initially the mean place of the pole over the years
1900–1905. The currently used origin of calculation is close to this.

Polar motion and length-of-day variations, together with nutation and
precession, are called Earth orientation parameters, EOP. Their monitor-
ing and publication is a task of the IERS (International Earth Rotation
and Reference Systems Service). In precise geodetic work, the EOP must
be taken into account! The correction information needed can be found
on the Internet.

It was not until the 1930s that it was noticed that the rotation of the
Earth is slightly irregular, and a more regular time scale was looked for.
The first attempt was ET, ephemeris time, based on the orbital motion
of the planets, especially the Moon. When sufficiently accurate atomic
clocks appeared, they were taken into use, creating atomic time (TAI),
also suited for demanding scientific use in which a time scale is needed
that is strictly uniform.

Today’s civil time is UTC, Universal Time Co-ordinated. One of its
design objectives is to follow everywhere on Earth the cycle of daylight
dominating daily life. Therefore it must follow with sufficient precision77

the variations in the rotation of the Earth. UTC, which is based on TAI,
follows the variation in the Earth’s rotation with an error of at most
0.9s. To this end, twice a year, at the end of December and at the end
of June, UTC executes, if needed, a leap second or seconds (Wikipedia,karkaussekunti

Leap second). The difference UTC – TAI, an integer number of seconds, is
tabulated in the almanacs.

7In recent years there has been a public discussion in the time field on whether the leap
seconds are worth the trouble they are causing, when the time of the time-zone system
tied to UTC agrees with local solar time anyway to no better than half an hour or so.
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GPS time differs from both UTC and TAI. Like TAI, it is uniform and does

not ever execute leap seconds. In 1980, when GPS timekeeping started,
GPS time was identical with UTC. For this reason

GPS = TAI−19s

and the difference GPS – UTC is a varying number of seconds, included in
the GPS navigation message.

^ 17.5 Precession and nutation of the Earth

The attraction of the Sun and Moon, together with the flattening of the
Earth, causes a slow motion of the Earth’s rotation axis in space. This
conical motion is called precession. The word “precession” originally
denoted the earlier and earlier occurrence of the equinoxes, the times päiväntasaus

of the year when day and night are equally long. This phenomenon,
observed first by Hipparchus, brings on, over the centuries, the vernal
and autumnal equinox earlier and earlier:8 it shifts the place of the Sun 8

in the sky amidst the stars at the moment of equinox backwards along
the zodiac.9 See figure 17.2. 9

In fact, the rotation axis of the Earth turns in some 25800 years around
an axis that stands perpendicular on the plane of the Earth’s orbit. This
plane, the apparent plane of the Sun’s orbit as seen from Earth, is also
called the zodiac or ecliptic, see above.

Precession is not the same as polar motion. Polar motion is the motion
of the Earth’s rotation axis with respect to the solid Earth. Its magnitude
is under a second of arc, on the Earth’s surface a few metres.

Besides precession, the Earth’s rotation axis also goes through a small
periodic motion called nutation. Its main period is 18 years and it is
caused by periodic changes in the orbit of the Moon which take effect
through the Moon’s attraction. The phenomenon can be precisely com-
puted and is found in almanacs, just like the precession.

The precession makes the rotation axis of the Earth — and thus the
place of the celestial pole among the stars — slowly describe a large

8Though not earlier on the civil calendar, based as that is on the rhythm of the seasons!

9Since then, the word has been taken into use to denote the turning motion of the axes
of other spinning objects, like spinning tops, gyroscopes, and atomic nuclei in a magnetic
field. The latter phenomenon, Larmor precession, is fundamental to magnetic resonance
imaging (MRI).
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FIGURE 17.9. The Earth’s precession. On the left is shown how, due to preces-
sion, the celestial pole describes a circle among the stars over a
period of some 25800 years.^

circle. The nutation again causes small “wobbles” on this regular motion.
Whereas today, the North Star (Polaris, α UMi) is close to the celestial
pole, it will in the remote future be Vega (α Lyr), as it also was in the
remote past.

Precession and nutation are, unlike polar motion, motions of the Earth’s
rotation axis with respect to the stars.

^ 17.6 Space weather

The Sun is a star, which produces in its interior nuclear power by “burn-
ing” hydrogen to helium. In the centre of the Sun, the temperature is
about 15 million kelvins. The thermal energy in the solar core travels
very slowly to the surface through many gas layers, first as radiation,1010

closer to the surface carried by convection currents, and finally again
leaving the visible surface or photosphere as radiation, light, of which a
vanishingly small fraction arrives also on Earth.

The outer layer of the Sun, of a thickness of about 27% of the solar
radius, is in a permanent state of convective “bubbling”. Because of this,

10Thermal radiation, in the X-ray range due to the high temperatures.
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FIGURE 17.10. The corona of the Sun during a total eclipse (image processed),
Adler (2017). The patterns formed by the magnetic field lines in
the corona and the solar wind escaping to space are visible.^

energy is continuously being sent up to the Sun’s highest layer, made up
of thin plasma, the corona, heating this layer to millions of degrees.11 11

The precise form of this energy stream — acoustic, magnetic, . . . — is the
subject of active investigation.

The corona, which is visible only during a total Solar eclipse, is so hot
that it leaks continuously to space. This plasma or particle flow can be
observed near the Earth as the solar wind.

Inside the convection layer of the Sun “lives” a complicated magnetic
field, somewhat in the same way as in the liquid outer core of the Earth.
The Sun does not rotate as a solid body: the higher-latitude zones lag
clearly behind the equatorial zone. This, together with the magnetic
field, acts as a complicated natural dynamo. Like the Earth’s magnetic
field, the Sun’s magnetic field can also flip its direction, which happens
periodically, approximately every 11 years.

The Sun’s gas is an ionised plasma, which conducts electric currents
almost like a superconductor. Therefore, the gas and the magnetic field suprajohdin

11For comparison, the temperature of the Sun’s visual surface, or photosphere, is “only”
approximately 5700K.
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FIGURE 17.11. Sunspots and their magnetic field lines in UV light above the so-
lar surface. Sunspots always occur in pairs, as a magnetic north
and a magnetic south pole. NASA Solar Dynamics Observatory,
Atmospheric Imaging Assembly.^

are entangled in each other (“frozen-in”) in an inseparable way. The
subject is studied by the discipline of magnetohydrodynamics (MHD), to
which a short introduction is given in appendix B.

During times of an active Sun, sunspots are seen on its surface, areasauringonpilkku

of high magnetic field strength where the field of the convection layer
breaks out to the surface. The spots are born and always show up in pairs,
magnetic north and south poles. The magnetism in the spots inhibits the
natural convection, and thus prevents energy from reaching the solar
surface. In the centres of sunspots, temperatures are even a couple of
thousand degrees lower than on the solar surface on average,12 about12

3000–4000K.

The magnetic field of the sunspots extends into the space above the
spots, and affects the motion of the plasma there. With special imaging

12However, even a single large sunspot transferred to the night sky would still outshine
the full Moon!
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FIGURE 17.12. Space weather, the magnetosphere and aurorae.^

equipment,13 the field’s lines of force can be observed as bright swirls 13

voimaviivaof gas. The topology of the field may suddenly change (reconnection),
causing the energy released from the field to throw the hot plasma into
space. During the solar flare, an excess of ultraviolet radiation and X-rays
is generated, causing extra ionisation in the lowest layers of the Earth’s
ionosphere. This adds to the absorption of short-wave radio, disrupting
radio traffic.

About a day later, the plasma itself arrives in the neighbourhood of
the Earth, and its interaction with the Earth’s own magnetic field and
ionosphere causes aurorae. These, too, affect radio traffic and the quality revontuli

of GPS observations. During an eruption, it may be impossible to collect
useable GPS measurements. Generally during a solar maximum, the
quality of GPS observations is poorer than during a quiet Sun.

The Earth’s radiation belts also consist of hot plasma, fast, electrically
charged particles, which the Earth’s magnetic field keeps contained in a
“magnetic bottle” (Wikipedia, Magnetosphere).

^ 17.7 Satellite orbital motion

In the same way as the Earth orbits the Sun, the orbital motion of
satellites around the Earth also follows the laws of Kepler.14 We already 14

touched upon the matter regarding GPS, section 12.10. Kepler’s laws are:

13Beautiful imagery and videos are found: SOHO images; SOHO MPEG movies.

14Johannes Kepler (1571–1630) was a German astronomer, mathematician and mystic.
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FIGURE 17.13. ← An ellipse is the set of points for which the sum of the dis-
tances d1 +d2 from two focal points F1 and F2 is constant. This
property — a consequence of the ellipse being a conic section —
is most easily proven using Dandelin spheres (Wikipedia, Dan-
delin spheres). It also means that if you place a lamp in one
focus of an elliptical mirror, an image of the lamp will appear in
the other focus. This is what gave the focal points their name.
→ According to Kepler’s second law, the radius vector of a planet
sweeps in the same time ∆t over an always same-sized area.^

I The satellite moves around the Earth in an elliptic orbit in a plane.
The centre of mass of the Earth is located in one of the focal pointspolttopiste

of the orbital ellipse.

II The radius vector between the satellite and the centre of mass
of the Earth always sweeps in the same amount of time over the
same surface area (law of areas).pintalaki

III The squares of the periods of different satellites stand in the same
ratios as the cubes of the semi-major axes of their orbital ellipses.isoakselin

puolikas See below, equation 17.1.

A satellite orbit is described by six Kepler orbital elements, figure 17.14.rata-alkiot

The orbital elements are described in more detail in appendix C. The
angle θ0 is Greenwich sidereal time, which describes the orientation of
the Earth with respect to the stars.

Kepler’s laws apply only approximately, especially for low orbits. The
uneven distribution of the Earth’s masses, and especially her flattening,
cause orbit perturbations. These are exploited for studying the internalratahäiriö
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FIGURE 17.14. Kepler’s orbital elements.^

mass distribution of the Earth. This is how satellite geodesy has become
an essential tool for studying the solid Earth.

^ 17.8 Choosing a satellite orbit

The tilt of a satellite orbital plane relative to the equatorial plane, or its
inclination, is an important parameter from the viewpoint of the intended
use of the satellite. The inclination is in practice the same as the greatest
possible northern or southern latitude over which the satellite can fly. If,
for example, it is given that the inclination of some satellite is 55◦, one
may conclude that the satellite will never come down over Finland.15 15

15This is assuming that the satellite is not capable of aerodynamic flight upon atmo-
spheric entry.
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^ TABLE 17.1. Kepler’s third law for Earth satellites.

Height (km) Period Remark

0 84m29s Schuler period
400 92m34s

800 100m52s

20183 11h58m GPS

35785 23h56m Geostationary
376603 27d07h Moon

From the viewpoint of low-flying weather and remote-sensing satellites,
the importance of the inclination is that the area that a satellite can
properly map lies approximately between these maximum latitudes.

This limitation does not apply for high-flying satellites. For example,
geostationary satellites may perfectly well map the Nordic area. The
imaging angle is not, however, good.

The choice of the height of a satellite orbit is made using Kepler’s laws
of orbital motion. Kepler’s third law says:

GMP2 = 4π2a3, (17.1)

in which a = ae +h is the semi-major axis of the satellite orbit, the mean
distance from the centre of the Earth. The quantity h again is called the
mean height of the satellite. P is the orbital period, the time taken to go
around the Earth.

The perigee and apogee heights from the Earth’s surface are formally
calculated as follows:

hP = (1− e)a−ae, hA = (1+ e)a−ae =⇒ hA −hP = 2ea.

In this, ae is the equatorial radius of the Earth, according to the GRS80
reference ellipsoid, 6378137m.

^ 17.9 Satellite orbital precession, Sun-synchronous orbit

The figure of the Earth affects satellite orbital motion. For example,
the quantity J2, the dynamic flattening, the value of which is J2 =dynaaminen

litistyneisyys 1082.6267 · 10−6, is the largest of those many spherical-harmonic co-
pallofunktio-

kerroin
efficients that together describe the figure of the Earth and that affect
satellite motion. In the case of J2, one important effect is, that the satel-
lite orbital plane turns at a certain rate around the rotation axis of the
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FIGURE 17.15. Sun-synchronous orbit.^

Earth, a phenomenon called nodal precession. Because of this, if the ratatason
prekessiosatellite flies over the same place day after day, it will do so every day a

number of minutes earlier. The rate of precession, for a circular orbit of
radius a, is described by the equation

Ω̇= dΩ
dt =−3

2

√︃
GM
a3

(︂ae
a

)︂2
J2 cos i,

in which ae is the equatorial radius of the Earth and i the inclination
angle of the orbit with respect to the equator. Substituting numerical
values yields

dΩ
dt =−1.31894 ·1018 [︁m3.5 s−1]︁ · cos i

a3.5 .

If, as a calculation example, we substitute into this as the satellite height

h = 800km =⇒ a = 6378137m+800000m= 7178137m,

we obtain

dΩ
dt =−1.33102 ·10−6 [︁rads−1]︁ ·cos i =−6◦. 589

[︁
day−1]︁ ·cos i. (17.2)

For practical reasons (solar panels!) we often choose the satellite orbit so,
that the orbital plane turns with the apparent annual motion of the Sun:

360◦
365.25days = 0◦. 9856

[︁
day−1]︁.

If the inclination of the orbital plane is chosen in the range 96◦–102◦,
depending on the height, the dynamic flattening J2 of the Earth will
cause just the suitable rotation of the orbital plane (“no-shadow orbit”,
Sun-synchronous orbit).
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Height (km) Critical inclination

500 97◦. 4
750 98◦. 4

1000 99◦. 5
1500 102◦. 0

^ Self-test questions

1. A sidereal day is 23h56m4s. Why is it shorter than a civil day, 24h?

2. What is the ecliptic? How did it get its name?

3. What is the vernal equinox?

4. What mechanism causes the four seasons?

5. What is precession, and what is nutation? What causes them?

6. How did the Tropics of Cancer and of Capricorn get their names?

7. What geometrical quantity does Greenwich Apparent Sidereal Time
(GAST) represent?

8. Describe the co-ordinates on the celestial sphere, right ascension
and declination.

9. What is the hour angle of a celestial object? How is it related to its
right ascension?

10. What do we mean by the upper and lower culmination of a star?
Can they both always be observed (assuming clear skies)?

11. What is a meridian transit, and how is it observed?

12. Explain Väisälä’s stellar triangulation.

13. Describe the components of polar motion and variations in length
of day. How are they observed, historically and today?

14. How are precession and nutation different from polar motion?

15. What is a plasma?

16. What is the solar wind? Is it a sub- or supersonic flow? Why?

17. What is a Carrington event? Ask Google.

18. Could the wreck of the International Space Station (assuming it is
not brought down in a controlled way) ever impact Finnish territory?
Why / why not?

19. How does one engineer a Sun-synchronous orbit? Why is it useful?
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1818
Satellites have revolutionized oceanography. This is not so
much because of the instrument packages (remarkable as

they are) but the ability to sample adequately, and to
sample globally (two different things). Take the US–French

altimetry mission TOPEX/POSEIDON that sampled the
topography of the sea surface at about 7 km intervals to an

astonishing precision of one-inch [. . . ]. When you go over
the list of accomplishments, you find that what really made

the difference was the sampling. I consider this the most
successful ocean experiment of all times. [. . . ]

Walter Munk (2002)a

aWalter Heinrich Munk (1917–2019) was an influential American
physical oceanographer.

^ 18.1 Geodynamics

Geodynamics is the field of study within geophysics that studies the
motions taking place in the Earth, like plate tectonics, post-glacial land
uplift, and other motions of the Earth’s crust, local, global, natural or
human-caused. The study of the Earth’s rotation is also normally included
with geodynamics.

Of the observation techniques suitable for geodynamic research, we
have already discussed satellite positioning. All GNSS methods — GPS,
GLONASS, BeiDou and Galileo — are suitable for precise geodynamics
measurements.

However, in scientific research we always want to use as many as
possible, as independent as possible techniques for the study of the same
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phenomenon, in as versatile a fashion as at all possible. Therefore we
use also some very precise, but also very expensive, research methods in
geodynamics research:

◦ satellite laser-ranginglaser-
etäisyysmittaus ◦ laser-ranging to the Moon

◦ VLBI, very long baseline interferometry with radio telescopespitkäkanta-
interferometria ◦ DORIS, Doppler Orbitography and Radiopositioning Integrated by

Satellite (The IAG’s International DORIS Service), a French satellite
orbit determination system that serves geodetic and geodynamic
research.

The satellite laser-ranging and lunar laser-ranging techniques are very
similar. Laser satellites are heavy, massive spheres manufactured from
high-density materials like bronze or depleted uranium, studded withköyhdytetty

uraani reflective corner-cube prisms. The Apollo astronauts left several reflec-
kuutioprisma tive panels covered in prisms on the Moon serving the same purpose.

The Soviet vehicles deposited on the lunar surface in unmanned flights,
Lunokhod 1 and 2, also carry reflective prisms.

The distance to satellites or to the Moon is determined by measuring
the two-way travel time of a light pulse, multiplying it by the speed of
light, and dividing by two. The influence of the atmosphere on signal
propagation must be taken into account. Unlike GNSS, the laser-ranging
technique measures real distances, without clock unknowns, not pseudo-
ranges. Due to this, the global laser-station network is somewhat stronger
geometrically than the global GNSS network. For this reason it gives a
valuable boost to the global monitoring network’s geometric strength.

VLBI, very long baseline interferometry, uses the radio signals of remote
radio sources, quasars. Quasars are so far away and compact1 that in1

practice they are point sources. Therefore the wave form of the noise-like
radio signal that they transmit will be precisely the same, no matter
where on Earth it is received.

VLBI observations are carefully planned. Many radio telescopes around
the globe participate in the campaigns. All participants execute an
agreed programme, in which the same objects are observed simultane-

1The dominant theory is that quasars are supermassive black holes in the cores of
remote, thus young, galaxies. The radiation is generated when the hole sucks up matter
from its surroundings. Our own Milky Way galaxy also has a black hole at its centre,
Sagittarius A*, which however radiates much more weakly.
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X

LAGEOS 1

a e i

LAGEOS 1 12273km 0.00444 109◦. 84
LAGEOS 2 12273km 0.01377 52◦. 68

X

FIGURE 18.1. A LAGEOS satellite. The diameter of the satellite is 60cm, it
consists of an exterior aluminium sphere to which are attached
426 corner-cube prism reflectors (see subsection 7.4.3), and an
interior sphere made of bronze. The mass of the satellite is about
400kg. The LAGEOS 1 satellite also carries a map designed by
Carl Sagan, describing the current locations of the continents,
as a message to future, possibly alien, finders (Wikipedia, The
LAGEOS time capsule). On the right, the orbits of the LAGEOS 1
and 2 satellites.^

ously within a certain frequency band.

There are various solutions and generations of instrumentation for stor-
ing the signal. “Mark II” used common-or-garden VHS video tapes. The
signal was converted by special equipment into a video signal and stored
to tape. Today, the recording is often done digitally onto a hard-drive ”mäyräkoira”

pack, and direct transfer over the Internet, using the UDP/IP protocol, is
also becoming popular.

The recordings are read and correlated with each other, finding the time
offset that makes the correspondence between the sequences apparent,
just like in comparing the year rings of two pieces of wood (figure 7.7). vuosilusto

This correlation is a compute-intensive process which earlier required
specialised equipment. As a result of the correlation process, we obtain
the difference in reception times ∆t at the two radio telescopes, which is
thus the observable of this technology. Its corresponding distance c∆t
may also be interpreted as the projection of the vector RAB connecting
the radio telescopes A and B on the direction vector to the quasar, see
figure 18.2.
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FIGURE 18.2. Principle of operation of very long baseline interferometry.^

In order to work, like the famous Väisälä interferometry the method
requires that the signal is random, that is, white noise: the coherence
length has to be short. It is the same with GPS code measurement, for
which the noise is generated artificially, as pseudo-random code.

By carrying out measurements to many different quasars, one may
solve for the vector RAB between radio telescopes A and B in a geocentric
— either inertial or celestial, tied to the stars, or co-rotating with the Earth
— co-ordinate reference frame. Just like satellite laser observations, VLBI

observations also strengthen the global geodynamic monitoring networks.
Geodetic VLBI observations are also carried out in Finland, with the
Metsähovi radio telescope, figure 18.3.

One essential difference between, on the one hand, VLBI observations,
and on the other, both laser and GNSS observations, is that the centre of
mass of the Earth does not come along in the VLBI observation equations.
Quasars are at such huge distances, that any small change in the location
of the centre of mass of the Earth would affect the observations by the
radio telescopes at both ends of the VLBI vector in precisely the same way,
and the effect on the end result would be zero.

On the other hand, the momentaneous direction of the rotation axis of
the Earth is present in the measurement geometry, and VLBI has become,
besides GNSS, a favourite means of monitoring the Earth’s rotation, both
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FIGURE 18.3. The radio telescope of the National Land Survey’s Finnish
Geospatial Research Institute (FGI) at the Metsähovi research
station, used for geodetic very long baseline interferometric (VLBI)
observations. The telescope, aperture 13.2m, belongs to the inter-
national VLBI Global Observing System (VGOS).^

polar motion and variations in the length of the day. vuorokauden
pituusClose to the Metsähovi research station, three kilometres distant in

Sjökulla, shielded by the landscape from the radio telescope, is a DORIS

beacon containing an active radio transmitter. The French DORIS (Doppler
Orbitography by Radiopositioning Integrated on Satellite) is an unusual
system: the observation stations are active and the satellites passively
collect their signals. An advantage of this solution is the centralisation
of data collection. Around the world there are 60 DORIS stations, with
stations on all major continental plates.

^ 18.2 Plate tectonics

The German Alfred Wegener2 proposed as early as in 1912 that the 2

continents, fragments of the Earth’s crust, were moving slowly over the
soft interior of the Earth, like ice floes on the sea. As evidence he offered
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FIGURE 18.4. Alfred Wegener’s continental drift theory and the Mid-Atlantic
Ridge.^

the shapes of the continental coast lines, which fit together remarkably
well (figure 18.4) and rock types and fossils, which are often very similar
in corresponding coastal locations.

Nobody believed him at the time. It did not help matters that seis-
mology showed the Earth’s mantle to be hard as steel: transversal —poikittainen

aaltoliike sideways oscillating — waves, S waves, only travel in solids, and they
travel very well through the Earth’s mantle.

Not until the 1960s did the theory receive more support, especially
based on research into the Earth’s magnetic field. Back then, it was
already possible to measure the local magnetic field from an aircraft,
military technology developed for detecting submarines. The minute
variations in the field were mapped, and parallel magnetisation stripes
appeared everywhere on the maps, see figure 18.6. The stripes run in
the direction of the Mid-Atlantic Ridge, or similar ridges in other oceans.
Their pattern is the same everywhere, even if sometimes broader, some-
times narrower — like the tree rings from the same period in different
trees, tableau 12.2.

2Alfred Lothar Wegener (1880–1930) was a German meteorologist, geophysicist and
Greenland explorer, where he perished at the age of fifty and was buried into the
continental ice sheet.
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FIGURE 18.5. The internal structure of the Earth. Convection currents in
the outer core generate the electric currents that maintain
the Earth’s magnetic field — the natural-dynamo theory. The
core consists fairly certainly of an iron-nickel alloy with lighter-
element impurities.^

The theoretical explanation is that new Earth crust — sea floor — is merenpohja

being formed all the time at the Mid-Atlantic Ridge: hot, liquid magma Atlantin
keskiselännerises up, cools down and solidifies, and the iron-ore particles in the magma

turn themselves permanently along the direction of the magnetic field at
that point in time.

At this moment, the Earth’s northern magnetic pole — in Canada — is
physics-wise a south pole, S; the southern magnetic pole, near Tasmania,
is an N type pole. These roles, however, swap at irregular intervals, of
the order of a million years. These alternating directions are recorded
into the sea floor in the same way that sound is recorded on the magnetic
tape of a tape recorder.

The Earth’s internal structure according to our best current knowledge
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FIGURE 18.6. Palaeomagnetism and sea-floor spreading.^

is presented in figure 18.5.

At the same time, the British geologist Arthur Holmes3 developed3

radiometric dating, which exploits the uniform decay rate of radioactiveradiometrinen
iänmääritys isotopes of various elements occurring in the Earth’s crust as a geological

clock (Lewis, 2000). Among the useful decay processes are potassium 40
→ argon 40, half-life 1.25 billion years, uranium 238→ lead 206, 4.47
billion years, and uranium 235→ lead 207, 710 million years.

By measuring the concentrations of the decay product and the original
isotope, one may infer how much time has elapsed since the solidification
of the rock or mineral. The ages determined in this way for different
places on the sea floor agree very well with the pattern of the magnetic
stripes: the longer the distance from the central ridge, the older the sea
floor.

We say that the continental plates move, but the plates include sea
floor as well. We speak of the Eurasian plate, although it also contains
the whole North Atlantic sea floor north of the Azores and east of the Mid-
Atlantic Ridge. What is happening is a very slow convective motion, which
carries the plates of the Earth’s crust along with it. The rates of motion
vary from a few centimetres per year to as much as ten centimetres. The
precise form of the convective pattern is still unclear: does it take place

3Arthur Holmes FRS FRSE (1890–1965) was a British geologist, a pioneer of radiometric
dating and our understanding of the mechanisms of plate tectonics.
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FIGURE 18.7. Global plate tectonics.^

throughout the mantle, or in two layers?

The thermal energy that maintains the convection originates from two
sources: radioactive decay, and “primordial heat”, the ongoing cooling alkulämpö

down and stratification after the formation of the Earth. Both parts are kerrostuminen

believed to be of similar magnitude (Wikipedia, Earth’s internal heat
budget). The heat produced by the Earth’s core is entirely primordial: the
solid inner core continues to grow at the expense of the liquid outer core.

The convection theory is presented in figure 18.7, and more details on
the mechanism of continental motion in figure 18.8. At the Mid-Atlantic
Ridge (and the Mid-Pacific, Mid-Indian etc. ridges) new sea-floor crust
is being formed out of the magma rising from the mantle (however, as
already said, the Earth’s mantle itself is not liquid). At the edges of the
oceans again are found deep-sea trenches, under which the oceanic crust syvänmeren

hautadives down into the mantle (subduction).
alityöntö

In precise geodetic work, the continental-plate motion must be taken
into account. When computing the velocity of motion, the NUVEL models
may be used, which tabulate the motion of each plate as a rotation around kiertoliike

a given pole at a given rotation rate. The NUVEL-1A model (DeMets et al.,
1994) has been computed from geological research material. The results
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FIGURE 18.8. Mechanisms of plate tectonics, plate boundaries and volcanism.
The thickness of the Earth’s crust is exaggerated. The “deep hot
spot” hypothesis is not generally accepted among geophysicists.^

agree, within their measurement uncertainties, with the results obtained
by GPS and other methods.

Over the years, improved plate-motion models have been computed,
see UNAVCO, plate-motion calculator.

^ 18.3 Glacial isostatic adjustment (GIA)

In many Arctic areas, the Earth’s surface has been rising slowly after
the end of the last ice age: glacial isostatic adjustment (GIA). Outside
the Arctic area, the phenomenon takes the form of subsidence in themaan

vajoaminen periglacial bulge. And the changes in sea level associated with the
pullistuma varying volume of land ice have a global impact.

When modelling the response of the solid Earth to varying ice load, we
need to consider the following modes of response:
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Elastic The object responds immediately, and returns to its original

shape immediately when the load vanishes. For example, a spring,
a tennis ball.

Plastic The object responds slowly and continuously. It does not return
to its original shape when the load vanishes. For example, syrup,
modelling clay. The resistance offered to deformation by a plastic
substance is characterised by a property called viscosity.

Viscosity The more solid a substance, the higher the value of its
viscosity. Unit: Pas (pascal second) or Ns

/︁
m2 .

The physical character of post-glacial land uplift is one of plastic rebound.
The phenomenon is studied because it offers a possibility to determine
viscosity values for the Earth’s mantle. The results obtained point to the
following structure:

1. the “lid” or lithosphere, thickness 50–100km, which has a high (in
practice, infinite) viscosity and responds purely elastically4 4

2. under the lithosphere, the asthenosphere, a layer with a relatively
low viscosity, 1020–1021 Pas, thickness several hundred km

3. under the asthenosphere, the lower mantle, which has a relatively
high viscosity, order 1022 Pas or even higher.

The numerical values given above are highly uncertain and may well
change as a result of ongoing research.

For comparison, the viscosity of running water at a temperature of 20◦C
is 0.001Pas; that of liquid sodium — used as coolant in breeding reactors natrium

hyötöreaktori— 0.0007Pas at its melting point 98◦C. The viscosity of pitch, again, was
pikidetermined in a famous, and still ongoing, experiment (Edgeworth et al.,

1984) as (2.3±0.5) ·108 Pas.

Example: the Fennoscandian land uplift
The land is rising in Finland, as it is in Sweden, Norway, Denmark,
Scotland and Canada. All these vertical movements are caused
by the melting, after the last ice age, of continental glaciers or ice mannerjäätikkö

sheets, some 11000 years ago. In Fennoscandia a continental ice
sheet, of a thickness of up to two-three kilometres, pressed the
Earth’s crust down. The phenomenon is called isostatic adjustment:
although both the Earth’s crust and the mantle consist of solid

4. . . until the loading becomes too heavy and the rock fractures: it is frangible.
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FIGURE 18.9. Post-glacial land uplift in Fennoscandia. The figure gives a ver-
tical cross-section of the area; in fact, the phenomenon is three-
dimensional. Topography and ice-sheet thickness are exagger-
ated.^

matter, they nevertheless give way slowly and plastically under
great loads.

The post-glacial land uplift in Fennoscandia is taking place in an
area in the shape of an ellipse, the centre of which, the land-uplift
maximum, is located at the narrow (“Kvarken”) of the Gulf of Both-Merenkurkku

nia, on the Swedish side, where the uplift amounts to over 9mm
/︁

a .
Going outwards from here, the rate diminishes in all directions.
At the Finnish south-eastern border, only 3mm

/︁
a remains. The

zero land-uplift line runs through Denmark and Northern Poland,
curving on the Lithuanian and Russian territories to the north-
east. Outside, that is to the south of, the line, the land is slowly
subsiding.

Fennoscandia is not the only area in the world where the Earth’s crust is
rising as a result of the termination of the last ice age. We speak of GIA,
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FIGURE 18.10. Horizontal and vertical motions in Fennoscandia as determined
by the BIFROST project. The horizontal arrows and vertical bars
are not on the same scale. Source Lidberg et al. (2009).^

glacial isostatic adjustment. Other similar extended areas are:

◦ The Laurentide (Northern Canada) land uplift area. Much more
extensive than the Fennoscandian one.

◦ The West Siberian land uplift area. Little studied (Ehlers et al.,
2015).

When the Earth’s crust rises, material flows slowly inwards in the as-
thenosphere towards the uplift centre, into the void under the crust that
would otherwise be created. The land uplift is not only a vertical motion:
horizontal motions also occur, as GNSS monitoring over extended periods
has shown.

Techniques for studying and measuring the post-glacial land uplift
include

◦ Regularly repeated (at intervals of decades) precise levelling.

◦ Monitoring sea level with respect to the Earth’s crust by using
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mareographs, also called tide gauges, at the coast.

◦ Monitoring changes in gravity, for example the Nordic gravity
profiles (Mäkinen et al., 2010). The changes in gravity have two
causes:

– The point of measurement shifts with the land uplift away
from the Earth’s centre, and gravity diminishes.

– Due to the flow of mass under the Earth’s crust, the amount of
mass under the point increases and gravity grows stronger.

The observed change in gravity is the net result of both effects.

◦ GNSS monitoring in three dimensions. This activity started in the
1990s, when sufficiently precise GNSS receivers and processing
methods became available.

^ 18.4 Local geodynamics

^ 18.4.1 Anthropogenic motions of the Earth’s crust

We humans, by our activities, often cause motions of the Earth’s crust,
anthropogenic motions. For example, building a reservoir dam and thevesiallas

filling of its reservoir causes an additional loading of the local Earth’s
crust, and may even cause tiny earthquakes.

In Venezuela, the pumping of oil in the Caracas region has caused a
very noticeable local subsidence of the land. There are many other similar
areas in the world. In the Netherlands, in Groningen, the pumping
of natural gas has caused a subsidence, for which farmers are being
financially compensated. For this reason, the motions are measured with
geodetic precision, at regular intervals.

The pumping of drinking and irrigation water from porous layers —
aquifers — can also cause subsidence of the land by as much as metres.
This is a very common problem everywhere, but especially in developing
countries (Wikipedia, Groundwater-related subsidence).

^ 18.4.2 Natural motions of the Earth’s crust

Local movements of the Earth’s crust often happen close to geological
faults, like the San Andreas fault in California, the boundary betweenmurtovyöhyke

two tectonic plates, where the plates move slowly with respect to each
other. When the movement of the plates gets stuck, stresses inside the
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Earth’s crust build up, and may after years be released destructively in
the form of an earthquake.

Various geodetic methods are used nowadays to monitor motions of the
Earth’s crust. At the mid-ocean ridges, like in Iceland, too, all kinds of valtameren

keskiselännegeodetic measurement activity takes place in the service of geophysical
research.

The continental plates are not necessarily completely rigid and of one
piece; rather, inside them there are also all kinds of faults along which
tectonic movements have taken place — and surely still take place. In
addition to observing microseismicity, one could try to observe these with
geodetic monitoring techniques (Ahola, 2001).

Variations in sea level, like the tides, may be reflected in the level of
the Earth’s crust in coastal areas. One speaks of ocean and atmospheric
loading. The motion caused by this loading may even be a couple of
centimetres, but peters out quickly going in-land. Only in recent years has
it been possible to measure this motion using GNSS, but the uncertainties
are large. This tidal loading is also visible in long gravimetric monitoring
time series. It is one way of studying the local elastic properties of the
solid Earth.

The effect of the atmosphere, mostly variations in air pressure, should
also be visible in this way. The phenomenon is, however, very weak
and hard to observe with confidence. The problem with gravimetric
techniques again is the difficulty of separating the effect of loading from
the many other effects of the atmosphere on the measurement device and
its surroundings.

^ 18.5 Deformation monitoring

Both traditional (total-station measurement, precise levelling) and mod- takymetri

ern techniques like GNSS monitoring can be used to monitor local defor-
mations in the Earth’s crust.

In earthquake-prone areas (for example Japan, California) GNSS mon-
itoring networks made up of many hundreds of continuously operating
receivers have been built. In Japan, the Sendai earthquake of 2011 was
recorded by 1200 stations covering the country, as shown in the video.

However, more traditional techniques, like monitoring with automatic
total stations, are also used. Collecting and processing the materials is
done in real time.
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Detecting deformations from the observational material is a similar
task as detecting gross errors: the same kind of statistical testing (sectionkarkea virhe

15.3) may be used, with a suitably chosen alternative hypothesis Ha.

The SAR (synthetic-aperture radar) technique from satellites (Field-
ing, 2017) is also used for deformation monitoring. “Synthetic aperture”synteettinen

aukko means that the radar images taken during different satellite overpasses
are computationally combined in such a way that a “virtual objective”
the size of the distance between overpasses is created. The method is
interferometric (InSAR). After suitable processing, the deformations show
up in the images as interference fringes.

^ 18.6 Studying the Earth’s gravity field from orbit

During the decade 2000–2010, three satellite missions were launched to
study the fine structure of the Earth’s gravity field or geopotential; in
other words, to draft a global geoid map.

^ 18.6.1 CHAMP

CHAMP (Challenging Minisatellite Payload for Geophysical Research
and Applications, CHAMP Mission) was launched from the Plesetsk
cosmodrome in Russia on 15 July 2000. The orbital height of CHAMP

was initially only 450km, which dropped to 350km during the flight (for
comparison, the orbital height of the GPS satellites is 20000km).

CHAMP carried a GPS receiver for precise orbit determination of the
satellite. From GPS data, one may compute the precise location x(t) of the
satellite as a function of time. From this, one may calculate the geometric
acceleration a(t) by differentiation:

a(t)= d2

dt2 x(t).

The satellite also carried an accelerometer, which served to measure thekiihtyvyys-
mittari satellite accelerations caused by the atmosphere’s aerodynamic forces

acting on the satellite. After eliminating these, what is left is only the
accelerations caused by the Earth’s gravitational field, from which a
precise geopotential or geoid model may be computed.

The data collected by CHAMP has been used to compute global geopoten-
tial models. The geographical resolution of the models has been modest,
of an order of 1000km. The satellite returned into the atmosphere on 19
September 2010 and burned up after 58277 orbits.
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FIGURE 18.11. InSAR image. Earthquake of 17 August 1999 in Izmit, Turkey.
The deformation interval between interference fringes of the
same colour is some 7cm of horizontal motion. The thin red
lines are faults. NASA / JPL-Caltech.^
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FIGURE 18.12. Determining the Earth’s gravitational field by tracking the orbit
of a low-flying satellite using a GPS receiver.^

^ 18.6.2 GRACE

GRACE (Gravity Recovery And Climate Experiment, GRACE Mission)
measured the temporal changes in the Earth’s gravity field, very precisely,
at a time resolution of about a month, at a fairly crude spatial resolution.
These temporal changes are mostly caused by movements of the “blue
film”, the atmosphere and hydrosphere. The quantity measured is also
called the sea-floor pressure, perhaps somewhat surprisingly. The expla-merenpohjan

paine nation is, that the quantity is proportional to all of the mass contained in
a column of air and water.

GRACE was a satellite pair: the satellites (“Tom and Jerry”) flew in a
tandem formation at some 450km height, at an average separation of
220km. A microwave link measured changes in the distance between the
satellite at an accuracy of 1µm

/︁
s . Both satellites also carried sensitive

accelerometers to measure and eliminate atmospheric drag.

The measurement system was so sensitive, that changes in a water
layer of even a millimetre’s thickness could be noticed, if they extended
over an area the size of a continent, some 500km.

The successful launch took place in 2001. The data has been a treasure
for hydrologists (GRACE Mission, hydrology). It was not until October
2017 when one of the satellites developed a malfunction that measure-
ments came to a close. In the following months, the satellites re-entered
the atmosphere.

A GRACE Follow-On Mission (GRACE-FO) was launched in 2018.
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FIGURE 18.13. Basic idea of the GRACE satellite pair: measuring the tiny tem-
poral changes in the Earth’s gravity field using SST, satellite-
to-satellite tracking. The satellites measure mass shifts in the
Earth’s “blue film” — atmosphere, hydrosphere — variations of
“total sea-floor pressure” ↓.^

^ 18.6.3 GOCE

GOCE (Gravity Field and Steady State Ocean Circulation Explorer) was
the most ambitious of the satellite missions. The satellite was launched
from Plesetsk, Russia, on 17 March 2009. The orbital height was only
250km, and the satellite carried a rocket engine (an ionic engine) and a
stock of propellant (xenon) for orbit maintenance against atmospheric ajoaine

drag. The GOCE payload contained a gravitational gradiometer, an instru-
ment for precisely measuring components of the gradient of the Earth’s
attraction, the dependence of the attraction on the three co-ordinates
of place. The gradiometer consisted of several extremely sensitive ac-
celerometers mounted on a frame.

GOCE has worked well. However, in July 2010 a serious malfunction
occurred in the telemetry link, which was repaired in August. The
mission ended on the 21th of October 2013, and on the 11th of November,
the satellite returned into the atmosphere and was seen burning up over
the Falkland Islands.

It has been theoretically established that gradiometry is the best way
to measure the very local features of the gravity field, better than orbital
tracking with GNSS. The smallest details in the geoid map that can be
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FIGURE 18.14. Determining the Earth’s gravitational field with the gravita-
tional gradiometer on-board the GOCE satellite.^

seen in the GOCE material are 100km in diameter, their precision being
as good as ±2cm.

One important application for a global geoid map this precise is map-
ping the deviations of the mean sea surface from the geoid, an equipoten-
tial surface, with similar precision. The true location in space of sea level
is obtained by satellite radar altimetry, also at a precision level of several
centimetres. This difference in level between the mean sea surface and
an equipotential surface, the sea-surface topography, may be invertedmeritopografia

into a map of ocean currents. The theory behind this is explained in
subsection 18.10.2. See figure 18.15.

The name of the GOCE mission was inspired by this possibility.
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FIGURE 18.15. A sea-surface topography map produced by the GOCE mission
© European Space Agency. Unit cm. Ocean surface currents
drawn on top, NOAA / Rick Lumpkin (NOAA, Ocean currents).
Compare with figure 18.21!^

^ 18.7 Atmospheric research and GNSS

^ 18.7.1 Water-vapour values from a GNSS network

The atmosphere affects the propagation of radio waves, and thus of
the GNSS signal. As can be seen from the refractive-index equation for taitekerroin

microwaves 7.6:

NM = 106 · (nM −1)= 77.624K
/︁

hPa

T (p− e)+ 64.70K
/︁

hPa

T

(︂
1+ 5748K

T

)︂
e,

both the total air pressure p and the partial pressure of water vapour,
or absolute humidity, e affect propagation, but in different ways. If we
substitute T ≈ 285K (approximately 12 ◦C), we obtain

NM = 0.27(p− e)+4.8 e.

Write this into the form

NM = apdry +bpwet,

in which pdry = p − e is the total of the partial pressures of the dry
constituents of the atmosphere, and pwet = e is the partial pressure of
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water vapour. The coefficients a and b describe the influences of dry
air (mostly nitrogen, oxygen, argon, and carbon dioxide) and of water
vapour. The values a ≈ 0.27hPa−1 and b ≈ 4.8hPa−1 depend somewhat
on temperature. However, b is some 18 times a: water vapour affects the
propagation of the GNSS signal some 18 times more strongly than dry air.
Behind this phenomenon is the chemical polarity of the water molecule;poolisuus

see section 7.5.

The partial pressure of water vapour is a less-used way to describe
how much water vapour there is in the atmosphere. The more-used
way is relative humidity in percentages, the amount of water vapour
compared to the amount at saturation, when there is as much waterkyllästyminen

vapour in the air as there can be at a certain temperature, before it starts
condensing out as liquid. The saturation partial pressure esat is given in
fair approximation by the equation of Clausius5 and Clapeyron:65

6
esat(T)= esat(T0)exp

(︃
−4895K ·

(︂
1
T − 1

T0

)︂)︃
.

When we know that the temperature T0 = 100 ◦C= 373.15K is the boiling
point of water: esat(T0)= 1 atmosphere= 1013.25hPa, it follows that

esat(T)= 1013.25hPa ·exp
(︃
−4895K ·

(︂
1
T − 1

373.15K

)︂)︃
. (18.1)

The lower the satellite is in the local sky, the longer the path through
the atmosphere. If the zenith angle is ζ, we may describe the signal
propagation delay in the atmosphere by the following equation (˜︁a and ˜︁bkulkuviive

are the integrals of the above-mentioned coefficients a and b over the full
height of the atmosphere, divided by 106):

dtrop =
˜︁apdry +˜︁bpwet

cosζ = ˜︁a(p− e)+˜︁be
cosζ = dzenith

cosζ . (18.2)

In a GNSS network adjustment, we may solve the station values dzenith,verkkotasoitus

zenith propagation delays, as unknowns, by substituting equation 18.2zeniitin
kulkuviive into the GNSS observation equations 12.1 — and with the identity Dtrop =

dtrop into equations 12.2. (In a small area, one can only resolve zenith-
delay differences between stations.)

If we also measure, at the same station, the total air pressure with a
barometer:ilmapuntari

5Rudolf Julius Emanuel Clausius (1822–1888) was a German physicist and mathemati-
cian, one of the founders of thermodynamics.

6Benoît Paul Émile Clapeyron (1799–1864) was a French engineer and physicist, one of
the 72 names on the Eiffel Tower (Eiffel Tower, 72 names).
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FIGURE 18.16. Saturation partial pressure esat and partial pressures e of water
vapour at various temperatures and relative humidities accord-
ing to equation 18.1. The red path shows how the dew point
(30◦C) follows from temperature (40◦C) and relative humidity
(60%). This means that temperature and dew point together
can be used to determine relative humidity. Many hygrometers
— devices for measuring the humidity of air — are based on this
principle.^

p = pdry + pwet,

GNSS-2GNSS-2GNSS-1

GNSS-4

GNSS-3

GNSS-3

“Total zenith delay”

FIGURE 18.17. Use of GNSS for studying the troposphere.^
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we may solve separately for pdry and pwet.

The latter quantity, converted to amount of matter in an air column,
is also called the integrated water-vapour content or total precipitable
water-vapour content (converted to liquid water, unit mm). It is a quantity
that weather and climate researchers are very much interested in!

^ 18.7.2 GNSS radio occultation or “limbsounding”

Using low-flying satellites, it is possible to measure how the radio signal
from a GNSS satellite is slowed down as the lowest point of the ray dives
deeper and deeper into the atmosphere. This technique is called GNSS

limbsounding or radio occultation. The first satellite to exploit this tech-
nique was GPS/MET. The Danish Ørsted satellite and the aforementioned
CHAMP also used the technique.

The technique requires having a GNSS receiver on board the satellite.
As there are already some 30 satellites in the GPS alone, and the low-orbit
satellite goes around the Earth once every 1.5 hours, a quite substantial
amount of information is collected every 24 hours.

The technique is important because it allows the determination of
temperatures high up in the atmosphere, above the tropopause, where
there is not much water vapour left. This is the layer in which climatic
global warming would become most visible.7 The ozone layer is located at7

the top of the measurement range, and processes taking place there also
affect the temperature.

The technique is the following: the delay caused by the atmosphere is
proportional to air density, which is a piecewise exponential function of
height:88

ρ(H)= ρ(H0) exp
(︂
− H−H0

S(t,k, g)

)︂
,

in which S(t,k, g) is the scale height, a function of air temperature t, airskaalakorkeus

composition k, and gravity g. If we assume that k9 and g are known, we9

may calculate temperature t from scale height S.

7Climate models predict surprisingly, and observations confirm, that, while tempera-
tures at the Earth’s surface and in the troposphere go up, a compensating lowering of
temperatures is expected for the stratosphere. The cause is enhanced radiative cooling
by increasing carbon dioxide concentrations.

8It is a little more complicated than this, as the GNSS signal travels through many
atmospheric layers, not only the layer of closest approach to the Earth’s surface.

9The water vapour content at these heights is practically zero due to the low tempera-
ture.
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FIGURE 18.18. How the GNSS radio occultation technique works.^

^ 18.7.3 Ionosphere sounding

From GPS measurements at two frequencies, L1 and L2, we may compute
ionospheric models, in which the ionospheric electron density is mapped,
as a function of place (ϕ,λ, h) and time. From this can then be calculated
TEC, the total electron content, integrated along the path between satellite
and receiver.

These models have been computed, nearly in real time, using the
global GNSS network, since 1998 by the IGS, the International GNSS

Service. A data format, IONEX, Ionosphere Map Exchange Format, has
been developed in support of this activity.

^ 18.8 Long-term variations in Earth rotation axis and orbit

Milanković10 proposed as early as in 1941 a hypothesis that variations in 10

the insolation — the radiative power coming from the Sun — at the edges
of the large continental ice sheets cause their growth and retreat, and
that these variations would be caused by astronomical factors. The work
of Milanković is based on earlier work by, among others, James Croll,11 11

to explain the ice ages and interglacials.

10Milutin Milanković (1879–1958) was a Serbian polymath, engineer and climatologist.
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FIGURE 18.19. Milanković cycles over the past 800000 years on both hemi-
spheres. Red, theoretically computed summer insolation — from
July 21 to August 20 — at 65◦ northern latitude (outside the
atmosphere). Blue, Antarctic temperature estimate, computed
using the deuterium isotope. Arbitrary scales. Sources: Laskar
et al. (2004); Jouzel and Masson-Delmotte (2007), see IMCCE,
Milanković app and the Science article Jouzel et al. (2007).^

^ 18.8.1 Tilt of the rotation axis

Besides the precessional motion, the obliquity, or tilt, of the Earth’s axis
of rotation with respect to the ecliptic also varies slowly. Currently (epoch
2000.0) the tilt angle is 23◦26′21′′ and is slowly diminishing, by about
0′′.47 per year.

Actually the variation is periodic, between 22◦. 1 and 24◦. 5, with a period
of some 41000 years. This variation is related to orbit perturbationsratahäiriö

caused by the planets on the Earth’s orbital plane.

^ 18.8.2 Climatological precession

Astronomical precession is the earlier described phenomenon, that the
rotation axis of the Earth turns around in a conical figure in a period
of about 25800 years. In addition, the major axis of the Earth’s orbitalisoakseli

11James Croll FRS (1821–1890) was a Scottish autodidact physicist, astronomer and
climatologist.
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ellipse also rotates in the orbital plane, the period being 112000 years
(apsidal precession). This motion is caused by orbit perturbations by the
other planets.

The net result of both processes is climatological precession, the period
of which is (︂

1
112000 + 1

25800

)︂−1
a= 21000a.

This is the time period in which the season when the Earth is closest
to the Sun cycles through the calendar. Currently the Earth is closest
to the Sun at the beginning of January. Only 11000 years ago, at the
termination of the last ice age, the Earth was closest to the Sun in July.
The result was 7% more solar radiation power for the Arctic summers.

The direct impacts of climatological precession are opposite in the
northern and southern polar areas, because the boreal (northern) summer
is the austral (southern) winter, and the austral summer is the boreal
winter.

^ 18.8.3 Variation of the orbital eccentricity

The eccentricity of the Earth’s orbit is also variable, with important
periods being ∼ 100000 and 413000 years, between the values 0 and
0.068. This variation, caused by orbit perturbations from the other
planets, modulates the effect of climatological precession.

^ 18.9 Land-ice research and climate change

Much geophysical research is aimed at continental ice sheets, where,
thanks to polar amplification — the enhanced warming of the polar
regions — the warming of our planet’s climate is first becoming visible.
A continental ice sheet is a glacier: it grows above the snow line from
falling snow that slowly compacts, first into firn and then into ice, and
flows slowly and plastically to the coasts, where it loses mass through
melting and formation (“calving”) of icebergs. poikastuminen

The thicknesses of both the Greenland and the Antarctic ice sheet have
been monitored by satellite techniques, among them radar altimetry.
Radar mapping from orbit (SAR, synthetic-aperture radar) has also been
used for this. Observing the small changes of course requires long time
series, and this is still a shortcoming of the satellite methods.

GRACE (subsection 18.6.2) has also been used to study the change in
mass of these continental ice sheets. This change represents directly the X
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FIGURE 18.20. The measurement geometry of satellite radar altimetry.^

contribution of these ice sheets to sea-level rise.

The GNSS technique has also been used for studying both crustal and
ice motions, both in Greenland (Khan et al., 2010) and in Antarctica,
for example in the surroundings of the Finnish Antarctic base Aboa in
Dronning Maud Land (Koivula and Mäkinen, 2003).

^ 18.10 Geodetic oceanography

^ 18.10.1 Satellite altimetry and the geoid

It is possible to measure the location of the momentaneous sea surface
in a geocentric system from a satellite. The instrument used is a radar
altimeter (Rummel and Sansò, 1993) and its precision of measurement is
a few centimetres. See figure 18.20.

A satellite altimetric radar works in this way: it sends a short mi-
crowave pulse straight downwards, where it is reflected back from the
sea surface. The reflection is received and the shape of the return pulse
is analysed. The reflection does not just come from the point straight
underneath the satellite, but from a whole area called the footprint. This
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FIGURE 18.21. Theoretical link between sea-surface topography and ocean cur-
rents.^

footprint may have a diameter of several kilometres, more if the sea state aallokko

includes high waves.

Based on the analysis of the pulse shape, the distance between the
satellite and the sea surface is inferred. If the satellite orbit is known
— nowadays altimetric satellites always carry a GNSS receiver — the
momentaneous, geocentric location of the sea surface may be computed.
Successive measurement points form arcs running either from south to ratakaari

north or from north to south.

^ 18.10.2 Ocean currents and sea-surface topography

Mean sea level aligns pretty nicely with the geoid, an equipotential
surface of the Earth’s gravity field. If sea water were in a “state of rest”,
an equilibrium state like in communicating vessels, the mean sea surface yhtyvät astiat

would be exactly the same as the geoid. This is, however, not the case.
The causes of this sea-surface topography are

◦ local variations in temperature and salinity suolaisuus

◦ variations in air pressure from place to place, to which the sea
surface responds like an “inverted barometer” (IB) ylösalainen

ilmapuntari◦ The drag of winds with the sea surface, pushing water masses in
certain directions

◦ the Coriolis force acting on ocean currents. coriolisvoima

Ocean currents respond to the rotation of the Earth though the Coriolis12 X
12
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force, in the same way as air currents (Buys Ballot’s13 law): currents13

try to turn to the right in the Northern Hemisphere, to the left in the
Southern one. This causes a transversal tilt of ocean currents, which is
proportional to the flow velocity and the sine of latitude, sinϕ. We speak
of geostrophic flow.

The magnitude of the sea-surface topography is globally ±1m. The
Baltic Sea also has a sea-surface topography, a tilt of the sea surface, as
a result of which the bottoms of the Gulfs of Finland and Bothnia arepohjukka

about 20–30cm higher than the western parts of the Baltic Sea, due to
the salinity gradient. There is also a height difference across the Danish
straits, caused by the push of predominantly westerly winds.

Earlier on, some satellite missions were mentioned that were intended
to determine the precise location in space of the geoid. The sea-surface
topography on the oceans, the difference between mean sea level and
the geoid, is caused mostly by ocean currents. The rotation of the Earth
causes currents to tilt in the transversal direction. Using this observable
phenomenon, it is possible to theoretically compute the volume of the
current, the amount of water transported, and from this in turn the
thermal energy carried along with the water. This is an essential matter
for climate research. This was one objective of the ambitious GOCE project
(subsection 18.6.3).

In figure 18.21 we see the relationship between ocean currents and
sea-surface topography. We may also describe this in equations, the
geostrophic equations:

∂H
∂x =+2vy

ω
γ sinϕ, ∂H

∂y =−2vx
ω
γ sinϕ, (18.3)

in which H(x, y) is the sea-surface topography, ω the rotation rate of
the Earth, γ gravity, x and y plane co-ordinates in the east and north
directions, and vx and vy are the east and north components of the flow
velocity. Because the equations contain sinϕ, the effect is opposite in the
Northern and Southern Hemispheres, and in the immediate vicinity of
the equator, it vanishes.

By simple partial differentiation, we may infer from the observed

12Gaspard-Gustave de Coriolis (1792–1843) was a French mathematician, one of the 72
names on the Eiffel Tower (Eiffel Tower, 72 names).

13Christoph Hendrik Diederik Buys Ballot (1817–1890) was a Dutch chemist and
meteorologist.
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sea-surface topography H(x, y) to the flow pattern v(x, y), in which v=
vxi+vy j is the current velocity vector in the (x, y) plane.

^ 18.10.3 Mareographs, satellite altimetry, sea-level rise

Starting in 1992, the French-American satellite TOPEX/Poseidon and
its follow-up satellites Jason-1, Jason-2 and Jason-3 (NASA JPL,
TOPEX/Poseidon, Jason) have been doing pioneering work monitoring
the rise of the global sea level. Traditionally, the sea level has been
monitored using mareographs or tide gauges; the rise of the sea level over
the whole 20th century has been estimated to have been of the order of
1.3–2mm

/︁
a , or 13–20cm over the whole century.14 14

A mareograph measures the rise in the sea level with respect to the
Earth’s crust on which it has been built. A long tube connects the instru-
ment with the open sea, in order to dampen wave motion.

This method has two problems:

◦ The Earth’s crust itself may move. It is mostly the post-glacial
land uplift, more commonly called GIA (glacial isostatic adjustment)
that is important here: it affects Fennoscandia and Canada most
strongly, but its effects extend to all of Europe and North America.
Outside the land-uplift area there is a broad zone in which the land
is slowly subsiding, the “periglacial bulge”. This phenomenon must
be carefully modelled and removed from the mareograph data, if
one wishes to compute global sea-level rise precisely. Nowadays
there are continuously operating GNSS stations co-located with
many mareographs, with the help of which the vertical land motion
may be empirically determined. Unfortunately these time series
are still short.

◦ There are only mareographs on the coasts, and there, only at in-
dividual points. There are large ocean areas where there is not a
single mareograph nearby. And the further one goes back in time,
the weaker the situation becomes. In the Southern Hemisphere,
the situation was really weak before around 1950.

Altimetric satellites can measure the location of the sea surface geocen-
trically — using an on-board GNSS positioning device — and everywhere
underneath their orbits. For example, the inclination angle of the orbit

14A new analysis (Dangendorf et al., 2017) proposes that the sea-level rise before 1990
was substantially slower, only some 1.1±0.3 mm

/︁
a .
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of a satellite like TOPEX/Poseidon is 66◦, and the whole ocean surface be-
tween latitudes 66◦S and 66◦N is being mapped at an interval of some ten
days. When the plane of the satellite orbit precesses, with respect to theratatason

prekessio Sun, once in 117 days, we obtain the long-term trend in the global mean
sea level with at least this temporal resolution. During the latest two
decades, the mean sea level has risen some 3.2±0.4mm

/︁
a , clearly more

than during the 20th century on average (Sea Level Research Group).
The reason for the acceleration of the rise is undoubtedly the warming of
the climate.

^ 18.10.4 Height systems, mareographs, sea-surface topography

Mareographs may also be used to observe the sea-surface topography, but
only on the coast. This presupposes that the mareographs are connected
to the same height system. In Finland, the matter has been organised so
that the 13 mareographs on the Finnish coast operated by the Finnish In-
stitute of Marine Research, nowadays part of the Finnish Meteorological
Institute, are connected to the national precise-levelling network, which
the Finnish Geodetic Institute, today the Finnish National Land Survey’s
Geospatial Research Institute FGI, maintains. The necessary connecting
levellings are carried out by the geodesists at a few years’ intervals.

The Finnish mareographs measure continuously the level of the lo-
cal sea surface with respect to the local Earth’s crust. The measure-
ment values are transferred electronically to the headquarters of the
Finnish Meteorological Institute in Helsinki, where they are processed
and archived.

Near five mareographs, pillars have been erected by the Finnish Geode-
tic Institute in order to carry out regular GNSS measurements. In this
way one may also obtain the local sea surface in a geocentric reference
frame by means of satellite positioning.

Use of GNSS buoys is also becoming more common: these obtain the
geocentric location of the momentaneous sea surface, far away from the
coast, too. The sea state may also be monitored.

^ Self-test questions

1. Which geodetic observation techniques useful for geodynamics do
you know?

2. What is the evidence showing that the Earth’s outer core is liquid?
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FIGURE 18.22. Tide gauges (mareographs) of the Baltic Sea, some ground
tracks of the Seasat satellite back in 1978, and contours of a
solution for the mean sea surface computed from the satellite’s
data.^

3. Describe the polar motion and its monitoring.

4. In what way were the mission objectives of the GRACE and GOCE

satellite missions different?

5. How can a network of GNSS stations be used to determine the
water-vapour content of the atmosphere above it?

6. What is the atmospheric scale height, and how can GNSS radio
occultation (“limbsounding”) be used to determine it?
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FIGURE 18.23. “Schematic of the Earth’s orbital changes (Milankovitch cycles)
that drive the ice age cycles. ‘T’ denotes changes in the tilt (or
obliquity) of the Earth’s axis, ‘E’ denotes changes in the eccentric-
ity of the orbit (due to variations in the minor axis of the ellipse),
and ‘P’ denotes precession, that is, changes in the direction of the
axis tilt at a given point of the orbit.”
From IPCC (2007), Frequently Asked Question 6.1, page 449.^

7. What are the three changes in the Earth’s rotation axis and orbital
motion causing long-term climatic variations — the glacial cycle —
according to the theory of Milanković?

8. See figure 18.23. After what you learned about Kepler’s laws of
orbital motion, what is wrong with this picture (and caption text)?

9. According to a newspaper article, Associated Press (1988), military
aircraft that crash-landed in Greenland during the Second World
War were found 46 years later 260 feet deep in the ice. Based on
your knowledge of how glaciers work, explain how they ended up
this deep. What is the annual snowfall rate at the site of the crash?

10. What is the Coriolis force?

11. The geostrophic equations are

∂H
∂x =+2vy

ω
γ sinϕ, ∂H

∂y =−2vx
ω
γ sinϕ. (18.3)

Explain each occurring symbol.

12. What was and is the mission objective of the TOPEX/Poseidon satel-
lite and its follow-up satellites, the Jasons?
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^ Properties of matrices

AA
Matrices are used very widely in science to describe multidimensional
phenomena, like co-ordinate transformations and mappings from one
vector space to another. The matrix is written out as a two-dimensional
table of numbers between parentheses or square brackets. The symbolic
notation for a matrix is an italic1 capital letter, like A, B, I. 1

Formally, matrices are a type of number, like real numbers and complex
numbers. Many operations on numbers, like addition and subtraction,
also exist for matrices: same-sized matrices may be added simply by
adding together the corresponding elements. Other operations, like
multiplication, do not always work between matrices: they require that
the sizes of the matrices, the numbers of their rows and columns, are
suitable. To wit, the number of columns in the left matrix must be the
same as the number or rows in the right matrix, for multiplication to be
even possible.

^ A.1 Adding and subtracting matrices

Same-sized matrices are added by adding together the corresponding
elements:

C = A+B

means
ci j = ai j +bi j

for every pair i, j, i = 1, . . . , n, j = 1, . . . , m, if the matrices A, B, and C
are of size n×m. For example, in the following way (n = m = 2):[︄

c11 c12

c21 c22

]︄
=
[︄

a11 a12

a21 a22

]︄
+
[︄

b11 b12

b21 b22

]︄
=
[︄

a11 +b11 a12 +b12

a21 +b21 a22 +b22

]︄
,

1Alternatively, many authors use bold capital letters.
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with the numerical example

C⏟ ⏞⏞ ⏟[︄
5 2
1 4

]︄
=

A⏟ ⏞⏞ ⏟[︄
3 0
0 2

]︄
+

B⏟ ⏞⏞ ⏟[︄
2 2
1 2

]︄
,

in which c11 = a11 +b11, and so on. The same applies for subtraction.

^ A.1.1 Multiplying a matrix with a constant

This amounts to multiplying every element with this constant. For
example,

k

[︄
a11 a12

a21 a22

]︄
=
[︄

ka11 ka12

ka21 ka22

]︄
.

^ A.2 Matrices and vectors

A matrix with only one row is called a row vector; a matrix with only one
column, a column vector. For example,

r=
[︂

r1 r2 r3 r4

]︂
, c=

⎡⎢⎣ c1

c2

c3

⎤⎥⎦ .

Vectors are commonly denoted by small letters.

^ A.3 The unit matrix

In the same way that for numbers there exists a zero element 0, for which
holds ∀a ∈ R : a+0 = 0+ a = a, and a unit element 1 with the property
∀a ∈ R : a ·1 = 1 ·a = a, these also exist for matrices. The unit matrix is
simply

I =

⎡⎢⎢⎣
1 0 · · · 0
0 1 · · · 0...

... . . . ...
0 0 · · · 1

⎤⎥⎥⎦=

⎡⎢⎢⎣
1

1 . . .
1

⎤⎥⎥⎦ .

It is always square. Every number of dimensions has its own unit matrix,
like

I3 =
⎡⎣ 1

1
1

⎤⎦
is the unit matrix for three dimensions.
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^ A.4 Matrix multiplication

Multiplication of matrices is done following the simple scheme “row times
column”. If

C = A ·B,

this means that for every i and k:

cik =
n∑︂

j=1

ai jb jk,

meaning that the matrix

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c11 · · · c1k · · · c1n
... . . . ... · ...

ci1 · · · [cik] · · · cin
... . . . ... . . . ...

cn1 · · · cnk · · · cnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
is obtained by multiplying every row of matrix

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1 j · · · a1n
... . . . ... · ...

[ai1] → [ai j] → [ain]
... . . . ... . . . ...

an1 · · · an j · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with every column of matrix

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b11 · · · [b1k] · · · b1n
... . . . ↓ . . . ...

b j1 · · · [b jk] · · · b jn
... . . . ↓ . . . ...

bn1 · · · [bnk] · · · bnn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

So, one sums cik = ai1 b1k +ai2 b2k +·· ·+ain bnk, “row i times column k”,
for each element of the matrix C. In the above formula we have marked
one row, with row number i, in the matrix A, and one column, with
column number k, in the matrix B. Multiplication of this row with this
column thus yields the element of C called cik.

Here it is assumed, for the sake of simplicity, that all matrices are
square, n× n rows and columns. This is not inevitable; however, the
number of columns of A and the number of rows in B must be the same
for multiplication to be possible.
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Exercise Verify that for an arbitrary square matrix A it holds that
A · I = I · A = A.

^ A.5 The transpose

The transpose of matrix A, the matrix AT, is defined as

A⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

... . . . ...
an1 an2 · · · anm

⎤⎥⎥⎥⎥⎦
[n×m]

T

=

AT⏟ ⏞⏞ ⏟⎡⎢⎢⎢⎢⎣
a11 a21 · · · an1

a12 a22 · · · an2
...

... . . . ...
a1m a2m · · · anm

⎤⎥⎥⎥⎥⎦
[m×n]

,

or more compactly(︁
AT
)︁

i j = (A) ji, i = 1, . . . ,m, j = 1, . . . ,n.

The transpose AT of matrix A is thus obtained by interchanging rows
and columns, or, if m = n and we have a square matrix, by “mirroring” all
elements though the main diagonal. Trivially, if the transposition is done
twice, one obtains back the original matrix:(︁

AT
)︁T = A.

The transpose of a vector changes a row vector into a column vector and
vice versa:⎡⎢⎢⎢⎢⎣

a1

a2
...

an

⎤⎥⎥⎥⎥⎦
T

=
[︂

a1 a2 · · · an

]︂
,

[︂
a1 a2 · · · an

]︂T
=

⎡⎢⎢⎢⎢⎣
a1

a2
...

an

⎤⎥⎥⎥⎥⎦ .

The latter notation is often used in running text to save paper when
presenting a column vector.

^ A.6 The inverse matrix

The inverse matrix N−1 of a square matrix N is defined as the matrix K ,
for which K ·N = N ·K = I, in which I is the unit matrix already defined
above. A property of the unit matrix again is I · N = N · I = N for all
square matrices N of the same size. The role of the unit matrix is the
same as for real numbers the role of the number 1. For a real number

í  Õ ! ¤.� û



The inverse matrix A.6 517
a again, the concept corresponding to the inverse matrix is the number
1
/︁

a .

There exist good numerical algorithms for inverting a matrix. Inversion
is however heavy for large matrices: the computational work required
is proportional to the matrix size n to the third power! So, inverting a
size 20×20 matrix takes about 8 times the computation time needed for
inverting a size 10×10 matrix.

Manual inversion is only readily possible for matrices of size up to 3×3
— and is not worth the bother (Reagan, 2021).

For example, if

A =
[︄

3 1
2 4

]︄
,

its inverse matrix is

A−1 =
[︄

0.4 −0.1
−0.2 0.3

]︄
,

which is easily verified:

A · A−1 =
[︄

3 ·0.4−1 ·0.2 −3 ·0.1+1 ·0.3
2 ·0.4−4 ·0.2 −2 ·0.1+4 ·0.3

]︄
=
[︄

1 0
0 1

]︄
= I,

and similarly A−1 · A = I.

A valuable tool in matrix computations is the MATLAB™ software which
is in widespread use within the science community. For home users, there
are similar open-source offerings like octave or scilab.

In practice, the computation is based on solving systems of linear
equations: if X = A−1 is the inverse of the matrix A, it holds, for the case
of a size 2×2 matrix, that

AX = I,

or [︄
a11 a12

a21 a22

]︄[︄
x11 x12

x21 x22

]︄
=
[︄

1 0
0 1

]︄
,

or

a11x11 +a12x21 = 1
a21x11 +a22x21 = 0

}︄
=⇒ x11, x21,

a11x12 +a12x22 = 0
a21x12 +a22x22 = 1

}︄
=⇒ x12, x22.

If the matrix is of size n×n, similarly n systems of equations are created,
with in each, n equations in n unknowns.
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Singularity Just like the division 1
/︁

a does not work for all numbers a
— specifically not for a = 0 — also the computation of the inverse
matrix does not work for all matrices. A simple example of a
non-invertible matrix is

A =
[︃

1 1
1 1

]︃
,

and the solution equations above become conflicting:

x11 + x21 = both 1 and 0,

x12 + x22 = the same.

Such a matrix is called singular.

^ A.7 The determinant of a matrix

The determinant of a square matrix is a single number that characterises
the nature of the mapping that a matrix represents, from one vector space
into another of the same number of dimensions: how a small volume
element in one vector space is mapped onto the other one, the ratio of
the source and destination volumes. Also, if the determinant vanishes,
that means that the mapping has no inverse mapping and the matrix is
singular.

The determinant is computed recursively:

det

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann

⎤⎥⎥⎥⎥⎦=

= a11 det

⎡⎢⎢⎢⎢⎣
a22 a23 · · · a2n

a32 a33 · · · a3n
...

... . . . ...
an2 an3 · · · ann

⎤⎥⎥⎥⎥⎦−a12 det

⎡⎢⎢⎢⎢⎣
a21 a23 · · · a2n

a31 a33 · · · a3n
...

... . . . ...
an1 an3 · · · ann

⎤⎥⎥⎥⎥⎦+·· ·

· · ·+ (−1)n−1 a1n det

⎡⎢⎢⎢⎢⎣
a21 a22 · · · a2(n−1)

a31 a32 · · · a3(n−1)
...

... . . . ...
an1 an2 · · · an(n−1)

⎤⎥⎥⎥⎥⎦ .

The rule is: for every element of the first row, multiply with the deter-
minant of the matrix formed by deleting the first row and the column of
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that element.2 And alternate the algebraic sign: a plus sign for odd- j a1 j, 2etumerkki

a minus sign for even- j a1 j.

A typical property of the determinant is that is is fully antisymmetric:
exchange, in the matrix A, any two columns, or any two rows, with each
other, and the determinant of the new matrix A′ will be det A′ =−det A.

^ A.8 Vectorial products

The scalar product of two vectors a and b is defined as⟨︁
a ·b⟩︁ def= ∥a∥∥b∥cosα,

in which α is the angle between the vectors.

Let
{︁

e1,e2, . . . ,en
}︁

be an orthonormal basis, that is, a set of vectors ortonormaali
kantaspanning an n-dimensional vector space, for which

⟨︁
ei ·e j

⟩︁=
⎧⎨⎩1 if i = j,

0 if i ̸= j.

Write

a= a1 e1 +a2 e2 +·· ·+an en, b= b1 e1 +b2 e2 +·· ·+bn en,

and

a=

⎡⎢⎢⎢⎢⎣
a1

a2
...

an

⎤⎥⎥⎥⎥⎦ , b=

⎡⎢⎢⎢⎢⎣
b1

b2
...

bn

⎤⎥⎥⎥⎥⎦ .

Now, the scalar product of the vectors is calculated as a matrix product:⟨︁
a ·b⟩︁ def= aTb=bTa= a1 b1 +a2 b2 +·· ·+an bn.

It is seen that the scalar product is symmetric:⟨︁
a ·b⟩︁= ⟨︁b ·a⟩︁.

The vectorial product of vectors is more complicated. In two dimensions
it is a scalar: ⟨︁

a×b
⟩︁ def= ∥a∥∥b∥sinα,

2This determinant is called the cofactor of that matrix element.
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with α the oriented angle between the two vectors.

In three dimensions the vectorial product is itself a vector, of length⃦⃦⟨︁
a×b

⟩︁⃦⃦= ∥a∥∥b∥sinα,

which is perpendicular to both vectors a and b:⟨︁
a×b

⟩︁⊥ a,
⟨︁
a×b

⟩︁⊥b, ⇐⇒
⟨︂⟨︁

a×b
⟩︁ ·a⟩︂=

⟨︂⟨︁
a×b

⟩︁ ·b⟩︂= 0.

The vectorial product is antisymmetric:⟨︁
a×b

⟩︁=−⟨︁b×a
⟩︁
,

and thus
⟨︁
a×a

⟩︁= 0. It needs an orientation, a corkscrew rule: if you turn
a corkscrew from a to b, it will move forward in the direction of

⟨︁
a×b

⟩︁
.

For the orthonormal basis in three dimensions
{︁

e1,e2,e3
}︁

this means⟨︁
e1 ×e1

⟩︁= ⟨︁e2 ×e2
⟩︁= ⟨︁e3 ×e3

⟩︁= 0,⟨︁
e1 ×e2

⟩︁= e3,
⟨︁
e2 ×e3

⟩︁= e1,
⟨︁
e3 ×e1

⟩︁= e2,

assuming that the basis vectors span a right-handed co-ordinate frame.

Calculation is done using determinants:

⟨︁
a×b

⟩︁= det

⎡⎢⎣ e1 e2 e3

a1 a2 a3

b1 b2 b3

⎤⎥⎦=

= e1 det

[︄
a2 a3

b2 b3

]︄
+e2 det

[︄
a3 a1

b3 b1

]︄
+e3 det

[︄
a1 a2

b1 b2

]︄
=

= (a2 b3 −a3 b2)e1 + (a3 b1 −a1 b3)e2 + (a1 b2 −a2 b1)e3.
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^ A short introduction to
magnetohydrodynamics

BB
^ B.1 Plasma

A plasma is a gas in which the atoms have been stripped of part of
their electrons: ionisation. The negatively charged electrons are moving
around freely within the plasma, among the remaining, positively charged
atom remnants, or ions. In space, plasmas are commonly hot, with
temperatures varying from thousands to billions of degrees.

Plasmas in space are so extended and rarefied, that they behave like ohut

superconductors: electric currents run through them for a long time suprajohdin

without noticeable weakening. For this reason, a magnetic field also
cannot move though a plasma: matter and field lines move hand-in-hand.
This is called frozen-in magnetism or Alfvén’s theorem. If a plasma
is compressed, the magnetic field contained in it will grow stronger:
similarly if the plasma is stretched and rolled up like puff pastry, as is lehtitaikina

happening inside the Sun’s convection layer. This is how natural dynamos
work.

^ B.2 Maxwell’s equations

Maxwell’s field equations are1 1⟨︁∇×B
⟩︁=µ0 j+ϵ0µ0

∂E
∂t ,

⟨︁∇×E
⟩︁=−∂B

∂t ,⟨︁∇·B⟩︁= 0,
⟨︁∇·E⟩︁= ρ

ϵ0
.

(B.1)

(E electric field vector, B magnetic field vector, j vector of electric current
density, ρ density of electric charge, ϵ0, µ0 constants of nature.)

1This compact form of the equations we owe to Oliver Heaviside (1850–1925). Heaviside
was a telegraph researcher who developed the theory of electric circuits. He also
proposed the existence of the ionosphere as an explanation for the long range — beyond
the horizon — of radio waves.
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The partial differential operators ∇× and ∇· are known in vector calcu-
lus as curl and divergence operators, curl and div. They are defined asroottori

follows:

curlE= ⟨︁∇×E
⟩︁ def= det

⎡⎢⎢⎣
i j k
∂
∂x

∂
∂y

∂
∂z

Ex E y Ez

⎤⎥⎥⎦=

=
(︃
∂Ez
∂y − ∂E y

∂z

)︃
i+
(︂
∂Ex
∂z − ∂Ez

∂x

)︂
j+
(︃
∂E y
∂x − ∂Ex

∂y

)︃
k,

divE= ⟨︁∇·E⟩︁ def= ∂Ex
∂x + ∂E y

∂y + ∂Ez
∂z ,

in which
{︁

i, j,k
}︁

is the orthonormal basis of the (x, y, z) co-ordinate frame,ortonormaali
kanta and

E= Ex i+E y j+Ez k.

^ B.3 “Frozen-in” magnetic field

In a superconductor there can be no net electric field integrated around a
loop — as it would cause an infinite electric current! So˛

∂S

⟨︁
E · t⟩︁ds = 0,

in which t is the tangent vector of loop ∂S. The Stokes loop integral
theorem (Wikipedia, Kelvin–Stokes theorem) — also called the Kelvin–
Stokes theorem because Lord Kelvin2 apparently discovered it — says2

that this integral is the same as the surface integral of the curl
⟨︁∇×E

⟩︁
of E over the surface S, the edge of which is ∂S. That integral must thus
also vanish: ¨

S

⟨︂⟨︁∇×E
⟩︁ ·n⟩︂dS =

˛
∂S

⟨︁
E · t⟩︁ds = 0.

In this, n is the normal on the surface S. From the Maxwell–Faraday
equation B.1 follows now¨

S

⟨︂
∂B
∂t ·n

⟩︂
dS = 0 =⇒

¨
S

∂
∂t
⟨︁
B ·n⟩︁dS =

¨
S

⟨︂
B · ∂n

∂t

⟩︂
dS.

Here, the integrand on the right,
⟨︂

B · ∂n
∂t

⟩︂
, vanishes if the loop surface S

is chosen to be fixed, as then ∂n
∂t = 0. Then, if also ∂S is constant:¨

S

∂
∂t
⟨︁
B ·n⟩︁dS = 0 =⇒ ∂

∂t

¨
S

⟨︁
B ·n⟩︁dS = 0.

2Sir William Thomson (1824–1907) FRS FRSE (Lord Kelvin) was a British physicist,
engineer and inventor. He was ennobled in 1866 for his work on the trans-Atlantic
telegraph cable.
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The integral

˜
S

⟨︁
B ·n⟩︁dS is the magnetic flux through the loop surface S, vuo

the total number of field lines passing though the loop, which thus must
be constant in time and cannot change. This is why a superconducting
sphere floats, or levitates, on a magnetic field: the field cannot penetrate
the sphere.

In a moving plasma, the assumption that ∂S is constant no longer
holds. We assert without proof (Wikipedia, Alfvén’s theorem) that the
above applies also in a plasma for an arbitrary loop connected with the
plasma: the plasma and the field are moving hand-in-hand — though the
plasma can freely flow along the field lines. If the plasma is compressed,
the magnetic field strength increases.3 3

^ B.4 History of the field

The term “plasma” was invented by Nobel laureate Irving Langmuir4 4

(1927). The scientific discipline studying plasmas is called magnetohydro-
dynamics (MHD). It has been estimated that, in the universe, over 99% of
normal — not “dark” — matter is plasma.

A well-known magnetohydrodynamicist was the Swedish Nobel laure-
ate Hannes Alfvén, 1908–1995. He described in 1942 how in a supercon-
ductor the magnetic field lines move along with the matter.

^ Self-test questions

1. In a vacuum, both electric charge ρ = 0 and electric current j = 0.
The first two Maxwell equations B.1 become⟨︁∇×B

⟩︁= ϵ0µ0
∂E
∂t ,

⟨︁∇×E
⟩︁=−∂B

∂t . (B.2)

Letting the operator ∇× act from the left followed by substitution
yields ⟨︂

∇×⟨︁∇×B
⟩︁⟩︂= ϵ0µ0

∂
⟨︁∇×E

⟩︁
∂t =−ϵ0µ0

∂2B
∂t2 . (B.3)

3A spectacular example of this is the magnetic field of a neutron star or pulsar
(Wikipedia, Pulsar), the collapsed, still rapidly spinning core of a star.

4Irving Langmuir (1881–1957) was an American chemist and physicist known for his
research on matter.
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We now use a theorem from vector calculus,⟨︂
a×⟨︁b×c

⟩︁⟩︂=b
⟨︁
a ·c⟩︁−c

⟨︁
a ·b⟩︁,

which in our case means⟨︂
∇×⟨︁∇×B

⟩︁⟩︂=∇⟨︁∇·B⟩︁−⟨︁∇·∇⟩︁B.

Here, according to the third Maxwell equation B.1,
⟨︁∇·B⟩︁= 0, so⟨︂

∇×⟨︁∇×B
⟩︁⟩︂=−⟨︁∇·∇⟩︁B=−

(︃
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)︃
B,

and, with equation B.3:(︃
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 −ϵ0µ0
∂2

∂t2

)︃
B= 0. (B.4)

(a) Show by substitution that B(u) is a solution to this equation
if u = x− ct or u = x+ ct. Use the chain rule.

(b) What is the value of parameter c?

(c) What other solutions can you think of?

(d) Now let equations B.2 be acted upon by the operator ∇× and
substitute the other way around to find a similar equation for
E.

(e) Alternatively, assume B=B(x, t) and decompose equation B.4:(︃
∂2

∂x2 −ϵ0µ0
∂2

∂t2

)︃
B= 0

=⇒
(︂
∂
∂x −⎷

ϵ0µ0
∂
∂t

)︂(︂
∂
∂x +⎷

ϵ0µ0
∂
∂t

)︂
B= 0,

to which the separate equations(︂
∂
∂x −⎷

ϵ0µ0
∂
∂t

)︂
B= 0,

(︂
∂
∂x +⎷

ϵ0µ0
∂
∂t

)︂
B= 0

lead to the same solutions.

(f) [Advanced] Still alternatively, try separation of variables:
write

B(x, t)=B0 · X(x) ·T(t),

and derive separate differential equations for the scalar func-
tions X(x) and T(t). Don’t be confused by the vector constant
B0.
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^ The Kepler orbital elements for
satellites

CC
^ C.1 Angular elements describing the orientation in space of

the orbit

Ω The right ascension, or astronomical longitude, of the ascending rektaskensio

node. The zero point of this longitude is the place among the
stars where the plane of the ecliptic and the plane of the equator
intersect, and where the Sun crosses the equator at the beginning
of spring: the vernal equinox point. kevät-

päiväntasaus
i The inclination, the tilt angle of the orbital plane with respect

to the equatorial plane. For GPS satellites i = 55◦. This is also
the highest latitude (north and south) where the satellite moves
through the zenith.

ω The argument of perigee. The angular distance, seen from the
Earth’s centre, between the ascending node and the perigee of the nouseva solmu

satellite orbit.

^ C.2 Elements describing the orbit’s size and shape

a The semi-major axis of the satellite orbit, the “mean radius” of the isoakselin
puolikasorbit. The mean height of the satellite is obtained from this by

subtracting the Earth’s radius.

e The eccentricity of the satellite orbit, e =
⎷

a2 −b2
/︂

a , in which
b is the semi-minor axis. This describes how much the Earth’s pikkuakselin

puolikascentre is “to the side” from the centre of the orbital ellipse, in other
words, how large is the height difference between the perigee (the
lowest point of the orbit) and apogee (the highest point).
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^ C.3 Elements describing the satellite’s place in its orbit, its

“time table”

There are three alternatives:

ν(t) true anomaly. The direction angle of the satellite in the orbitalluonnollinen
anomalia plane as seen from the Earth’s centre, reckoned from the perigee

in the direction of motion.

E(t) eccentric anomaly. The direction angle of the satellite in the orbital
plane as seen from the centre of the ellipse, after the orbital ellipse
has been inflated into a circle.

M(t) mean anomaly. The time that has elapsed since the last passage
through the perigee, in units of the satellite’s orbital period P.

Between these exist the following relationships, which may be used to
convert them into each other:

tan
(︁1

2ν(t)
)︁

tan
(︁1

2 E(t)
)︁ =√︃1+ e

1− e , E(t)= M(t)+ esinE(t).

Study figure 17.14. E and ν are geometric quantities. The mean anomaly
M, on the other hand, is a mere measure of time, scaled to the period P of
the satellite, and referenced to its time of passage τ through the perigee:

M(t) def= 2π t−τ
P .

^ Self-test questions

1. From the definition of inclination: “This is also the highest latitude
(north and south) where the satellite moves through the zenith.”
Does this precisely apply on a flattened Earth?
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Index

A
Aalto University, 15
Aboa (Dronning Maud Land, Antarctica),

506
Academy of Sciences of France, 8, 9
acceleration, from GPS measurements,

494
accuracy vs. precision, 28
active spare (GPS), 291
adjustment

as a projection, 399
average, 366
correction, 398
linear regression, 367
results, 28
weight and correction, 359, 360
weight coefficient, 359
weighting, 359

adjustment calculus, 28
gross errors, 400

adjustment method
by conditions, 396
parametric, 363, 396

aerial mapping, in detail survey, 228
aerial work platform, 260
aerotriangulation, 43
AGA/Minilir, 248
Air Force, USA, 290
air pressure

at GNSS station, 500
variation, 493, 507

airborne laser scanning (ALS), 252, 254
Akaike information criterion, 395
Åland Sea (Finland, Sweden), 95
Alexandria (Egypt), 3
Alfvén, Hannes, 523
Alfvén’s theorem, 521
alidade

description, 124

and plane table, 43
alidade level, 127

adjustment, 128
alien (LAGEOS), 481
Alkmaar (The Netherlands), 3, 5, 42
almanac, GPS, 291, 293, 328
almucantar, 449
alternative hypothesis, 400, 411
ambiguity

difference, 338
distance measurement, 196
GPS, 305, 342
spinning encoding circle, 151

ambiguity problem, 286, 304
distance measurement, 196

ambiguity resolution
distance measurement, 197
GPS, 343
one-dimensional, 342

The American Practical Navigator, 157,
170

amplitude modulation, 291
Amsterdam (The Netherlands), 78, 93
Amsterdam Ordnance Datum, see NAP
Andes (mountain range), 9
angle measurement, 119

digital, 137
angle transformation, 164

of direction unknown, 165
angular distance, geocentric, 437, 438

calculation equation, 438
ANNA (satellite), 464
Antarctica, 506
antenna (GNSS)

calibration, 299
choke-ring model, 298, 299
electric centre, 298, 300
forced centring, 133
phase-centre variation, 298, 299
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antenna reference point (ARP), 298
anti-aircraft shells, 462
anticorrelation, 37
apogee, 525
apogee height, 476
Apollo project, 480
approach map, 126
approximate co-ordinates, 82
approximate value (linearisation), 371
approximate values, vector of, 372
APPS (software), 355
aquifer, 492
Aquila (Eagle, constellation), 458
arctan (function), 70
Arctic summer, 505
area levelling

explanation, 112, 113
check, 114
earthwork, 260
result, 113

argument of latitude, 328
Aries (Ram, constellation), 459
Aries, First Point of, 459
“as-built” mapping, 232, 245
ascending node, right ascension of, 525
Ashtech Z-12 (GPS receiver), 298
asphalt laying, 247
asphalt, hot, refraction, 179
astatisation of spring gravimeter, 427
asteroid, orbit determination, 362
asthenosphere, 489, 491
astigmatism, 101
astrolabe, 449, 450

Danjon, 450
Aswan (Egypt), 3
atan2 (function), 70
atmosphere, 502

angular momentum, 466
propagation delay, 309
temperature, 500

atmospheric inversion, 180
atomic clock, relativity, 95
atomic time (TAI), 468
attraction (Newton), 6
attribute data, 233, 234
aurora, 473
AUSPOS (software), 355
automatic target recognition (ATR), 150,

154
automation of measurement, 107
auxiliary closing direction, 175
auxiliary point, 225, 229
auxiliary starting direction, 175
average, 359

adjustment, 366
mean error, 361

avskärning, 158
azimuth, 65

origin of word, 66
astronomical, 276
geodetic, 277
measurement, 385

B
Baarda, Willem, 403
Baeyer, Johann Jacob, 10
Baker, James, 465
Baker–Nunn camera, 464
Baltic Sea

mareographs, 511
sea-surface topography, 508

bar-code staff, 107
barometric height determination, 95
barycentric co-ordinates, 63
base extension network, 4
base network

first-order, 137
lower-order, 218
measurement technology, 212
purpose of use, 212

base point, 246
base station

DGPS, 345
virtual, 351

baseline
in Lapland, 42
in Nummela, 185, 194
of Snellius, 3

base-network measurement, 214
methods, 212, 214
task, 211

base-station network
DGPS, 350
RTK, 350

battery of GPS satellite, 289
beehive pattern, 255
BeiDou (positioning system), 283, 344
bell curve, see normal distribution
benchmark (image), 131
benchmark set, 211

quality, 214
requirements, 214

Bergen op Zoom (The Netherlands), 3, 5,
42

Bergensbanen (Norway), 235
Bergstrand, Erik Ö., 185
BGI, International Gravimetric Bureau,

448
BIFROST project, 491
birefringence, 189
Birmingham (UK), 202
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black body, thermal radiation spectrum,

189
black hole, 480
GPS Block I, II, IIA, IIR, IIR-M, IIF, 289
GPS Block I, 291
GPS Block IIIA, 289
block signal, 151
blue film, 496, 497
Boller and Chivens, 465
Bomford, Guy, 279
Bonferroni correction, 412
Bonsdorff, Ilmari, 211
Bouguer anomaly, 447

calculation, 447
Southern Finland, 448

Bouguer plate, 447
Bouguer, Pierre, 9, 448
Bowditch method, 170, 175, 178
Bowditch, Nathaniel, 157, 170
“The Bowditch”, 157, 170
Box, George E. P., 55
break line in terrain, 254
broadcast ephemeris, 291, 327

quality, 341
upload, 290
use, 328

Bromarv guest harbour, 51
Broom Bridge (Dublin), 265
Bruns equation, 432, 433
Bruns, Ernst Heinrich, 432
building location, setting out, 245
building permit, 245
built environment, 17, 251
Buys Ballot, Christoph, 508
Buys Ballot’s law, 508

C
C/A code, 292, 293, 295

measurement accuracy, 295
modulation state, 295

CAD, computer-aided design, 53, 255
cadastral system, 16
caesium clock, 26

GPS receiver, 290
GPS satellite, 287

calcite, 189
calibration (metrology), 247
calibration baseline, 200
calving of icebergs, 505
camwheel (modulator), 194
Canada

land uplift, 85, 491
magnetic pole, 485

Cancer (Crab, constellation), 459
Capricorn (constellation), 459
Caracas (Venezuela), 492

Carloforte (Italy), 467
carrier wavelength, 303
Carrington event, 478
cartography, 46, 53
Cassini, Jean Dominique, 7
catenary, 187
cause-and-effect relationship, 36, 40
Cayenne (French Guyana), 13
CDMA, see code division multiple access
celestial mechanics, 5
celestial pole

elevation angle, 5
motion, 470
projection of direction onto horizontal,

277
celestial sphere, 458, 460
centigon, 27
centring of theodolite, 126, 132

why, 125
crude, 127
precise, 128

certainty, statistical, 33, 34
CHAMP (satellite), 494, 502

accelerometer, 494
GPS receiver, 494

Chandler wobble, 466
Chandler, Seth Carlo, 466
change plate (levelling), 111
characteristic polynomial, 380
Charjui (Turkestan, Russia), 467
check using redundancy, 414
chemical polarity of water molecule, 203
chip rate, 297

C/A code, 295
P code, 297

chirality of life, 189
χ2 distribution, 402, 403

degrees of freedom, 402
MATLAB, 403
non-central, 403
test, 402–404

χ2
3 distribution, 407

choke-ring antenna, 298, 299
Cholesky decomposition, 398
Cincinnati (Ohio, USA), 467
Cinemascope (film format), 464
circle singularity (GPS), 322
circular arc, 240

setting out, 240
civil day, 457
civil engineering, 19
civil time, 461, 467
Clairaut, Alexis, 13
Clairaut’s theorem, 13
Clapeyron, Emile, 500
classical mechanics, 5
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Clausius, Rudolf, 500
Clausius–Clapeyron equation, 500
climate model, 502
climatic global warming, 502, 505, 510
climatology, 308
clock offset (GPS), 337
clock unknown (GPS), 303
closing error

check, 398
co-ordinates, 173, 177
direction, 176
triangle, 358, 359

clothoid, 243, 244
principle, 243
equation, 243
parameter, 244

coaxial solution, 195
code division multiple access (CDMA), 293

GLONASS-K, 344
codomain, 31
cofactor, 519
coherence length

VLBI, 482
white light, 191

coin flip, 30
coin, fair, 32
coincidence level, 102
coincidence microscope, 124
collimation axis, see sight axis
collimation error, 142, 143, 154

definition, 122
correction, 144
determination, 143
field check, 144
from observation notebook, 143, 144

Colorado Springs (USA), 289
column vector, 514

saving paper, 516
comet, orbit determination, 362
“common-mode” error assumption, 335,

336
comparator (length calibration), 186
compass direction, 54
complete set, of horizontal directions, 163
complete sets, method of, 137, 161, 162

error reduction, 161
focusing, 136

complete-set average, 163, 168
components of position vector, 309
compound curve, 241

setting out, 242
comprehensive plan, 235
computer (human being), 362
computer, submarine, 287
conic section, 474
connecting levelling of tide gauge, 510

conservative field, 440
construction surveying, 245
construction, benchmarks needed, 214
continental ice sheet

Fennoscandian, 489
is a glacier, 505
mass change, 505
thickness, 505

continuity condition of transition curve,
244

continuous distribution, 32
control measure, 246
control segment (GPS), 289, 327
convection

in the Earth’s mantle, 486, 487
in the Earth’s outer core, 485
in the Sun, 470, 471

Conventional International Origin (CIO),
468

co-ordinate conversion, 49, 84
co-ordinate correction (Helmert), 272
co-ordinate frame

geocentric, 269
right-handed, 266, 267
topocentric, 269

co-ordinate reference frame, 55, 56, 77
national, 211

co-ordinate reference system, 55, 77
geocentric, 47, 265
inertial or celestial, 266
plane, 47
realisation, 77
terrestrial (ECEF), 266
three-dimensional, 46
two-dimensional, 46

co-ordinate reference systems, guidance,
213

co-ordinate transformation, 55, 56, 213
co-ordinates

2D+1D, 83, 277
Cartesian, 268
ellipsoidal, 267
geocentric, 266

notation, 265
geodetic, 47, 267

figure, 49
construction, 48
term, 49
why use, 50

geographical, 47, 267
in geodesy, 46
KKJ, 279
local, 66

connection to national frame, 67
map projection, 46, 47
(N,E,U), 273, 274
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polar, 65, 66
project specific, 67
rectangular, 47, 84, 268

figure, 49
why use, 50

spherical, 267
temporary, 67
three-dimensional, 46, 47

rectangular, 48
topocentric, 47, 50, 268

notation, 269
rectangular, 268

Coriolis force, 507
Coriolis, Gaspard-Gustave de, 507
corkscrew, 266, 267
corner-cube prism, 197, 198
correction dissemination

alternatives, 350
communications satellite, 351
mobile Internet, 351

correlation, 42
definition, 36
and causation, 40
examples, 37
of aerial images, 254
of tree rings, 294
of VLBI signals, 481
perfect, 36

correlation method (GPS), 294, 295
correlator, optical (Väisälä), 192
cosine rule on sphere, 86

half-angle version, 87
cost, of an error, 35, 411
covariance, 36
critical inclination, 478
Croll, James, 503
cross-dipole antenna, 299
crosshairs

adjustment screw, 105
better, 137
damage, 125
history, 99

cross-measure, 224, 246
cross-section measurement, 115, 116
crosstalk, 293
cruise missile, 256
crustal motion

anthropogenic, 492
monitoring, 493

culmination of a star, 460
cultural data, 233, 234
curl (operator), 522
curvature correction

Earth’s surface, 204
measurement ray, 204

cut-off elevation angle, for GNSS
observations, 291, 298

cycle slip, 338, 340
Cygnus (Swan, constellation), 458

D
Dandelin spheres, 474
dangerous circle

GPS, 322
resection, 160

Danish Sound bridge (Denmark), 247
data layer, 234
data snooping, 405
datum, 77, 79

European, 280
geodetic, 77

datum difference (vertical datum), 81
datum point

concept, 77
choice, 81, 82
proximity, 78

datum transformation, 78
between two ellipsoids, 272, 275
height, 81
in the plane, 82
small parameter values, 82, 83

Decca
system, 284, 285
carrier wave, 284
hyperbola, 285, 286
lane, 286
receiver, 285
station, 284

decimilligon, 27
declination, 460
deep-sea trench, 435, 487
deformation

detection, 494
measurement, 114, 246
monitoring, 246

deformation analysis, 395
datum point, 418, 419
hypotheses, 417
time, 417

deformation monitoring, 493
degree (angle unit), 26
degree Celsius, 26
Delaunay triangulation, 62, 255
Delaunay, Boris, 62
Delaunay, Vadim, 62
dendrochronology, 193, 294
Department of Defense, USA, 290
dependence, statistical, 40
Descartes, René, 268
design matrix

definition, 375
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azimuth, 385
Helmert transformation, 389, 390
linear regression, 367
pseudo-range, 313
slant range, 383, 384
station adjustment, 163

design speed, 244
detail survey

definition, 222
carrying out, 228
data measured, 228
equipment and software, 229
purpose of use, 229
RTK, 222
workflow, 229, 230

detailed shore plan area, 236
determinant, 518

antisymmetry, 519
computing, 518
interpretation, 374
vanishing, 518

deuterium, 504
dew point, 501
DGPS, see differential GPS
die, 30

cast, 30, 31
fair, 31

Diego Garcia (island, Indian Ocean), 300,
302

difference observation, 336, 337, 340
double, 336, 339–342
effect on errors, 338
single, 336, 340
triple, 336, 339, 340

difference of ambiguities, 338
difference transformation (Helmert), 75
differential GPS (DGPS), 345–347

difference observation, 346
Digges, Leonard, 119
digital elevation model (DEM), 256

term, 251
digital height model (DHM), 251
digital terrain model (DTM), 256

term, 251
earthwork, 260
visualisation, 255
volume calculation, 263

dilution of precision (DOP), 313, 318, 333
description, 312
azimuth symmetric, 321
calculation, 315
calculation script, 332
example, 322, 323
variants, 314

dimension, 23
direction cosine (linearisation), 312

direction vector
to quasar, 481
to satellite, 308, 310

discrete wavelet transform (DWT), 255
dispersion in ionosphere, 305
distance

geometric, 302, 309
intercontinental, 45

distance measurement
curvature corrections, 204
electronic, 44, 195
electro-optical, 44
height reduction, 206
infrared light, 44
instrumental correction, 201
laser light, 44, 196
LED, light-emitting diode, 44, 196
mechanical, 44, 185
microwaves, 44, 196
modulation, 196
random error, 201
reduction to reference level, 206, 207
refraction correction, 203
second velocity correction, 204, 205
steel tape, 185
terrain correction, 205
visible light, 44
white light, 196

distance measurement device, see
range-finder

Distomat (range-finder), 195
distribution, see probability density

distribution
disturbing potential, 430, 432
div (operator), 522
DNA (molecule), 189
DOP ellipsoid, 316, 317

figure, 317
principal axes, 316, 317

Doppler positioning system, see Navy
Navigation Satellite System

DORIS
description, 483
beacon, 483

double difference (RTK), 347
double pentagon prism, 223
downbanding, 293
drift

gravimeter, 426
quartz oscillator, 338
range-finder, 199

drinking-water extraction, 114, 492
Dronning Maud Land (Antarctica), 506
dry air, partial pressure, 499
dynamo, natural, 471, 485, 521
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E
Earth

average density, 7
centre of mass, 47, 57, 265
core density, 7
core heat, 487
crustal density, 7
gravitational field, 6

determination, 496, 498
internal structure, 485
magnetic field, 473, 484, 485
magnetic poles, 485
mantle density, 7
mantle viscosity, 489
mass distribution model, 6
mean radius, 86
pear shape, 11
radius, 3
radius of curvature, 5, 180

transversal, 267, 268
rotation rate, 13
thermal energy, 487

Earth ellipsoid parameters, 7
Earth flattening, 6–8, 13
Earth orbit, 457, 458

eccentricity, 505
major axis, 504

Earth orientation parameters (EOP), 85,
331, 468

Earth rotation, 457, 479
centrifugal force, 429, 453
Coriolis force, 507
monitoring, 461, 482
period, 291
rate, 467
variation, 85, 465, 466, 468

Earth rotation axis
direction, 4, 47, 57, 265
momentaneous, 465, 468
motion, 469, 470
tilt, 504
VLBI, 482

Earth, figure of the, 15, 476
mathematical, 10, 15, 435
physical, 6, 15
true, 9

earthquake
Izmit (Turkey), 495
plate boundary, 493
Sendai (Japan), 493

earthquake-prone area, 493
Earth’s surface forms, 251
earthwork calculation, 116, 245, 260
Easter Scheldt storm-surge barrier (The

Netherlands), 247, 248
easting, 59, 65

eccentric anomaly, 526
eccentricity error, 142
eccentricity in height direction, 183
eclipse, 458
ecliptic, 458
ED50, 11, 277

precision, 280
EGM2008, 118, 439
EGNOS, 351
Eiffel Tower, 72 names, 194, 330, 362, 453,

500, 508
eigenvalue problem, 380, 381
Einstein, Albert, 189, 426
elasticity, 489
electrical resistivity tomography, 248
electromagnetic field, 189
electromagnetic field theory, 188
electromagnetic radiation, 188

in air, 201
polarisation, 192
quantisation, 189
spectrum, 190

electromagnetic wave, 188
elevator experiment, Einstein’s, 426
elevator speech, 282
elimination and back-substitution, 368
ellipse

definition, 474
focal point, 474

ellipsoid of revolution, 7, 49
as figure of the Earth, 13
geodesic, 12

eLoran (navigation system), 284
encoding circle, 150

absolute, 149
incremental, 150

energetic correctness, 446
engineering geodesy, 114, 246
engineering surveying, 246
entrance pupil (aperture), 99
eötvös (unit), 453
Eötvös tensor, 452, 453

measurement, 452
on Earth’s surface, 453

Eötvös, Loránd, 426, 452
ephemeris time (ET), 468
equinox, vernal, 266, 459
equipotential surface

description, 90
curvatures, 452
of the geopotential, 432, 433
of the normal potential, 430, 432, 433
radii of curvature, 452
spacing, 442

equi-value curve, 428
era, common or Christian, 2
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Eratosthenes, 1–3
Erdmessung, 15
error

examples, 30
gross, 29, 402, 411

simulated, 408
of the first kind, 410
of the second kind, 411
random, 29
systematic, 29

elimination, 136
error ellipse, 39, 40, 380

and variance matrix, 41
axes, 40
axes directions, 381
centre, 40
semi-axes, 381

error ellipsoid, 40, 314, 316, 317
azimuth symmetric, 320

error propagation, 37
forward geodetic problem, 378

eteenpäin leikkaus, 158
ETOPO1 (terrain model), 252
ETOPO2 (terrain model), 253
ETRS89, 57, 279
ETRS-GKn, 62
ETRS-TM35FIN, 61
Euler free nutation, 466
Euler notation, 428, 451
Euler spiral, 243
Euler, Leonhard, 243, 466
Eurasian plate

motion, 281
sea floor, 486

EUREF data centre, 86
EUREF, Reference Frame Subcommission

for Europe, 57
EUREF89, 57, 280
EUREF-FIN, 279, 280

creation, 57
densification, 217
determination, 217
map projection, 61

Everest, George, 10, 448
Everest, Mount, 10, 220
excavation work, damage, 249
exit pupil, 99
expectancy

coin flip, 32
continuous quantity, 34
die cast, 32
discrete quantity, 31

expectancy (operator), 35, 360
eyeglasses

cylindrical, 101
of observer, 100, 101

prismatic, 101

F
face left/right, 136

error elimination, 161
Falkland Islands (South Atlantic), 497
false easting, 60
farsightedness, 101
fault, geological, 492, 495
Fennoscandia

crustal motions, 491
land uplift, 85, 489

cross-section, 490
pattern, 490

FGI, Finnish Geospatial Research
Institute (National Land Survey)

FinnRef, 217
GNSS service, 353

field equations
Einstein’s, 426
Maxwell’s, 521

field gravimeter, 426
field sketch, 224
FIN2000 (geoid model), 94
FIN2005N00 (geoid model), 279
Finnish Transport Infrastructure Agency’s

DGPS service, 352
FinnRef, 216, 217
fix solution (RTK), 349
Fizeau, Hippolyte, 194
Fizeau’s method, 195
flat Earth approximation, 14, 89
flight simulator, 256
float solution (RTK), 349
floating mark (photogrammetry), 43
flood safety, 246
fluid surface as a reference, 94
fluxion, 325
focusing, 99, 100
footprint of satellite altimeter, 506
footscrew, 124
forced centring

application, 134
principle, 133

forced-centring device, 131
attachment to tripod, 124
image, 125
parallel shift, 130

forward geodetic problem
definition, 68
error propagation, 378
generally, 68
in the plane, 68

foundation of a building, 246
four-parameter transformation, see

Helmert transformation in the
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plane

free fall, acceleration in, 425
free nutation (Euler), 466
free-air anomaly, 434

Southern Finland, 448
free-stationing survey, 227, 228

figure, 228
setting out, 239
with a tacheometer, 227

frequency calibration, 201
frequency division multiple access

(FDMA), 344
frequency measurement, 45
frequency modulation, 291
Fresnel, Augustin-Jean, 189
Frisius, Gemma, 3
frost heaving, 126, 128
“frozen-in” magnetic field, 472, 521, 522
Fuglenes (Norway), 10
functional model, 397

model error, 403, 404
slant range, 385

fundamental equation of physical geodesy,
435, 437

G
Gaithersburg (Maryland, USA), 467
Galilei, Galileo, 194, 425
Galileo (positioning system), 283, 344
Gascoigne, William, 99
Gauss, Carl Friedrich, 357, 359, 362, 435
Gaussian distribution, see normal

distribution
Gauss–Krüger (map projection), 59, 61

conformality, 62
scale distortion, 63
zone division, 59

GDGPS, Global Differential GPS, 353
general circulation model (GCM), 256
general plan, 235
generalisation, of a map, 18
Geneva (Switzerland), 114
GeoBasic (Leica), 155
geocentricity, 47, 56, 57
GeoCOM (Leica), 154
geodesic, 12

measurement line, 13
geodesy, definition, 14, 15
geodetic network

European, 11
GPS, 342
orientation, 276
reliability, 395
terrestrial, 219
three-dimensional, 218, 219

Geodimeter (range-finder), 44, 185

geodynamics, 15, 84, 331, 479
exotic techniques, 480
local, 492

geographic information technology, 233
geoid

definition, 14, 89
determination, 256, 435
European, 11
global, 438
term, 10, 15

geoid height, 433, 439
computation, 437

near zone, 438
variation, 436

geoid map
global, 494, 498
GOCE, 497

geoid model, 84
Bomford, 277
FIN2000, 94
FIN2005N00, 279

geoid undulation, 433
geological clock, 486
geomensuration, 15
geophysical research, 493, 505
geopotential, 90

as a co-ordinate, 46, 90
difference, 45, 443
energy, 439
fine structure, 494
gradient, 429
measurement unit, 441
variation, 436
visualisation, 429

geopotential model, 95
global, 438, 494

geopotential number, 443, 446
definition, 441

geopotential table, 429
geospatial information, 18

shared use, 233
geostrophic equations, 508
geostrophic flow, 508
Geotrim Oy, 352
Germain, Marie-Sophie, 357
GIS, geographic information system, 21,

233
glacial isostatic adjustment (GIA), 85, 488,

490, 509
glacial loading, 418
Global Navigation Satellite Systems, see

GNSS
Global Positioning System, see GPS
GLOBE (terrain model), 252
GLONASS (positioning system), 283, 318

frequencies, 344
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RTK, 350
SP3-c (precise ephemeris), 330

GLONASS-K, 344
GNSS, 45, 198

definition, 284
base-network measurement, 221
co-location, 509
Earth rotation monitoring, 468
geocentricity, 47
geodynamics, 479
land-ice research, 506
tidal loading, 493
tropospheric sounding, 501

GNSS buoy, 510
GNSS limbsounding, 502, 503
GNSS monitoring, 493

land uplift, 492
GNSS network

continuously operating, 216, 217
global, 503

GNSS radio occultation, 502, 503
GNSS receiver

on satellite, 502, 507, 509
software-defined, 300, 344

GOCE (satellite), 95, 497
name, 498
accelerometer, 497
climate research, 508
gravitational gradiometer, 497, 498
sea-surface topography, 499

gon (angle unit), 26, 27
Google Earth, 56, 255
Google Maps, 117, 118
Google Street View, 223
GPS, 45, 283

development, 289
modernisation, 291
original system, 284

GPS constellation, original, 291, 292
GPS measurement

geometry, 308, 311
goodness, 309, 318
repeat, 291

observable, 295, 300, 340
pseudo-range, 295, 309
relative, 319, 342
static, 319
vector, 340, 342
water-vapour influence, 203

GPS positioning, 284
geodetic, 303, 354
geometry, 308, 318
real-timeness, 344
task, 308

GPS post-processing, 344, 353
GPS receiver

clock correction, 302
clock offset, 302, 303, 309, 338
dual-frequency, 297, 303
geodetic, 300
received signal, 293

GPS satellite, 287
atomic clock, 287
clock correction, 289, 290, 327
clock offset, 303, 309, 339
communication channel, 289
components, 287
Doppler shift, 328
fingerprint, 293, 294
frequencies, 288
health status, 289, 327
lifetime, planned, 289
orbit, 324, 326
orbit data, 289
orbit perturbation, 289
orbital elements, 325
orbital inclination, 291, 324
orbital period, 291
orbital plane, 291, 325
radio transmitter, 288
solar panels, 289
three-axes stabilisation, 289
thruster, 289
transmission power, 288

GPS signal, 291, 292
bandwidth, 293
carrier frequencies, 304
carrier phase, 297, 303, 305, 340
carrier phase, raw, 304
correlation, 295
lock-on, 293, 327
modulation, 292
replica, 294, 295
wavelength, effective, 296

GPS time, 469
GPS/MET (satellite), 502
GPU, geopotential unit, 441
GRACE (satellite pair), 496, 497

accelerometer, 496
land-ice research, 505
microwave link, 496

GRACE Follow-On (GRACE-FO), 496
grad (angle unit), see gon
grad (operator), 450
grade measurement

arc length, 2
in Lapland, 8, 9, 42, 185
in Peru, 8
of Eratosthenes, 2
of Snellius, 3–5, 42
of Struve, 8
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plumb-line directions, difference, 2, 4,

5, 8
gradient, 428
gradient vector, 428
graduation circle

eccentricity error, 122
manufacture, 137
reading, 140, 141

graduation error, 142
graduation machine, 137
graduation of levelling staff, 109

bar code, 109
chessboard, 108
“E”, 108, 110
line, 108

gravimeter, 426, 427
drift, 426

gravimetric point height, 434
gravimetry, 426

monitoring, 493
gravitation, 425

universal law of, 6
gravitational constant, universal, 6
gravitational gradient, 451
gravitational gradient tensor, 451
gravitational gradiometer, 497, 498
gravity

definition, 426
along plumb line, 443, 444
centrifugal force, 429
change, land uplift, 492
monitoring, 492
on Earth’s surface, 426
plumb-line mean, 443, 444
strength (scalar), 430
variation, 436

gravity anomaly
definition, 434
and disturbing potential, 435
and height, 434
calculation from measurements, 434
variation, 435

gravity disturbance, 433
gravity field, 430

fine structure, 494
is conservative, 440
temporal changes, 496, 497

gravity flattening, 13
gravity vector, 429, 434, 439

definition, 430, 440
as gradient of geopotential, 450
direction, 448
properties, 440

gravity-gradient tensor, 451
Gray code, 149
Gray, Frank, 149

Great Belt bridge (Denmark), 247
Greenland, 484
Greenwich Apparent Sidereal Time

(GAST), 459
Greenwich Mean Time (GMT), 48
Greenwich meridian

image, 48
direction, 266
meridian treaty, 48
plane, 48

Greenwich Observatory, Royal, 47
meridian circle, 467

Greenwich paradox, 282
Greenwich sidereal time, 459, 461
Groningen (The Netherlands), 492
ground control point (GCP), 254
ground-penetrating radar, 248
group index of refraction

dry air, 202
information content, 202
ionosphere, 306

group velocity, 305, 306
GRS80 reference ellipsoid, 49
GSI (Leica), 154, 155
GTOPO30 (terrain model), 252
guidance of geodetic works, 213
gyroscope, 469
gyroscope phenomenon, 4

H
half-angle formula (arc tangent), 70
half-angle formula (cosine rule on sphere),

87
Hamilton, Sir William Rowan, 265
hand-held GNSS, 126
Hannover (Germany), 362
harbour logistics, 247
hard-drive pack (VLBI), 481
Härmälä, Seppo, 16
harmonisation of significance levels, 413
harp, Phoenician, 428
hat notation, 362
Hatanaka compression, 354
Hayford ellipsoid, 59
Heaviside, Oliver, 521
height

definition, 89
above sea level, 91, 92, 95
concepts, 93
dynamic, 445
from levelling, 14
from the reference ellipsoid, 14, 49,

91, 267
metric, 90, 441, 446
normal, 445

definition, 445
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orthometric, 89, 92, 93, 442–444
definition, 444
approximate value, 444

height anomaly, 432
height base point, 246
height contour, 428

calculation, 256
earthwork, 260
on topographic map, 96

height deformation
analysis, 418
displacement, 419
monitoring, 419
shifting variate (E), 419

height determination, 90
barometric, 95

height location, of a building, 246
height system, 14, 96, 97

orthometric, 92
height type, 91, 446

properties, 446
Heiskanen, Veikko A., 16
helium-neon laser, 26, 202
Hellenes, 1
Helmert transformation, 71

centre-of-mass co-ordinates, 391
equations, 75
free stationing, 228
in the plane, 72–74, 76, 389
open traverse, 173
residuals, 391, 393
rotation angle, 73, 74
scale distortion, 76, 271
scale ratio, 73
scaling, 74
“small”, 272
steps, 73
three-dimensional, 270
translation parameters, 73, 75
translation vector, 74, 75
two-dimensional, 270
variances of parameters, 391

Helmert, Friedrich Robert, 72
Helmholtz brightness illusion, 108
Helmholtz, Hermann von, 108
Helsinki (Finland), 79, 336
Helsinki astronomical observatory, 78, 467
Helsinki mean sea level, 78, 93
Hermite, Charles, 420
Hermitian conjugate, 420
Hermitian variance matrix, 420
heterodyning, 293
heterophoria, 101
Hexagon Oy, 353
highway levelling, 112
Himalayas, 10

Hipparchus, 469
histogram, 32
Holmes, Arthur, 486
horizon plot, 318
horizon, plane of the, 119
horizontal angle, 120

definition, 120
figure, 121
measurement, 157, 158, 386

horizontal axis (theodolite), 121
horizontal circle

electronic readout, 151
graduation-error minimisation, 161
locking screw, 161

horizontal datum, 78, 81, 82
horizontal deformation

analysis, 419
co-ordinate displacement, 422
displacement vector, 420
mean error of unit weight, 423
monitoring, 421
shifting variate (E), 420, 423
weight-coefficient matrix, 423

horizontal direction, 65, 227
hot spot, 488
hour angle, 460
humidity, relative, 500, 501
Huygens, Christiaan, 189

Earth flattening, 7, 13
nature of light, 188
polarisation, 189

hydrogen-maser clock, 287
hygrometer, 501
hyperbola (Decca), 285, 286
hyperbolic positioning system, 45, 284
hyperboloid of revolution, 347
hypothesis-freeness, 444, 446

I
IAG

EUREF subcommission, 281
history, 11
International Earth Rotation and

Reference Systems Service, 466
International GNSS Service, 331
International Gravimetric Bureau

(BGI), 448
iceberg, calving, 505
Iceland spar, 189, 191, 192
IJsselmeer (The Netherlands), 95
illumination system (theodolite), 141
image plate, photographic, 463
image processing, 255
impossibility, statistical, 33
incremental measurement, 286
independence, statistical, 41
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independent, identically distributed

(i.i.d.), 364
index error, 146, 147

definition, 145
field check, 148
removal, 147

index of refraction, 201
air, 203
air, microwaves, 203, 307, 499
air, visible light, 202
dry air, 202
glass, 139
representativeness, 205

industrial measurement, 246
inertia, 425
inertial measurement unit, 223
infrastructure, 236

construction, 16, 236, 247
planning, 16, 17, 116, 236

in-phase (modulation), 297
InSAR, 494, 495
inskärning, 158
insolation

on edge of ice sheet, 503
summer, 504

INSPIRE (EU directive), 252
installation measurement, 114, 245, 246
instrument co-ordinates, 50, 119, 268, 269
instrument height, 183
instrument of appeal (zoning), 17
instrument, terrestrial measurement, 45
integrity monitoring (GPS), 351
interference fringe (SAR), 494, 495
interference measurement (Väisälä), 194
interference of light waves, 188
International Association of Geodesy, see

IAG
international collaboration, 438
International Earth Rotation and

Reference Systems Service
(IERS), 466, 468

International Ellipsoid of 1924, 59
International GNSS Service (IGS)

description, 331
Central Bureau, 331
ionosphere modelling, 503
precise ephemeris, 330
tracking stations, 330

International Gravimetric Bureau (BGI),
448

International Latitude Service, 466
International Polar Motion Service, 467
International Space Station, 478
intersection, 158, 159
intrinsic angular momentum (spin), 191
invar (alloy), 44, 185

invar staff, 109
invar tape, 110
invariant of point variance matrix, 382
inverse geodetic problem, 69
inverse mapping, 373
inverse matrix, 516–518
inverse problem, 160
inversion, mathematical, 498
inverted barometer (IB), 507
ion, 521
ionic engine (GOCE), 497
ionosphere

dispersion, 305
electron density, 306, 503
propagation delay, 302–304, 306
research, 308
sounding, 503
total electron content (TEC), 503

Ionosphere Map Exchange Format
(IONEX), 503

ionosphere model, 503
ionosphere-free linear combination, 307
iron-ore particle, 485
irrigation-water extraction, 114, 418, 492
isostatic adjustment, 489
isostatic compensation, 449
isothermal surface, 206
isotope

deuterium, 504
radioactive, 486

ITRS, International Terrestrial Reference
System, 272

Izmit (Turkey), 495

J
dynamic flattening (J2), 476
Jacobi, Carl Gustav Jacob, 373
Jacobi, matrix of, 373
Jason (satellite), 509
Java (Dutch Indies, Indonesia), 435
Jeffreys, Harold, 395
jet fighter, 256
Jet Propulsion Laboratory (JPL)

APPS, 355
GDGPS, 353
International GNSS Service, 331

JHS recommendation
benchmark measurement, 213
EUREF-FIN, 213
municipalityGML, 213
N2000, 213
zoning base map, 213

journalist, 282
JPEG 2000, 255
JUHTA, 213
Jupiter’s flattening, 13
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Jyväskylä (Finland), 78

K
K XVIII (submarine), 425
Kakkuri, Juhani, 205
Karttakomitea, 211
kelvin (temperature scale), 26
Kelvin, Lord (Sir William Thomson), 522
Kelvin–Stokes theorem, 522
Kepler orbital elements, 326

description, 525
figure, 475
GPS, 327

Kepler, Johannes, 473
Kepler’s law of areas, 474
Kepler’s laws, 473, 474
Kepler’s third law, 476
Kern (instrument manufacturer), 44, 130
Kevo (Finland), 78
kilocalorie, 25
kinematic measurement, 286
Kitab (Uzbekistan, Soviet Union), 467
KKJ, 56, 57

basic co-ordinate system, 59
YKJ (Uniform Co-ordinate System),

61
zone geometry, 60

KM2 (terrain model), 252
KM10 (terrain model), 252
Kozai, Yoshihide, 328
Kukkamäki method, 103
Kukkamäki, T. J., 103
Kvarken (Baltic Sea), 490

L
L1,L2, GPS frequencies, 288, 291, 293,

304, 307
L5, GPS frequency, 291
LAGEOS (satellite), 481
Lagrange interpolation, 330
Lagrange, Joseph-Louis, 330
land subsidence

anthropogenic, 114
mineral extraction, 418, 492
water extraction, 492

land uplift, post-glacial, 114, 466, 479
horizontal motions, 491
measurement, 491
physical character, 489

Land Use and Building Act 1999/132, 235
land, purpose of use, 16
landscape visualisation, 256
land-use planning, 17
lane (Decca), 286
Langmuir, Irving, 523
Laplace azimuth equation, 277

Laplace azimuth phenomenon, 278
Laplace field equation, 437, 453
Laplace, Pierre-Simon, 453
Lapland, 8
working from the large to the small, 214
Large Hadron Collider (LHC), 114
Larmor precession, 469
laser level

principle of operation, 115, 116
earthwork, 260
vertical plane, 116

laser plummet, 124, 134, 154
laser scanning

airborne, 252, 254
earthwork, 260
terrestrial, 223

laser-station network, global, 480
latency, 344
lateral refraction, 29
latitude

astronomical, 5, 449
geocentric, 267, 268
geodetic, 49, 267, 268
variation, 466, 467

Lattamiehentie
Joensuu, Finland, 89
Vantaa, Finland, 89

Laurentide land uplift area, 491
law of large numbers, 31, 35
leap second, 468
least-squares method, 395

invention, 362
name, 360

least-squares solution, 364
precision, 365
weighted, 396

legend of map, 231
Legendre, Adrien-Marie, 362
Leica (instrument manufacturer), 152, 155
Leiden (The Netherlands), 3
length (quantity), 26, 185
length of day (LoD), 85, 466

monitoring, 466, 483
levelling, 45, 95

geometric, 97
geometry, 96
hydrostatic, 94
safety, 112
staff distance, 107, 112
trigonometric, 182

levelling instrument, 97, 98
accuracy, 97
automatic, 105
classification, 98
construction, 97
digital, 107, 110
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field check, 102, 103
horizon adjustment, 103, 104
purpose of use, 97
self-levelling, 105, 106
traditional, 97

levelling network, 45, 96
loop, 45
planning, 112

levelling of theodolite, 126, 132
crude, 127
precise, 127, 128

levelling rod, see levelling staff
levelling spike, 110, 111
levelling staff

description, 108
bull’s-eye level, 110
choice, 98
classification, 110
for base network, 110
purpose of use, 110
reading through foliage, 108
self-calculating, 113

levitation, magnetic, 523
life, chemistry of, 189
lifting screw, 97, 103, 105
light, nature of, 188
line microscope, 138, 139
line of force

of gravity, 429, 432
of normal gravity, 430, 432
of solar magnetic field, 473

linear regression, 200, 361
adjustment, 367
definitions, 362
design matrix, 367
example, 369
in terms of averages, 362
observation equations, 367
shifting variate (E), 407, 409
simulated error, 409, 410
testing, 406, 408

linearisation, 370
one-dimensional, 372
pseudo-range, 312, 313
vector mapping, 373

linearised quantity, 371, 375
link between significance levels, 412
Lippershey, Hans, 119
liquid compensator (height index), 148
Listing, Johann Benedict, 10
lithosphere, 489
living space, human, 219
loading

atmospheric, 493
glacial, 418
ocean, 493

ocean tidal, 493
Local Apparent Sidereal Time (LAST), 459
local detailed plan, 235
local master plan, 235
location data, 233, 234
location review, 246
logarithmic scale, 26
longitude

astronomical, 461
geocentric, 267
geodetic, 49, 267

longitude determination, 461
Loran-C (navigation system), 284
lorry, articulated, 243
lower mantle, 489
loxodrome (rhumb line), 54
lunar eclipse, 2
lunar laser-ranging (LLR), 480
Lunokhod (lunar rover), 480
Lyra (Lyre, constellation), 458

M
“Maan toinen kuu” (article), 462
machine guidance, 247
magma, 485, 487
magnetic bottle (radiation belts), 473
magnetic flux, 523
magnetisation stripe (sea floor), 484
magnetism of pendulum compensator, 106
magnetohydrodynamics (MHD), 472, 523
magnetosphere, 473
magnification of telescope, 99
malfunction of device, 29
map

legend, 20
purpose of use, 18

map algebra, 234
map co-ordinates, 55
map north, 179
map projection, 53

application, 221
choice, 221
conformal, angle-preserving, 54, 221
distortion, 55
equidistant, 54
equivalent, equal-area, 54
gnomonic, 55
purpose of use, 54, 55
scale reduction, 207

map projection co-ordinates, 46, 47
map projection plane as computation

surface, 221
map projection science, 54
map projection zone, 58, 62

KKJ, 58
municipality, 62
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map scale, 18, 61
nominal, 62
on central meridian, 62

map scale number, 61
map sheet (x, y), 46
map-sheet division, 61, 213
marble, glass, 429
mareograph, 14, 492

description, 509
co-location, 509
spatial sampling, 509

mareograph pillar, 510
Mariana Trench, 220
Mars, Olympus Mons, 219
Martikainen, Martti, 18
Masala, Kirkkonummi (Finland), 216
mass

heavy, 425, 426
inertial, 425, 426

mass flow, under Earth crust, 492
Master Control Station (GPS), 289
MATLAB (software), 36, 517

statistical testing, 403
matrix

definition, 513
addition and subtraction, 513
column, 515, 516
inversion, 517
main diagonal, 516
multiplication, 513, 515

with a constant, 514
orthogonal, 274
row, 515, 516
singularity, 518
transpose, 516

Maupertuis, Pierre L. M. de, 1, 8, 185
Maxwell, James Clerk, 188, 189
Maxwell–Faraday equation, 522
mean anomaly, 526
mean error, 28
mean error of unit weight, 317, 376

pseudo-range, 315
station adjustment, 167

mean height of satellite, 525
mean sea level

geopotential, 441
global, 510

mean sea surface, global, 438
measure (mathematics), 34
measured quantity, 23, 24
measured value, 28
measurement base of project, 245
measurement class (zoning), 235, 236
measurement error, 28
measurement plan, 18, 21
measurement planning, 401

measurement unit, 23, 24
measuring pole (GPS), 298
measuring tape, 126

calibration, 186
of steel, 44
sag, 186, 187
temperature correction, 186

measuring telescope, 98, 100
levelling instrument, 97

adjustment screw, 105
tasks, 99
theodolite, 122

measuring wire, precision, 44
mechanics, classical, 5
Mekometer (range-finder), 44, 196
Mercator (map projection), 54, 221
meridian circle, 449, 461, 467

graduation circle, 461
refraction correction, 461

meridian transit, 449, 461, 467
metadata, 125

definition, 20
concept, 231
of theodolite measurement, 149
recording, 231

metal detector, 248
meteor observation, 55
meteorology, 308
metre, 185

public, Paris, 24
SI definition, 26

metric correctness, 446
metrology, 23, 247
Metsähovi radio telescope, 483
Metsähovi research station, 78, 79, 86, 354

aerial image, 117
benchmark, 78
co-ordinates, 49, 118
EUREF-FIN co-ordinates, 48
VLBI, 483

microgal (µGal), 426
micrometer, optical, 124, 139

levelling, 98, 109
microwaves and water vapour, 203
Mid-Atlantic Ridge, 485, 487
Mid-Indian Ocean Ridge, 487
Mid-Pacific Ridge, 487
Milanković cycle, 504
Milanković hypothesis, 503
Milanković, Milutin, 503
milligal (mGal), 426
mine surveying, 170, 212, 247
minute (angle unit), 26
mistake, human, 29
Misuzawa (Japan), 467
Mitteleuropäische Gradmessung, 10
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mobile mapping system, 223
Moby (musician), 235
model error, 398
moisture, effect on levelling staff, 109
monitoring measurement, 246
Mont Valérien (Suresnes, France), 195
Montmartre (Paris), 195
monument-type choice, 125, 126
Moon

attraction, 469
phases, 188

mortgage, 16
motorway

asphalt laying, 247
planning, 244

MRI, magnetic resonance imaging, 469
MSAS, 351
multipath, 298, 319
municipal technology, 237
municipality

local co-ordinates, 66
planning, 17
utility lines, 247

Munk, Walter, 479
Mylar (PAGEOS), 464

N
N60, 93

datum point, 78
N2000, 279

description, 93
datum point, 78
fundamental benchmark, 79

nabla, 428
naïve world model, 1
nanogal (nGal), 426
NAP (height system), 78, 93
NASA (USA), 465
National Geodetic Survey (NGS, USA),

328
forward geodetic problem, 68
inverse geodetic problem, 86

National Geospatial-Intelligence Agency
(NGA, USA), 439

National Map Grid Co-ordinate System,
see KKJ

National Oceanic and Atmospheric
Administration (NOAA, USA),
252

natural-gas extraction, 114, 418, 492
nature, data on, 233, 234
navigation, 54, 344
navigation message, GPS, 291–293, 327,

469
Navy Navigation Satellite System (NNSS,

“Transit”), 45, 286, 287

description, 284
Doppler shift, 286
submarine computer, 287

nearsightedness, 101
network adjustment, 359, 362

in map co-ordinates, 222
in map plane, 221, 222
joint European, 11
three-dimensional, 218

network densification, 111, 214
network hierarchy

concept, 214, 215
base-network measurement, 211
GNSS, 212
levelling, 96, 111
significance, 215

network RTK archive service, 353
new degree, new minute, new second, 27
Newton, Sir Isaac, 5

dot notation, 281
Earth flattening, 13
gravitation, 425
nature of light, 188
Principia, 5

Nivavaara, 1, 9
NLS, National Land Survey of Finland

co-ordinate transformation service,
86, 87

levelling, 96
terrain models, 251, 252

non-centrality parameter of χ2

distribution, 404
non-Euclidean geometry, 358
nonius, 140
Nordic gravity profiles, 492
normal distribution, 34

expectancy, 34
inflection points, 35
mean error, 34, 35
multivariate, 396
probabilities, 35
properties, 34
statistical testing, 406, 410, 411
two-dimensional, 39
two-sided test, 405

normal equation, 364
as system of equations, 365
name, 364
solution, 364

normal gravity, 430
calculation, 430
GRS80, 431
plumb-line mean, 445
strength (scalar), 430
vertical gradient, 451

GRS80, 431
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normal gravity field, 430, 431
normal gravity vector, 430, 434
normal matrix, 365

azimuth symmetric, 319
calculation of average, 366
Helmert transformation, 390
linear regression, 368

example, 370
pseudo-range, 314

normal potential, 430
GRS80, 431

normal section, 12
Norsk Rikskringkasting, 235
North Star, 470
northing, 59, 65
no-shadow orbit, 477
nuisance parameter, 163
null hypothesis, 400, 410
numerical weather prediction (NWP), 256,

466
Nummela (Finland), 194
Nummela baseline, 185, 194
Núñez, Pedro, 140
Nunn, Joseph, 465
nutation, 469, 470
NUVEL (plate-tectonics model), 487

O
observation equation, 363, 398

azimuth, 386
calculation of average, 366
carrier phase, 304, 338
formation, 363
GNSS, 500
Helmert transformation, 389–391
horizontal direction, 386
linearisation, 374
linearised, 375, 382
non-linear, 375
pseudo-range, 302, 309, 313
redundancy, 363
slant range, 384
standard form, 366
station adjustment, 163, 164
tacheometer measurement, 388
VLBI, 482
zenith angle, 388

observation errors, vector of, 396, 398
observation function, 375
observation-station catalogue, 461
Observatory Hill, Helsinki, 78
ocean current

map, 498
thermal energy transport, 508
transversal tilt, 508
velocity vector, 508, 509

octave (software), 393, 517
Ölander, Victor Rafael, 182
“The Old Survey”, song, 119
Ollikainen, Matti, 280
Olympus Mons (Mars), 219
Omega (navigation system), 284
one-minute theodolite, 138
one-second theodolite, 138
on-the-fly (RTK), 348, 349
optical activity, 189
optical lattice clock, 95
orbit determination, 362
orbital ellipse

eccentricity, 525
focal point, 474
semi-major axis, 474, 476, 525
semi-minor axis, 525

orbital inclination, 525
critical, 478
mapping area, 475, 476

orbital period of satellite, 476
orientation unknown, 163
Orion (constellation), 458
Ørsted (satellite), 502
orthogonality of pseudo-random codes, 294
orthonormal basis, 519
orthophoto map, 256
ortho-rectification, 256
oscillation period of Cs atom, 26
outlier detection, 395, 405, 406
overall validation, 402
over-determination by observations, 398
ozone layer, 502

P
P code, 292, 293, 295

encryption, 297
measurement accuracy, 297
wavelength, effective, 297

PAGEOS (satellite), 464, 465
palaeomagnetism, 486
Pantometria (book), 119
paper machine, 246
paper, printed maps, 47
parallax of measuring telescope, 100, 101
parallel shift of forced-centring device, 130
parallelepiped, 374
parallelogram, 374
parasol, 125
parcel boundary, 245
parcel division, binding, 236
partial derivative (linearisation), 312
Pasteur, Louis, 189
pathological function, 263
pendulum clock, 13
pendulum compensator, 105
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principle of operation, 105, 107
magnetism, 106

pentagon prism, 116
perigee, 525
perigee height, 476
perigee, argument of, 525
periglacial bulge, 488, 509
perturbance in receiver location, 310
Peru, 8
petroleum extraction, 114, 418, 492
phase error of signal, 136, 137
phase index of refraction

dry air, 202
ionosphere, 306

phase measurement, electronic, 196, 303
phase modulation, 291, 293
phase quadrature, 297
phase velocity, 305, 306
photodiode, 149
photogrammetry

description, 43
earthwork, 260
terrain model, 254

photon, 189
photosphere, 470, 471
physical geodesy, 15, 46

definition, 90
pillar, for instrument, 128
Pisa, tower of, 114
Pisces (Fishes, constellation), 459
pitch, viscosity, 489
Pittacus of Mytilene, 23
pixel graphics, 255
plan (map), 53, 83
Planck, Max, 189
Planck’s constant, 189
plane angle, 24
plane co-ordinates, 47, 66

as complex numbers, 419
in geodesy, 65
rectangular, 65

plane surveying, 15
plane table, 42, 43
planimeter equation, 259
planimeter, polar

principle of operation, 259
image, 259

planning
of GPS measurements, 312, 314, 333
of infrastructure, 17
of land use, 17
of measurement networks, 414
of roads and railways, 243
of the built environment, 17
technical, 17

planning and measurement process, 401

plasma, 521
name, 523

plasma frequency, 306
plasticity, 489
plate boundary, strike-slip, 492
plate co-ordinates, 463
plate tectonics, 85, 483, 487

mechanisms, 488
Plesetsk (Russia), 494, 497
plumb line

definition, 120
curvature, 121

plumb-line deviation
definition, 276
effect on azimuth, 278
equations, 275
figure, 276

plumb-line direction
astronomical determination, 10, 276,

448
variation, 448

plummet
optical, 124, 130, 131, 134, 135

adjustment, 134
checking, 134, 135
index, 130
separate, 133

precision, 128
rod, 129, 130
string, 124, 128, 129

Poder, Knud, 57
Poincaré-Prey reduction, 444
point cloud, 254
point data base, 21
point description, 126
point mean error, 316, 382
point number, 126
point precision, 382
point variance, 382
point-grid presentation, 254, 255
polar amplification, 505
polar drift, 466
polar motion, 465–467

annual, 465
Chandler wobble, 466
monitoring, 466, 483

polarimeter, 189
Polaris (star), 5, 470
polarisation, 189, 191

figure, 192
and life, 189
circular, 299
elliptical, 191

Porvoo (Finland), 392
position determination, 462

astronomical, 4, 448, 449
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position vector
of observation station, 308, 309
of receiver, 310
of satellite, 308–310, 326, 328

positioning error, 340, 341
potassium–argon, 486
potential energy, 90, 439
Pothenot, Laurent, 160
power of a test, 411
PP2000 (benchmark), 78

image, 79
PPP, precise point positioning, 353
pre-amplifier of GPS antenna, 293, 297
precession, 469

apsidal, 505
astronomical, 504
climatological, 505
Larmor, 469
of the equinoxes, 459, 469, 470
satellite nodal, 477
satellite orbital, 11

precise ephemeris, 328, 329, 331
quality, 341

precise levelling
definition, 98
Finnish national, 78
of Finland, first, 111
of Finland, second, 111
repeated, 491

precise-levelling network, Finnish
national, 96, 111, 510

precise-levelling staff
invar staff, 109
spring, 109
staff unit, 109

precision behaviour of a network, 81
precision farming, 247
precision theodolite, 138
precision vs. accuracy, 28
primordial heat, 487
Principia, 5

Earth flattening, 6
probability

of a die cast, 31
of a value interval, 33

probability density distribution, 32
as limit of histograms, 33
three-dimensional, 40
two-dimensional, 39

problem situation, field-work, 132
Procyon (star), 458
profile measurement, 114, 115
projected co-ordinate reference frame, 58
projection

onto map plane, 221
onto reference ellipsoid, 221

projection measurement (Väisälä), 193,
194

propagation
general, of variances, 377
of errors, 37, 38
of expectancies, 376
of variances, 38, 41, 376

propagation delay modelling, atmospheric,
351

property
monetary value, 16, 17
owner rights, 17

property formation, 236
proxy, 294
pseudo-observation, 170
pseudo-random code, 291, 293, 294
pseudo-range, 295, 302, 309, 340

equivalent, 304, 305
linearisation, 312, 313
observation, 295, 303

pseudo-range offset, 345
public debate, 256
puff pastry (metaphor), 521
pulsar, 523
pulse shape, 507

Q
Qℓℓ metric, 398, 402, 405
quadrant of the plane, 65, 66, 70
quadrature

alternatives, 262
Simpson’s rule, 260

quadrature (modulation), 297
quality

of benchmark set, 214
of broadcast ephemeris, 341
of detail survey, 228
of measurement results, 28, 148
of precise ephemeris, 341

quantum theory, 189
quartz gauge, 192
quartz oscillator drift, 338
quasar, 480, 482
quasi-geoid, 445
quasi-two-dimensional network geometry,

218
quaternion, 265

R
R (software), 36
radial survey, 225–227

figure, 226
as a numerical mapping method, 226
horizontal-angle measurement, 158
metadata, 227
setting out, 237, 238
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slope reduction, 226

radian, 26, 27
radiation belt, 289, 473
radio navigation, 284
radioactivity, 486, 487
radiometric dating, 486
radio-traffic disruption, 473
rail shoe, 111
railway

centrifugal force, 244
design speed, 244

railway levelling, 112
random-point method, 253
range-finder, 44, 194

calibration, 199
constant correction, 201
constant error, 199, 200
construction, 195
damage, 125
drift, 199
frequency calibration, 199
frequency correction, 201
frequency error, 199, 200

determination by frequency
standard, 200

hand-held, 197
instrumental errors, 198
scale error, 199
zero-point error, 199

ranging rod, 223
rapid orbits, 330
rapid prototyping language, 333
reading device, graduation circle, 123, 138
reading microscope, 138, 141

eyepiece, 123
real estate, monetary value, 16, 17
real number 1, 516
real numbers, in computers, 32, 302
real-time kinematic measurement, see

RTK
real-time positioning, 344
real-timeness, 344
reconnaissance, 212
reconnection (magnetism), 473
rectangle rule (quadrature), 262
red lead, 126
reduction of observations, 29
reduction to reference surface, 13, 219
redundancy, 357, 398

meaning, 417
redundancy matrix, 415
redundancy, degree of, 417
reference ellipsoid, 48, 84

as computation surface, 219
as equipotential surface, 430
centre shift, 273, 275

choice, 276
goodness of approximation, 220
surface normal, 49

reference sequence (tree rings), 294
reference sphere, goodness of

approximation, 219
reference surface, 93, 218, 220

computational, 183
reflective panel on Moon, 480
reflector, 197

zero-point error, 200
refraction coefficient k, 179, 204
refraction modelling, atmospheric, 182
regional plan, 235
rejection bound, 410

choice, 409
normal distribution, 411

two-sided, 406
rejection of a hypothesis, 410
relativity

general, 95, 426
special, 307

reliability, 395, 398, 412
example, 413, 414
exterior, 404, 416
interior, 404, 416

reliability and precision, 414, 416
resection, 158–160

three-dimensional, 322
reservoir dam (seismics), 492
residual ̸= error, 360
residuals, 397

final, 168
first, 168
in quality control, 398
properties, 398
size, 398
sub-space of, 364
weighted, 405

reticule, 99
reversed curve, 242
reversion staff, 110
rhumb line (loxodrome), 54
Richer, Jean, 13
ridge, mid-ocean, 484, 487, 493
right angle, 26, 27
right ascension, 460

determination, 461
right-angle survey, 223, 224

check, 224
setting out, 239
tools, 223

right-hand side vector
calculation of average, 367
linear regression, 368

í ¤.� û



570 ABCDEFGHIJKLMNOPQRSTUVWYZ INDEX

RINEX, Receiver-Independent Exchange
Format, 300, 302, 353

road
centre line, 243
centrifugal force, 244
curvature, 243
radius of curvature, 244
structures, 245
transversal tilt, 243, 244

road plan, 244
roadbuilding, 244
rod plummet, 129, 130
roede (length unit), 3, 4
root, mountain, 449
rounding of corners, 241

circular arc, 240
compound curve, 241

rounding residue, 143
rover location (RTK), 348
row vector, 514
RTK, 347

principle of operation, 348
base-network measurement, 218
detail survey, 228
essence, 349

rubidium clock, 287
rugby ball (figure of the Earth), 7
rust-protection paint, 126

S
S waves, 484
saddle point, 428
Safety of Life (SoL), 291, 351
sag correction, measuring tape, 186, 187
Sagan, Carl, 481
Sagittarius (Archer, constellation), 459
Sagittarius A*, 480
sample, 35
sample mean, 35
sample mean error, 360
sample variance, 35
San Andreas fault (California, USA), 492
satellite geodesy, 265

co-ordinate reference system, 265
geopotential model, 438
images (NASA), 465
orbit perturbations, 475
positioning, 45

satellite laser-ranging (SLR), 45, 480
satellite orbit choice, 475
satellite orbital motion, 473
satellite orbital period, 474
satellite positioning

base-network measurement, 212, 214
geodynamics, 479
of sea surface, 510

widespread use, 57
satellite radar altimetry, 498, 506

technique, 506
ice sheet, 505
measurement geometry, 506
on-board GNSS, 509

satellite-based augmentation systems
(SBAS), 351, 352

satellite-to-satellite tracking (SST), 497
saturation (water vapour), 500
saturation partial pressure, 500, 501
SBAS differential correction, 351
scalar product, 519
scale height, 502
scale microscope, 124, 138
scale model, of network, 3
scale reduction

Gauss–Krüger (map projection), 207
UTM (map projection), 208

scattered settlement area, 236
Schmidt camera, 464
Schmidt, Bernhard, 463
Schmidt–Väisälä telescope, 463
scilab (software), 517
screw thread, geodetic standard, 124, 298
S-curve, 242
sea currents, geophysical modelling, 95
sea level

monitoring, 491
variation, 493

sea-floor mapping, 14
sea-floor pressure, 496, 497
sea-floor spreading, 486
sea-level rise, 509
Seasat (satellite), 511
sea-surface topography, 498, 508

definition, 14
causes, 507
GOCE, 499
magnitude, 508
observed, 509
theory, 507

second (angle unit), 26
second (time unit), 26

SI definition, 26
selective availability (SA), 345
self-calculating staff, 110
Sendai (Japan), 493
sensitivity analysis, 310
sensitivity of observations, 309, 311
sensitivity of spirit level, 102
setting out, 236

building location, 245
process description, 237
radial survey, 237, 238
site reference point, 246
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zoning plan, 236

setting-out measure
pre-calculated, 236
radial survey, 238
straight line, 239
surface-area calculation, 256

sewer, functioning, 114, 246
SFS 3161, utility-line mapping standard,

247
shifting variate (E)

term, 403
expectancy

alternative hypothesis, 404
null hypothesis, 403

shimmer (levelling), 112
shipyard, 246
shoebox model, 83, 89
shoelace formulas, 258
shore area, 236
Shuttle Radar Topography Mission

(SRTM), 252
SI system, 24

accepted unit, 25
base unit, 24
derived unit, 24
prefix, measurement-unit, 24, 25
unit symbols, 23

SI unit
of distance, 185
of geopotential, 441

sidereal clock, 458
sidereal day, 457
sidereal time, 457, 460

Greenwich, 266
sight axis

adjustment, 142
levelling instrument, 97, 101
realisation, 142
theodolite, 121

sighting azimuth, 276
sighting direction projected onto the

horizontal, 277
signal

good, 136
problem, 136
with prism, 198, 199

signal height, 183
significance level, 411

link, harmonisation, 412, 413
normal distribution, 411

two-sided, 406
silicone oil in compensator, 148
similarity transformation, see Helmert

transformation
Simpson, Thomas, 260
Simpson’s rule, 260, 262

Kepler, 251, 260
proof, 260
volume calculation, 261

singularity
of a mapping, 374
of resection, 160

Sirius (star), 458
site plan, 246
Sjökulla (Kirkkonummi, Finland), 483
ski piste, 256
sky plot, 313
sky survey, 465
slant-range measurement, 382–385
slope percentage, 187
slope reduction, 187, 188, 206

radial survey, 226
SmartNet (Hexagon Oy), 353
Snell van Rooyen, Willebrord (Snellius,

Snell), 3, 160
Sodankylä (Finland), 336
Sodankylä Geophysical Observatory, 86,

354
sodium, viscosity, 489
solar eclipse, total, 471
solar flare, 473
solar maximum, 473
solar wind, 471
solid Earth

elasticity, 493
mass distribution, 475
motions, 331
tide, 85

solid-angle element, 437
solstice, 459
solution space, 364
SP3 (ephemeris format), 328, 329
space geodesy, 85, 265
space plasma, 521
space segment (GPS), 289
space weather, 473
space-time

curvature tensor, 426
geometry, 426

spatial correlation, 336
spatial planning, 17

definition, 17
figure, 19
topographic surveying, 17

speed of light, 189, 201
definition, 195
determination, 194

spherical excess, 358
spherical-harmonic coefficient, 476
spider silk, 99
spike (measurement), 112
spin of a particle, 191
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spinning encoding circle, 151, 152
spirit level in levelling instrument, 97
spring balance, 426
Sputnik 1 (satellite), 11
stadium (length unit), 3
staff (levelling), see levelling staff
staff calibration, 108
staff distance, 107, 112
staff support, 110, 111
staff unit, 110
standard

of construction surveying, 245
of geodetic works, 213

standard deviation, 28
standard ellipse, see error ellipse
standard uncertainty, 28
standing axis (theodolite), 121
star catalogue, 461
star programme, 449
static base-network measurement, 218
station adjustment, 162

calculation, 164
template, 169

defect, 169
degrees of freedom, 163, 170
design matrix, 163
error model, 167
in observation notebook, 162
observation equations, 163, 165
redundancy, 163
residuals, 166
shifting variate (E), 167
summary, 167

steel grid mast, 118
stellar triangulation, 43, 462

equipment, 462
flashtube, 462, 464
high signal, 463
measurement geometry, 463, 464
network adjustment, 464
plate reduction, 464
using satellites, 464
weather balloon, 462

steradian, 26
stereo model restitution, 43, 44
sticker, reflective, 198
stochastic quantity, 30

linear combination, 37
multi-dimensional, 39, 40
realisation, 30, 31
real-valued, 32
two-dimensional, 33

Stokes equation, 436, 437
computation point, 438
integration point, 438

Stokes function, 437

Stokes kernel, 437
Stokes loop integral theorem, 522
Stokes, George Gabriel, 436
straight angle, 26
straight line

fit, 361, 367
setting out, 239

straight setting-out method, 239
stratification, atmospheric, 318
stratosphere, 502
strength of network, 412
stress-energy tensor, 426
string plummet, 124, 128, 129
Struve chain, 8, 10
Struve, Georg Wilhelm von, 8
subduction, 435, 487
sum of squares

of plumb-line deviations, 276
of residuals, 398

Sun
convection, 470
convection layer, 470, 471
core thermal energy, 470
corona, 471

heating, 471
magnetic field, 471, 472

lines of force, 473
topology, 473

nuclear power, 470
plasma, 471
X-rays, 470

Sunda deep-sea trench, 435
sunspot, 472
Sun-synchronous orbit, 477
superconductivity, 471, 521
superconductor, 522
surface area

calculation, 256
with co-ordinates, 257, 258
with setting-out measures, 256,

257
measurement by planimeter, 259

Survey of India, 10
surveying science, 15
Syene (Egypt), 3
symmetric GPS measurement geometry,

316
synoptic scale, 336
synthetic-aperture radar (SAR), 494, 505

terrain model, 252
system calibration, 107, 110

T
taaksepäin leikkaus, 158
tablet (computer) in detail survey, 229
tabloid press, 282
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tacheometer

term, 45
electronic, 45
observation equations, 388

tape correction, 186
tartaric acid, organic, 189
Tasmania (Australia), magnetic pole, 485
Taurus (Bull, constellation), 459
Taylor series expansion (linearisation),

312, 371, 375
TCA2003 (theodolite), 152, 153

automatic target recognition (ATR),
154

data exchange, 155
distance reduction, 154
laser plummet, 154
level, electronic, 154
monitoring measurement, 154
self-calibration, 154

tectonics, 418
intra-plate, 493

telescope
description, 99
invention, 119

Tellurometer (range-finder), 44
terminology work, 213
terrain attraction, 447
terrain correction (distance), 205
terrain correction (gravity), 256
terrain model

applications, 255
measurement geometry, 253
measurement technology, 254
presentation form, 255

terrain presentation, 255
testing strategy, 411
testing, statistical, 28, 29, 400

deformation, 419, 494
gross errors, 400
hypotheses, 400
normal distribution, 410
outlier detection, 395

theodolite
image, 120
axes, 121, 122, 127
axis errors, 142
base, 124
calibration, 142
carrying case, 125
circles, 121, 122
classification, 137
construction, 123
electronic, 148–152
gyro-, 269, 386
handling, 124
in mapping, 42

instrumental errors
horizontal-angle measurement, 142
zenith-angle measurement, 148

invention, 119
measurement, 119
sighting and targeting, 135

thermal expansion coefficient
invar, 44, 109, 185
steel, 186

thermal radiation spectrum of black body,
189

thermodynamics, arrow of time, 307
three-axes stabilisation, 289
three-sigma rule, 29, 36, 411
tidal force field, 451, 453
tidal loading, 493
tide gauge, see mareograph
tie measurement of a profile, 116
tie-in survey, 224

check, 225
tiling of images, 255
tilt meter, digital, 148
time (co-ordinate), 46, 84
time (quantity), 26, 468
time determination, 461
time difference measurement, 285
time, precise, dissemination of, 286
time-zone system, 48, 468
Tobler, Waldo R., 335
toise (length unit), 8
Tom and Jerry, see GRACE
top (spinning), 469
TOPEX/Poseidon (satellite), 479, 509, 510

orbital inclination, 509
topographic attraction, 447
topographic data

catalogue, 231
classification, 233
encoding, 231–233

topographic information system, 230
national, 231

topographic surveying, 16, 18, 19, 21
computation, 229
data, 231
end products, 20

map, 18
in spatial planning, 17
metadata, 231
skills, 18
software, 229
tasks, 17
terrain model, 254
work volume, 17

Topographic Surveying and Mapping
(booklet), 16

Torge, Wolfgang, 15

í ¤.� û



574 ABCDEFGHIJKLMNOPQRSTUVWYZ INDEX

Torne river (Sweden, Finland), 42, 185
valley, 8, 78

torsion balance, 452
total station, 45

automatic, 493
traceability (metrology), 185, 186, 247
traffic route planning, 90, 256
trajectory (road)

calculation, 245
setting out, 245

transformation formula, local (RTK), 350
transformation parameters

EUREF89 to ED50, 280
Helmert transformation, 73, 74, 389
ITRF2005 to ETRF2005, 281

Transit 5B-5, 283
Transit positioning system, see Navy

Navigation Satellite System
transit through meridian, 449, 461, 467
transition curve, 243
transpose, 516

of a vector, 516
saving paper, 42, 516

transversal wave motion, 484
trapezoid rule (quadrature), 262
travel time (GPS signal), 294
traverse

definition, 170
auxiliary points, 171
calculation in the plane, 179
closed, 170, 171, 174, 175
closing point, 171, 178
computation, 170, 172
computation template, 178
co-ordinate adjustment, 176
directions, adjustment of, 175
horizontal-angle measurement, 157
incompletely closed, 171
least-squares adjustment, 178
open, 170–172
starting direction, 172
starting point, 171, 178
straight, 178
weighting, 177

traverse levelling, 95, 111, 112
traversing, 170, 215
tree line, 294
tree ring, 293, 294

correlation, 294
trend in time, 40
triangle condition, 29, 358
triangulated affine transformation, 62, 64
triangulated irregular network (TIN), 255
triangulated-network presentation, 254,

255
triangulation, 3

principle, 3
Finnish national, 57
first order, 215
horizontal-angle measurement, 157
lower order, 215
method, 42
of Snellius, 3

triangulation network, 359
adjustment, 42
continental, 11
intercontinental, 465
principal side, 185
triangle, 358

trigonometric heighting, 180
fundamental equation, 181
zenith angle, 180, 181

Trimble AB, 44
Trimnet VRS, 352
tripod head, central hole, 128
tropic, 459
tropopause, 502
tropospheric propagation delay, 302, 303,

305, 307
tropospheric research, 308
true anomaly, 526
true value, 28, 35

of an observed quantity, 34, 396
truncated co-ordinates, 61, 67
trunnion axis (theodolite), 121
trunnion-axis tilt, 144, 145

definition, 121
determination, 144

truth, formal (datum), 81, 82
tubular level

figure, 102
adjustment screw, 101, 103
construction, 101
horizon, 97, 101
task, 101

tunnel surveying, 158, 170, 212, 247
tunnels, network of (metaphor), 92
Tuorla, Wizard of, see Yrjö Väisälä
Turku (Finland), 78, 79, 462
Turku Cathedral, 79
Tuusula (Finland), 57

U
UDP/IP protocol (VLBI), 481
Ukiah (California, USA), 467
ultra-rapid orbits, 330
ultraviolet radiation (PAGEOS), 464
UNAVCO

geoid model, 118
plate motion calculator, 488

uncertainty, 30
type A, 30
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type B, 30

uncertainty ellipse, see error ellipse
unit element of a set of numbers, 514
unit matrix, 514, 516
Universal Time Co-ordinated (UTC), 468
University of Helsinki, 15
uranium, depleted, 480
uranium–lead, 486
urban canyon, 170, 223
urban landscape, 158
US Geological Survey (USGS, USA), 252
“use point”, 245
user segment (GPS), 290
utility line, 247

map, 247
mapping methods, 248

utility-lines marking service, 249
UTM (map projection), 61

description, 62
conformality, 62
scale distortion, 62, 63

V
Vaakitsijantie, Oulu, Finland, 89
Väisälä interferometry, 191, 193
Väisälä, Yrjö, 43, 191, 457
value set, 31
Vanguard 1 (satellite), 11
Vantaa (Finland), 352
variance, 35, 376
variance matrix, 40, 376

definition, 40
of co-ordinate displacements, 423
of co-ordinates, 315, 316
of GPS solution, 315
of observations, 365, 397
of solution, 397

variance of unit weight
a posteriori, 402
pseudo-range, 315

Vasa, the good ship, 114
vector graphics, 255
vector mapping, 373, 374
vectorial product, 519
Vega (star), 470
velocity correction, second, 204, 205
velocity vector of satellite, 326, 328
Venezuela, 492
Venice (Italy), 114
Vening Meinesz, Felix A., 425, 435
vernier, 140
Vernier, Pierre, 140
vertical angle, see zenith angle
vertical axis (theodolite), 121
vertical datum, 80
vertical-circle index, 145

automatic, 148
video game, 256
video tape (VLBI), 481
virtual reference station (RTK), 352
viscosity, 489

pitch, 489
sodium, 489
water, 489

visibility
free stationing, 227
in the terrain, 256
of GPS satellites, 284

visibility conditions of benchmarks, 212
visible light, nature of, 188
visual ellipse of point variance matrix,

380, 381
visual ellipsoid of gravitational gradient

tensor, 451
visualisation of spatial data, 234
VLBI

description, 480
Earth rotation monitoring, 468
Mark II, 481
measurement geometry, 482
observable, 481
observation campaign, 480
principle of operation, 482
vector solution, 482

Vocabulary of Geoinformatics, 214
volcanism, 488
volume calculation

Simpson’s rule, 260
terrain model, 263

VRS-RTK, 352
VVJ (Helsinki system), 57

map projection, 61

W
W code, 292, 297
WAAS, 351
wall measure, 245, 246
Washington DC (USA), meridian treaty, 48
water gauge in interior waters, 95
water molecule, chemical polarity, 203
water vapour

content of air, 307
integrated, 502
total precipitable, 502

in stratosphere, 502
partial pressure, 308, 500, 501

wave function, complex, 188
wave motion

frequency, 189
on open sea, 509
phase, 188, 189
wavelength, 189
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wave packet, 306
wave-motion theory of light, 188
weather observations, representativeness,

204, 206
Wegener, Alfred, 483
Wegener’s continental-drift theory, 484
weight matrix of unknowns, see normal

matrix
weight-coefficient matrix, 376

of observations, 396
of pseudo-ranges, 315
of residuals, 400
of unknowns, 365

West Siberian land uplift area, 491
WGS84, 58
what if. . . (reliability), 414
white noise (VLBI), 482
wide-area differential GPS (WADGPS),

351
wide-laning, 343, 350
wind drag, 507
wine-barrel formula, 251
wood dating (tree rings), 193
work, 45

path integral, 440, 441
world model, naïve, 1
writing error in observation notebook, 29

Y
Y code, 292
year ring, see tree ring
Young, Thomas, 189

Z
1462 Zamenhof, 457
Zamenhof, L. L., 457
Zeiss (Trimble) DiNi12 (levelling

instrument), 107
zenith angle, 120

definition, 120
figure, 121
measurement, 145, 146, 387

refraction, 179, 180
zenith propagation delay, 500
zenith tube, 449, 467
zero element of set of numbers, 514
zero error of level, 127, 128
zodiac, 458
zoning, 16
Zoning Base Map Guide, 213
zoning plan, 16

boundaries, 237
calculation, 237, 238

Zoning Survey Guide, 213
new (2014), 235
setting out, 236

topographic data classification, 233
zoning-plan types, 235
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